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Part 1: General presentation
Part 2: Guess’n’Prove
Part 3: Creative telescoping
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An (innocent looking) exercise

Let S = {↑,←,↘}. A S-walk is a path in Z2 using only steps from S.
Show that, for any integer n, the following quantities are equal:

(i) the number an of S-walks of length n confined to the upper half plane
Z×N that start and end at the origin (0, 0);

(ii) the number bn of S-walks of length n confined to the quarter plane N2

that start at the origin (0, 0) and finish on the diagonal x = y.

For instance, for n = 3, this common value is a3 = b3 = 3:

(i)

(ii)
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Teasers

Teaser 1: This exercise can be solved using computer algebra!

Teaser 2: The answer has a nice closed form!

a3n = b3n =
(3n)!

n!2 · (n + 1)!
, and am = bm = 0 if 3 does not divide m.

Teaser 3: A certain group attached to the step set {↑,←,↘} is finite!
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General context: lattice paths confined to cones

Let S be a subset of Zd (step set, or model) and p0 ∈ Zd (starting point).

A path (walk) of length n starting at p0 is a sequence (p0, p1, . . . , pn) of
elements in Zd such that pi+1 − pi ∈ S for all i.

Let C be a cone of Rd (if x ∈ C and r ≥ 0 then r · x ∈ C).

Example: S = {(1, 0), (−1, 0), (1,−1), (−1, 1)}, p0 = (0, 0)

and C = R2
+
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(i, j) = (5, 1)

Questions

What is the number an of n-step walks contained in C?

For i ∈ C, what is the number an;i of such walks that end at i?

What about their GF’s A(t) = ∑n antn and A(t; x) = ∑n,i an;ixitn?
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Why count walks in cones?

Many discrete objects can be encoded in that way:

• discrete mathematics (permutations, trees, words, urns, . . . )

• statistical physics (Ising model, . . . )

• probability theory (branching processes, games of chance, . . . )

• operations research (queueing theory, . . . )
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An old topic: The ballot problem and the reflection principle

Ballot problem [Bertrand, 1887]

Lattice path reformulation: given positive integers a, b with a > b, find the
number of Dyck paths starting at the origin and consisting of a upsteps↗
and b downsteps↘ such that no step ends on the x-axis.

Reflection principle: Dyck paths in N2 from (1, 1) to T(a + b, a− b) that touch
the x-axis are in bijection with Dyck paths in Z2 from (1,−1) to T

Answer: good paths = paths from (1, 1) to T that never touch the x-axis(
a + b− 1

a− 1

)
−
(

a + b− 1
b− 1

)
=

a− b
a + b

(
a + b

a

)
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Reflection principle: Dyck paths in N2 from (1, 1) to T(a + b, a− b) that touch
the x-axis are in bijection with Dyck paths in Z2 from (1,−1) to T

Answer: when a = n + 1 and b = n, this is the Catalan number

Cn =
1

2n + 1

(
2n + 1
n + 1

)
=

1
n + 1

(
2n
n

)
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An old topic: Pólya’s “promenade au hasard” / “Irrfahrt”

[Pólya, 1921] The simple random walk on Zd is recurrent in dimensions
d = 1, 2 (“Alle Wege fuehren nach Rom”), and transient in dimension d ≥ 3
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Still a topical issue

Many recent contributors:

Adan, Bacher, Banderier, Bernardi, Bostan, Bousquet-Mélou, Chyzak, Cori,
Denisov, Du, Duchon, Dulucq, Fayolle, Fisher, Flajolet, Garbit, Gessel,
Gouyou-Beauchamps, Guttmann, Guy, van Hoeij, Iasnogorodski, Johnson,
Kauers, Koutschan, Krattenthaler, Kreweras, Kurkova, van Leeuwarden,
Malyshev, Melczer, Mishna, Niederhausen, Pech, Petkovšek, Prellberg,
Raschel, Rechnitzer, Sagan, Salvy, Viennot, Wachtel, Wang, Wilf, Wilson,
Yatchak, Yeats, Zeilberger...

etc.

