
1 / 48

Computer Algebra
for Lattice Path Combinatorics

Alin Bostan

The 74th Séminaire Lotharingien de Combinatoire
Ellwangen, March 23–25, 2015

Alin Bostan Computer Algebra for Lattice Path Combinatorics



2 / 48

Overview

1 Monday: General presentation
2 Tuesday: Guess’n’Prove
3 Wednesday: Creative telescoping
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Part I: General presentation
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General context: lattice paths confined to cones

Let S be a subset of Zd (step set, or model) and p0 ∈ Zd (starting point).

A path (walk) of length n starting at p0 is a sequence (p0, p1, . . . , pn) of
elements in Zd such that pi+1 − pi ∈ S for all i.

Let C be a cone of Rd (if x ∈ C and r ≥ 0 then r · x ∈ C).

Example: S = {(1, 0), (−1, 0), (1,−1), (−1, 1)}, p0 = (0, 0)

and C = R2
+
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(i, j) = (5, 1)

Questions

What is the number a(n) of n-step walks contained in C?

For i ∈ C, what is the number a(n; i) of such walks that end at i?

What about their generating series A(t), resp. A(t; x)?
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Why count walks in cones?

Many discrete objects can be encoded in that way:

• discrete mathematics (permutations, trees, words, urns, . . . )
• statistical physics (Ising model, . . . )
• probability theory (branching processes, games of chance, . . . )
• operations research (queueing theory, . . . )
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An old topic: The ballot problem and the reflection principle

Ballot problem [Bertrand, 1887]

Lattice path reformulation: given positive integers a, b with a > b, find the
number of Dyck paths starting at the origin and consisting of a upsteps↗
and b downsteps↘ such that no step ends on the x-axis.

Reflection principle: Dyck paths from (1, 1) to T(a + b, a− b) that touch the
x-axis ≡ Dyck paths from (1,−1) to T

Answer: good paths = paths from (1, 1) to T that never touch the x-axis(
a + b− 1

a− 1

)
−
(

a + b− 1
b− 1

)
=

a− b
a + b

(
a + b

a

)
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An old topic: Pólya’s “promenade au hasard” / “Irrfahrt”

[Pólya, 1921] The simple random walk on Zd is recurrent in dimensions
d = 1, 2 (“Alle Wege fuehren nach Rom”), and transient in dimension d ≥ 3
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Still a topical issue

Many recent contributions:

Adan, Banderier, Bernardi, Bostan, Bousquet-Mélou, Chyzak, Cori, Denisov,
Duchon, Dulucq, Fayolle, Fisher, Flajolet, Garbit, Gessel, Guttmann, Guy,
Gouyou-Beauchamps, van Hoeij, Janse van Rensburg, Johnson, Kauers,
Koutschan, Krattenthaler, Kreweras, Kurkova, van Leeuwarden, MacMahon,
Melczer, Mishna, Niederhausen, Pech, Petkovšek, Prellberg, Raschel,
Rechnitzer, Sagan, Salvy, Viennot, Wachtel, Wilf, Yeats, Zeilberger...

etc.

Specific question

Ad hoc solution
Systematic approach
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Personal bias: Experimental Mathematics using Computer Algebra
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Example: From the SIAM 100-Digit Challenge [Trefethen 2002]

1/4

1/4

1/4-ε 1/4+ε

Chapter 6

Biasing for a Fair Return

Folkmar Bornemann

It was often claimed that [direct and “exact” numeri-
cal solution of the equations of physics] would make the
special functions redundant. ... The persistence of spe-
cial functions is puzzling as well as surprising. What
are they, other than just names for mathematical objects
that are useful only in situations of contrived simplicity?
Why are we so pleased when a complicated calculation
“comes out” as a Bessel function, or a Laguerre polyno-
mial? What determines which functions are “special”?

— Sir Michael Berry [Ber01]

People who like this sort of thing will find this the sort
of thing they like.

