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Two exercises fro

@ Compute a telescoper for the diagonal of the rational power series

1

_ i+7\ i
1—x—y_ Z( i )xy

i,j>0

in two different ways:

© using the Almkvist-Zeilberger (2G) creative telescoping algorithm;
© using the Hermite reduction-based (4G) creative telescoping algorithm.

@ Let f,g € Q[x] be two coprime polynomials. Let i € Q[x] be another
polynomial such that degh < deg f + degg.
© Show that the equation
sf+tg="h

admits an unique solution (s, t) € Q[x]? s.t. degs < degg, degt < degf.
© Design an algorithm for computing the solution (s, t) starting from (f, g, 1)
in quasi-optimal complexity.
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@ Let f,g € Q[x] be two coprime polynomials. Let i € Q[x] be another
polynomial such that degh < deg f + degg.
© Show that the equation
sf+tg="h

admits an unique solution (s, t) € Q[x]? s.t. degs < degg, degt < deg f.
© Design an algorithm for computing the solution (s, t) starting from (f, g, h)
in quasi-optimal complexity.
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@ Let f,g € Q[x] be two coprime polynomials. Let i € Q[x] be another
polynomial such that degh < deg f + degg.
© Show that the equation
sf+tg="h

admits an unique solution (s, ) € Q[x]? s.t. degs < degg, degt < deg f.
© Design an algorithm for computing the solution (s, t) starting from (f, g, 1)
in quasi-optimal complexity.

> Uniqueness: If (§,f) is another solution, then (s — §)f = (f—t)g,s0 ¢

divides s — 5 and since deg ¢ > deg(s —§), we get s = §, and also t = F.
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> Existence: Let (S, T) be a solution of Sf + Tg = h, obtained using the
Euclidean algorithm to get a Bézout relation, which is post-multiplied by 5.
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> Existence: Let (S, T) be a solution of Sf + Tg = h, obtained using the
Euclidean algorithm to get a Bézout relation, which is post-multiplied by 5.

> Denote by t the remainder of the Euclidean division of T by f:
T=qf+t, degt < degf, degq=degT —degf
and let s := S + g¢. In other words:
(s,8):= (S, T) +4q(8 —f)-
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> Existence: Let (S, T) be a solution of Sf + Tg = h, obtained using the
Euclidean algorithm to get a Bézout relation, which is post-multiplied by 5.

> Denote by t the remainder of the Euclidean division of T by f:
T=qf+t, degt < degf, degq=degT —degf
and let s := S + g¢. In other words:
(s,8):= (S, T) +4q(8 —f)-

> Obviously we have sf 4 tg = h and moreover

deg(sf) = deg(h —tg) < deg f + degg.
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> Existence: Let (S, T) be a solution of Sf + Tg = h, obtained using the
Euclidean algorithm to get a Bézout relation, which is post-multiplied by 5.

> Denote by t the remainder of the Euclidean division of T by f:
T=qf+t, degt < degf, degq=degT —degf
and let s := S + g¢. In other words:

(s,t):==(S,T)+4q(g,—f)

> Obviously we have sf 4 tg = h and moreover

deg(sf) = deg(h —tg) < deg f + degg.

> Thus, degs < degg.
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Ex 2.

> Existence: Let (S, T) be a solution of Sf + Tg = h, obtained using the
Euclidean algorithm to get a Bézout relation, which is post-multiplied by 5.

> Denote by t the remainder of the Euclidean division of T by f:
T=qf+t, degt < degf, degq=degT —degf
and let s := S + g¢. In other words:
(s,8):= (S, T) +4q(8 —f)-

> Obviously we have sf 4 tg = h and moreover

deg(sf) = deg(h —tg) < deg f + degg.

> Thus, degs < degg.