Specific question

Ad hoc solution
Systematic approach
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Personal bias: Experimental Mathematics using Computer Algebra
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Example: From the SIAM 100-Digit Challenge [Trefethen 2002]

1/4

1/4

1/4-ε 1/4+ε

Chapter 6

Biasing for a Fair Return

Folkmar Bornemann

It was often claimed that [direct and “exact” numeri-
cal solution of the equations of physics] would make the
special functions redundant. ... The persistence of spe-
cial functions is puzzling as well as surprising. What
are they, other than just names for mathematical objects
that are useful only in situations of contrived simplicity?
Why are we so pleased when a complicated calculation
“comes out” as a Bessel function, or a Laguerre polyno-
mial? What determines which functions are “special”?

— Sir Michael Berry [Ber01]

People who like this sort of thing will find this the sort
of thing they like.

— Barry Hughes, quoting Abraham Lincoln at the
beginning of an appendix on “Special Functions for Ran-
dom Walk Problems” [Hug95, p. 569]

Problem 6

A flea starts at (0, 0) on the infinite two-dimensional integer lattice and
executes a biased random walk: At each step it hops north or south with
probability 1/4, east with probability 1/4 + ε, and west with probability
1/4 − ε. The probability that the flea returns to (0, 0) sometime during
its wanderings is 1/2. What is ε?

Asking for the ε that gives a certain probability p of return yields a problem hardly
any more difficult than calculating the probability for a given ε: it just adds the
need to use a numerical root-finder. But the problem looks more interesting the way
it is stated. In §6.1 we give a short argument, why the problem is solvable.

We will discuss several methods for calculating the probability of return. In
§6.2, using virtually no probability theory, we transform the problem to one of lin-
ear algebra. Solving a sparse linear system of dimension 25 920 gives us 15 correct

123

I Computer algebra conjectures and proves

p(ε) = 1−
√

A
2
· 2F1

(
1
2 , 1

2
1

∣∣∣∣ 2
√

1− 16ε2

A

)−1

, with A = 1 + 8ε2 +
√

1− 16ε2.
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123

I Computer algebra conjectures and proves
ε ≈ 0.0619139544739909428481752164732121769996387749983

6207606146725885993101029759615845907105645752087861 . . .
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A (very) basic cone: the full space

Rational series

If S ⊂ Zd is finite and C = Rd, then

an = |S|n , i.e. A(t) = ∑
n≥0

antn =
1

1− |S| t

More generally:

A(t; x) = ∑
n,i

an;ixitn =
1

1− t ∑s∈S xs .

Alin Bostan Computer Algebra for Lattice Path Combinatorics
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Also well-known: a (rational) half-space

Algebraic series [Bousquet-Mélou & Petkovšek, 2000]

If S ⊂ Zd is finite and C is a rational half-space, then A(t; x) is algebraic,
given by an explicit system of polynomial equations.

Example: For Dyck paths (ballot problem), A(t; 1) = ∑
n≥0

Cntn =
1−
√

1− 4t
2t

Alin Bostan Computer Algebra for Lattice Path Combinatorics



14 / 53

The “next” case: intersection of two half-spaces

i

j

f (i, j; n) =

 0 if i < 0 or j < 0 or n < 0,
∑

i′ j′∈S
f (i− i′, j− j′; n− 1) otherwise.

Alin Bostan Computer Algebra for Lattice Path Combinatorics
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The “next” case: intersection of two half-spaces

i

j

(i, j) = (5, 1) '

Alin Bostan Computer Algebra for Lattice Path Combinatorics



15 / 53

Lattice walks with small steps in the quarter plane

. From now on: we focus on nearest-neighbor walks in the quarter plane,
i.e. walks in N2 starting at (0, 0) and using steps in a fixed subset S of

{↙,←,↖, ↑,↗,→,↘, ↓}.

. Example with n = 45, i = 14, j = 2 for:

S =

. Counting sequence: fn;i,j = number of walks of length n ending at (i, j).

. Specializations:

fn;0,0 = number of walks of length n returning to origin (“excursions”);

fn = ∑i,j≥0 fn;i,j = number of walks with prescribed length n.

Alin Bostan Computer Algebra for Lattice Path Combinatorics
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Generating functions and combinatorial problems

. Complete generating function:

F(t; x, y) =
∞

∑
n=0

( ∞

∑
i,j=0

fn;i,jxiyj
)

tn ∈ Q[x, y][[t]].

