Algebraicity and transcendence of power series: combinatorial and computational aspects

Alin Bostan

Algorithmic and Enumerative Combinatorics RISC, Hagenberg, August 1–5, 2016

Alin Bostan

Algebraicity and transcendence of power series

Exercises

Exercises, Part II

● Let $M_{n,k}$ be the number of $\{(1,1), (1,-1)\}$ -walks in \mathbb{N}^2 of length *n* that start at (0,0) and end at vertical altitude *k*. Let $M(x,y) = \sum_{n,k} M_{n,k} x^n y^k$.

(a) Show that
$$(y - x(1 + y^2)) \cdot M(x, y) = y - x \cdot M(x, 0)$$

(b) Deduce that $M(x, y) = \frac{\sqrt{1 - 4x^2} + 2xy - 1}{2x(y - x(1 + y^2))}$

② Prove that Gessel's generating function for excursions

$$G(t;0,0) = \frac{2F_1\left(-\frac{1}{2} - \frac{1}{6} \mid 16t\right) - 1}{2t} = 1 + 2t + 11t^2 + 85t^3 + 782t^4 + \cdots$$

is algebraic, using the Beukers-Heckman and Schwarz's theorems.

③ Prove that the power series
$$\sum_{n} {\binom{2n}{n}}^{r} t^{n}$$
 is algebraic if and only if $r = 1$.

$$S = \{(1,1), (1,-1)\}$$

 $M_{n+1,k} = M_{n,k-1} + M_{n,k+1}, \quad M_{0,0} = 1, \ M_{-1,k} = M_{n,-1} = 0 \text{ for } k, n \ge 0$

Multiply by $y^{k+1}x^{n+1}$, and sum over $n, k \in \mathbb{N}$

$$\implies \qquad y \cdot \left(M(x,y) - \sum_{\substack{k \ge 0 \\ M(0,y) = 1}} M_{0,k} y^k \right) = y^2 x \cdot M(x,y) + x \cdot \left(M - \sum_{\substack{n \ge 0 \\ M(x,0)}} M_{n,0} x^n \right)$$

 $\implies (y - x(1 + y^2)) \cdot M(x, y) = y - x \cdot M(x, 0)$ (kernel equation)

$$S = \{(1,1), (1,-1)\}$$

(y - x(1 + y²)) · M(x,y) = y - x · M(x,0) (kernel equation)

Kernel method: let $y_0 \in \mathbb{Q}[[x]]$ the power series root of $K = y - x(1 + y^2)$

$$y_0 = \frac{1 - \sqrt{1 - 4x^2}}{2x} = x + x^3 + 2x^5 + \dots \in \mathbb{Q}[[x]]$$

Plugging $y = y_0$ in the (kernel equation) $\implies E(x) = M(x, 0) = \frac{y_0}{x}$

$$\implies \qquad M(x,y) = \frac{y - y_0}{K(x,y)} = \frac{\sqrt{1 - 4x^2 + 2xy - 1}}{2x(y - x(1 + y^2))}$$