> Algorithm of complexity O(M(n)logn), where n = deg f + degg.
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Compute a telescoper for the diagonal of the rational power series
1-x—-y L < i >xy

=0

using the Almkvist-Zeilberger (2G) creative telescoping algorithm;
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Compute a telescoper for the diagonal of the rational power series
1 N
g ()
—x-y S\ i
using the Almkvist-Zeilberger (2G) creative telescoping algorithm;

> We need to compute a linear differential equation for the integral

1

Itz Ht, d, h H:—
(1) ?g(x)x where po -
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Compute a telescoper for the diagonal of the rational power series
1 N
-y <’ +]> Xyl
l—-x—y o \ 1
using the Almkvist-Zeilberger (2G) creative telescoping algorithm;

> We need to compute a linear differential equation for the integral

1

It= Ht, d, h H:—
(1) ?g(x)x where po -

> We will use the AZ algorithm to solve the felescoping equation
L(t,0¢)(H) = 9x(G - H)
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Compute a telescoper for the diagonal of the rational power series

1y <"Jff> sy
l—-x—y 1720 i
using the Almkvist-Zeilberger (2G) creative telescoping algorithm;

> We need to compute a linear differential equation for the integral

1
It = Ht, d, h H:—
(1) 315 (t,x)dx, where o

> We will use the AZ algorithm to solve the felescoping equation
L(t,0¢)(H) = 9x(G - H)

2x —1

> Conclusion: (1 —4t)-H;—2-H = 9y ( 2 t>' where H; := o;H
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> We use the AZ algorithm to solve the telescoping equation
L(t,9;)(H) = 0x(G - H)



> We use the AZ algorithm to solve the telescoping equation
L(t,9;)(H) = 0x(G - H)

> No solution for L of order 0; we look at order 1



> We use the AZ algorithm to solve the telescoping equation
L(t,9;)(H) = 0x(G - H)

> No solution for L of order 0; we look at order 1

> Le., we search for ¢o(t) € C(t) and G(t,x) € C(t,x), such that

Hi+co(t)-H=Gy -H+G-Hy



> We use the AZ algorithm to solve the telescoping equation
L(t,9;)(H) = 0x(G - H)

> No solution for L of order 0; we look at order 1

> Le., we search for ¢o(t) € C(t) and G(t,x) € C(t,x), such that

Hi+co(t)-H=Gy -H+G-Hy

> Dividing by H and switching LHS and RHS yields the equivalent equation

Hx_Ht
Gy +G - H+C0(t)/

ie.
2x—1 1

. Ry R

Gx+G-x +co(t)



2x—1 1

Gv+G- =
x+ x—x2—t x—x2—t

+co(t) 1)
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2x—1 1
= t 1
x—x2—t x—x2—t+c0() M

> Possible poles of G at X4 = % . (1 + 1 - 4t), with local behavior:
G=(x—X+)’+(hot), Gy=0v (x—X4)° '+ (hot)

Gy +G-
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2x—1 1
T2 a2 o) 0
> Possible poles of G at X4 = % . (1 + 1 - 4t), with local behavior:

G=(x—X+)’+(hot), Gy=0v (x—X4)° '+ (hot)
> Around x = X4, LHS of (1) writes

1—2x
. _— v_l oo . _ v_l . e
(v (x—X4)"7 '+ )+<x—X:F (x—X4)"" + )

It has valuation v — 1, while RHS of (1) has valuation —1; thus v =0

Gy +G-
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2x—1 1
= t 1
x—x2—t x—x2—t+C0() M

> Possible poles of G at X4 = % . (1 + 1 - 4t), with local behavior:
G=(x—X+)’+(hot), Gy=0v (x—X4)° '+ (hot)
> Around x = X4, LHS of (1) writes
1—2x

. _— v_l oo . _ v_l . e

(v (x—X4)"7 '+ )+<x—X¢ (x—X4)"" + )