. Specializations:
Walks returning to the origin (“excursions”): F(t; 0, 0);
Walks with prescribed length: F(t; 1, 1) = ∑

n≥0
fntn;

Walks ending on the horizontal axis: F(t; 1, 0);
Walks ending on the diagonal: “F(t; 0, ∞)“ :=

[
x0] F(t; x, 1/x).

Combinatorial questions:
Given S, what can be said about F(t; x, y), resp. fn;i,j, and their variants?

Structure of F: algebraic? transcendental?

Explicit form: of F? of f ?

Asymptotics of f ?

Our goal: Use computer algebra to give computational answers.
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Small-step models of interest

From the 28 step sets S ⊆ {−1, 0, 1}2 \ {(0, 0)}, some are:

trivial, simple, intrinsic to the
half plane,

symmetrical.

One is left with 79 interesting distinct models.

Is any further classification possible?
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The 79 models
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The 79 models
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Two important models: Kreweras and Gessel walks

S = {↓,←,↗} FS(t; x, y) ≡ K(t; x, y)

S = {↗,↙,←,→} FS(t; x, y) ≡ G(t; x, y)
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Example: A Kreweras excursion.
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“Special” models

Dyck: �
@
@R
��

Motzkin: �
@
@R
-��

Pólya: �
�@
?
6
@
-�

Kreweras: �
�@
?@
��

Gessel: �	
�@
@
-��

Gouyou-Beauchamps: �
�@I
@R
-�

King: �	
�@I
?
6
@R
-��

Exercise: �
�@6
@R
�

Alin Bostan Computer Algebra for Lattice Path Combinatorics



21 / 53

Classification of univariate power series

algebraic

hypergeom

D-finite power series

. Algebraic: S(t) ∈ Q[[t]] root of a polynomial P ∈ Q[t, T], i.e., P
(
t, S(t)

)
= 0.

. D-finite: S(t) ∈ Q[[t]] satisfying a linear differential equation with
polynomial coefficients cr(t)S(r)(t) + · · ·+ c0(t)S(t) = 0.

. Hypergeometric: S(t) = ∑∞
n=0 sntn such that sn+1

sn
∈ Q(n). E.g.,

(a)n = a(a + 1) · · · (a + n− 1).

Alin Bostan Computer Algebra for Lattice Path Combinatorics
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. D-finite: S(t) ∈ Q[[t]] satisfying a linear differential equation with
polynomial coefficients cr(t)S(r)(t) + · · ·+ c0(t)S(t) = 0.

. Hypergeometric: S(t) = ∑∞
n=0 sntn such that sn+1

sn
∈ Q(n). E.g.,

(a)n = a(a + 1) · · · (a + n− 1).
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(d)n(e)n
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Classification of multivariate power series

algebraic series

D-finite series

. S ∈ Q[[x, y, t]] is algebraic if it is the root of a polynomial P ∈ Q[x, y, t, T].

. S ∈ Q[[x, y, t]] is D-finite if it satisfies a system of linear partial differential
equations with polynomial coefficients

∑
i

ai(t, x, y)
∂iS
∂xi = 0, ∑

i
bi(t, x, y)

∂iS
∂yi = 0, ∑

i
ci(t, x, y)

∂iS
∂ti = 0.
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Gessel’s walks

S = {↗,↙,←,→}
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Gessel’s conjectures (≈ 2001)

G{↗,↙,←,→}

Conjecture 1 The generating function of Gessel excursions is equal to

G(t; 0, 0) = 3F2

(
5/6 1/2 1

5/3 2

∣∣∣∣ 16t2
)

=
∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(4t)2n

= 1 + 2t2 + 11t4 + 85t6 + 782t7 + · · ·

Conjecture 2
The full generating function G(t; x, y) is not D-finite.
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Genesis of Gessel’s questions – the “simple walk” in different cones

The simple walk in the plane

-

6 6
?
-�

[Pólya, 1921]:

. Formula (2n
n )

2
for 2n-excursions

. Rational generating function

The simple walk in the half-plane and in the quarter-plane

-

6 6
?
-�

-�6 -

6 6
?
-�

-�6

-6
?

