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Part 1: General presentation _
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Let G = {1, +, \,}. A G-walk is a path in Z? using only steps from &.
Show that, for any integer 7, the following quantities are equal:

(i) the number a, of &-walks of length 1 confined to the upper half plane
Z x N that start and end at the origin (0,0);

(ii) the number b, of G-walks of length 1 confined to the quarter plane IN?
that start at the origin (0,0) and finish on the diagonal x = y.
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Let G = {1, +, \,}. A G-walk is a path in Z? using only steps from &.
Show that, for any integer 7, the following quantities are equal:

(i) the number a, of G-walks of length n confined to the upper half plane
Z x N that start and end at the origin (0,0);

(ii) the number b, of G-walks of length 1 confined to the quarter plane IN?
that start at the origin (0,0) and finish on the diagonal x = y.

For instance, for n = 3, this common value is a3 = b3 = 3:

<ff>L\::: i\'::
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Teaser 1: This exercise can be solved using computer algebra!

Teaser 2: The answer has a nice closed form!

(3n)!

m, and a4, =b, =0 if3 does not divide m.

a3y = bz, =

Teaser 3: A certain group attached to the step set {1, +, \} is finite!



Let S be a subset of Z4 (step set, or model) and pg € z4 (starting point).

Example: 6 = {(1,0),(—1,0),(1,-1),(=1,1)}, po = (0,0)
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Let S be a subset of Z4 (step set, or model) and pg € z4 (starting point).

A path (walk) of length n starting at pg is a sequence (po, p1,- .., pPn) of
elements in Z¢ such that p; 1 — p; € & for all i.

Example: & = {(1,0),(-1,0),(1,-1),(-1,1)}, po = (0,0)

Computer Algebra for Lattice Path Combinatorics



General co.

Let S be a subset of Z4 (step set, or model) and pg € z4 (starting point).

A path (walk) of length n starting at pg is a sequence (po, p1,- .., pPn) of
elements in Z¢ such that p; 1 — p; € & for all i.

Let € be a cone of R? (if x € € and r > 0 then 7 - x € €).

Example: & = {(1,0),(-1,0),(1,-1),(-=1,1)}, po = (0,0) and € = R%

Y

Computer Algebra for Lattice Path Combinatorics



General context: lattice paths c

Let & be a subset of Z¢ (step set, or model) and py € Z¢ (starting point).

A path (walk) of length 1 starting at pg is a sequence (pg, p1,.-.,Pn) of
elements in Z¢ such that p; 1 — p; € S for all i.

Let € be a cone of R? (if x € € and r > 0 then 7 - x € €).

Example: & = {(1,0), (-1,0),(1,-1),(-=1,1)}, po = (0,0) and € = R%

Questions
o What is the number a;, of n-step walks contained in ¢?
o For i € ¢, what is the number 4,,,; of such walks that end at i?
o What about their GF's A(t) = ¥, a,t" and A(t;x) = ¥, ; ay,ix't"?
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Many discrete objects can be encoded in that way:

o discrete mathematics (permutations, trees, words, urns, ...)

e statistical physics (Ising model, ...)

e probability theory (branching processes, games of chance, ...)
e operations research (queueing theory, ...)



Why count walks in cones?

Many discrete objects can be encoded in that way:

o discrete mathematics (permutations, trees, words, urns, ...)

e statistical physics (Ising model, ...)

e probability theory (branching processes, games of chance, ...)
e operations research (queueing theory, ...)
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An old topic: The ballot problem

Ballot problem [Bertrand, 1887]

Suppose that candidates A and B are running in an election. If a votes are cast
for A and b votes are cast for B, where a > b, then the probability that A stays
ahead of B throughout the counting of the ballots is (@ — b)/(a + b).

Lattice path reformulation: given positive integers a,b with a > b, find the
number of Dyck paths starting at the origin and consisting of a upsteps
and b downsteps “\, such that no step ends on the x-axis.

Reflection principle: Dyck paths in IN? from (1,1) to T(a + b,a — b) that touch
the x-axis are in bijection with Dyck paths in Z? from (1,—1) to T

Answer: good paths = paths from (1,1) to T that never touch the x-axis
a+b—-1\ (a+b—-1\ a—-bla+b
a—1 b—1 ) a+b\ a




An old topic: The ballot proble

Ballot problem [Bertrand, 1887]

Suppose that candidates A and B are running in an election. If a votes are cast
for A and b votes are cast for B, where a > b, then the probability that A stays
ahead of B throughout the counting of the ballots is (@ — b)/(a + b).

Lattice path reformulation: given positive integers a,b with a > b, find the
number of Dyck paths starting at the origin and consisting of a upsteps
and b downsteps “\, such that no step ends on the x-axis.

Reflection principle: Dyck paths in IN? from (1,1) to T(a + b,a — b) that touch
the x-axis are in bijection with Dyck paths in Z? from (1,—1) to T

Answer: when a = n + 1 and b = n, this is the Catalan number
co_ 1 (m+1\_ 1 (on
"Toan4+1\n+1/) n+1\n
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An old topic: Pélya’s “promenade au hasard” / “Irrfahrt”

Motro: Drunkard: “Will I ever, ever get home again?™
Polya (1921); *“You can't miss; just keep going and stay out
of 3D!™ {Adam and Delbruck, 1968)

[Pélya, 1921] The simple random walk on Z? is recurrent in dimensions
d =1,2 (“Alle Wege fuehren nach Rom”), and transient in dimension d > 3

Uber eine Aufgabe der Walrscheinlichkeitsrechnung
betreffend die Irrfahrt im Stralennetz.

