Computer Algebra for Lattice Path Combinatorics

Alin Bostan

Cnuáa

Overview

Part 1: \quad General presentation
 Part 2:
 Guess'n'Prove
 Part 3:
 Creative telescoping

Alin Bostan

Part 1: General presentation

An (innocent looking) exercise

Let $\mathfrak{S}=\{\uparrow, \leftarrow, \searrow\}$. A \mathfrak{S}-walk is a path in \mathbb{Z}^{2} using only steps from \mathfrak{S}. Show that, for any integer n, the following quantities are equal:
(i) the number a_{n} of \mathfrak{S}-walks of length n confined to the upper half plane $\mathbb{Z} \times \mathbb{N}$ that start and end at the origin $(0,0)$;
(ii) the number b_{n} of \mathfrak{S}-walks of length n confined to the quarter plane \mathbb{N}^{2} that start at the origin $(0,0)$ and finish on the diagonal $x=y$.

An (innocent looking) exercise

Let $\mathfrak{S}=\{\uparrow, \leftarrow, \searrow\}$. A \mathfrak{S}-walk is a path in \mathbb{Z}^{2} using only steps from \mathfrak{S}. Show that, for any integer n, the following quantities are equal:
(i) the number a_{n} of \mathfrak{S}-walks of length n confined to the upper half plane $\mathbb{Z} \times \mathbb{N}$ that start and end at the origin $(0,0)$;
(ii) the number b_{n} of \mathfrak{S}-walks of length n confined to the quarter plane \mathbb{N}^{2} that start at the origin $(0,0)$ and finish on the diagonal $x=y$.

For instance, for $n=3$, this common value is $a_{3}=b_{3}=3$:

Teasers

Teaser 1: This exercise can be solved using computer algebra!

Teaser 2: The answer has a nice closed form!

$$
a_{3 n}=b_{3 n}=\frac{(3 n)!}{n!^{2} \cdot(n+1)!^{\prime}} \quad \text { and } \quad a_{m}=b_{m}=0 \quad \text { if } 3 \text { does not divide } m .
$$

Teaser 3: A certain group attached to the step set $\{\uparrow, \leftarrow, \searrow\}$ is finite!

General context: lattice paths confined to cones

Let \mathfrak{S} be a subset of \mathbb{Z}^{d} (step set, or model) and $p_{0} \in \mathbb{Z}^{d}$ (starting point).

Example: $\mathfrak{S}=\{(1,0),(-1,0),(1,-1),(-1,1)\}, p_{0}=(0,0)$

General context: lattice paths confined to cones

Let \mathfrak{S} be a subset of \mathbb{Z}^{d} (step set, or model) and $p_{0} \in \mathbb{Z}^{d}$ (starting point). A path (walk) of length n starting at p_{0} is a sequence $\left(p_{0}, p_{1}, \ldots, p_{n}\right)$ of elements in \mathbb{Z}^{d} such that $p_{i+1}-p_{i} \in \mathfrak{S}$ for all i.

Example: $\mathfrak{S}=\{(1,0),(-1,0),(1,-1),(-1,1)\}, p_{0}=(0,0)$

General context: lattice paths confined to cones

Let \mathfrak{S} be a subset of \mathbb{Z}^{d} (step set, or model) and $p_{0} \in \mathbb{Z}^{d}$ (starting point). A path (walk) of length n starting at p_{0} is a sequence ($p_{0}, p_{1}, \ldots, p_{n}$) of elements in \mathbb{Z}^{d} such that $p_{i+1}-p_{i} \in \mathfrak{S}$ for all i.

Let \mathfrak{C} be a cone of \mathbb{R}^{d} (if $x \in \mathfrak{C}$ and $r \geq 0$ then $\left.r \cdot x \in \mathfrak{C}\right)$.
Example: $\mathfrak{S}=\{(1,0),(-1,0),(1,-1),(-1,1)\}, p_{0}=(0,0)$ and $\mathfrak{C}=\mathbb{R}_{+}^{2}$

General context: lattice paths confined to cones

Let \mathfrak{S} be a subset of \mathbb{Z}^{d} (step set, or model) and $p_{0} \in \mathbb{Z}^{d}$ (starting point).
A path (walk) of length n starting at p_{0} is a sequence $\left(p_{0}, p_{1}, \ldots, p_{n}\right)$ of elements in \mathbb{Z}^{d} such that $p_{i+1}-p_{i} \in \mathfrak{S}$ for all i.

Let \mathfrak{C} be a cone of \mathbb{R}^{d} (if $x \in \mathfrak{C}$ and $r \geq 0$ then $r \cdot x \in \mathfrak{C}$).
Example: $\mathfrak{S}=\{(1,0),(-1,0),(1,-1),(-1,1)\}, p_{0}=(0,0)$ and $\mathfrak{C}=\mathbb{R}_{+}^{2}$

Questions

- What is the number a_{n} of n-step walks contained in \mathfrak{C} ?
- For $i \in \mathfrak{C}$, what is the number $a_{n ; i}$ of such walks that end at i ?
- What about their GF's $A(t)=\sum_{n} a_{n} t^{n}$ and $A(t ; x)=\sum_{n, i} a_{n ; i} x^{i} t^{n}$?

Why count walks in cones?

Many discrete objects can be encoded in that way:

- discrete mathematics (permutations, trees, words, urns, ...)
- statistical physics (Ising model, ...)
- probability theory (branching processes, games of chance,...)
- operations research (queueing theory, ...)

Why count walks in cones？

Many discrete objects can be encoded in that way：
－discrete mathematics（permutations，trees，words，urns，．．．）
－statistical physics（Ising model，．．．）
－probability theory（branching processes，games of chance，．．．）
－operations research（queueing theory，．．．）

Journal of Statistical Planning and Inference 140 （2010）2237－2254

TOPICS to be covered include（but are not Imited to）：

 Lattice path enumeration Plane PartitionsYoung tableaux q－calculus Orthogonal polynomials

Random walks

Non parametric statistical inference Discrete distributions and urn models Queueing theory Queveing theory
Analysis of algorithms
Analysis of algorithms
Graph Theory and Ap
Graph Theory and Applications Self－dual codes and unimodular lattices Bjections between paths and other combinatoric structures

Contents lists available at ScienceDirect
Journal of Statistical Planning and Inference
此雨为

ELSEVIER journal homepage：www．elsevier．com／locate／jspi

A history and a survey of lattice path enumeration
Katherine Humphreys
Department of Mathematical Sciences，Fiorida Atiantic University，Boca Raton，FL 33431，USA

ARTICLEINFO ABSTRACT
Available online 21 January 2010
Keywords：
Lattice path
Lattice path
Reflection princi
Method of images

In celebration of the Sixth International Conterence on Lattice Path Counting and Applications，it is befitting to review the history of lattice path enumeration and to survey how the topic has progressed thus far．
We start the history with early games of chance specifically the ruin problern which ater appears as the ballot problem．We discuss Andre＇s Reflection Principle and its misnomer，its relation with the method of images and possible origins from physics and Brownian motion，and the earliest evidence of lattice path techniques and solutions．

In the survey，we give representative articles on lattice path enumeration found in
the literature in the last 35 years by the lattice，step set，boundary，characteristics counted，and solution method．Some of this work appears in the author＇s 2005 dissertation．

An old topic: The ballot problem and the reflection principle

Ballot problem [Bertrand, 1887]
Suppose that candidates A and B are running in an election. If a votes are cast for A and b votes are cast for B, where $a>b$, then the probability that A stays ahead of B throughout the counting of the ballots is $(a-b) /(a+b)$.

Lattice path reformulation: given positive integers a, b with $a>b$, find the number of Dyck paths starting at the origin and consisting of a upsteps \nearrow and b downsteps \searrow such that no step ends on the x-axis.
Reflection principle: Dyck paths in \mathbb{N}^{2} from $(1,1)$ to $T(a+b, a-b)$ that touch the x-axis are in bijection with Dyck paths in \mathbb{Z}^{2} from $(1,-1)$ to T

Answer: good paths $=$ paths from $(1,1)$ to T that never touch the x-axis

$$
\binom{a+b-1}{a-1}-\binom{a+b-1}{b-1}=\frac{a-b}{a+b}\binom{a+b}{a}
$$

An old topic: The ballot problem and the reflection principle

Ballot problem [Bertrand, 1887]
Suppose that candidates A and B are running in an election. If a votes are cast for A and b votes are cast for B, where $a>b$, then the probability that A stays ahead of B throughout the counting of the ballots is $(a-b) /(a+b)$.