It has valuation v — 1, while RHS of (1) has valuation —1; thus v =0

& Look for polynomial G = gn(t) - xN + (Lo.t.) with g5y # 0. Then
Gy =N-gn()-xN"1 4 (Lot)

so numer(LHS): (—x2 - N-gn(t) - xN "1+ )+ (2x —1) - gn() - 2N +--)
has degree N + 1 if N # 2, while numer(RHS) has degree < 2

Gy +G-
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2x—1 1
= t 1
x—x2—t x—x2—t+C0() M

> Possible poles of G at X1 = % - (14 /1 — 4t), with local behavior:
G=(x—X+)’+(hot), Gy=0v (x—X4)° '+ (hot)
> Around x = X4, LHS of (1) writes
1—2x

. _— v_l oo . _ v_l . e

(v (x—X4)"7 '+ )+(x—X:F (x—X4)"7" + )

It has valuation v — 1, while RHS of (1) has valuation —1; thus v =0

& Look for polynomial G = gn(t) - xN + (Lo.t.) with g5y # 0. Then
Gy =N-gn()-xN"1 4 (Lot)

so numer(LHS): (—x2 - N-gn(t) - xN "1+ )+ (2x —1) - gn() - 2N +--)
has degree N + 1 if N # 2, while numer(RHS) has degree < 2
> Thus N < 2, and G = g»x% + g1x + go, 50 (1) yields a linear system / C(t)

co+g1+8 =0 2tgp+co—280 =0, t-(co—g1)—1—g =0

Gy +G-
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2x—1 1
Gx+G-x_ 7 = +alt) 1)
> Possible poles of Gat Xy = 2 (1+V1—4t), w1th local behavior:
= (x—X£)’ 4 (hot), Gy=0-(x—X£)* '+ (hot)

> Around x = X4, LHS of (1) writes
(v'(x—Xi)v_l-I-'“)-l-( '(X—X:t)v_l+"')
It has valuation v — 1, while RHS of (1) has valuation —1; thus v =0
& Look for polynomial G = gn(t) - xN + (Lo.t.) with g5y # 0. Then
Gy =N-gn()-xN"1 4 (Lot)

so numer(LHS): (—x2 - N-gn(t) - xN "1+ )+ (2x —1) - gn() - 2N +--)
has degree N + 1 if N # 2, while numer(RHS) has degree < 2
> Thus N < 2, and G = g»x% + g1x + go, 50 (1) yields a linear system / C(t)

co+g1+8 =0 2tgp+co—280 =0, t-(co—g1)—1—g =0

4grt? —gpt+1 —4grt+gr—2
>c0=4t%1,go—g—z4—gf—,g %t—_‘%z—; G=(x2+t—x)gz+%‘£

1—2x
x— X+
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2x—1 1
= t 1
x—x2—t x—x2—t+C0() M

> Possible poles of G at X1 = % - (14 /1 — 4t), with local behavior:
G=(x—X4)’+ (hot), Gy=0v-(x—X)" 1+ (hot)
> Around x = X4, LHS of (1) writes
(v'(x—Xi)”_l-l----)-l-( (X—X:t)v_l+"')
It has valuation v — 1, while RHS of (1) has valuation —1; thus v =0
& Look for polynomial G = gn(t) - xN + (Lo.t.) with g5y # 0. Then
Gy =N-gn()-xN"1 4 (Lot)

so numer(LHS): (—x2 - N-gn(t) - xN "1+ )+ (2x —1) - gn() - 2N +--)
has degree N + 1 if N # 2, while numer(RHS) has degree < 2
> Thus N < 2, and G = g»x% + g1x + go, 50 (1) yields a linear system / C(t)

co+g1+8 =0 2tgp+co—280 =0, t-(co—g1)—1—g =0

4¢P —grt+1 — 4@yt —2 B
[>C0=4—It2_,gozgﬁmgzi,g1=ﬁg?tff2_; Gz(x2+t_x)g2+lt_2f
1-2
> Conclusion: (4t — 1)H; + 2H = 0y (—2 d )
X —xc—t
Comp algebra for i \bi