-6

. Formulas (2n+1
n )Cn, resp. CnCn+1, for 2n-excursions [Arquès, 1986]

. Full generating functions: algebraic [Bousquet-Mélou & Petkovšek, 2000],
resp. D-finite [Bousquet-Mélou, 2002]
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Genesis of Gessel’s questions – the “simple walk” in different cones

The simple walk in the cone with angle 45◦

-�
�
�
�
��� 6

?
-�

�6-

-
?

- -

6
@@I
@@R
-�

-�@@I

@@R
-

-

. Formula CnCn+2 − C2
n+1 for 2n-excursions [Gouyou-Beauchamps, 1986]

. D-finite generating function [Gessel & Zeilberger, 1992]

What about the simple walk in the cone with angle 135◦?

-@
@

@
@

@@I 6
?
-�

�6-

-6

-6 -

6
���

��	
-�

-����

-���

-���
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Algebraic reformulation: solving a functional equation

Generating function: G(t; x, y) =
∞

∑
n=0

n

∑
i=0

n

∑
j=0

g(n; i, j)tnxiyj ∈ Q[x, y][[t]]

“Kernel equation”:

G (t; x, y) =1 + t
(

xy + x +
1

xy
+

1
x

)
G(t; x, y)

− t
(

1
x
+

1
x

1
y

)
G(t; 0, y)− t

1
xy

(G(t; x, 0)− G(t; 0, 0))

Task: Solve this functional equation!
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Generating function: G(t; x, y) =
∞

∑
n=0

n

∑
i=0

n

∑
j=0

g(n; i, j)tnxiyj ∈ Q[x, y][[t]]

“Kernel equation”:

G (t; x, y) =1 + t
(

xy + x +
1

xy
+

1
x

)
G(t; x, y)

− t
(

1
x
+

1
x

1
y

)
G(t; 0, y)− t

1
xy

(G(t; x, 0)− G(t; 0, 0))

Task: For the other models: solve 78 similar equations!
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Main results (I): algebraicity of Gessel walks

Theorem [Kreweras 1965; 100 pages long combinatorial proof!]

K(t; 0, 0) = 3F2

(
1/3 2/3 1

3/2 2

∣∣∣∣ 27 t3
)
=

∞

∑
n=0

4n(3n
n )

(n + 1)(2n + 1)
t3n.

Theorem [Kauers, Koutschan & Zeilberger 2009: former Gessel’s conj. 1]

G(t; 0, 0) = 3F2

(
5/6 1/2 1

5/3 2

∣∣∣∣ 16t2
)
=

∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(4t)2n.

Question: What about the structure of K(t; x, y) and G(t; x, y)?

Theorem [Gessel 1986, Bousquet-Mélou 2005] K(t; x, y) is algebraic.

Theorem [B. & Kauers 2010: former Gessel’s conj. 2] G(t; x, y) is algebraic.
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Theorem [Gessel 1986, Bousquet-Mélou 2005] K(t; x, y) is algebraic.

Theorem [B. & Kauers 2010: former Gessel’s conj. 2] G(t; x, y) is algebraic.

. Computer-driven discovery and proof.

. Guess’n’Prove method, using Hermite-Padé approximants† −→ Part 2

† Minimal polynomial P(x, y, t, G(t; x, y)) = 0 has > 1011 terms; ≈ 30 Gb (!)
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Theorem [B. & Kauers 2010: former Gessel’s conj. 2] G(t; x, y) is algebraic.

. Computer-driven discovery and proof.

. Guess’n’Prove method, using Hermite-Padé approximants† −→ Part 2

. New (human) proofs [B., Kurkova & Raschel 2013], [Bousquet-Mélou 2015]

† Minimal polynomial P(x, y, t, G(t; x, y)) = 0 has > 1011 terms; ≈ 30 Gb (!)
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Main results (II): Explicit form for G(t; x, y)

Theorem [B., Kauers & van Hoeij 2010]
Let V = 1 + 4t2 + 36t4 + 396t6 + · · · be a root of

(V − 1)(1 + 3/V)3 = (16t)2,

let U = 1 + 2t2 + 16t4 + 2xt5 + 2(x2 + 83)t6 + · · · be a root of

x(V − 1)(V + 1)U3 − 2V(3x + 5xV − 8Vt)U2

−xV(V2 − 24V − 9)U + 2V2(xV − 9x− 8Vt) = 0,

let W = t2 + (y + 8)t4 + 2(y2 + 8y + 41)t6 + · · · be a root of

y(1−V)W3 + y(V + 3)W2 − (V + 3)W + V − 1 = 0.