Lattice path reformulation: given positive integers a, b with $a>b$, find the number of Dyck paths starting at the origin and consisting of a upsteps \nearrow and b downsteps \searrow such that no step ends on the x-axis.
Reflection principle: Dyck paths in \mathbb{N}^{2} from $(1,1)$ to $T(a+b, a-b)$ that touch the x-axis are in bijection with Dyck paths in \mathbb{Z}^{2} from $(1,-1)$ to T

Answer: when $a=n+1$ and $b=n$, this is the Catalan number

$$
C_{n}=\frac{1}{2 n+1}\binom{2 n+1}{n+1}=\frac{1}{n+1}\binom{2 n}{n}
$$

An old topic: Pólya's "promenade au hasard" / "Irrfahrt"

Motto: Drunkard: "Will I ever, ever get home again?" Polya (1921): "You can't miss; just keep going and stay out of 3D!"
(Adam and Delbruck, 1968)
[Pólya, 1921] The simple random walk on \mathbb{Z}^{d} is recurrent in dimensions $d=1,2$ ("Alle Wege fuehren nach Rom"), and transient in dimension $d \geq 3$

Uber eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz.

Still a topical issue

Many recent contributors:
Adan, Bacher, Banderier, Bernardi, Bostan, Bousquet-Mélou, Chyzak, Cori, Denisov, Du, Duchon, Dulucq, Fayolle, Fisher, Flajolet, Garbit, Gessel, Gouyou-Beauchamps, Guttmann, Guy, van Hoeij, Iasnogorodski, Johnson, Kauers, Koutschan, Krattenthaler, Kreweras, Kurkova, van Leeuwarden, Malyshev, Melczer, Mishna, Niederhausen, Pech, Petkovšek, Prellberg, Raschel, Rechnitzer, Sagan, Salvy, Viennot, Wachtel, Wang, Wilf, Wilson, Yatchak, Yeats, Zeilberger... etc.

Still a topical issue

Many recent contributors:
Adan, Bacher, Banderier, Bernardi, Bostan, Bousquet-Mélou, Chyzak, Cori, Denisov, Du, Duchon, Dulucq, Fayolle, Fisher, Flajolet, Garbit, Gessel, Gouyou-Beauchamps, Guttmann, Guy, van Hoeij, Iasnogorodski, Johnson, Kauers, Koutschan, Krattenthaler, Kreweras, Kurkova, van Leeuwarden, Malyshev, Melczer, Mishna, Niederhausen, Pech, Petkovšek, Prellberg, Raschel, Rechnitzer, Sagan, Salvy, Viennot, Wachtel, Wang, Wilf, Wilson, Yatchak, Yeats, Zeilberger... etc.

\longrightarrow Systematic approach

Personal bias: Experimental Mathematics using Computer Algebra

David H. Bailey
Jonathan M. Borwein
Neil J. Calkin
Roland Girgensohn
D. Russell Luke
Victor H. Moll

Experimental Mathematics in Action

Example: From the SIAM 100-Digit Challenge [Trefethen 2002]

Problem 6

> A flea starts at $(0,0)$ on the infinite two-dimensional integer lattice and executes a biased random walk: At each step it hops north or south with probability $1 / 4$, east with probability $1 / 4+\epsilon$, and west with probability $1 / 4-\epsilon$. The probability that the flea returns to $(0,0)$ sometime during its wanderings is $1 / 2$. What is ϵ ?

- Computer algebra conjectures and proves

$$
p(\epsilon)=1-\sqrt{\frac{A}{2}} \cdot{ }_{2} F_{1}\left(\begin{array}{c|c}
\frac{1}{2}, \frac{1}{2} & \frac{2 \sqrt{1-16 \epsilon^{2}}}{1}
\end{array}\right)^{-1}, \quad \text { with } A=1+8 \epsilon^{2}+\sqrt{1-16 \epsilon^{2}}
$$

Example: From the SIAM 100-Digit Challenge [Trefethen 2002]

Problem 6

> A flea starts at $(0,0)$ on the infinite two-dimensional integer lattice and executes a biased random walk: At each step it hops north or south with probability $1 / 4$, east with probability $1 / 4+\epsilon$, and west with probability $1 / 4-\epsilon$. The probability that the flea returns to $(0,0)$ sometime during its wanderings is $1 / 2$. What is ϵ ?

- Computer algebra conjectures and proves
$\epsilon \approx 0.0619139544739909428481752164732121769996387749983$ $6207606146725885993101029759615845907105645752087861 \ldots$

A (very) basic cone: the full space

Rational series
If $\mathfrak{S} \subset \mathbb{Z}^{d}$ is finite and $\mathfrak{C}=\mathbb{R}^{d}$, then

$$
a_{n}=|\mathfrak{S}|^{n} \text {, i.e. } \quad A(t)=\sum_{n \geq 0} a_{n} t^{n}=\frac{1}{1-|\mathfrak{S}| t}
$$

More generally:

$$
A(t ; x)=\sum_{n, i} a_{n ; i} x^{i} t^{n}=\frac{1}{1-t \sum_{s \in \mathfrak{S}} x^{s}} .
$$

Also well-known: a (rational) half-space

Algebraic series [Bousquet-Mélou \& Petkovšek, 2000]
If $\mathfrak{S} \subset \mathbb{Z}^{d}$ is finite and \mathfrak{C} is a rational half-space, then $A(t ; x)$ is algebraic, given by an explicit system of polynomial equations.

Example: For Dyck paths (ballot problem), $A(t ; 1)=\sum_{n \geq 0} C_{n} t^{n}=\frac{1-\sqrt{1-4 t}}{2 t}$

The "next" case: intersection of two half-spaces

The "next" case: intersection of two half-spaces

Lattice walks with small steps in the quarter plane

\triangleright From now on: we focus on nearest-neighbor walks in the quarter plane, i.e. walks in \mathbb{N}^{2} starting at $(0,0)$ and using steps in a fixed subset \mathfrak{S} of

$$
\{\swarrow, \leftarrow, \nwarrow, \uparrow, \nearrow, \rightarrow, \searrow, \downarrow\}
$$

\triangleright Example with $n=45, i=14, j=2$ for:

Lattice walks with small steps in the quarter plane

\triangleright From now on: we focus on nearest-neighbor walks in the quarter plane, i.e. walks in \mathbb{N}^{2} starting at $(0,0)$ and using steps in a fixed subset \mathfrak{S} of

$$
\{\swarrow, \leftarrow, \nwarrow, \uparrow, \nearrow, \rightarrow, \searrow, \downarrow\}
$$

\triangleright Example with $n=45, i=14, j=2$ for:

\triangleright Counting sequence: $f_{n ; i, j}=$ number of walks of length n ending at (i, j).

Lattice walks with small steps in the quarter plane

\triangleright From now on: we focus on nearest-neighbor walks in the quarter plane, i.e. walks in \mathbb{N}^{2} starting at $(0,0)$ and using steps in a fixed subset \mathfrak{S} of

$$
\{\swarrow, \leftarrow, \nwarrow, \uparrow, \nearrow, \rightarrow, \searrow, \downarrow\}
$$

\triangleright Example with $n=45, i=14, j=2$ for:

\triangleright Counting sequence: $f_{n ; i, j}=$ number of walks of length n ending at (i, j).
\triangleright Specializations:

- $f_{n ; 0,0}=$ number of walks of length n returning to origin ("excursions");
- $f_{n}=\sum_{i, j \geq 0} f_{n ; i, j}=$ number of walks with prescribed length n.

Generating functions and combinatorial problems

\triangleright Complete generating function:

$$
F(t ; x, y)=\sum_{n=0}^{\infty}\left(\sum_{i, j=0}^{\infty} f_{n ; i, j} x^{i} y^{j}\right) t^{n} \in \mathbb{Q}[x, y][[t]]
$$

Generating functions and combinatorial problems

\triangleright Complete generating function:

$$
F(t ; x, y)=\sum_{n=0}^{\infty}\left(\sum_{i, j=0}^{\infty} f_{n ; i, j} x^{i} y^{j}\right) t^{n} \in \mathbb{Q}[x, y][[t]] .
$$

\triangleright Specializations:

- Walks returning to the origin ("excursions"): $F(t ; 1,1)=\sum_{n \geq 0}^{F(t ; 0,0) ;} f_{n} t^{n} ;$
- Walks ending on the horizontal axis:
$F(t ; 1,0)$;
- Walks ending on the diagonal:

$$
" F(t ; 0, \infty) ":=\left[x^{0}\right] F(t ; x, 1 / x)
$$

Generating functions and combinatorial problems

\triangleright Complete generating function:

$$
F(t ; x, y)=\sum_{n=0}^{\infty}\left(\sum_{i, j=0}^{\infty} f_{n ; i, j} x^{i} y^{j}\right) t^{n} \in \mathbb{Q}[x, y][[t]] .
$$

\triangleright Specializations:

- Walks returning to the origin ("excursions"):

$$
F(t ; 1,1)=\sum_{n \geq 0}^{F(t ; 0,0)} f_{n} t^{n}
$$

- Walks ending on the horizontal axis:
$F(t ; 1,0)$;
- Walks ending on the diagonal:
$" F(t ; 0, \infty) ":=\left[x^{0}\right] F(t ; x, 1 / x)$.

Combinatorial questions:
Given \mathfrak{S}, what can be said about $F(t ; x, y)$, resp. $f_{n ; i, j}$, and their variants?