XANDERSC

THE RANDOM WAI.KS OF

GEORGE POLYA




Many recent contributors:

Adan, Bacher, Banderier, Bernardi, Bostan, Bousquet-Mélou, Chyzak, Cori,
Denisov, Du, Duchon, Dulucq, Fayolle, Fisher, Flajolet, Garbit, Gessel,
Gouyou-Beauchamps, Guttmann, Guy, van Hoeij, Iasnogorodski, Johnson,
Kauers, Koutschan, Krattenthaler, Kreweras, Kurkova, van Leeuwarden,
Malyshev, Melczer, Mishna, Niederhausen, Pech, Petkovsek, Prellberg,
Raschel, Rechnitzer, Sagan, Salvy, Viennot, Wachtel, Wang, Wilf, Wilson,
Yatchak, Yeats, Zeilberger...

etc.



Still a topic

Many recent contributors:

Adan, Bacher, Banderier, Bernardi, Bostan, Bousquet-Mélou, Chyzak, Cori,
Denisov, Du, Duchon, Dulucq, Fayolle, Fisher, Flajolet, Garbit, Gessel,
Gouyou-Beauchamps, Guttmann, Guy, van Hoeij, lasnogorodski, Johnson,
Kauers, Koutschan, Krattenthaler, Kreweras, Kurkova, van Leeuwarden,
Malyshev, Melczer, Mishna, Niederhausen, Pech, Petkovsek, Prellberg,
Raschel, Rechnitzer, Sagan, Salvy, Viennot, Wachtel, Wang, Wilf, Wilson,
Yatchak, Yeats, Zeilberger...

etc.

— Systematic approach
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Personal bias: Experimental Mathematics using Computer Algebra

David H. Bailey

Modern computer Algebra Second Edition

Joachim von zur Gathen and Jirgen Gerhard

Victor H. Moll

Experimental
Mathematics
in Action
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Example: From the SIAM 100-Di

The SIAM 100-Digit

Problem 6

A flea starts at (0,0) on the infinite two-dimensional integer lattice and
executes a biased random walk: At each step it hops north or south with
probability 1/4, east with probability 1/4 + €, and west with probability
1/4 — €. The probability that the flea returns to (0,0) sometime during
its wanderings is 1/2. What is €?

» Computer algebra conjectures and proves

-1
[A 11 12y/1—16€2
ple) =1- 2~2P1< 2’12 V?) , with A =1+8€%+/1— 16€2.
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Example: From the SIAM 100-Digit _

The SIAM 100-Digit

Problem 6

A flea starts at (0,0) on the infinite two-dimensional integer lattice and
executes a biased random walk: At each step it hops north or south with
probability 1/4, east with probability 1/4 + €, and west with probability
1/4 — €. The probability that the flea returns to (0,0) sometime during
its wanderings is 1/2. What is €?

» Computer algebra conjectures and proves

€ =~ 0.0619139544739909428481752164732121769996387749983
6207606146725885993101029759615845907105645752087861 . . .



Rational series
If & C Z% is finite and € = RY, then

1

a, = |6|", ie. A(t) =) ant" = T

n>0
More generally:

; 1
Altx) =Y apixdtt = — .
(%) Z,: i 1—t)cex®
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Also well-known

Algebraic series [Bousquet-Mélou & Petkovsek, 2000]

If & C Z% is finite and € is a rational half-space, then A(t;x) is algebraic,
given by an explicit system of polynomial equations.

— 1 -4t

Example: For Dyck paths (ballot problem), A(t;1) = Y Cyt" = 5

n>0
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Computer Algebra for Lattice Path Combinatorics



> From now on: we focus on nearest-neighbor walks in the quarter plane,
i.e. walks in IN? starting at (0,0) and using steps in a fixed subset & of

{\// <_r \I T/ /‘/ _>/ \U \J/}

> Example with n = 45,i = 14, j = 2 for:
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> From now on: we focus on nearest-neighbor walks in the quarter plane,
i.e. walks in IN? starting at (0,0) and using steps in a fixed subset & of

{\// <_/ \I T/ /‘/ _>/ \U J/}

> Example with n = 45,i = 14, j = 2 for:

e e e e e

> Counting sequence: f,; ; = number of walks of length n ending at (i, /).
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Lattice walks with

> From now on: we focus on nearest-neighbor walks in the quarter plane,
i.e. walks in IN? starting at (0,0) and using steps in a fixed subset & of

{\// <_/ \I T/ /‘/ _>/ \U J/}

> Example with n = 45,i = 14, j = 2 for:

.

> Counting sequence: f,; ; = number of walks of length n ending at (i, /).

> Specializations:
o fu.0,0 = number of walks of length 7 returning to origin (“excursions”);
© fn = Lij>0 fu;ij = number of walks with prescribed length n.
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> Complete generating function:

F(b2,y) = i(z fm]xy’>f" € Qlx,y][[A)

i,j=0

16 / 53



> Complete generating function:

F(b2,y) = i(z fm]xy’>f" € Qlx,y][[A)

1,j=0
> Specializations:
o Walks returning to the origin (“excursions”): F(+0,0);
o Walks with prescribed length: F(t1,1) = E Fat";
n>0
o Walks ending on the horizontal axis: F(t1,0);
o Walks ending on the diagonal: “F(t;0,00)" := [xo] F(t;x,1/x).