Then G(t; x, y) is equal to

64(U(V+1)−2V)V3/2

x(U2−V(U2−8U+9−V))2 − y(W−1)4(1−Wy)V−3/2

t(y+1)(1−W)(W2y+1)2

(1 + y + x2y + x2y2)t− xy
− 1

tx(y + 1)
.

. Computer-driven discovery and proof; no human proof yet.

. Proof uses guessed minimal polynomials for G(t; x, 0) and G(t; 0, y).
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t(y+1)(1−W)(W2y+1)2

(1 + y + x2y + x2y2)t− xy
− 1

tx(y + 1)
.

. Computer-driven discovery and proof;////no/////////human////////proof/////yet

. Recent (human) proofs [B., Kurkova, Raschel ’13], [Bousquet-Mélou ’15]
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Main results (III): Conjectured D-Finite F(t; 1, 1) [B. & Kauers 2009]

OEIS S Pol size ODE size OEIS S Pol size ODE size

1 A005566 — 3, 4 13 A151275 — 5, 24
2 A018224 — 3, 5 14 A151314 — 5, 24
3 A151312 — 3, 8 15 A151255 — 4, 16
4 A151331 — 3, 6 16 A151287 — 5, 19
5 A151266 — 5, 16 17 A001006 2, 2 2, 3
6 A151307 — 5, 20 18 A129400 2, 2 2, 3
7 A151291 — 5, 15 19 A005558 — 3, 5
8 A151326 — 5, 18
9 A151302 — 5, 24 20 A151265 6, 8 4, 9

10 A151329 — 5, 24 21 A151278 6, 8 4, 12
11 A151261 — 4, 15 22 A151323 4, 4 2, 3
12 A151297 — 5, 18 23 A060900 8, 9 3, 5

Equation sizes = {order, degree}@(algeq, diffeq)

. Computerized discovery by enumeration + Hermite–Padé

. 1–22: Confirmed by human proofs in [Bousquet-Mélou & Mishna 2010]

. 23: Confirmed by a human proof in [B., Kurkova & Raschel 2015]
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Main results (III): Conjectured D-Finite F(t; 1, 1) [B. & Kauers 2009]

OEIS S alg asympt OEIS S alg asympt

1 A005566 N 4
π

4n

n 13 A151275 N 12
√

30
π

(2
√

6)n

n2

2 A018224 N 2
π

4n

n 14 A151314 N
√

6λµC5/2

5π
(2C)n

n2

3 A151312 N
√

6
π

6n

n 15 A151255 N 24
√

2
π

(2
√

2)n

n2

4 A151331 N 8
3π

8n

n 16 A151287 N 2
√

2A7/2

π
(2A)n

n2

5 A151266 N 1
2

√
3
π

3n

n1/2 17 A001006 Y 3
2

√
3
π

3n

n3/2

6 A151307 N 1
2

√
5

2π
5n

n1/2 18 A129400 Y 3
2

√
3
π

6n

n3/2

7 A151291 N 4
3
√

π
4n

n1/2 19 A005558 N 8
π

4n

n2

8 A151326 N 2√
3π

6n

n1/2

9 A151302 N 1
3

√
5

2π
5n

n1/2 20 A151265 Y 2
√

2
Γ(1/4)

3n

n3/4

10 A151329 N 1
3

√
7

3π
7n

n1/2 21 A151278 Y 3
√

3√
2Γ(1/4)

3n

n3/4

11 A151261 N 12
√

3
π

(2
√

3)n

n2 22 A151323 Y
√

233/4

Γ(1/4)
6n

n3/4

12 A151297 N
√

3B7/2

2π
(2B)n

n2 23 A060900 Y 4
√

3
3Γ(1/3)

4n

n2/3

A = 1 +
√

2, B = 1 +
√

3, C = 1 +
√

6, λ = 7 + 3
√

6, µ =

√
4
√

6−1
19

. Computerized discovery by enumeration + Hermite–Padé + LLL/PSLQ.