- Structure of F : algebraic? transcendental?
- Explicit form: of F ? of f ?
- Asymptotics of f ?

Generating functions and combinatorial problems

\triangleright Complete generating function:

$$
F(t ; x, y)=\sum_{n=0}^{\infty}\left(\sum_{i, j=0}^{\infty} f_{n ; i, j} x^{i} y^{j}\right) t^{n} \in \mathbb{Q}[x, y][[t]]
$$

\triangleright Specializations:

- Walks returning to the origin ("excursions"):
- Walks with prescribed length:

$$
F(t ; 1,1)=\sum_{n \geq 0}^{F(t ; 0,0)} f_{n} t^{n}
$$

- Walks ending on the horizontal axis:
$F(t ; 1,0)$;
- Walks ending on the diagonal:
$" F(t ; 0, \infty) ":=\left[x^{0}\right] F(t ; x, 1 / x)$.

Combinatorial questions:
Given \mathfrak{S}, what can be said about $F(t ; x, y)$, resp. $f_{n ; i, j}$, and their variants?

- Structure of F : algebraic? transcendental?
- Explicit form: of F ? of f ?
- Asymptotics of f ?

Our goal: Use computer algebra to give computational answers.

Small-step models of interest

From the 2^{8} step sets $\mathfrak{S} \subseteq\{-1,0,1\}^{2} \backslash\{(0,0)\}$, some are:

Small-step models of interest

From the 2^{8} step sets $\mathfrak{S} \subseteq\{-1,0,1\}^{2} \backslash\{(0,0)\}$, some are:

trivial,

Small-step models of interest

From the 2^{8} step sets $\mathfrak{S} \subseteq\{-1,0,1\}^{2} \backslash\{(0,0)\}$, some are:

trivial,

simple,

Small-step models of interest

From the 2^{8} step sets $\mathfrak{S} \subseteq\{-1,0,1\}^{2} \backslash\{(0,0)\}$, some are:

trivial,

simple,

intrinsic to the half plane,

Small-step models of interest

From the 2^{8} step sets $\mathfrak{S} \subseteq\{-1,0,1\}^{2} \backslash\{(0,0)\}$, some are:

trivial,

simple,

intrinsic to the half plane,

symmetrical.

Small-step models of interest

From the 2^{8} step sets $\mathfrak{S} \subseteq\{-1,0,1\}^{2} \backslash\{(0,0)\}$, some are:

trivial,

simple,

intrinsic to the half plane,

symmetrical.

One is left with 79 interesting distinct models.

Small-step models of interest

From the 2^{8} step sets $\mathfrak{S} \subseteq\{-1,0,1\}^{2} \backslash\{(0,0)\}$, some are:

trivial,

simple,

intrinsic to the half plane,

symmetrical.

One is left with 79 interesting distinct models.
Is any further classification possible?

The 79 models

$Y \forall \forall \quad$ Y \because Singular

The 79 models

$\forall \quad \forall \quad$ Singular

Two important models: Kreweras and Gessel walks

$$
\begin{array}{ll}
\mathfrak{S}=\{\downarrow, \leftarrow, \nearrow\} & F_{\mathfrak{S}}(t ; x, y) \equiv K(t ; x, y) \\
\mathfrak{S}=\{\nearrow, \swarrow, \leftarrow, \rightarrow\} & F_{\mathfrak{S}}(t ; x, y) \equiv G(t ; x, y)
\end{array}
$$

Example: A Kreweras excursion.

"Special" models

Dyck:

Motzkin:

Pólya:

Kreweras:

Gouyou-Beauchamps:

King:

Exercise:

Classification of univariate power series

Classification of univariate power series

\triangleright Algebraic: $S(t) \in \mathbb{Q}[t]]$ root of a polynomial $P \in \mathbb{Q}[t, T]$, i.e., $P(t, S(t))=0$.

Classification of univariate power series

\triangleright Algebraic: $S(t) \in \mathbb{Q}[[t]]$ root of a polynomial $P \in \mathbb{Q}[t, T]$, i.e., $P(t, S(t))=0$.
$\triangleright D$-finite: $S(t) \in \mathbb{Q}[[t]]$ satisfying a linear differential equation with polynomial coefficients $c_{r}(t) S^{(r)}(t)+\cdots+c_{0}(t) S(t)=0$.

Classification of univariate power series

\triangleright Algebraic: $S(t) \in \mathbb{Q}[t]]$ root of a polynomial $P \in \mathbb{Q}[t, T]$, i.e., $P(t, S(t))=0$.
$\triangleright D$-finite: $S(t) \in \mathbb{Q}[[t]]$ satisfying a linear differential equation with polynomial coefficients $c_{r}(t) S^{(r)}(t)+\cdots+c_{0}(t) S(t)=0$.
\triangleright Hypergeometric: $S(t)=\sum_{n=0}^{\infty} s_{n} t^{n}$ such that $\frac{s_{n+1}}{s_{n}} \in \mathbb{Q}(n)$. E.g.,

$$
{ }_{2} F_{1}\left(\left.\begin{array}{c}
a \\
a \\
c
\end{array} \right\rvert\, t\right)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{t^{n}}{n!}, \quad(a)_{n}=a(a+1) \cdots(a+n-1) .
$$

Classification of univariate power series

\triangleright Algebraic: $S(t) \in \mathbb{Q}[t]]$ root of a polynomial $P \in \mathbb{Q}[t, T]$, i.e., $P(t, S(t))=0$.
$\triangleright D$-finite: $S(t) \in \mathbb{Q}[[t]]$ satisfying a linear differential equation with polynomial coefficients $c_{r}(t) S^{(r)}(t)+\cdots+c_{0}(t) S(t)=0$.
\triangleright Hypergeometric: $S(t)=\sum_{n=0}^{\infty} s_{n} t^{n}$ such that $\frac{s_{n+1}}{s_{n}} \in \mathbb{Q}(n)$. E.g.,

$$
{ }_{3} F_{2}\left(\left.\begin{array}{c}
a b c \\
d e
\end{array} \right\rvert\, t\right)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}(c)_{n}}{(d)_{n}(e)_{n}} \frac{t^{n}}{n!}, \quad(a)_{n}=a(a+1) \cdots(a+n-1) .
$$

Classification of multivariate power series

$\triangleright S \in \mathbb{Q}[[x, y, t]]$ is algebraic if it is the root of a polynomial $P \in \mathbb{Q}[x, y, t, T]$.

Classification of multivariate power series

D-finite series

$\triangleright S \in \mathbb{Q}[[x, y, t]]$ is algebraic if it is the root of a polynomial $P \in \mathbb{Q}[x, y, t, T]$.
$\triangleright S \in \mathbb{Q}[[x, y, t]]$ is D-finite if it satisfies a system of linear partial differential equations with polynomial coefficients

$$
\sum_{i} a_{i}(t, x, y) \frac{\partial^{i} S}{\partial x^{i}}=0, \quad \sum_{i} b_{i}(t, x, y) \frac{\partial^{i} S}{\partial y^{i}}=0, \quad \sum_{i} c_{i}(t, x, y) \frac{\partial^{i} S}{\partial t^{i}}=0
$$

Gessel's walks

$$
\mathfrak{S}=\{\nearrow, \swarrow, \leftarrow, \rightarrow\}
$$

THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES ${ }^{\circledR}$

founded in 1964 by N. J. A. Sloane

1,2,11,85	Search	Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)		

Search: seq:1,2,11,85

Displaying 1-1 of 1 result found.
Sort: relevance I references 1 number I modified I created Format: long I short \mid data

[^0]
Gessel's conjectures (≈ 2001)

Conjecture 1 The generating function of Gessel excursions is equal to

$$
\begin{aligned}
G(t ; 0,0) & ={ }_{3} F_{2}\left(\left.\begin{array}{ccc}
5 / 6 & 1 / 2 & 1 \\
5 / 3 & 2
\end{array} \right\rvert\, 16 t^{2}\right) \\
& =\sum_{n=0}^{\infty} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}}(4 t)^{2 n} \\
& =1+2 t^{2}+11 t^{4}+85 t^{6}+782 t^{7}+\cdots
\end{aligned}
$$

Conjecture 2
The full generating function $G(t ; x, y)$ is not D-finite.

Genesis of Gessel's questions - the "simple walk" in different cones

The simple walk in the plane

[Pólya, 1921]:
\triangleright Formula $\binom{2 n}{n}$ for $2 n$-excursions
\triangleright Rational generating function

The simple walk in the half-plane and in the quarter-plane

\triangleright Formulas $\binom{2 n+1}{n} C_{n}$, resp. $C_{n} C_{n+1}$, for $2 n$-excursions [Arquès, 1986]
\triangleright Full generating functions: algebraic [Bousquet-Mélou \& Petkovšek, 2000], resp. D-finite [Bousquet-Mélou, 2002]

Genesis of Gessel's questions - the "simple walk" in different cones

The simple walk in the cone with angle 45°

\triangleright Formula $C_{n} C_{n+2}-C_{n+1}^{2}$ for $2 n$-excursions [Gouyou-Beauchamps, 1986]
\triangleright D-finite generating function [Gessel \& Zeilberger, 1992]

What about the simple walk in the cone with angle 135° ?