Gy +G-

1—2x
x— X+
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Compute a telescoper for the diagonal of the rational power series
Ty ( i )xy

i,j=0

using the Hermite reduction-based (4G) creative telescoping algorithm.
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Compute a telescoper for the diagonal of the rational power series
1—-x—y L ( i >xy

i,j=0

using the Hermite reduction-based (4G) creative telescoping algorithm.
> We need to compute a linear differential equation for the integral

0=9
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Compute a telescoper for the diagonal of the rational power series

1—-x—y Z( i >xy

i,j=0

using the Hermite reduction-based (4G) creative telescoping algorithm.
> We need to compute a linear differential equation for the integral

I(t)zygx—f;—t

> H has only simple roots, so it is its own Hermite reduction:

1

He —
x—x2—t

+9x(0).
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mam

Compute a telescoper for the diagonal of the rational power series

1—-x—y Z( i >x}/

i,j=0

using the Hermite reduction-based (4G) creative telescoping algorithm.
> We need to compute a linear differential equation for the integral

I(t)zygx—f;—t

> H has only simple roots, so it is its own Hermite reduction:

1
H = — a .
x—x2—t +9x(0)
> The derivative w.r.t. t of H has double poles, and Hermite reduction
1 2/(1—-4 2x—1)/(1—-4
- R (s )

C(x—x2—1t)2  x—a2—t x—x2—t
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Compute a telescoper for the diagonal of the rational power series

_Z(i>xy

I=x—y %0

using the Hermite reduction-based (4G) creative telescoping algorithm.
> We need to compute a linear differential equation for the integral

I(t)zygx—f;—t

> H has only simple roots, so it is its own Hermite reduction:

1

i 0

H =

> The derivative w.r.t. t of H has double poles, and Hermite reduction

1 _2/(1—4t)+ax((2x—l)/(1—4t))'

(x—x2—1t)2  x—2x2—t x—x2—t

H; =

x2 —t

e NBEEN e sigebrn for enumenstive combi

> Therefore, (1 — 4t)H; — 2H = 0y <xZ_x——1)
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> Hermite reduction computation: extended ged of ¢ = x — x2 — t and gy :

Y (LU R P
g 4 2 gx_ '_4 .
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> Hermite reduction computation: extended ged of ¢ = x — x2 — t and gy :

Y (LU R P
g 4 2 gx_ '_4 .

> Asa consequence

11 gt 11 1-2v g 11 21 (1
g 4 g2 6 g 46 g2 5 g 46 g/
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> Hermite reduction computation: extended ged of ¢ = x — x2 — t and gy :

Y (LU R P
g 4 2 gx_ '_4 .

> Asa consequence

11 gt e 11 11, 21 (1
g2 6 g2 i g 46 g2 5 g 46 g/

> Integrating by parts yields:
111, (%1
g2 20 g \45-g )
12 1, (2x-1
g2 1—4t g T\(1-4t)g)’

ie.,
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Computer Algebra for Enume

Enumerative Combinatorics: science of counting J

Area of mathematics primarily concerned with counting discrete objects.

> Main outcome: theorems

Computer Algebra: effective mathematics

Area of computer science primarily concerned with the algorithmic
manipulation of algebraic objects.

> Main outcome: algorithms

Computer Algebra for Enumerative Combinatorics
Today: Algorithms for proving Theorems on Lattice Paths Combinatorics. J




~ An nnocentloking) combinaorial quesion

Let ¥ = {1, +, \,}. An .-walk is a path in Z? using only steps from .7
Show that, for any integer 7, the following quantities are equal:

(i) number a, of n-steps .#-walks confined to the upper half plane Z x IN
that start and finish at the origin (0,0) (excursions);

(ii) number by, of n-steps .#-walks confined to the quarter plane IN? that
start at the origin (0,0) and finish on the diagonal of IN? (diagonal walks).