16/ 5



Generating functions

> Complete generating function:

B = 1 (X sy )1 € Q]

n=0 \i,j=0
> Specializations:
o Walks returning to the origin (“excursions”): F(+0,0);
o Walks with prescribed length: F(t1,1) = Z Fat";
n>0
o Walks ending on the horizontal axis: F(t;1,0);
o Walks ending on the diagonal: “F(t;0,00)" := [xo] F(t;x,1/x).

Combinatorial questions:
Given &, what can be said about F(; x,y), resp. fn;,-,]-, and their variants?
o Structure of F: algebraic? transcendental?
o Explicit form: of F? of f?
o Asymptotics of f?
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Generating functions and

> Complete generating function:

F(t:x,y) i():fnwxy’)t" € QL[]

i,j=0

> Specializations:

o Walks returning to the origin (“excursions”): F(t;0,0);

o Walks with prescribed length: F(t1,1) Z fut";
n>0

o Walks ending on the horizontal axis: F(t;1,0);

o Walks ending on the diagonal: “F(t;0,00)" := [xo] F(t;x,1/x).

Combinatorial questions:
Given &, what can be said about F(; x,y), resp. fn;,-,]-, and their variants?

o Structure of F: algebraic? transcendental?
o Explicit form: of F? of f?
o Asymptotics of f?

Our goal: Use computer algebra to give computational answers.
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From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:

17 /53



From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:

trivial,
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From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:

trivial, simple,
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From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the

trivial, simple, half plane,



 Smallstep modelsof merest

From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the
half plane,

trivial, simple,

symmetrical.
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From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the
half plane,

trivial, simple,

symmetrical.

One is left with 79 interesting distinct models.
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From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the
half plane,

trivial, simple,

symmetrical.
One is left with 79 interesting distinct models.

Is any further classification possible?
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The 79 models

Non-singular

Singular
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Two important mo

6={l« 7 Fs(tix,y) = K(t;x,y)

S={",,+,—} Fstxy) =Gtxy)

D
SRS
A

Example: A Kreweras excursion.
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Dyck:; ;
Motzkin:; E

Poélya:

Kreweras: E * g
Gessel: E E
Gouyou-Beauchamps: ; E

King:
Exercise: E £

20 /53







> Algebraic: S(t) € Q[[t]] root of a polynomial P € Q[t, T}, i.e., P(t,5(t)) = 0.

21/53



> Algebraic: S(t) € Q[[t]] root of a polynomial P € Q[t, T}, i.e., P(t,5(t)) = 0.

> D-finite: S(t) € Q[[t]] satisfying a linear differential equation with
polynomial coefficients ¢, (£)S") (t) + - - -+ co(£)S(t) = 0.
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> Algebraic: S(t) € Q[[t]] root of a polynomial P € Q[t, T}, i.e., P(t,5(t)) = 0.

> D-finite: S(t) € Q[[t]] satisfying a linear differential equation with
polynomial coefficients ¢, (£)S") (£) + - -+ co(£)S(t) = 0.

> Hypergeometric: S(t) = Y37 sut" such that 1 € Q(n). E.g.,

t) =y D By @t 1) (g 1),

n=0 (C)” nt’



> Algebraic: S(t) € Q[[t]] root of a polynomial P € Q[t, T}, i.e., P(t,5(t)) = 0.

> D-finite: S(t) € Q[[t]] satisfying a linear differential equation with
polynomial coefficients ¢, (£)S") (£) + - -+ co(£)S(t) = 0.

> Hypergeometric: S(t) = Y37 sut" such that 1 € Q(n). E.g.,

b
A (u c

nen n!
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> S € Q[[x,y,t]] is algebraic if it is the root of a polynomial P € Q[x,y, t, T].
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> S € Q[[x,y,t]] is algebraic if it is the root of a polynomial P € Q[x,y, t, T].

> S € Q[[x,y,t]] is D-finite if it satisfies a system of linear partial differential
equations with polynomial coefficients

Zaltx, 8 Zb t,x,y)

815
ch txy)atl =0.

22/53



Gessel’

S={ "/ < -}

THE ON=LINE ENCYCLOPEDIA
OF INTEGER SEQUENCES®

founded in 1964 by N. . A. Sloane

[12.1185 | search | e

from The On-Line Ei lopedia of Integer 0]

Search: seq:1,2,11,85
Displaying 1-1 of 1 result found. page |
Sort: relevance | | number | modified | created  Format: long | short | data

A135404 Gessel sequence: the number of paths of length 2m in the plane, starting and ending at (0,1), with **
unit steps in the four directions (north, east, south, west) and staying in the region y>0, x>-y.
1, 2, 11, 85, 782, BOD4, 88044, 1020162, 12294260, 152787976, 1946310467, 25302036071,
334560525538, 448B007045900, 60955295750460, 836838395382645, 11597595644244186,
162074575606984788, 22B1B39419729917410, 32340239369121304038, 461109219391887625316,

6610306991283738684600 (list; graph; refs; listen; history; lex; internal format)

23/53
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Gessel’s conjectures (~ 2001)

Conjecture 1 The generating function of Gessel excursions is equal to

G(t;0,0) =35 <5/56/31/22 ! 16t2)
* (5/6)u(1/2)n

Z 5/3 (z)n (4t)2n

n=

=142 +11#* +85t° + 782¢" + - - -

Conjecture 2
The full generating function G(¢; x, y) is not D-finite.
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Genesis of Gessel’s qu