Algebraic reformulation: solving a functional equation

Generating function: $G(t ; x, y)=\sum_{n=0}^{\infty} \sum_{i=0}^{n} \sum_{j=0}^{n} g(n ; i, j) t^{n} x^{i} y^{j} \in \mathbb{Q}[x, y][[t]]$
"Kernel equation":

$$
\begin{aligned}
G(t ; x, y)= & +t\left(x y+x+\frac{1}{x y}+\frac{1}{x}\right) G(t ; x, y) \\
& -t\left(\frac{1}{x}+\frac{1}{x} \frac{1}{y}\right) G(t ; 0, y)-t \frac{1}{x y}(G(t ; x, 0)-G(t ; 0,0))
\end{aligned}
$$

Θ

Algebraic reformulation: solving a functional equation

Generating function: $G(t ; x, y)=\sum_{n=0}^{\infty} \sum_{i=0}^{n} \sum_{j=0}^{n} g(n ; i, j) t^{n} x^{i} y^{j} \in \mathbb{Q}[x, y][[t]]$
"Kernel equation":

$$
\begin{aligned}
G(t ; x, y)= & +t\left(x y+x+\frac{1}{x y}+\frac{1}{x}\right) G(t ; x, y) \\
& -t\left(\frac{1}{x}+\frac{1}{x} \frac{1}{y}\right) G(t ; 0, y)-t \frac{1}{x y}(G(t ; x, 0)-G(t ; 0,0))
\end{aligned}
$$

Task: Solve this functional equation!

Algebraic reformulation: solving a functional equation

Generating function: $G(t ; x, y)=\sum_{n=0}^{\infty} \sum_{i=0}^{n} \sum_{j=0}^{n} g(n ; i, j) t^{n} x^{i} y^{j} \in \mathbb{Q}[x, y][[t]]$
"Kernel equation":

$$
\begin{aligned}
G(t ; x, y)= & +t\left(x y+x+\frac{1}{x y}+\frac{1}{x}\right) G(t ; x, y) \\
& -t\left(\frac{1}{x}+\frac{1}{x} \frac{1}{y}\right) G(t ; 0, y)-t \frac{1}{x y}(G(t ; x, 0)-G(t ; 0,0))
\end{aligned}
$$

Task: For the other models: solve 78 similar equations!

Main results (I): algebraicity of Gessel walks

Theorem [Kreweras 1965; 100 pages long combinatorial proof!]
$K(t ; 0,0)={ }_{3} F_{2}\left(\begin{array}{ccc}1 / 3 & 2 / 3 & 1 \\ 3 / 2 & 2 & 27 t^{3}\end{array}\right)=\sum_{n=0}^{\infty} \frac{4^{n}\binom{3 n}{n}}{(n+1)(2 n+1)} t^{3 n}$.
Theorem [Kauers, Koutschan \& Zeilberger 2009: former Gessel's conj. 1]
$G(t ; 0,0)={ }_{3} F_{2}\left(\left.\begin{array}{ccc}5 / 6 & 1 / 2 & 1 \\ 5 / 3 & 2\end{array} \right\rvert\, 16 t^{2}\right)=\sum_{n=0}^{\infty} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}}(4 t)^{2 n}$.

Question: What about the structure of $K(t ; x, y)$ and $G(t ; x, y)$?

Main results (I): algebraicity of Gessel walks

Theorem [Kreweras 1965; 100 pages long combinatorial proof!]
$K(t ; 0,0)={ }_{3} F_{2}\left(\begin{array}{ccc}1 / 3 & 2 / 3 & 1 \\ 3 / 2 & 2 & 27 t^{3}\end{array}\right)=\sum_{n=0}^{\infty} \frac{4^{n}\binom{3 n}{n}}{(n+1)(2 n+1)} t^{3 n}$.
Theorem [Kauers, Koutschan \& Zeilberger 2009: former Gessel's conj. 1]
$G(t ; 0,0)={ }_{3} F_{2}\left(\begin{array}{ccc|}5 / 6 & 1 / 2 & 1 \\ 5 / 3 & 2 & 16 t^{2}\end{array}\right)=\sum_{n=0}^{\infty} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}}(4 t)^{2 n}$.

Question: What about the structure of $K(t ; x, y)$ and $G(t ; x, y)$?

Theorem [Gessel 1986, Bousquet-Mélou 2005] $K(t ; x, y)$ is algebraic.

Theorem [B. \& Kauers 2010: former Gessel's conj. 2] $G(t ; x, y)$ is algebraic.

Main results (I): algebraicity of Gessel walks

Theorem [Kreweras 1965; 100 pages long combinatorial proof!]

$$
K(t ; 0,0)={ }_{3} F_{2}\left(\left.\begin{array}{ccc}
1 / 3 & 2 / 3 & 1 \\
3 / 2 & 2 &
\end{array} \right\rvert\, 27 t^{3}\right)=\sum_{n=0}^{\infty} \frac{4^{n}\binom{3 n}{n}}{(n+1)(2 n+1)} t^{3 n}
$$

Theorem [Kauers, Koutschan \& Zeilberger 2009: former Gessel's conj. 1]
$G(t ; 0,0)={ }_{3} F_{2}\left(\begin{array}{ccc}5 / 6 & 1 / 2 & 1 \\ 5 / 3 & 2 & 16 t^{2}\end{array}\right)=\sum_{n=0}^{\infty} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}}(4 t)^{2 n}$.

Question: What about the structure of $K(t ; x, y)$ and $G(t ; x, y)$?

Theorem [Gessel 1986, Bousquet-Mélou 2005] $K(t ; x, y)$ is algebraic.
Theorem [B. \& Kauers 2010: former Gessel's conj. 2] $G(t ; x, y)$ is algebraic.
\triangleright Computer-driven discovery and proof.
\triangleright Guess'n'Prove method, using Hermite-Padé approximants ${ }^{\dagger} \longrightarrow$ Part 2
\dagger Minimal polynomial $P(x, y, t, G(t ; x, y))=0$ has $>10^{11}$ terms; $\approx 30 \mathrm{~Gb}(!)$

Main results (I): algebraicity of Gessel walks

Theorem [Kreweras 1965; 100 pages long combinatorial proof!]
$K(t ; 0,0)={ }_{3} F_{2}\left(\begin{array}{ccc}1 / 3 & 2 / 3 & 1 \\ 3 / 2 & 2 & 27 t^{3}\end{array}\right)=\sum_{n=0}^{\infty} \frac{4^{n}\binom{3 n}{n}}{(n+1)(2 n+1)} t^{3 n}$.
Theorem [Kauers, Koutschan \& Zeilberger 2009: former Gessel's conj. 1]
$G(t ; 0,0)={ }_{3} F_{2}\left(\begin{array}{ccc|}5 / 6 & 1 / 2 & 1 \\ 5 / 3 & 2 & 16 t^{2}\end{array}\right)=\sum_{n=0}^{\infty} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}}(4 t)^{2 n}$.
Question: What about the structure of $K(t ; x, y)$ and $G(t ; x, y)$?
Theorem [Gessel 1986, Bousquet-Mélou 2005] $K(t ; x, y)$ is algebraic.
Theorem [B. \& Kauers 2010: former Gessel's conj. 2] $G(t ; x, y)$ is algebraic.
\triangleright Computer-driven discovery and proof.
\triangleright Guess'n'Prove method, using Hermite-Padé approximants $^{\dagger} \longrightarrow$ Part 2
\triangleright New (human) proofs [B., Kurkova \& Raschel 2013], [Bousquet-Mélou 2015]
\dagger Minimal polynomial $P(x, y, t, G(t ; x, y))=0$ has $>10^{11}$ terms $; \approx 30 \mathrm{~Gb}(!)$

Main results (II): Explicit form for $G(t ; x, y)$

Theorem [B., Kauers \& van Hoeij 2010]
Let $V=1+4 t^{2}+36 t^{4}+396 t^{6}+\cdots$ be a root of

$$
(V-1)(1+3 / V)^{3}=(16 t)^{2},
$$

let $U=1+2 t^{2}+16 t^{4}+2 x t^{5}+2\left(x^{2}+83\right) t^{6}+\cdots$ be a root of

$$
\begin{array}{r}
x(V-1)(V+1) U^{3}-2 V(3 x+5 x V-8 V t) U^{2} \\
-x V\left(V^{2}-24 V-9\right) U+2 V^{2}(x V-9 x-8 V t)=0,
\end{array}
$$

let $W=t^{2}+(y+8) t^{4}+2\left(y^{2}+8 y+41\right) t^{6}+\cdots$ be a root of

$$
y(1-V) W^{3}+y(V+3) W^{2}-(V+3) W+V-1=0 .
$$

Then $G(t ; x, y)$ is equal to

$$
\frac{\frac{64(U(V+1)-2 V) V^{3 / 2}}{x\left(U^{2}-V\left(U^{2}-8 U+9-V\right)\right)^{2}}-\frac{y(W-1)^{4}(1-W y) V^{-3 / 2}}{t(y+1)(1-W)\left(W^{2} y+1\right)^{2}}}{\left(1+y+x^{2} y+x^{2} y^{2}\right) t-x y}-\frac{1}{t x(y+1)} .
$$

\triangleright Computer-driven discovery and proof; no human proof yet.