— Barry Hughes, quoting Abraham Lincoln at the
beginning of an appendix on “Special Functions for Ran-
dom Walk Problems” [Hug95, p. 569]

Problem 6

A flea starts at (0, 0) on the infinite two-dimensional integer lattice and
executes a biased random walk: At each step it hops north or south with
probability 1/4, east with probability 1/4 + ε, and west with probability
1/4 − ε. The probability that the flea returns to (0, 0) sometime during
its wanderings is 1/2. What is ε?

Asking for the ε that gives a certain probability p of return yields a problem hardly
any more difficult than calculating the probability for a given ε: it just adds the
need to use a numerical root-finder. But the problem looks more interesting the way
it is stated. In §6.1 we give a short argument, why the problem is solvable.

We will discuss several methods for calculating the probability of return. In
§6.2, using virtually no probability theory, we transform the problem to one of lin-
ear algebra. Solving a sparse linear system of dimension 25 920 gives us 15 correct

123

I Computer algebra conjectures and proves

p(ε) = 1−
√

A
2
· 2F1

(
1
2 , 1

2
1

∣∣∣∣ 2
√

1− 16ε2

A

)−1

, with A = 1 + 8ε2 +
√

1− 16ε2.
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A (very) basic cone: the full space

Rational series

If S ⊂ Zd is finite and C = Rd, then A(t; x) is rational:

a(n) = |S|n ⇔ A(t) = ∑
n≥0

a(n)tn =
1

1− |S| t

More generally:

A(t; x) =
1

1− t ∑s∈S xs .

Alin Bostan Computer Algebra for Lattice Path Combinatorics
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Also well-known: a (rational) half-space

Algebraic series [Bousquet-Mélou-Petkovšek 00]

If S ⊂ Zd is finite and C is a rational half-space, then A(t; x) is algebraic,
given by an explicit system of polynomial equations.

Alin Bostan Computer Algebra for Lattice Path Combinatorics
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The “next” case: intersection of two half-spaces

i

j

f (i, j; n) =

 0 if i < 0 or j < 0 or n < 0,
∑

i′j′∈S
f (i− i′, j− j′; n− 1) otherwise.
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The “next” case: intersection of two half-spaces

i

j

(i, j) = (5, 1) '
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Lattice walks with small steps in the quarter plane

I From now on: we focus on nearest-neighbor walks in the quarter plane,
i.e. walks in N2 starting at (0, 0) and using steps in a prefixed subset S of

{↙,←,↖, ↑,↗,→,↘, ↓}.

I Example with n = 45, i = 14, j = 2 for:

S =

I fn;i,j = number of walks of length n ending at (i, j).

I fn;0,0 = number of walks returning to (0, 0), a.k.a. “excursions”, of length n.

I fn = ∑i,j≥0 fn;i,j = number of total walks with length n.
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Generating series and combinatorial problems

I Complete generating series:

F(t; x, y) =
∞

∑
n=0

( ∞

∑
i,j=0

fn;i,jx
iyj
)

tn ∈ Q[x, y][[t]].

I Special, combinatorially meaningful specializations:

F(t; 0, 0) counts excursions;

F(t; 1, 1) = ∑n≥0 fntn counts walks with prescribed length;

F(t; 1, 0) counts walks ending on the horizontal axis.

Combinatorial questions: Given S, what can be said about F(t; x, y),
resp. fn;i,j, and their variants?

Properties of F: algebraic? transcendental? D-finite?

Explicit form: of F? of f ?

Asymptotics of f ?

Our goal: Use computer algebra to give computational answers.

Alin Bostan Computer Algebra for Lattice Path Combinatorics
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Small-step walks of interest

From the 28 step sets S ⊆ {−1, 0, 1}2 \ {(0, 0)}, some are:

trivial, simple, intrinsic to the
half plane,

symmetrical.