The simple walk in the plane

[Polya, 1921]:

2 .
> Formula (2: )~ for 2n-excursions
> Rational generating function

The simple walk in the half-plane and in the quarter-plane

TTTTTTTTTTTTTTTITTT
2n+1
W)

ITTTTTTTTTT

> Formulas ( Cy, resp. C,Cj41, for 2n-excursions [Arques, 1986]
> Full generating functions: algebraic [Bousquet-Mélou & Petkovsek, 2000],
resp. D-finite [Bousquet-Mélou, 2002]
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Genesis of Ges

The simple walk in the cone with angle 45°

> Formula C,,Cj 42 — Cﬁ 1 for 2n-excursions [Gouyou-Beauchamps, 1986]
> D-finite generating function [Gessel & Zeilberger, 1992]

What about the simple walk in the cone with angle 135°?
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Algebrai

Generating function: G(t;x,y) = g(mi, )"yl € Qx, y][[H]]

e
\..MS
10

3
Il
o
Il

S

“Kernel equation”:

1 1
G(tx,y) =1+t (xy+x+ W i ;)G(t,x,y)

1 11 1
—t (; + 5?) G(50.y) =t (G(t%,0) = G(t0,0))

/|
© ©
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Algebraic ref

0 N n
Generating function: G(t;x,y) = Y Y 3" g(n;i, j)t"x"y/ € Q[x,y][[]]
n=0i=0j=0

“Kernel equation”:

1 1
G(tx,y) =1+t <xy+x+ @ + ;)G(t,x,y)

X

y (1 + %) G50, ) txly (G(£:x,0) — G(£0,0))

/|
© ©

Task: Solve this functional equation!
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Algebraic refor

[ee] n n
Generating function: G(t;x,y) = Y Y 3" g(n;i, j)t"x"y/ € Q[x,y][[]]
n=0i=0j=0

“Kernel equation”:

G (tx,y) 1+t<xy+x+iy+ >G(tx, )
1 11 1
—t (— aF ;y) G(t,O,y) — tx—y (G(t,x,O) — G(t,0,0))

X

/|
© ©

Task: For the other models: solve 78 similar equations!
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Main

Theorem [Kreweras 1965; 100 pages long combinatorial proof!]

00 b (1323 18\ v 4G
K(t/OIO)—3P2( 3/2 2 \27“)—th '

n=0

Theorem [Kauers, Koutschan & Zeilberger 2009: former Gessel’s conj. 1]

5/6 1/2 1|, » > (5/6)n(1/2)n 10
G(t;0,0) = 3F. < 16t ) =) ey (AT
320 573 2 n;) (5/3)1(2)n

Question: What about the structure of K(t;x,y) and G(¢;x,y)?
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Theorem [Kreweras 1965; 100 pages long combinatorial proof!]

00 b (1323 18\ v 4G
K(t/OIO)—SPZ( 3/2 2 \27“)—th '

n=0

Theorem [Kauers, Koutschan & Zeilberger 2009: former Gessel’s conj. 1]

5/6 1/2 1 2 o (5/6)n(1/2)n ,, \on
G(t;0,0) = 3F. < 16t > = Y L (4)2,
320 573 2 n;) (5/3)1(2)n

Question: What about the structure of K(; x,y) and G(; x,y)?

Theorem [Gessel 1986, Bousquet-Mélou 2005] K(t; x,y) is algebraic.

Theorem [B. & Kauers 2010: former Gessel’s conj. 2] G(t; x,y) is algebraic.

NN o Algebr fo Lattice Path Combinalorics



Main results (I): algebrai

Theorem [Kreweras 1965; 100 pages long combinatorial proof!]

e 13231, S O,
K(t,OIO)—BB( 3/2 2 ‘27t>_n§)(n+1)(2n+1)t ’

Theorem [Kauers, Koutschan & Zeilberger 2009: former Gessel’s conj. 1]

5/6 1/2 1 2> o (5/6)n(1/2)n ,, \2n
G(£0,0) = 3F 162 ) = Y A2L2A LS gy
(£0,0) 32( 5/3 2 L 63, W

Question: What about the structure of K(£; x,y) and G(¢; x,y)?
Theorem [Gessel 1986, Bousquet-Mélou 2005] K(t; x,y) is algebraic.
Theorem [B. & Kauers 2010: former Gessel’s conj. 2] G(t; x,y) is algebraic.

> Computer-driven discovery and proof.
> Guess'n’Prove method, using Hermite-Padé approximants® — Part 2

t Minimal polynomial P(x,v,t, G(t;x,y)) = 0 has > 10! terms; ~ 30Gb (!)

NN o Algebr fo Lattice Path Combinalorics



Main results (I): algebraicity

Theorem [Kreweras 1965; 100 pages long combinatorial proof!]

' _ 1/3 2/3 1 3\ ad 4”(377) 3n
K(t,0,0)—3F2( 3/2 2 ‘27t>_n;m1)(m+1)t '

Theorem [Kauers, Koutschan & Zeilberger 2009: former Gessel’s conj. 1]

5/6 1/2 1|. o > (5/6)n(1/2)n 10
G(t0,0) = 3F < 16t ) = Y TS (4)2n,
372\ 5/3 2 EO (5/3)n(2)n

Question: What about the structure of K(; x,y) and G(t; x,y)?