Main results (II): Explicit form for $G(t ; x, y)$

Theorem [B., Kauers \& van Hoeij 2010]
Let $V=1+4 t^{2}+36 t^{4}+396 t^{6}+\cdots$ be a root of

$$
(V-1)(1+3 / V)^{3}=(16 t)^{2},
$$

let $U=1+2 t^{2}+16 t^{4}+2 x t^{5}+2\left(x^{2}+83\right) t^{6}+\cdots$ be a root of

$$
\begin{array}{r}
x(V-1)(V+1) U^{3}-2 V(3 x+5 x V-8 V t) U^{2} \\
-x V\left(V^{2}-24 V-9\right) U+2 V^{2}(x V-9 x-8 V t)=0,
\end{array}
$$

let $W=t^{2}+(y+8) t^{4}+2\left(y^{2}+8 y+41\right) t^{6}+\cdots$ be a root of

$$
y(1-V) W^{3}+y(V+3) W^{2}-(V+3) W+V-1=0 .
$$

Then $G(t ; x, y)$ is equal to

$$
\frac{\frac{64(U(V+1)-2 V) V^{3 / 2}}{x\left(U^{2}-V\left(U^{2}-8 U+9-V\right)\right)^{2}}-\frac{y(W-1)^{4}(1-W y) V^{-3 / 2}}{t(y+1)(1-W)\left(W^{2} y+1\right)^{2}}}{\left(1+y+x^{2} y+x^{2} y^{2}\right) t-x y}-\frac{1}{t x(y+1)} .
$$

\triangleright Computer-driven discovery and proof; no human proof yet.
\triangleright Proof uses guessed minimal polynomials for $G(t ; x, 0)$ and $G(t ; 0, y)$.

Main results (II): Explicit form for $G(t ; x, y)$

Theorem [B., Kauers \& van Hoeij 2010]
Let $V=1+4 t^{2}+36 t^{4}+396 t^{6}+\cdots$ be a root of

$$
(V-1)(1+3 / V)^{3}=(16 t)^{2},
$$

let $U=1+2 t^{2}+16 t^{4}+2 x t^{5}+2\left(x^{2}+83\right) t^{6}+\cdots$ be a root of

$$
\begin{array}{r}
x(V-1)(V+1) U^{3}-2 V(3 x+5 x V-8 V t) U^{2} \\
-x V\left(V^{2}-24 V-9\right) U+2 V^{2}(x V-9 x-8 V t)=0,
\end{array}
$$

let $W=t^{2}+(y+8) t^{4}+2\left(y^{2}+8 y+41\right) t^{6}+\cdots$ be a root of

$$
y(1-V) W^{3}+y(V+3) W^{2}-(V+3) W+V-1=0 .
$$

Then $G(t ; x, y)$ is equal to

$$
\frac{\frac{64(U(V+1)-2 V) V^{3 / 2}}{x\left(U^{2}-V\left(U^{2}-8 U+9-V\right)\right)^{2}}-\frac{y(W-1)^{4}(1-W y) V^{-3 / 2}}{t(y+1)(1-W)\left(W^{2} y+1\right)^{2}}}{\left(1+y+x^{2} y+x^{2} y^{2}\right) t-x y}-\frac{1}{t x(y+1)} .
$$

\triangleright Recent (human) proofs [B., Kurkova, Raschel '13], [Bousquet-Mélou '15]

Main results（III）：Conjectured D－Finite $F(t ; 1,1)$［B．\＆Kauers 2009］

	OEIS \mathfrak{S}	Pol size	ODE size		OEIS	\mathfrak{S}	Pol size	ODE size
1	A005566 $\stackrel{\leftrightarrow}{\text { ¢ }}$	－	3，4	13	A151275	汴	－	5，24
2	A018224	－	3，5	14	A151314	－	－	5，24
3	A151312 速	－	3，8	15	A151255	－	－	4，16
4	A151331 潅	－	3，6	16	A151287	英	－	5，19
5	A151266	－	5，16	17	A001006	－	2， 2	2，3
6	A151307	－	5，20	18	A129400	寺	2， 2	2，3
7	A151291	－	5，15	19	A005558	）	－	3，5
8	A151326	－	5，18					
9	A151302 发	－	5，24	20	A151265	㖇	6，8	4，9
10	A151329	－	5，24	21	A151278	芩	6，8	4，12
11	11 A151261 速	－	4，15	22	A151323	荗	4， 4	2，3
12	12 A151297 速	－	5，18	23	A060900	$\stackrel{\text {－}}{\sim}$	8，9	3，5

Equation sizes＝\｛order，degree\}@(algeq, diffeq)
\triangleright Computerized discovery by enumeration＋Hermite－Padé
\triangleright 1－22：Confirmed by human proofs in［Bousquet－Mélou \＆Mishna 2010］
\triangleright 23：Confirmed by a human proof in［B．，Kurkova \＆Raschel 2015］

Main results（III）：Conjectured D－Finite $F(t ; 1,1)$［B．\＆Kauers 2009］

	OEIS \mathfrak{S} alg asympt		OEIS \mathfrak{S} alg	asympt
1	A005566 ${ }_{\text {¢ }}^{\text {¢ }} \mathrm{N} \frac{4}{\pi} \frac{4^{n}}{n}$	13	A151275 退 N	$\frac{12 \sqrt{30}}{\pi} \frac{(2 \sqrt{6})^{1}}{n^{2}}$
2	A018224 χ^{-}N $\frac{2}{\pi} \frac{4^{n}}{n}$		A151314	$\frac{\sqrt{6} \lambda \mu \mu^{5 / 2}}{5 \pi} \frac{n^{2}}{} \frac{(2 C)}{}{ }^{2}$
3		15	A151255 之	2
4	A151331 ${ }^{\text {笉 }} \mathrm{N} \frac{8}{3 \pi} \frac{8}{n}$	16	A151287 旻	$A^{7 / 2} \frac{n^{2}}{} \frac{(2 A)^{n}}{n^{2}}$
5		17	A001006－	$2 V \pi n^{3 / 2}$
6		18	A129400	$\frac{3}{2} \sqrt{\frac{3}{\pi}}{\frac{6}{} n^{n}}_{n^{n / 2}}$
7	A151291 ！N $\mathrm{N} \frac{4}{3 \sqrt{\pi} 4^{n}}{ }^{1 / 2}$	19	A005558 N	
8	A151326 N $\frac{2}{\sqrt{3} \pi} \frac{6^{n}}{n^{1 / 2}}$			
9	A151302 浽 $\mathrm{N} \frac{1}{3} \sqrt{\frac{5}{2 \pi} \frac{5}{n}^{1 / 2}}$	20	A151265 7	$\frac{2 \sqrt{2}}{\Gamma(1 / 4)}{\frac{3}{}{ }^{n}}_{n^{3 / 4}}$
10	A151329 N $\frac{1}{3} \sqrt{\frac{7}{3 \pi}} \frac{7}{n^{1 / 2}}$	21	A151278 虫	$\frac{3 \sqrt{3}}{\sqrt{2} \Gamma(1 / 4)} \frac{3^{n}}{n^{3 / 4}}$
11	A151261－ －$_{\text {－}} \mathrm{N} \frac{12 \sqrt{3}}{\pi} \frac{(2 \sqrt{3}}{} n^{2}$	22	A151323 㯡，Y	$\frac{\sqrt{2} 2^{3} / 4}{\Gamma(1 / 4)} \frac{6}{}_{n^{3 / 4}}$
	A151297 或 $\mathrm{N} \frac{\sqrt{3} B^{7 / 2}}{2 \pi} \frac{(2 B)^{n}}{n^{2}}$	23	A060900	$\frac{4 \sqrt{3}}{3 \Gamma(1 / 3)} \frac{4^{n}}{n^{2 / 3}}$

$A=1+\sqrt{2}, B=1+\sqrt{3}, C=1+\sqrt{6}, \lambda=7+3 \sqrt{6}, \mu=\sqrt{\frac{4 \sqrt{6}-1}{19}}$
\triangleright Computerized discovery by enumeration＋Hermite－Padé＋LLL／PSLQ．
\triangleright Confirmed by human proofs in［Melczer \＆Wilson，2015］

The group of a model: the simple walk case

The characteristic polynomial $\quad \chi_{\mathfrak{S}}:=x+\frac{1}{x}+y+\frac{1}{y}$