10 / 40
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Let ¥ = {1, +, \,}. An .-walk is a path in Z? using only steps from .7
Show that, for any integer 7, the following quantities are equal:

(i) number a, of n-steps .-walks confined to the upper half plane Z x IN
that start and finish at the origin (0,0) (excursions);

(ii) number by, of n-steps .#-walks confined to the quarter plane IN? that
start at the origin (0,0) and finish on the diagonal of IN? (diagonal walks).

For instance, for n = 3, this common value is a3 = b3 = 3:

HSREERN

(ii)

10 / 40
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Teaser 1: This “exercise” is non-trivial
Teaser 2: It can be solved using Experimental Math and Computer Algebra

Teaser 3: ...by two robust and efficient algorithmic techniques,
Guess-and-Prove and Creative Telescoping

11/40



Why care about counting walks?

Many objects can be encoded by walks:

© probability theory (voting, games of chance, branching processes, ...

© discrete mathematics (permutations, trees, words, urns, ...)
@ statistical physics (Ising model, ...)

© operations research (queueing theory, ...)

7™M INTERNATIONAL CONFERENCE ON
ATTICE PATH COM D APPLICATIONS

— rd

HOME TOPICS to be covered include (but are not limited to) :

m Lattice path enumeration Random walks
Plane Partitions Non parametric statistical inference
Discrete distributions and urn models
Young tableaux Queueing theory
fenmean | acalculus Analysis of algorithms
Orthogonal polynomials Graph Theory and Applications

Important dates Self-dual codes and unimodular lattices
- Bijections between paths and other

Perticipants combinatoric structures

General Information

Alin Bostan Computer algebra for enumerative combinatorics



Suppose that candidates A and B are running in an election. If a votes are cast
for A and b votes are cast for B, where a > b, then the probability that A stays
ahead of B throughout the counting of the ballots is (a — b)/(a + b).

Lattice path reformulation: find the number of paths in Z? with a upsteps
and b downsteps ™\ that start at the origin and never touch the x-axis

T(a+b,a—b)

(0,0

13 / 40
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Counting walks is an old topic

Suppose that candidates A and B are running in an election. If a votes are cast
for A and b votes are cast for B, where a > b, then the probability that A stays
ahead of B throughout the counting of the ballots is (@ — b)/(a + b).

Lattice path reformulation: find the number of paths in Z? with a — 1
upsteps * and b downsteps \, that start at (1,1) and never touch the x-axis

Reflection principle [Aebly, 1923]: paths in Z>
from (1,1) to T(a+ b,a — b) that do touch the x-axis
are in bijection with paths in Z? from (1,~1) to T

Answer: (paths in Z? from (1,1) to T) — (paths in Z* from (1, 1) to T)
a+b-1 a+b-1
a—1 b—-1




Counting walks is an old topic:

Suppose that candidates A and B are running in an election. If a votes are cast
for A and b votes are cast for B, where a > b, then the probability that A stays
ahead of B throughout the counting of the ballots is (@ — b)/(a + b).

Lattice path reformulation: find the number of paths in Z? with a — 1
upsteps * and b downsteps \, that start at (1,1) and never touch the x-axis

Reflection principle [Aebly, 1923]: paths in Z>
from (1,1) to T(a+ b,a — b) that do touch the x-axis
are in bijection with paths in Z? from (1,~1) to T

Answer: (paths in Z* from (1,1) to T) — (paths in Z* from (1,—1) to T)
at+b—-1\ (a+b—-1\ a—-bla+b
a—1 b—1 ) a+b\ a




Lot of recent activity; many recent contributors:

Arques, Bacher, Banderier, Beaton, Bernardi, Biane, Bostan, Bousquet-Mélou,
Buchacher, Budd, Chyzak, Cori, Courtiel, Denisov, Dreyfus, Du, Duchon,
Dulucq, Duraj, Fayolle, Fisher, Flajolet, Fusy, Garbit, Gessel,
Gouyou-Beauchamps, Guttmann, Guy, Hardouin, van Hoeij, Hou,
Iasnogorodski, Johnson, Kauers, Kenyon, Koutschan, Krattenthaler,
Kreweras, Kurkova, Lecouvey, Malyshev, Melczer, Miller, Mishna,
Niederhausen, Owczarek, Pech, Petkovsek, Prellberg, Raschel, Rechnitzer,
Roques, Sagan, Salvy, Sheffield, Singer, Tarrago, Trotignon, Verron, Viennot,
Wachtel, Wallner, Wang, Wilf, D. Wilson, M. Wilson, Xu, Yatchak, Yeats,
Zeilberger, ...

etc.
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...butitisstill a v

Lot of recent activity; many recent contributors:

Arques, Bacher, Banderier, Beaton, Bernardi, Biane, Bostan, Bousquet-Mélou,
Buchacher, Budd, Chyzak, Cori, Courtiel, Denisov, Dreyfus, Du, Duchon,
Dulucq, Duraj, Fayolle, Fisher, Flajolet, Fusy, Garbit, Gessel,
Gouyou-Beauchamps, Guttmann, Guy, Hardouin, van Hoeij, Hou,
Iasnogorodski, Johnson, Kauers, Kenyon, Koutschan, Krattenthaler,
Kreweras, Kurkova, Lecouvey, Malyshev, Melczer, Miller, Mishna,
Niederhausen, Owczarek, Pech, Petkovsek, Prellberg, Raschel, Rechnitzer,
Roques, Sagan, Salvy, Sheffield, Singer, Tarrago, Trotignon, Verron, Viennot,
Wachtel, Wallner, Wang, Wilf, D. Wilson, M. Wilson, Xu, Yatchak, Yeats,
Zeilberger, ...

etc.

—= Systematic approach
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.but it is still a very hot topi
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Our approach: Experimental Mathematics using Computer Algebra

David H. Bailey

Modern computer Algebra Second Edition

Joachim von zur Gathen and Jirgen Gerhard

Victor H. Moll

Experimental
Mathematics
in Action

Alin Bostan Computer algebra for enumerative combinatorics



Our approach: Experimental Mathematics using Computer Algebra

David H. Bailey

Algorithmes Efficaces
en Calcul Formel

. Alin Bostan
E)‘perlmenta]. Frédéric Cryzak
Marc Grusti

Maﬂlema._tics Romain LEBRETON

Grégoire LECERF

mn Actlon ” Bruno SaLvy

Eric Scrost
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> Nearest-neighbor walks in the quarter plane:
-walks in IN?: starting at (0,0) and using steps in a fixed subset .7 of

o= Nt 2=\ L)

> Counting sequence .~ (1): number of .”-walks of length n

> Generating function:

Qu(t) = io g (" € Z[1]

17/ 40



> Nearest-neighbor walks in the quarter plane:
#-walks in IN?: starting at (0,0) and using steps in a fixed subset .7 of

{\// ~ ,\1 T/ /‘/ — \/ J/}

> Counting sequence g« (i, j; n): number of walks of length 1 ending at (7, f)

> Complete generating function (with “catalytic ” variables x, y):

Qrxyt)= Y. qolijn)xyt" € Z[x,y 1]

i,jn=0

17/ 40



Entire books dedicated to small step walks in the quarter plane!

Probability Theory and Stochastic Modelling 40

Guy Fayolle Guy FaonIe /
Roudolf Tasnogorodski Roudolf lasnogorodski
Vadim Malyshev Vadim Malyshev

Random Walks

in thé Quarter-Plane Ra n d O m
Walks in the
Quarter Plane

© Springer @ Springer

Alin Bostan Computer algebra for enumerative combinatorics



Among the 28 step sets . C {—1,0,1}2\ {(0,0)}, some are:
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Among the 28 step sets . C {—1,0,1}2\ {(0,0)}, some are:

trivial, simple,
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Among the 28 step sets . C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the

trivial, simple, half plane,
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intrinsic to the
half plane,

trivial, simple,

symmetrical.
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Among the 28 step sets . C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the
half plane,

trivial, simple,

symmetrical.