Theorem [Gessel 1986, Bousquet-Mélou 2005] K(t; x,y) is algebraic.
Theorem [B. & Kauers 2010: former Gessel’s conj. 2] G(t; x,y) is algebraic.

> Computer-driven discovery and proof.
> Guess'n'Prove method, using Hermite-Padé approximants? — Part 2

> New (human) proofs [B., Kurkova & Raschel 2013], [Bousquet-Mélou 2015]

t Minimal polynomial P(x,y,t, G(tx,y)) = 0 has > 10'! terms; ~ 30Gb (!)
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Main

Theorem [B., Kauers & van Hoeij 2010]
Let V =1+ 4% + 36t + 396t° + - - - be a root of

(V-1)(1+3/V)% = (16t)%,
let U =1+ 22 4 16t* + 2xt° +2(x*> 4+ 83)t° + - - - be a root of
x(V—1)(V+1)U° — 2V (3x + 5xV — 8V)U?
—xV(V? =24V —9)U +2V?(xV — 9x — 8Vt) = 0,
let W = t2 + (y + 8)t* +2(y* + 8y + 41)t° + - - - be a root of
y1=VIW? +y(V4+3)W2 — (V4+3)W+V —1=0.

Then G(t; x,y) is equal to

6A(U(V+1)—2V)V¥2  y(W-1)*(1-Wy) V32
x(P-V(UE-8U+9-V))? — Hy+)(I-W)(Wxy+1)2 1
14y + x2y + x2y2)t — xy tx(y+1)

> Computer-driven discovery and proof; no human proof yet.
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Main resul

Theorem [B., Kauers & van Hoeij 2010]
Let V =1+ 4% + 36t + 396t° + - - - be a root of

(V-1)(1+3/V)% = (16t)%,
let U =1+ 22 4 16t* + 2xt° +2(x*> 4+ 83)t° + - - - be a root of
x(V—1)(V+1)U° — 2V (3x + 5xV — 8V)U?
—xV(V? =24V —9)U +2V?(xV — 9x — 8Vt) = 0,
let W = t2 + (y + 8)t* +2(y* + 8y + 41)t° + - - - be a root of
y1=VIW? +y(V4+3)W2 — (V4+3)W+V —1=0.

Then G(t; x,y) is equal to

64(U(VH)—2V)V32  y(W—1)*(1-Wy) V372
x(UP-V(WP-8U+9-V))Z  Hy+1)(I-W)(W2y+1)2 1
14y + x2y + x2y2)t — xy tx(y+1)

> Computer-driven discovery and proof; no human proof yet.
> Proof uses guessed minimal polynomials for G(t; x,0) and G(£;0,y).
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Theorem [B., Kauers & van Hoeij 2010]
Let V =1+ 4% + 36t + 396t° + - - - be a root of

(V-1)(1+3/V)% = (16t)%,
let U =1+ 22 4 16t* + 2xt° +2(x*> 4+ 83)t° + - - - be a root of
x(V—1)(V+1)U° — 2V (3x + 5xV — 8V)U?
—xV(V? =24V —9)U +2V?(xV — 9x — 8Vt) = 0,
let W = t2 + (y + 8)t* +2(y* + 8y + 41)t° + - - - be a root of
y1=VIW? +y(V4+3)W2 — (V4+3)W+V —1=0.

Then G(t; x,y) is equal to

64(U(VH)—2V)V32  y(W—1)*(1-Wy) V372
x(UP-V(WP-8U+9-V))Z  Hy+1)(I-W)(W2y+1)2 1
14y + x2y + x2y2)t — xy tx(y+1)

> Computer-driven discovery and proof; M&/Milihety oot/ st
> Recent (human) proofs [B., Kurkova, Raschel "13], [Bousquet-Mélou "15]
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Main results (III): Conjectured D-Finite F(t;1,1) [B. & Kauers 2009]

OEIS S Pol size ODE size OEIS & Pol size ODE size
1|A005566 4 — 3,4 |[13)a151275 & — 5,24
2|A018224 X — 3,5 |[14/a151314 @& — 5,24
3|Aa151312 K — 3,8 |15|a151255 A, — 4,16
4|A151331 3 — 3,6 |[16|A151287 & — 5,19
5|A151266 'Y — 516 |[17/a001006 &, 2,2 2,3
6|A151307 F — 5,20 |[18/Aa129400 R 2,2 2,3
71a151291 ¥° — 515 [19]A005558 ¥ < — 3,5
8|A151326 ¥  — 518
9(a151302 K — 524 [20A151265 <° 6,8 4,9
10(a151329 38  — 5,24 |21/A151278 > 6,8 4,12
11]a151261 b — 4,15 |[22/A151323 B 4,4 2,3
12|A151297 % — 5,18 ||23/A060900 ¥ 8,9 3,5

Equation sizes = {order, degree}@(algeq, diffeq)

> Computerized discovery by enumeration + Hermite-Padé
> 1-22: Confirmed by human proofs in [Bousquet-Mélou & Mishna 2010]
> 23: Confirmed by a human proof in [B., Kurkova & Raschel 2015]

Alin Bostan Computer Algebra for Lattice Path Combinatorics



Main results (III): Conjectured D-Finite F(t;1,1) [B. & Kauers 2009]