The group of a model: the simple walk case

The characteristic polynomial $\chi_{\mathfrak{S}}:=x+\frac{1}{x}+y+\frac{1}{y}$ is left invariant under

$$
\psi(x, y)=\left(x, \frac{1}{y}\right), \quad \phi(x, y)=\left(\frac{1}{x}, y\right),
$$

The group of a model: the simple walk case

The characteristic polynomial $\chi_{\mathfrak{S}}:=x+\frac{1}{x}+y+\frac{1}{y}$ is left invariant under

$$
\psi(x, y)=\left(x, \frac{1}{y}\right), \quad \phi(x, y)=\left(\frac{1}{x}, y\right),
$$

and thus under any element of the group

$$
\langle\psi, \phi\rangle=\left\{(x, y),\left(x, \frac{1}{y}\right),\left(\frac{1}{x}, \frac{1}{y}\right),\left(\frac{1}{x}, y\right)\right\} .
$$

The group of a model: the general case

The polynomial $\chi_{\mathfrak{S}}:=\sum_{(i, j) \in \mathfrak{S}} x^{i} y^{j}=\sum_{i=-1}^{1} B_{i}(y) x^{i}=\sum_{j=-1}^{1} A_{j}(x) y^{j}$

The group of a model: the general case

The polynomial $\chi_{\mathfrak{S}}:=\sum_{(i, j) \in \mathfrak{S}} x^{i} y^{j}=\sum_{i=-1}^{1} B_{i}(y) x^{i}=\sum_{j=-1}^{1} A_{j}(x) y^{j} \quad$ is left invariant under

$$
\psi(x, y)=\left(x, \frac{A_{-1}(x)}{A_{+1}(x)} \frac{1}{y}\right), \quad \phi(x, y)=\left(\frac{B_{-1}(y)}{B_{+1}(y)} \frac{1}{x}, y\right)
$$

The group of a model: the general case

The polynomial $\chi_{\mathfrak{S}}:=\sum_{(i, j) \in \mathfrak{S}} x^{i} y^{j}=\sum_{i=-1}^{1} B_{i}(y) x^{i}=\sum_{j=-1}^{1} A_{j}(x) y^{j} \quad$ is left invariant under

$$
\psi(x, y)=\left(x, \frac{A_{-1}(x)}{A_{+1}(x)} \frac{1}{y}\right), \quad \phi(x, y)=\left(\frac{B_{-1}(y)}{B_{+1}(y)} \frac{1}{x}, y\right)
$$

and thus under any element of the group

$$
\mathcal{G}_{\mathfrak{S}}:=\langle\psi, \phi\rangle .
$$

Examples of groups

Order 4,

Examples of groups

Order 4,

order 6,

Examples of groups

Order 4,

order 6,

order 8,

Examples of groups

Order 4,

order 6,

order 8,

order ∞.

An important concept: the orbit sum (OS)

The orbit sum of a model \mathfrak{S} is the following polynomial in $\mathrm{Q}\left[x, x^{-1}, y, y^{-1}\right]$:

$$
\operatorname{OrbitSum}(\mathfrak{S}):=\sum_{\theta \in \mathcal{G}_{\mathfrak{G}}}(-1)^{\theta} \theta(x y)
$$

\triangleright E.g., for the simple walk:

$$
\text { OS }=x \cdot y-\frac{1}{x} \cdot y+\frac{1}{x} \cdot \frac{1}{y}-x \cdot \frac{1}{y}
$$

\triangleright For 4 models, the orbit sum is zero:

E.g. for the Kreweras model:

$$
\text { OS }=x \cdot y-\frac{1}{x y} \cdot y+\frac{1}{x y} \cdot x-y \cdot x+y \cdot \frac{1}{x y}-x \cdot \frac{1}{x y}=0
$$

The 79 models: finite and infinite groups

79 models

The 79 models: finite and infinite groups

The 79 models: finite and infinite groups

56 have an infinite group
[Bousquet-Mélou \& Mishna'10]

The 79 models: finite and infinite groups

The 23 models with a finite group

(i) 16 with a vertical symmetry, and group isomorphic to D_{2}

(ii) 5 with a diagonal or anti-diagonal symmetry, and group isomorphic to D_{3}

(iii) 2 with group isomorphic to D_{4}

(i): vertical symmetry; (ii)+(iii): zero drift $\sum_{s \in \mathfrak{S}} s$

In red, models with $O S=0$ and algebraic GF

Main results (IV): explicit expressions for the 19 D-finite transcendental models

Theorem [B., Chyzak, van Hoeij, Kauers \& Pech, 2016]
Let \mathfrak{S} be one of the 19 models with finite group $\mathcal{G}_{\mathfrak{S}}$, and non-zero orbit sum. Then

- $F_{\mathfrak{S}}$ is expressible using iterated integrals of ${ }_{2} F_{1}$ expressions.
- Among the 19×4 specializations of $F_{\mathfrak{S}}(t ; x, y)$ at $(x, y) \in\{0,1\}^{2}$, only 4 are algebraic: for $\mathfrak{S}=\mathfrak{\lessgtr}$; at $(1,1)$, and $\mathfrak{S}=$ at $(1,0),(0,1),(1,1)$

Main results (IV): explicit expressions for the 19 D-finite transcendental models

Theorem [B., Chyzak, van Hoeij, Kauers \& Pech, 2016]
Let \mathfrak{S} be one of the 19 models with finite group $\mathcal{G}_{\mathfrak{S}}$, and non-zero orbit sum. Then

- $F_{\mathfrak{S}}$ is expressible using iterated integrals of ${ }_{2} F_{1}$ expressions.
- Among the 19×4 specializations of $F_{\mathfrak{S}}(t ; x, y)$ at $(x, y) \in\{0,1\}^{2}$, only 4 are algebraic: for $\mathfrak{S}=\mathfrak{i}$; at $(1,1)$, and $\mathfrak{S}=$ at $(1,0),(0,1),(1,1)$

Example (King walks in the quarter plane, A025595)

$$
\begin{aligned}
& =1 t ; 1,1)=\frac{1}{t} \int_{0}^{t} \frac{1}{(1+4 x)^{3}} \cdot{ }_{2} F_{1}\left(\frac{3}{2} 2^{\frac{3}{2}} \left\lvert\, \frac{16 x(1+x)}{(1+4 x)^{2}}\right.\right) d x \\
& =1+3 t+18 t^{2}+105 t^{3}+684 t^{4}+4550 t^{5}+31340 t^{6}+219555 t^{7}+\cdots .
\end{aligned}
$$

Main results (IV): explicit expressions for the 19 D-finite transcendental models

Theorem [B., Chyzak, van Hoeij, Kauers \& Pech, 2016]
Let \mathfrak{S} be one of the 19 models with finite group $\mathcal{G}_{\mathfrak{S}}$, and non-zero orbit sum. Then

- $F_{\mathfrak{S}}$ is expressible using iterated integrals of ${ }_{2} F_{1}$ expressions.
- Among the 19×4 specializations of $F_{\mathfrak{S}}(t ; x, y)$ at $(x, y) \in\{0,1\}^{2}$, only 4 are algebraic: for $\mathfrak{S}=\mathfrak{i}$; at $(1,1)$, and $\mathfrak{S}=$ at $(1,0),(0,1),(1,1)$

Example (King walks in the quarter plane, A025595)

$$
\begin{aligned}
& =(t ; 1,1)=\frac{1}{t} \int_{0}^{t} \frac{1}{(1+4 x)^{3}} \cdot 2 F_{1}\left(\frac{3}{2} 2^{\frac{3}{2}} \left\lvert\, \frac{16 x(1+x)}{(1+4 x)^{2}}\right.\right) d x \\
& =1+3 t+18 t^{2}+105 t^{3}+684 t^{4}+4550 t^{5}+31340 t^{6}+219555 t^{7}+\cdots .
\end{aligned}
$$

\triangleright Computer-driven discovery and proof; no human proof yet.
\triangleright Proof uses creative telescoping, ODE factorization, ODE solving.