. Confirmed by human proofs in [Melczer & Wilson, 2015]
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The group of a model: the simple walk case

The characteristic polynomial χS := x +
1
x
+ y +

1
y

is left invariant under

ψ(x, y) =
(

x,
1
y

)
, φ(x, y) =

(
1
x

, y
)

,

and thus under any element of the group

〈
ψ, φ

〉
=

{
(x, y),

(
x,

1
y

)
,
(

1
x

,
1
y

)
,
(

1
x

, y
)}

.
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The group of a model: the general case

The polynomial χS := ∑
(i,j)∈S

xiyj =
1

∑
i=−1

Bi(y)xi =
1

∑
j=−1

Aj(x)yj

is left

invariant under

ψ(x, y) =
(

x,
A−1(x)
A+1(x)

1
y

)
, φ(x, y) =

(
B−1(y)
B+1(y)

1
x

, y
)

,

and thus under any element of the group

GS :=
〈
ψ, φ

〉
.
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Examples of groups

Order 4,

order 6, order 8, order ∞.
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An important concept: the orbit sum (OS)

The orbit sum of a model S is the following polynomial in Q[x, x−1, y, y−1]:

OrbitSum(S) := ∑
θ∈GS

(−1)θθ(xy)

. E.g., for the simple walk:

OS

�
�@
?
6
@
-�

= x · y− 1
x
· y +

1
x
· 1

y
− x · 1

y

. For 4 models, the orbit sum is zero:

E.g. for the Kreweras model:

OS

�
�@
?@
��

= x · y− 1
xy
· y +

1
xy
· x− y · x + y · 1

xy
− x · 1

xy
= 0
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The 79 models: finite and infinite groups

79 models

23 admit a finite group
[Mishna’07]

56 have an infinite group
[Bousquet-Mélou & Mishna’10]

all F(t; x, y) D-finite

19 transcendental
(OS 6= 0)

[Gessel & Zeilberger’92]

[Bousquet-Mélou’02]

4 algebraic (OS = 0)
(3 Kreweras-type + Gessel)

[BMM’10] + [B. & Kauers’10]

−→ all non-D-finite
• [Mishna & Rechnitzer’07] and

[Melczer & Mishna’13] for 5 singular models

• [Kurkova & Raschel’13] and

[B., Raschel & Salvy’13] for all others
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The 23 models with a finite group

(i) 16 with a vertical symmetry, and group isomorphic to D2
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(ii) 5 with a diagonal or anti-diagonal symmetry, and group isomorphic
to D3
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�
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?@
��
�	
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�
�@I
?
6
@R
-�
�	
�@
?
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-��

(iii) 2 with group isomorphic to D4

�
�@I
@R
-�
�	
�@
@
-��

(i): vertical symmetry; (ii)+(iii): zero drift ∑
s∈S

s

In red, models with OS = 0 and algebraic GF
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Main results (IV): explicit expressions for the 19 D-finite
transcendental models

Theorem [B., Chyzak, van Hoeij, Kauers & Pech, 2016]
Let S be one of the 19 models with finite group GS, and non-zero orbit sum.
Then

FS is expressible using iterated integrals of 2F1 expressions.
Among the 19× 4 specializations of FS(t; x, y) at (x, y) ∈ {0, 1}2, only 4

are algebraic: for S = at (1, 1), and S = at (1, 0), (0, 1), (1, 1)

Example (King walks in the quarter plane, A025595)

F

�	
�@I
?
6
@R
-��

(t; 1, 1) =
1
t

∫ t

0

1
(1 + 4x)3 · 2F1

(
3
2

3
2

2

∣∣∣∣ 16x(1 + x)
(1 + 4x)2

)
dx

= 1 + 3t + 18t2 + 105t3 + 684t4 + 4550t5 + 31340t6 + 219555t7 + · · ·

. Computer-driven discovery and proof; no human proof yet.