OEIS & alg asympt OEIS & alg asympt
1]a005566 < N 44 J13a151275 K N 12030 (V)
2(A018224 P& N 2% |14{A151314 BE N WM‘C”Z <2ncz)”
3|A151312 3K N B¢ |l15/A151255 A N 247[ <2nf>"
4|A151331 B N L8 |l16|Al51287 g N 22 [24)
5|A151266 "Y' N },/2-37 |17|A001006 €4 Y g\f 3
6|A151307 3 N 1\/2 5 |l1s|ar2oa00 g ¥ 3,/2.9,
71A151291 "¢ N s |[19]A005558 RN B
8 |A151326 ¥ N 25
9(A151302 K N 1/ 25 |20{A151265 < Y rffﬁ) =,
10jA151329 3 N §\/ 77 (21|At51278 30 Y R0
11|a151261 by N 128 @" ool ats1303 B v y2se
12|A151297 g N Y322 2515314060900 #5 Y %%

A=1+V2 B=1+V3, C=14v6 A=7+3V6, y =/ 2L
> Computerized discovery by enumeration + Hermite-Padé + LLL/PSLQ.
> Confirmed by human proofs in [Melczer & Wilson, 2015]
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1 1
The characteristic polynomial xg := x + p +y+ v
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1 1
The characteristic polynomial xg := x + " +y+ y is left invariant under

P(x,y) = (x}%) P(x,y) = (%y)

32/53



1 1
The characteristic polynomial xg := x + " +y+ y is left invariant under

P(x,y) = (x}%) P(x,y) = (%y)

and thus under any element of the group

o= (o () (43 ()
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1 . .
The polynomial xe:= ) x'v/=) Bi(y)x'=) Ajx)y
(i))es =1 =1
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The polynomial xg:= ), x'y/= Z Bi(y)x' = Z Aj(x)yl s left
(ij)es =1 =1
invariant under

(. Aa(x)1 _(Bay)1
v = (vl o= (50 v0)

~—
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The polynomial xg:= ), x'y/= Z Bi(y)x' = Z Aj(x)yl s left
(ij)es =1 =1
invariant under

o= (880) = (001,

and thus under any element of the group

Gs = (¥, ¢)-

33 /5



Order 4,
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Order 4, order 6,
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Order 4, order 6, order 8§,
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Ex

Order 4, order 6, order 8§, order oo,

34/53
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 Anmportant concept theorbitsum ©9)

The orbit sum of a model & is the following polynomial in Q[x,x~1,y,y~1]:

OrbitSum(&) := Z (—1)99(xy)
feGs

> E.g., for the simple walk:

1 1

> For 4 models, the orbit sum is zero:

S

E.g. for the Kreweras model:

— X

<=
<=
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79 models
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23 admit a finite group
[Mishna’07]

79 models

56 have an infinite group
[Bousquet-Mélou & Mishna’10]
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all F(t; x,y) D-finite

19 transcendental

(Os #0)
23 admit a finite group [Gessel & Zeilberger92]
[Mishna’07] [Bousquet-Mélou’02]

4 algebraic (OS = 0)
79 models (3 Kreweras-type + Gessel)
[BMM'10] + [B. & Kauers'10]

56 have an infinite group
[Bousquet-Mélou & Mishna’10]
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all F(t; x,y) D-finite

19 transcendental

(Os #0)
23 admit a finite group [Gessel & Zeilberger92]
[Mishna’07] [Bousquet-Mélou’02]

4 algebraic (OS = 0)
79 models (3 Kreweras-type + Gessel)
[BMM'10] + [B. & Kauers'10]

56 have an infinite group — all non-D-finite
[Bousquet-Mélou & Mishna’10] o [Mishna & Rechnitzer’07] and
[Melczer & Mishna’13] for 5 singular models
e [Kurkova & Raschel’13] and
[B., Raschel & Salvy’13] for all others
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The 23 models with a finit

(i) 16 with a vertical symmetry, and group isomorphic to D,

AKX AHRATK AKX ¥
AOK HOK 3K

(if) 5 with a diagonal or anti-diagonal symmetry, and group isomorphic
to D3

AR HGK

(iii) 2 with group isomorphic to Dy

AV

(i): vertical symmetry; (ii)+(iii): zero drift E s
s€6
In red, models with OS = 0 and algebraic GF
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Theorem [B., Chyzak, van Hoeij, Kauers & Pech, 2016]

Let & be one of the 19 models with finite group G, and non-zero orbit sum.
Then

o Fg is expressible using iterated integrals of 5 F; expressions.
o Among the 19 x 4 specializations of Fg (t; x,y) at (x,y) € {0,1}2, only 4

are algebraic: for & = Q at (1,1),and 6 = % at (1,0),(0,1),(1,1)
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Main results (IV): expli
transcendental models

Theorem [B., Chyzak, van Hoeij, Kauers & Pech, 2016]

Let & be one of the 19 models with finite group G, and non-zero orbit sum.
Then

o Fg is expressible using iterated integrals of F; expressions.
o Among the 19 x 4 specializations of Fg (t; x,y) at (x,y) € {0,1}2, only 4

are algebraic: for & = Q at (1,1),and & = % t (1,0),(0,1),(1,1)

Example (King walks in the quarter plane, A025595)

3 Q
1%(1%1) t/ (1—|—4x)3 21(22 16x(1+x))d

(1 + 4x)2
=1+ 3t + 1812 + 105> + 684* + 4550¢> + 31340t° + 219555¢7 +

38 /53
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Main results (IV): explicit expressions for the 19 D-finite
transcendental models

Theorem [B., Chyzak, van Hoeij, Kauers & Pech, 2016]