One is left with 79 interesting distinct models.
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The 79 models
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The 79 models
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Two important models: Kreweras and Gessel walks

S = {↓,←,↗} FS(t; x, y) ≡ K(t; x, y)

S = {↗,↙,←,→} FS(t; x, y) ≡ G(t; x, y)
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Example: A Kreweras excursion.

Alin Bostan Computer Algebra for Lattice Path Combinatorics



18 / 48

“Special” models

Dyck: �
@
@R
��

Motzkin: �
@
@R
-��

Pólya: �
�@
?
6
@
-�

Kreweras: �
�@
?@
��

Gessel: �	
�@
@
-��

Gouyou-Beauchamps: �
�@I
@R
-�

King: �	
�@I
?
6
@R
-��

Exercise: �
�@6
@R
�
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Important classes of univariate power series

algebraic

hypergeom

D-finite series

Algebraic: S(t) ∈ Q[[t]] root of a polynomial P ∈ Q[t, T], i.e., P
(
t, S(t)

)
= 0.

D-finite: S(t) ∈ Q[[t]] satisfying a linear differential equation with
polynomial coefficients cr(t)S(r)(t) + · · ·+ c0(t)S(t) = 0.

Hypergeometric: S(t) = ∑∞
n=0 sntn such that sn+1

sn
∈ Q(n). E.g.,

2F1

(
a b
c

∣∣∣∣ t
)
=

∞

∑
n=0

(a)n(b)n

(c)n

tn

n!
, (a)n = a(a + 1) · · · (a + n− 1).
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Important classes of multivariate power series

algebraic series

D-finite series

S ∈ Q[[x, y, t]] is algebraic if it is the root of a P ∈ Q[x, y, t, T].

S ∈ Q[[x, y, t]] is D-finite if the set of all partial derivatives of S spans a
finite-dimensional vector space over Q(x, y, t).

Alin Bostan Computer Algebra for Lattice Path Combinatorics
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Main results (I): algebraicity of Gessel walks

Theorem [Kreweras 1965; 100 pages combinatorial proof!]

K(t; 0, 0) = 3F2

(
1/3 2/3 1

3/2 2

∣∣∣∣ 27 t3
)
=

∞

∑
n=0

4n(3n
n )

(n + 1)(2n + 1)
t3n.

Theorem [Gessel’s conjecture; Kauers, Koutschan & Zeilberger 2009]

G(t; 0, 0) = 3F2

(
5/6 1/2 1

5/3 2

∣∣∣∣ 16t2
)
=

∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(4t)2n.

Question: What about K(t; x, y) and G(t; x, y)?

Theorem [Gessel 1986, Bousquet-Mélou 2005] K(t; x, y) is algebraic.

I G(t; x, y) had been conjectured to be non-D-finite.

Theorem [B. & Kauers 2010] G(t; x, y) is D-finite, even algebraic.

I Computer-driven discovery and proof; no human proof yet.

Alin Bostan Computer Algebra for Lattice Path Combinatorics
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Main results (II): Explicit form for G(t; x, y)

Theorem [B., Kauers & van Hoeij 2010]
Let V = 1 + 4t2 + 36t4 + 396t6 + · · · be a root of

(V− 1)(1 + 3/V)3 = (16t)2,

let U = 1 + 2t2 + 16t4 + 2xt5 + 2(x2 + 83)t6 + · · · be a root of

x(V− 1)(V + 1)U3 − 2V(3x + 5xV− 8Vt)U2

−xV(V2 − 24V− 9)U + 2V2(xV− 9x− 8Vt) = 0,

let W = t2 + (y + 8)t4 + 2(y2 + 8y + 41)t6 + · · · be a root of

y(1−V)W3 + y(V + 3)W2 − (V + 3)W + V− 1 = 0.

Then G(t; x, y) is equal to

64(U(V+1)−2V)V3/2

x(U2−V(U2−8U+9−V))2 − y(W−1)4(1−Wy)V−3/2

t(y+1)(1−W)(W2y+1)2

(1 + y + x2y + x2y2)t− xy
− 1

tx(y + 1)
.