. Proof uses creative telescoping, ODE factorization, ODE solving.
−→ Part 3
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Hypergeometric Series Occurring in Explicit Expressions for F(t; x, y)

S occurring 2F1 w S occurring 2F1 w

1 2F1

(
1
2 , 1

2
1

∣∣∣∣w
)

16t2 11 2F1

(
1
2 , 1

2
1

∣∣∣∣w
)

16t2

4t2+1

2 2F1

(
1
2 , 1

2
1

∣∣∣∣w
)

16t2 12 2F1

(
1
4 , 3

4
1

∣∣∣∣w
)

64t3(2t+1)
(8t2−1)2

3 2F1

(
1
4 , 3

4
1

∣∣∣∣w
)

64t2

(12t2+1)2 13 2F1

(
1
4 , 3

4
1

∣∣∣∣w
)

64t2(t2+1)
(16t2+1)2

4 2F1

(
1
2 , 1

2
1

∣∣∣∣w
)

16t(t+1)
(4t+1)2 14 2F1

(
1
4 , 3

4
1

∣∣∣∣w
)

64t2(t2+t+1)
(12t2+1)2

5 2F1

(
1
4 , 3

4
1

∣∣∣∣w
)

64t4 15 2F1

(
1
4 , 3

4
1

∣∣∣∣w
)

64t4

6 2F1

(
1
4 , 3

4
1

∣∣∣∣w
)

64t3(t+1)
(1−4t2)2 16 2F1

(
1
4 , 3

4
1

∣∣∣∣w
)

64t3(t+1)
(1−4t2)2

7 2F1

(
1
2 , 1

2
1

∣∣∣∣w
)

16t2

4t2+1 17 2F1

(
1
3 , 2

3
1

∣∣∣∣w
)

27t3

8 2F1

(
1
4 , 3

4
1

∣∣∣∣w
)

64t3(2t+1)
(8t2−1)2 18 2F1

(
1
3 , 2

3
1

∣∣∣∣w
)

27t2(2t + 1)

9 2F1

(
1
4 , 3

4
1

∣∣∣∣w
)

64t2(t2+1)
(16t2+1)2 19 2F1

(
1
2 , 1

2
1

∣∣∣∣w
)

16t2

10 2F1

(
1
4 , 3

4
1

∣∣∣∣w
)

64t2(t2+t+1)
(12t2+1)2

. All related to the complete elliptic integrals
∫ π/2

0 (1− k2 sin2 θ)±
1
2 dθ

K(k) =
∫ π/2

0
(1− k2 sin2 θ)−1/2 dθ =

π

2 2F1

( 1
2 , 1

2
1

∣∣∣∣ k2
)

,

E(k) =
∫ π/2

0
(1− k2 sin2 θ)1/2 dθ =

π

2 2F1

(
− 1

2 , 1
2

1

∣∣∣∣ k2
)

.
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Main results (V): non-D-finiteness in models with an infinite group

Theorem [B., Rachel & Salvy 2013]

Let S be one of the 51 non-singular models with infinite group GS.
Then FS(t; 0, 0), and in particular FS(t; x, y), are non-D-finite.

. Algorithmic proof. Uses Gröbner basis computations, polynomial
factorization, cyclotomy testing.
. Based on two ingredients: asymptotics + irrationality.

. [Kurkova & Raschel 2013] Human proof that FS(t; x, y) is non-D-finite.

. No human proof yet for FS(t; 0, 0) non-D-finite.

. [Bernardi, Bousquet-Mélou & Raschel 2016] For 9 of these 51 models,
FS(t; x, y) is nevertheless D-algebraic!
. Upcoming talk by T. Dreyfus: this is false for the remaining 42 models.
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The 56 models with infinite group
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In blue, non-singular models, solved by [B., Raschel & Salvy 2013]
In red, singular models, solved by [Melczer & Mishna 2013]
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Example: the scarecrows

[B., Raschel & Salvy 2013]: FS(t; 0, 0) is not D-finite for the models

For the 1st and the 3rd, the excursions sequence [tn] FS(t; 0, 0)

1, 0, 0, 2, 4, 8, 28, 108, 372, . . .

is ∼ K · 5n · n−α, with α = 1 + π/ arccos(1/4) = 3.383396 . . .

The irrationality of α prevents FS(t; 0, 0) from being D-finite.
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Summary: Classification of 2D non-singular walks

The Main Theorem Let S be one of the 74 non-singular models. The
following assertions are equivalent:

(1) The full generating function FS(t; x, y) is D-finite

(2) the excursions generating function FS(t; 0, 0) is D-finite

(3) the excursions sequence [tn] FS(t; 0, 0) is ∼ K · ρn · nα, with α ∈ Q

(4) the group GS is finite (and |GS| = 2 ·min{` ∈N? | `
α+1 ∈ Z})

(5) the step set S has either an axial symmetry, or zero drift and cardinal
different from 5.