Hypergeometric Series Occurring in Explicit Expressions for $F(t ; x, y)$

	S	occurring	${ }_{2} F_{1}$	w		\mathfrak{S}	occurring	${ }_{2} F_{1}$	w
1	$\stackrel{\downarrow}{\downarrow}$	${ }_{2} F_{1}\left(\begin{array}{c}\frac{1}{2}, \frac{1}{2} \\ 1\end{array}\right.$	$w)$	$16 t^{2}$	11	成	${ }_{2} F_{1}\left(\begin{array}{c}\frac{1}{2}, \frac{1}{2} \\ 1\end{array}\right.$	$w)$	$\frac{16 t^{2}}{4 t^{2}+1}$
2	\vdots	${ }_{2} F_{1}\left(\begin{array}{c}\frac{1}{2}, \frac{1}{2} \\ 1\end{array}\right.$	$w)$	$16 t^{2}$	12	令	${ }_{2} F_{1}\left(\begin{array}{c}\frac{1}{4}, \frac{3}{4} \\ 1\end{array}\right.$	$w)$	$\frac{64 t^{3}(2 t+1)}{\left(8 t^{2}-1\right)^{2}}$
3	KiN	${ }_{2} F_{1}\left(\begin{array}{c}\frac{1}{4}, \frac{3}{4} \\ 1\end{array}\right.$	$w)$	$\frac{64 t^{2}}{\left(12 t^{2}+1\right)^{2}}$	13	－	${ }_{2} F_{1}\left(\begin{array}{c}\frac{1}{4}, \frac{3}{4} \\ 1\end{array}\right.$	$w)$	$\frac{64 t^{2}\left(t^{2}+1\right)}{\left(16 t^{2}+1\right)^{2}}$
4	$\stackrel{5}{4-1}$	${ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2}\right.$	$w)$	$\frac{16 t(t+1)}{(4 t+1)^{2}}$	14	何	${ }_{2} F_{1}\left(\begin{array}{c}\frac{1}{4}, \frac{3}{4} \\ 1\end{array}\right.$	$w)$	$\frac{64 t^{2}\left(t^{2}+t+1\right)}{\left(12 t^{2}+1\right)^{2}}$
5	\mathcal{F}	${ }_{2} F_{1}\left(\begin{array}{c}\frac{1}{4}, \frac{3}{4} \\ 1\end{array}\right.$	$w)$	$64 t^{4}$	15	へ	${ }_{2} F_{1}\left(\begin{array}{c}\frac{1}{4}, \frac{3}{4} \\ 1\end{array}\right.$	$w)$	$64 t^{4}$
6	$\stackrel{\uparrow}{\downarrow} \cdot \pi$	${ }_{2} F_{1}\left(\begin{array}{c}\frac{1}{4}, \frac{3}{4} \\ 1\end{array}\right.$	$w)$	$\frac{64 t^{3}(t+1)}{\left(1-4 t^{2}\right)^{2}}$	16	今	${ }_{2} F_{1}\left(\begin{array}{l}\frac{1}{4}, \frac{3}{4} \\ 1\end{array}\right.$	$w)$	$\frac{64 t^{3}(t+1)}{\left(1-4 t^{2}\right)^{2}}$
7	Ψ	${ }_{2} F_{1}\left(\begin{array}{c}\frac{1}{2}, \frac{1}{2} \\ 1\end{array}\right.$	$w)$	$\frac{16 t^{2}}{4 t^{2}+1}$	17	个	${ }_{2} F_{1}\left(\begin{array}{c}\frac{1}{3}, \frac{2}{3} \\ 1\end{array}\right.$	$w)$	$27 t^{3}$
8	$\stackrel{5 \pi}{\downarrow}$	${ }_{2} F_{1}\left(\begin{array}{c}\frac{1}{4}, \frac{3}{4} \\ 1\end{array}\right.$	$w)$	$\frac{64 t^{3}(2 t+1)}{\left(8 t^{2}-1\right)^{2}}$	18	$\stackrel{\downarrow}{\downarrow}$	${ }_{2} F_{1}\left(\begin{array}{c}\frac{1}{3}, \frac{2}{3} \\ 1\end{array}\right.$	$w)$	$27 t^{2}(2 t+1)$
9	Y	${ }_{2} F_{1}\left(\begin{array}{c}\frac{1}{4}, \frac{3}{4} \\ 1\end{array}\right.$	$w)$	$\frac{64 t^{2}\left(t^{2}+1\right)}{\left(16 t^{2}+1\right)^{2}}$	19	$\stackrel{\square}{s}$	${ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2}\right.$	$w)$	$16 t^{2}$
10	水	${ }_{2} F_{1}\left(\begin{array}{c}\frac{1}{4}, \frac{3}{4} \\ 1\end{array}\right.$	$w)$	$\frac{64 t^{2}\left(t^{2}+t+1\right)}{\left(12 t^{2}+1\right)^{2}}$					

\triangleright All related to the complete elliptic integrals $\int_{0}^{\pi / 2}\left(1-k^{2} \sin ^{2} \theta\right)^{ \pm \frac{1}{2}} d \theta$

Main results (V): non-D-finiteness in models with an infinite group

Theorem [B., Rachel \& Salvy 2013]
Let \mathfrak{S} be one of the 51 non-singular models with infinite group $\mathcal{G}_{\mathfrak{S}}$. Then $F_{\mathfrak{S}}(t ; 0,0)$, and in particular $F_{\mathfrak{S}}(t ; x, y)$, are non-D-finite.

Main results (V): non-D-finiteness in models with an infinite group

Theorem [B., Rachel \& Salvy 2013]
Let \mathfrak{S} be one of the 51 non-singular models with infinite group $\mathcal{G}_{\mathfrak{S}}$. Then $F_{\mathfrak{S}}(t ; 0,0)$, and in particular $F_{\mathfrak{S}}(t ; x, y)$, are non-D-finite.
\triangleright Algorithmic proof. Uses Gröbner basis computations, polynomial factorization, cyclotomy testing.
\triangleright Based on two ingredients: asymptotics + irrationality.
\triangleright [Kurkova \& Raschel 2013] Human proof that $F_{\mathfrak{S}}(t ; x, y)$ is non-D-finite.
\triangleright No human proof yet for $F_{\mathfrak{S}}(t ; 0,0)$ non-D-finite.

Main results (V): non-D-finiteness in models with an infinite group

Theorem [B., Rachel \& Salvy 2013]
Let \mathfrak{S} be one of the 51 non-singular models with infinite group $\mathcal{G}_{\mathfrak{S}}$. Then $F_{\mathfrak{S}}(t ; 0,0)$, and in particular $F_{\mathfrak{S}}(t ; x, y)$, are non-D-finite.
\triangleright Algorithmic proof. Uses Gröbner basis computations, polynomial factorization, cyclotomy testing.
\triangleright Based on two ingredients: asymptotics + irrationality.
\triangleright [Kurkova \& Raschel 2013] Human proof that $F_{\mathfrak{S}}(t ; x, y)$ is non-D-finite.
\triangleright No human proof yet for $F_{\mathfrak{S}}(t ; 0,0)$ non-D-finite.
\triangleright [Bernardi, Bousquet-Mélou \& Raschel 2016] For 9 of these 51 models, $F_{\mathfrak{S}}(t ; x, y)$ is nevertheless D-algebraic!
\triangleright Upcoming talk by T. Dreyfus: this is false for the remaining 42 models.

The 56 models with infinite group

In blue, non-singular models, solved by [B., Raschel \& Salvy 2013] In red, singular models, solved by [Melczer \& Mishna 2013]

Example: the scarecrows

[B., Raschel \& Salvy 2013]: $F_{\mathfrak{S}}(t ; 0,0)$ is not D-finite for the models

For the 1st and the 3rd, the excursions sequence $\left[t^{n}\right] F_{\mathfrak{S}}(t ; 0,0)$

$$
1,0,0,2,4,8,28,108,372, \ldots
$$

is $\sim K \cdot 5^{n} \cdot n^{-\alpha}$, with $\alpha=1+\pi / \arccos (1 / 4)=3.383396 \ldots$
The irrationality of α prevents $F_{\mathfrak{S}}(t ; 0,0)$ from being D-finite.

Summary: Classification of 2D non-singular walks

The Main Theorem Let \mathfrak{S} be one of the 74 non-singular models. The following assertions are equivalent:
(1) The full generating function $F_{\mathfrak{S}}(t ; x, y)$ is D-finite
(2) the excursions generating function $F_{\mathfrak{S}}(t ; 0,0)$ is D-finite
(3) the excursions sequence $\left[t^{n}\right] F_{\mathfrak{S}}(t ; 0,0)$ is $\sim K \cdot \rho^{n} \cdot n^{\alpha}$, with $\alpha \in \mathbb{Q}$
(4) the group $\mathcal{G}_{\mathfrak{S}}$ is finite (and $\left|\mathcal{G}_{\mathfrak{S}}\right|=2 \cdot \min \left\{\ell \in \mathbb{N}^{\star} \left\lvert\, \frac{\ell}{\alpha+1} \in \mathbb{Z}\right.\right\}$)
(5) the step set \mathfrak{S} has either an axial symmetry, or zero drift and cardinal different from 5.

Summary: Classification of 2D non-singular walks

The Main Theorem Let \mathfrak{S} be one of the 74 non-singular models. The following assertions are equivalent:
(1) The full generating function $F_{\mathfrak{S}}(t ; x, y)$ is D-finite
(2) the excursions generating function $F_{\mathfrak{S}}(t ; 0,0)$ is D-finite
(3) the excursions sequence $\left[t^{n}\right] F_{\mathfrak{S}}(t ; 0,0)$ is $\sim K \cdot \rho^{n} \cdot n^{\alpha}$, with $\alpha \in \mathbb{Q}$
(4) the group $\mathcal{G}_{\mathfrak{S}}$ is finite (and $\left|\mathcal{G}_{\mathfrak{S}}\right|=2 \cdot \min \left\{\ell \in \mathbb{N}^{\star} \left\lvert\, \frac{\ell}{\alpha+1} \in \mathbb{Z}\right.\right\}$)
(5) the step set \mathfrak{S} has either an axial symmetry, or zero drift and cardinal different from 5.