I Computer-driven discovery and proof; no human proof yet.

IProof uses guessed minimal polynomials for G(t; x, 0) & G(t; 0, y)
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Main results (III): Conjectured D-Finite F(t; 1, 1) [B. & Kauers 2009]

OEIS S Pol size ODE size OEIS S Pol size ODE size

1 A005566 — 3, 4 13 A151275 — 5, 24
2 A018224 — 3, 5 14 A151314 — 5, 24
3 A151312 — 3, 8 15 A151255 — 4, 16
4 A151331 — 3, 6 16 A151287 — 5, 19
5 A151266 — 5, 16 17 A001006 2, 2 2, 3
6 A151307 — 5, 20 18 A129400 2, 2 2, 3
7 A151291 — 5, 15 19 A005558 — 3, 5
8 A151326 — 5, 18
9 A151302 — 5, 24 20 A151265 6, 8 4, 9

10 A151329 — 5, 24 21 A151278 6, 8 4, 12
11 A151261 — 4, 15 22 A151323 4, 4 2, 3
12 A151297 — 5, 18 23 A060900 8, 9 3, 5

Equation sizes = {order, degree}@(algeq, diffeq)

I Computerized discovery by enumeration + Hermite–Padé
I 1–22: Confirmed by human proofs in [Bousquet-Mélou & Mishna 2010]
I 23: Confirmed by a human proof in [B., Kurkova & Raschel 2015]
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Main results (III): Conjectured D-Finite F(t; 1, 1) [B. & Kauers 2009]

OEIS S alg asympt OEIS S alg asympt

1 A005566 N 4
π

4n

n 13 A151275 N 12
√

30
π

(2
√

6)n

n2

2 A018224 N 2
π

4n

n 14 A151314 N
√

6λµC5/2

5π
(2C)n

n2

3 A151312 N
√

6
π

6n

n 15 A151255 N 24
√

2
π

(2
√

2)n

n2

4 A151331 N 8
3π

8n

n 16 A151287 N 2
√

2A7/2

π
(2A)n

n2

5 A151266 N 1
2

√
3
π

3n

n1/2 17 A001006 Y 3
2

√
3
π

3n

n3/2

6 A151307 N 1
2

√
5

2π
5n

n1/2 18 A129400 Y 3
2

√
3
π

6n

n3/2

7 A151291 N 4
3
√

π
4n

n1/2 19 A005558 N 8
π

4n

n2

8 A151326 N 2√
3π

6n

n1/2

9 A151302 N 1
3

√
5

2π
5n

n1/2 20 A151265 Y 2
√

2
Γ(1/4)

3n

n3/4

10 A151329 N 1
3

√
7

3π
7n

n1/2 21 A151278 Y 3
√

3√
2Γ(1/4)

3n

n3/4

11 A151261 N 12
√

3
π

(2
√

3)n

n2 22 A151323 Y
√

233/4

Γ(1/4)
6n

n3/4

12 A151297 N
√

3B7/2

2π
(2B)n

n2 23 A060900 Y 4
√

3
3Γ(1/3)

4n

n2/3

A = 1 +
√

2, B = 1 +
√

3, C = 1 +
√

6, λ = 7 + 3
√

6, µ =

√
4
√

6−1
19

I Computerized discovery by enumeration + Hermite–Padé + LLL/PSLQ.
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The group of a model: the simple walk case

The characteristic polynomial χS := x +
1
x
+ y +

1
y

is left invariant under

ψ(x, y) =
(

x,
1
y

)
, φ(x, y) =

(
1
x

, y
)

,

and thus under any element of the group

〈
ψ, φ

〉
=

{
(x, y),

(
x,

1
y

)
,
(

1
x

,
1
y

)
,
(

1
x

, y
)}

.
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The group of a model: the general case

The polynomial χS := ∑
(i,j)∈S

xiyj =
1

∑
i=−1

Bi(y)x
i =

1

∑
j=−1

Aj(x)y
j

is left

invariant under

ψ(x, y) =
(

x,
A−1(x)
A+1(x)