Let & be one of the 19 models with finite group Gg, and non-zero orbit sum.
Then

o Fg is expressible using iterated integrals of ,F; expressions.
o Among the 19 x 4 specializations of Fg (t; x,y) at (x,y) € {0,1}2, only 4

are algebraic: for & = “A\ at (1,1),and & = % t(1,0),(0,1),(1,1)

Example (King walks in the quarter plane, A025595)

F%(tll t/ m 2F1(32 16x(1+x)>dx

(1+4x)?
=1+ 3t + 1812 + 105> + 684* + 4550¢> + 31340t° + 219555¢7 +

> Computer-driven discovery and proof; no human proof yet.
> Proof uses creative telescoping, ODE factorization, ODE solving.
— Part 3
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Hypergeometric Series Occurring in Explicit Expressions for F(¢; x, y)

S occurring 2 Fy w S occurring o Fy w

1 <P zFl(%’l% w) 1612 1k 2F1<%’1% w> pe

2 X 2F1<%’1% w) 1612 12 2F1<%’1% w> Mo
3 XK 2F1<%'1% w) S RE ¢ 2F1<5'1% w) o)
CE (b)) o | B (i)
5 Y 21—"1(%’1% w) 64t* 15 A 2F1<%’1% w> 64t4

6 P 2p1<ir1% w) %fﬁ;z) 16 &R 2F1<%,1% w> eériif;)lg
A 4 2F1<%’1% w> S FVANE N za(%ﬁ w) 2783

g m(iﬁ w) % 18 R 21:1(%'1% w> 272(2t + 1)
9 X zFl(%i% w) ML 1 = 2F1<%’1% w> 1612
0 B on(iile) g

> All related to the complete elliptic integrals fon/z(l — k2 sin? G)i% de

Alin Bostan Computer Algebra for Lattice Path Combinatorics



Theorem [B., Rachel & Salvy 2013]

Let & be one of the 51 non-singular models with infinite group Gg.
Then Fg(t;0,0), and in particular Fg (f; x, ), are non-D-finite.
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Main resul

Theorem [B., Rachel & Salvy 2013]

Let & be one of the 51 non-singular models with infinite group Gg.
Then Fg(t;0,0), and in particular Fg (f; x, ), are non-D-finite.

> Algorithmic proof. Uses Grobner basis computations, polynomial
factorization, cyclotomy testing.
> Based on two ingredients: asymptotics + irrationality.

> [Kurkova & Raschel 2013] Human proof that Fg (£; x, 1) is non-D-finite.
> No human proof yet for Fg (+;0,0) non-D-finite.

40 /53
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Main results (V): non-D-

Theorem [B., Rachel & Salvy 2013]

Let & be one of the 51 non-singular models with infinite group Gg.
Then Fg(t;0,0), and in particular Fg (f; x, ), are non-D-finite.

> Algorithmic proof. Uses Grobner basis computations, polynomial
factorization, cyclotomy testing.
> Based on two ingredients: asymptotics + irrationality.

> [Kurkova & Raschel 2013] Human proof that Fg (£ x, y) is non-D-finite.
> No human proof yet for Fg (+;0,0) non-D-finite.

> [Bernardi, Bousquet-Mélou & Raschel 2016] For 9 of these 51 models,
Fs(t;x,y) is nevertheless D-algebraic!
> Upcoming talk by T. Dreyfus: this is false for the remaining 42 models.

40 /53
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The 56 models with infinite group

ACHRR AR ACK AR K
KKK A A
AR ORI K
AR RO XA AK
KR AR HOK
RORKKK

In blue, non-singular models, solved by [B., Raschel & Salvy 2013]
In red, singular models, solved by [Melczer & Mishna 2013]

Alin Bostan Computer Algebra for Lattice Path Combinatorics



[B., Raschel & Salvy 2013]: Fg(t;0,0) is not D-finite for the models

For the 1st and the 3rd, the excursions sequence [t""| Fg(t;0,0)

1,0,0,2,4,8,28,108,372, ...
is~K-5"-n% witha =1+ 7t/ arccos(1/4) = 3.38339%...

The irrationality of w prevents Fg (£;0,0) from being D-finite.
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Summar

The Main Theorem Let & be one of the 74 non-singular models. The
following assertions are equivalent:

(1) The full generating function Fg (¢; x, ) is D-finite

(2) the excursions generating function Fg (t;0,0) is D-finite

(3) the excursions sequence [t"] Fg (£;0,0) is ~ K- p" - n*, with « € Q
(4) the group Gg is finite (and |Gg | = 2-min{/ € N* | 5 € Z})

(5) the step set & has either an axial symmetry, or zero drift and cardinal
different from 5.

43 /53
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Summary: Classi

The Main Theorem Let & be one of the 74 non-singular models. The
following assertions are equivalent:

(1) The full generating function Fg (¢; x, ) is D-finite

(2) the excursions generating function Fg (t;0,0) is D-finite

(3) the excursions sequence [t"] Fg (£;0,0) is ~ K- p" - n*, with « € Q
(4) the group Gg is finite (and |Gg| = 2 - min{¢ € N* | % ez}

(5) the step set & has either an axial symmetry, or zero drift and cardinal
different from 5.