Moreover, under (1)–(5), FS(t; x, y) is algebraic if and only if the model S
has positive covariance ∑

(i,j)∈S
ij− ∑

(i,j)∈S
i · ∑

(i,j)∈S
j > 0, and iff it has OS = 0.

In this case, FS(t; x, y) is expressible using nested radicals.
If not, FS(t; x, y) is expressible using iterated integrals of 2F1 expressions.
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Main methods

(1) for proving algebraicity / D-finiteness
(1a) Guess’n’Prove
(1b) Creative telescoping

(2) for proving non-D-finiteness
(2a) Infinite number of singularities, or lacunary
(2b) Asymptotics
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Main methods

(1) for proving algebraicity / D-finiteness
(1a) Guess’n’Prove Hermite-Padé approximants
(1b) Creative telescoping Diagonals of rational functions

(2) for proving non-D-finiteness
(2a) Infinite number of singularities, or lacunary
(2b) Asymptotics

. All methods are algorithmic.
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Summary: Walks with unit steps in N2

quadrant models S: 79

|GS|<∞: 23

nonzero orbit sum: 19

Kernel method + CT

D-finite

zero orbit sum: 4

Guess’n’Prove

algebraic

|GS| = ∞: 56

asymptotics + GB

not D-finite
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Extensions: Walks with unit steps in N3

233−1 ≈ 67 millions models, of which ≈ 11 million inherently 3D

3D octant models S with ≤ 6 steps: 20804

|GS| < ∞: 170

orbit sum 6= 0: 108

kernel method

D-finite

orbit sum = 0: 62

2D-reducible: 43

D-finite

not 2D-reducible: 19

not D-finite?

|GS| = ∞?: 20634

not D-finite?

[B., Bousquet-Mélou, Kauers, Melczer 2015]

. Open question: are there non-D-finite models with a finite group?

. [Du, Hu, Wang, 2015]: proofs that groups are infinite in the 20634 cases

. [Bacher, Kauers, Yatchak, 2016]: extension to all 3D models; 170 models
found with |GS| < ∞ and orbit sum 0 (instead of 19)
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The 19 mysterious 3D-models
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Open question: 3D Kreweras

Two different computations suggest:

k4n ≈ C · 256n/n3.3257570041744...,

so excursions are very probably transcendental
(and even non-D-finite)
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An intriguing integral evaluation arising from 2D walks

For the sequence fn = [tn]F(t; 1, 1) is ∼ 4
3
√

π
4n√

n . This implies

∫
1/4

0

{
(1− 4v)1/2( 1

2 + v)
v2

[
1 +

1
2v(1 + 2v)(1 + 4v2)1/2 ×(

(1− v) 2F1

( 3
2 , 1

2
1

∣∣∣∣ 16v2

1 + 4v2

)
− (1 + v)(1− 4v + 8v2) 2F1

( 1
2 , 1

2
1

∣∣∣∣ 16v2

(1 + 4v2)

))]
− 1

v2

}
dv = −2

. Open question: can this be proved using Computer Algebra?
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Extensions: Walks in N2 with longer steps

• Define (and use) a group G for models with larger steps?

• Example: When S = {(0, 1), (1,−1), (−2,−1)}, there is an underlying
group that is finite and

xyF(t; x, y) = [x>0y>0]
(x− 2x−2)(y− (x− x−2)y−1)

1− t(xy−1 + y + x−2y−1)

[B., Bousquet-Mélou & Melczer, in preparation]

. Current status:

• 680 models with one large step, 643 proved non D-finite, 32 of 37 have
differential equations guessed.

• 5910 models with two large steps, 5754 proved non D-finite, 69 of 156
have differential equations guessed.
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Conclusion

Computer algebra may solve difficult combinatorial problems

Classification of F(t; x, y) fully completed for 2D small step walks

Robust algorithmic methods, based on efficient algorithms:
• Guess’n’Prove
• Creative Telescoping

Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G(t; x, y) ≈ 30Gb.

Lack of “purely human” proofs for some results.

Still missing a unified proof of: finite group↔ D-finite.

Open: is F(t; 1, 1) non-D-finite for all 56 models with infinite group?

Many open questions in dimension > 2.
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End of Part 1

Thanks for your attention!
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