1
y

)
, φ(x, y) =

(
B−1(y)
B+1(y)

1
x

, y
)

,

and thus under any element of the group

GS :=
〈
ψ, φ

〉
.
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Examples of groups

Order 4,

order 6, order 8, order ∞.
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An important object: the orbit sum (OS)

The orbit sum of a model S is the following polynomial in Q[x, x−1, y, y−1]:

OrbitSum(S) := ∑
θ∈GS

(−1)θθ(xy)

I E.g., for the simple walk:

OS

�
�@
?
6
@
-�

= x · y− 1
x
· y + 1

x
· 1

y
− x · 1

y

I For 4 models, the orbit sum is zero:

E.g. for the Kreweras model:

OS

�
�@
?@
��

= x · y− 1
xy
· y + 1

xy
· x− y · x + y · 1

xy
− x · 1

xy
= 0
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The 79 models: finite and infinite groups

79 models

23 admit a finite group
[Mishna’07]

56 have an infinite group
[Bousquet-Mélou & Mishna’10]

all F(t; x, y) D-finite

19 transcendental
(OS 6= 0)

[Gessel & Zeilberger’92]

[Bousquet-Mélou’02]

4 algebraic (OS = 0)
(3 Kreweras-type + Gessel)

[BMM’10] + [B. & Kauers’10]

−→ all non-D-finite
• [Mishna & Rechnitzer’07] and

[Melczer & Mishna’13] for 5 singular models

• [Kurkova & Raschel’13] and

[B., Raschel & Salvy’13] for all others
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The 23 models with a finite group

(i) 16 with a vertical symmetry, and group isomorphic to D2
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�
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�
�@I
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@I6
@R
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@I
?@R
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�
�@I
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6
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-�
�	
@I
?
6
@R
��

�	
�@I6
@R
-��
�	
�@I
?@R
-��

�	
�@I
?
6
@R
-��

(ii) 5 with a diagonal or anti-diagonal symmetry, and group isomorphic to
D3

�
�@6
@R
�
�
�@
?@
��
�	
@6
@
-�

�
�@I
?
6
@R
-�
�	
�@
?
6
@
-��

(iii) 2 with group isomorphic to D4

�
�@I
@R
-�
�	
�@
@
-��

(i): vertical symmetry; (ii)+(iii): zero drift ∑
s∈S

s

In red, models with OS = 0 and algebraic GF
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Main results (IV): explicit expressions for the 19 D-finite
transcendental models

Theorem [B., Chyzak, van Hoeij, Kauers & Pech 2015]

Let S be one of the 19 models with finite group GS, and non-zero orbit sum.
Then F is expressible using iterated integrals of 2F1 expressions.

Example (King walks in the quarter plane, A025595)

F

�	
�@I
?
6
@R
-��

(t; 1, 1) =
1
t

∫ t

0

1
(1 + 4x)3 · 2F1

(
3
2

3
2

2

∣∣∣∣ 16x(1 + x)
(1 + 4x)2

)
dx

= 1 + 3t + 18t2 + 105t3 + 684t4 + 4550t5 + 31340t6 + 219555t7 + · · ·

I Computer-driven discovery and proof; no human proof yet.
I Proof uses creative telescoping, ODE factorization, ODE solving. −→
Wednesday
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Hypergeometric Series Occurring in Explicit Expressions for F(t; 1, 1)

hyp1 hyp2 w hyp1 hyp2 w

1 2F1

(
1
2

1
2

1

∣∣∣∣w
)

2F1

(
1
2

3
2

2

∣∣∣∣w
)

16t2 10 2F1

(
7
4

9
4

2

∣∣∣∣w
)

2F1

(
9
4

11
4

3

∣∣∣∣w
)

64(t2+t+1)t2

(12t2+1)2

2 2F1

(
1
2

1
2

1

∣∣∣∣w
)