Moreover, under (1)-(5), Fs (£ x,y) is algebralc if and only if the model &
has positive covariance ) ij— ) i- ) j>0,andiff it has OS = 0.
(i))e& (i))e&  (i))e6

43 /53
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Summary: Classification

The Main Theorem Let & be one of the 74 non-singular models. The
following assertions are equivalent:

(1) The full generating function Fg (¢; x, ) is D-finite

(2) the excursions generating function Fg (t;0,0) is D-finite

(3) the excursions sequence [t"] Fg (£;0,0) is ~ K- p" - n*, with « € Q
(4) the group G is finite (and |G| = 2 - min{¢ € N*| £ w1 €Z))

(5) the step set & has either an axial symmetry, or zero drift and cardinal
different from 5.

Moreover, under (1)—(5), Fs (£, x,y) is algebralc if and only if the model &
has positive covariance ) ij— ) i- ) j>0,andiff it has OS = 0.
(i))e& (i))e&  (i))e6

In this case, F (f; ¥, ) is expressible using nested radicals.

If not, Fs (£ x,y) is expressible using iterated integrals of o F; expressions.

13/53
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(1) for proving algebraicity / D-finiteness
(1a) Guess'n'Prove
(1b) Creative telescoping

(2) for proving non-D-finiteness
(2a) Infinite number of singularities, or lacunary
(2b) Asymptotics
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(1) for proving algebraicity / D-finiteness
(1a) Guess'n’Prove Hermite-Padé approximants
(1b) Creative telescoping Diagonals of rational functions

(2) for proving non-D-finiteness
(2a) Infinite number of singularities, or lacunary
(2b) Asymptotics

> All methods are algorithmic.

44 /53



quadrant models &: 79

— T~

|Ga|<oco: 23 |Gs| = o0: 56

N |

nonzero orbit sum: 19  zero orbit sum: 4 asymptotics + GB

Kernel method + CT Guess'n’Prove not D-finite

D-finite algebraic



Extensio

231 ~ 67 millions models, of which ~ 11 million inherently 3D
3D octant models & with < 6 steps: 20804

— T~

|G| < o0: 170 |Gs| = o0?: 20634
orbit sum # 0: 108 orbit sum = 0: 62  not D-finite?

| N

kernel method 2D-reducible: 43  not 2D-reducible: 19

D-finite D-finite not D-finite?
[B., Bousquet-Mélou, Kauers, Melczer 2015]

> Open question: are there non-D-finite models with a finite group?

46 /53
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Extensions: Walks wi

23371

~ 67 millions models, of which ~ 11 million inherently 3D
3D octant models & with < 6 steps: 20804

— T~

|Gs| < o0: 170 |G| = o0?: 20634
orbit sum # 0: 108 orbit sum = 0: 62 not D-finite?

| N

kernel method 2D-reducible: 43  not 2D-reducible: 19

D-finite D-finite not D-finite?
[B., Bousquet-Mélou, Kauers, Melczer 2015]
> Open question: are there non-D-finite models with a finite group?

> [Du, Hu, Wang, 2015]: proofs that groups are infinite in the 20634 cases

> [Bacher, Kauers, Yatchak, 2016]: extension to all 3D models; 170 models
found with |Gg| < co and orbit sum 0 (instead of 19)

NN o Algebr fo Lattice Path Combinalorics
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The 19 mysterio

g 7
7 7
/ /
/ / )/
/ / i / /
7 T a8 IL/’ 7 S
”* f’* T
7 7 7 7 7
/ / I / /
/ /
i i
N N
IA TAN
/ /
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Two different computations suggest:
Ky, 7o C - 256 / 3325757004174

so excursions are very probably transcendental
(and even non-D-finite)

48 /53
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~ An iniguin inegral evalation arising fom 20 walks

For Y the sequence f, = [t"]F(£1,1) is ~ TT This implies

1/4 /
—4 12
(1 0)2 3 +0) {1+ 1 "
| v 20(1 +20) (1 + 402)1/2
31| 1602 L1 160?
1-0)F (22| ) — (1+0)(1— 4o +80%),F (272 |
(a-002m (33| 5) - o0 —sorsdan (2] 75 )]
1
AP

> Open question: can this be proved using Computer Algebra?

49 /53
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o Define (and use) a group G for models with larger steps?

e Example: When & = {(0,1), (1, —1), (=2, —1)}, there is an underlying
group that is finite and

(x—2x?)(y— (x =22y ")
1—t(xy T +y+x2y1)

A\

[B., Bousquet-Mélou & Melczer, in preparation]

xyF(tx,y) = [x70y~0]

> Current status:
e 680 models with one large step, 643 proved non D-finite, 32 of 37 have
differential equations guessed.

e 5910 models with two large steps, 5754 proved non D-finite, 69 of 156
have differential equations guessed.
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© Computer algebra may solve difficult combinatorial problems
© Classification of F(t;x,y) fully completed for 2D small step walks

@ Robust algorithmic methods, based on efficient algorithms:
e Guess'n'Prove
o Creative Telescoping

© Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G(t; x,y) ~ 30Gb.
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Conclusion

Computer algebra may solve difficult combinatorial problems

Classification of F(t;x,y) fully completed for 2D small step walks

Robust algorithmic methods, based on efficient algorithms:
e Guess'n’Prove
o Creative Telescoping

© OO

Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G(¢; x,y) ~ 30Gb.

Lack of “purely human” proofs for some results.

Still missing a unified proof of: finite group «+ D-finite.

Open: is F(#;1,1) non-D-finite for all 56 models with infinite group?

Many open questions in dimension > 2.
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Thanks for your attention!