Moreover, under (1)-(5), $F_{\mathfrak{S}}(t ; x, y)$ is algebraic if and only if the model \mathfrak{S} has positive covariance $\sum_{(i, j) \in \mathfrak{S}} i j-\sum_{(i, j) \in \mathfrak{S}} i \cdot \sum_{(i, j) \in \mathfrak{S}} j>0$, and iff it has $\mathrm{OS}=0$.

Summary: Classification of 2D non-singular walks

The Main Theorem Let \mathfrak{S} be one of the 74 non-singular models. The following assertions are equivalent:
(1) The full generating function $F_{\mathfrak{S}}(t ; x, y)$ is D-finite
(2) the excursions generating function $F_{\mathfrak{S}}(t ; 0,0)$ is D-finite
(3) the excursions sequence $\left[t^{n}\right] F_{\mathfrak{S}}(t ; 0,0)$ is $\sim K \cdot \rho^{n} \cdot n^{\alpha}$, with $\alpha \in \mathbb{Q}$
(4) the group $\mathcal{G}_{\mathfrak{S}}$ is finite (and $\left|\mathcal{G}_{\mathfrak{S}}\right|=2 \cdot \min \left\{\ell \in \mathbb{N}^{\star} \left\lvert\, \frac{\ell}{\alpha+1} \in \mathbb{Z}\right.\right\}$)
(5) the step set \mathfrak{S} has either an axial symmetry, or zero drift and cardinal different from 5.

Moreover, under (1)-(5), $F_{\mathfrak{S}}(t ; x, y)$ is algebraic if and only if the model \mathfrak{S} has positive covariance $\sum_{(i, j) \in \mathfrak{S}} i j-\sum_{(i, j) \in \mathfrak{S}} i \cdot \sum_{(i, j) \in \mathfrak{S}} j>0$, and iff it has $\mathrm{OS}=0$.

In this case, $F_{\mathfrak{S}}(t ; x, y)$ is expressible using nested radicals.
If not, $F_{\mathfrak{S}}(t ; x, y)$ is expressible using iterated integrals of ${ }_{2} F_{1}$ expressions.

Main methods

(1) for proving algebraicity / D-finiteness
(1a) Guess'n'Prove
(1b) Creative telescoping
(2) for proving non-D-finiteness
(2a) Infinite number of singularities, or lacunary
(2b) Asymptotics

Main methods

(1) for proving algebraicity / D-finiteness
(1a) Guess'n'Prove
Hermite-Padé approximants
(1b) Creative telescoping
Diagonals of rational functions
(2) for proving non-D-finiteness
(2a) Infinite number of singularities, or lacunary
(2b) Asymptotics
\triangleright All methods are algorithmic.

Summary: Walks with unit steps in \mathbb{N}^{2}

Extensions: Walks with unit steps in \mathbb{N}^{3}

$2^{3^{3}-1} \approx 67$ millions models, of which ≈ 11 million inherently 3D

\triangleright Open question: are there non-D-finite models with a finite group?

Extensions: Walks with unit steps in \mathbb{N}^{3}

$2^{3^{3}-1} \approx 67$ millions models, of which ≈ 11 million inherently 3D

\triangleright Open question: are there non-D-finite models with a finite group?
\triangleright [Du, Hu, Wang, 2015]: proofs that groups are infinite in the 20634 cases
\triangleright [Bacher, Kauers, Yatchak, 2016]: extension to all 3D models; 170 models found with $\left|\mathcal{G}_{\mathfrak{G}}\right|<\infty$ and orbit sum 0 (instead of 19)

The 19 mysterious 3D-models

Open question: 3D Kreweras

Two different computations suggest:

$$
k_{4 n} \approx C \cdot 256^{n} / n^{3.3257570041744 \ldots},
$$

so excursions are very probably transcendental (and even non-D-finite)

An intriguing integral evaluation arising from 2D walks

For \mathbb{N}^{n}. the sequence $f_{n}=\left[t^{n}\right] F(t ; 1,1)$ is $\sim \frac{4}{3 \sqrt{\pi}} \frac{4^{n}}{\sqrt{n}}$. This implies

$$
\begin{array}{r}
\int_{0}^{1 / 4}\left\{\frac { (1 - 4 v) ^ { 1 / 2 } (\frac { 1 } { 2 } + v) } { v ^ { 2 } } \left[1+\frac{1}{2 v(1+2 v)\left(1+4 v^{2}\right)^{1 / 2}} \times\right.\right. \\
\left.\left((1-v)_{2} F_{1}\left(\begin{array}{c}
\frac{3}{2}, \frac{1}{2}\left|\frac{16 v^{2}}{1}\right|+4 v^{2}
\end{array}\right)-(1+v)\left(1-4 v+8 v^{2}\right)_{2} F_{1}\left(\begin{array}{c}
\frac{1}{2}, \frac{1}{2}\left|\frac{16 v^{2}}{1}\right|\left(1+4 v^{2}\right)
\end{array}\right)\right)\right] \\
\left.-\frac{1}{v^{2}}\right\} d v=-2
\end{array}
$$

\triangleright Open question: can this be proved using Computer Algebra?

Extensions: Walks in \mathbb{N}^{2} with longer steps

- Define (and use) a group \mathcal{G} for models with larger steps?
- Example: When $\mathfrak{S}=\{(0,1),(1,-1),(-2,-1)\}$, there is an underlying group that is finite and

$$
x y F(t ; x, y)=\left[x^{>0} y^{>0}\right] \frac{\left(x-2 x^{-2}\right)\left(y-\left(x-x^{-2}\right) y^{-1}\right)}{1-t\left(x y^{-1}+y+x^{-2} y^{-1}\right)}
$$

[B., Bousquet-Mélou \& Melczer, in preparation]
\triangleright Current status:

- 680 models with one large step, 643 proved non D-finite, 32 of 37 have differential equations guessed.
- 5910 models with two large steps, 5754 proved non D-finite, 69 of 156 have differential equations guessed.

Conclusion

\because
Computer algebra may solve difficult combinatorial problems

Classification of $F(t ; x, y)$ fully completed for 2D small step walks

Robust algorithmic methods, based on efficient algorithms:

- Guess'n'Prove
- Creative Telescoping

Brute-force and/or use of naive algorithms = hopeless. E.g. size of algebraic equations for $G(t ; x, y) \approx 30 \mathrm{~Gb}$.

Conclusion

Computer algebra may solve difficult combinatorial problems

Classification of $F(t ; x, y)$ fully completed for 2D small step walks

Robust algorithmic methods, based on efficient algorithms:

- Guess'n'Prove
- Creative Telescoping

Brute-force and/or use of naive algorithms = hopeless. E.g. size of algebraic equations for $G(t ; x, y) \approx 30 \mathrm{~Gb}$.

Lack of "purely human" proofs for some results.

Still missing a unified proof of: finite group \leftrightarrow D-finite.

Open: is $F(t ; 1,1)$ non-D-finite for all 56 models with infinite group?

Many open questions in dimension >2.

Bibliography

- Automatic classification of restricted lattice walks, with M. Kauers. Proceedings FPSAC, 2009.
- The complete generating function for Gessel walks is algebraic, with M. Kauers. Proceedings of the American Mathematical Society, 2010.
- Explicit formula for the generating series of diagonal 3D Rook paths, with F. Chyzak, M. van Hoeij and L. Pech. Séminaire Lotharingien de Combinatoire, 2011.
- Non-D-finite excursions in the quarter plane, with K. Raschel and B. Salvy. Journal of Combinatorial Theory A, 2013.
- On 3-dimensional lattice walks confined to the positive octant, with M. Bousquet-Mélou, M. Kauers and S. Melczer. Annals of Comb., 2016.
- A human proof of Gessel's lattice path conjecture, with I. Kurkova, K. Raschel, Transactions of the American Mathematical Society, 2017.
- Hypergeometric expressions for generating functions of walks with small steps in the quarter plane, with F. Chyzak, M. van Hoeij, M. Kauers and L. Pech, European Journal of Combinatorics, 2017.

End of Part 1

Thanks for your attention!

[^0]: A135404 Gessel sequence: the number of paths of length 2 m in the plane, starting and ending at $(0,1)$, with ${ }^{+20}$ unit steps in the four directions (north, east, south, west) and staying in the region $y>0, x>-y$.
 $1,2,11,85,782,8004,88044,1020162,12294260,152787976,1946310467,25302036071$, 334560525538,4488007049900 , 60955295750460 , 836838395382645, 11597595644244186, 162074575606984788 , 2281839419729917410, 32340239369121304038 , 461109219391987625316, 6610306991283738684600 (list; graph; refs; listen; history; text; internal format)