16t2 11 2F1

(
1
2

3
2

2

∣∣∣∣w
)

2F1

(
1
2

5
2

3

∣∣∣∣w
)

16t2

4t2+1

3 2F1

(
3
2

3
2

2

∣∣∣∣w
)

16t
(2t+1)(6t+1) 12 2F1

(
5
4

7
4

1

∣∣∣∣w
)

2F1

(
5
4

7
4

2

∣∣∣∣w
)

64t3(2t+1)
(8t2−1)2

4 2F1

(
3
2

3
2

2

∣∣∣∣w
)

16t(1+t)
(1+4t)2 13 2F1

(
7
4

9
4

2

∣∣∣∣w
)

2F1

(
7
4

9
4

3

∣∣∣∣w
)

64t2(t2+1)
(16t2+1)2

5 2F1

(
3
4

5
4

1

∣∣∣∣w
)

2F1

(
5
4

7
4

2

∣∣∣∣w
)

64t4 14 2F1

(
7
4

9
4

2

∣∣∣∣w
)

2F1

(
9
4

11
4

3

∣∣∣∣w
)

64(t2+t+1)t2

(12t2+1)2

6 2F1

(
7
4

9
4

2

∣∣∣∣w
)

2F1

(
7
4

9
4

3

∣∣∣∣w
)

64t3(1+t)
(1−4t2)2 15 2F1

(
1
4

3
4

1

∣∣∣∣w
)

2F1

(
3
4

5
4

2

∣∣∣∣w
)

64t4

7 2F1

(
1
2

1
2

1

∣∣∣∣w
)

2F1

(
1
2

3
2

1

∣∣∣∣w
)

16t2

4t2+1
16 2F1

(
7
4

9
4

2

∣∣∣∣w
)

2F1

(
9
4

11
4

3

∣∣∣∣w
)

64t3(1+t)
(1−4t2)2

8 2F1

(
5
4

7
4

2

∣∣∣∣w
)

2F1

(
7
4

9
4

2

∣∣∣∣w
)

64t3(2t+1)
(8t2−1)2

9 2F1

(
7
4

9
4

2

∣∣∣∣w
)

2F1

(
7
4

9
4

3

∣∣∣∣w
)

64t2(t2+1)
(16t2+1)2 19 2F1

(
− 1

2
1
2

1

∣∣∣∣w
)

2F1

(
1
2

1
2

2

∣∣∣∣w
)

16t2
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Main results (V): non-D-finiteness in models with an infinite group

Theorem [B., Rachel & Salvy 2013]

Let S be one of the 51 non-singular models with infinite group GS.
Then FS(t; 0, 0), and in particular FS(t; x, y), are non-D-finite.

I Algorithmic proof. Uses Gröbner basis computations, polynomial
factorization, cyclotomy testing.
I Based on two ingredients: asymptotics + irrationality.

I [Kurkova & Raschel 2013] Human proof that FS(t; x, y) is non-D-finite.
I No human proof yet for FS(t; 0, 0) non-D-finite.
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The 56 models with infinite group
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In blue, non-singular models, solved by [B., Raschel & Salvy 2013]
In red, singular models, solved by [Melczer & Mishna 2013]
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Example: the scarecrows

[B., Raschel & Salvy 2013]: FS(t; 0, 0) is not D-finite for the models

For the 1st and the 3rd, the excursions sequence [tn] FS(t; 0, 0)

1, 0, 0, 2, 4, 8, 28, 108, 372, . . .

is ∼ K · 5n · n−α, with α = 1 + π/ arccos(1/4) = 3.383396 . . .

The irrationality of α prevents FS(t; 0, 0) from being D-finite.
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Summary: Classification of 2D non-singular walks

The Main Theorem Let S be one of the 74 non-singular models. The
following assertions are equivalent:

(1) The full generating series FS(t; x, y) is D-finite

(2) the excursions generating series FS(t; 0, 0) is D-finite

(3) the excursions sequence [tn] FS(t; 0, 0) is ∼ K · ρn · nα, with α ∈ Q

(4) the group GS is finite (and |GS| = 2 ·min{` ∈N? | `
α+1 ∈ Z})

(5) the step set S has either an axial symmetry, or zero drift and cardinal
different from 5.

Moreover, under (1)–(5), FS(t; x, y) is algebraic if and only if the model S
has positive covariance ∑

(i,j)∈S
ij− ∑

(i,j)∈S
i · ∑

(i,j)∈S
j > 0, and iff it has OS = 0.

In this case, FS(t; x, y) is expressible using nested radicals.
If not, FS(t; x, y) is expressible using iterated integrals of 2F1 expressions.
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Main methods

(1) for proving algebraicity / D-finiteness
(1a) Guess’n’Prove
(1b) Creative telescoping

(2) for proving non-D-finiteness
(2a) Infinite number of singularities, or lacunary
(2b) Asymptotics
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Main methods

(1) for proving algebraicity / D-finiteness
(1a) Guess’n’Prove Hermite-Padé approximants
(1b) Creative telescoping Diagonals of rational functions

(2) for proving non-D-finiteness
(2a) Infinite number of singularities, or lacunary
(2b) Asymptotics

I All methods are algorithmic.
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Summary: Walks with unit steps in N2

quadrant models: 79

|G|<∞: 23

nonzero orbit sum: 19

Kernel method + CT

D-finite

zero orbit sum: 4

Guess’n’Prove

algebraic

|G| = ∞: 56

asymptotics + GB

not D-finite
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Extensions: Walks with unit steps in N3

11 074 225 distinct interesting models

3D octant models with ≤ 6 steps: 20804

|G| < ∞: 170

orbit sum 6= 0: 108

kernel method

D-finite

orbit sum = 0: 62

2D-reducible: 43

D-finite

not 2D-reducible: 19

not D-finite?

|G| = ∞?: 20634

not D-finite?

[B., Bousquet-Mélou, Kauers, Melczer 2015]

I Open question: some non-D-finite models with a finite group?
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The 19 mysterious 3D-models
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The 19 mysterious 3D-models
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Extensions: Walks in N2 with longer steps

• Define (and use) a group G for models with larger steps?

• Example: When S = {(0, 1), (1,−1), (−2,−1)}, there is an underlying
group that is finite and

xyF(t; x, y) = [x>0y>0]
(x− 2x−2)(y− (x− x−2)y−1)

1− t(xy−1 + y + x−2y−1)

[B., Bousquet-Mélou & Melczer, in progress]

I Current status:

• 680 models with one large step, 643 proved non D-finite, 32 of 37 have
differential equations guessed.

• 5910 models with two large steps, 5754 proved non D-finite, 69 of 156
have differential equations guessed.
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An exercise involving the model

Let S = {N, W, SE}. A S-walk is a path in Z2 using only steps from S.
Show that, for any integer n, the following quantities are equal:

(i) the number of S-walks of length n confined to the upper half plane
Z×N that start and end at the origin (0, 0);

(ii) the number of S-walks of length n confined to the quarter plane N2 that
start at the origin (0, 0) and finish on the diagonal x = y.

For instance, for n = 3, this common value is 3:

(i) (0, 0) 7→ (−1, 0) 7→ (−1, 1) 7→ (0, 0), (0, 0) 7→ (0, 1) 7→ (−1, 1) 7→ (0, 0)
and (0, 0) 7→ (0, 1) 7→ (1, 0) 7→ (0, 0), i.e., W–N–SE, N–W–SE, N–SE–W
(ii) (0, 0) 7→ (0, 1) 7→ (1, 0) 7→ (0, 0), (0, 0) 7→ (0, 1) 7→ (0, 2) 7→ (1, 1) and
(0, 0) 7→ (0, 1) 7→ (1, 0) 7→ (1, 1), i.e., N–SE–W, N–N–SE, N–SE–N
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End of Part I

Thanks for your attention!
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