One is left with 79 interesting distinct models.

19 /40
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The 79 small steps models of inter
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AT AIGH
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Task: classify their generating functions!

P i

FLATIAE

*Cartness marsiniquonsts’
Tavia, 134

Bolte 3 - Collection Colbrant
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t) = n;o On al’ where (a), =a(a+1)---(a+n-1).
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ab
21:1<C

— v @n(b)n t" _
t) = n;o On al’ where (a), =a(a+1)---(a+n-1).
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differentially algebraic

tan(t)

ab
21:1<C

— v @n(b)n t" _
t) = n;o On al’ where (a), =a(a+1)---(a+n-1).
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Algebr

Generating function: Q(x,y) = Q(x,y;t) = Y q(i, j;m)x'yit" € Z][[x,y,t]]
i,jn=0

Recursive construction yields the kernel equation

1 1 1 1
Q(x,y) =1+t <y+ o + x;) Q(x,y) — t;Q(O,y) — tx};Q(x,O)

22 /40
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Alge

Generating function: Q(x,y) = Q(x,y;t) = ) q(i, j;n)x'yit" € Z[[x,y,1]]

i,jn=0

Recursive construction yields the kernel equation

(1=t (v 3 +25 ) ) Q) = 3y - 9Q(O.9) ~ 12Q(x0)

22 /40
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Algebraic r

Generating function: Q(x,y) = Q(x,y;t) = ) q(i, j;m)x'y/t" € Z][[x,y,t]]

ijn=0

Recursive construction yields the kernel equation

(1 —t (y + % + x;)) xyQ(x,y) = xy — tyQ(0,y) — tx*Q(x,0)

New task: Solve this functional equation!

22 /40
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Algebraic ref

Generating function: Q(x,y) = Q(x,y;t) = ) q(i,j;n)x'y/t" € Z[[x,y,1]]

i,j,1=0

Recursive construction yields the kernel equation

(1 —t (y + % + x;)) xyQ(x,y) = xy — tyQ(0,y) — tx*Q(x,0)

N

New task: For the other models — solve 78 similar equations!

22 /40
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Dyck:; ;
Motzkin:; E

Poélya:

Kreweras: ; * g
Gessel: E E
Gouyou-Beauchamps: ; E

King walks: %
Tandem walks: E £
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@ Let M, ; be the number of {(1,1), (1, —1) }-walks in N? of length 7 that
start at (0,0) and end at vertical altitude k. Let M(x,y) = ZM X"y

(@) Show that (y — x(1+1%)) - M(x,y) =y — x - M(x,0)

V14 2xy -1
(b) Deduce that M(x,y) = W
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< ={11), 1 -1}

Mn+1,k = Mn,k—l + Mn,k+1/ MO,O =1, M—l,k = Mn,fl =0fork,n>0

Multiply by x"+1y¥*1 and sum over n,k € N

= v (My) - ¥ Mo ) = vPx- M(xy) +x- (M= L Myox")

k>0 n>0
N—— N——
M(O,y) =1 M(x,0)

= (y—x(1+v%) M(x,y) =y — x - M(x,0) (kernel equation)
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< ={11),(1,-1)}

(y —x(14+y?)-M(x,y) =y — x - M(x,0) (kernel equation)

Kernel method: let yo € Q[[x]] the power series root of K = y — x(1 +y?)
1-V1-4x2

_ 3 5
Yo 7 =x+4+x"+2x° 4+ € Q[[x]]

Plugging y = yo in the (kernel equation) = E(x) = M(x,0) = LA

X

y—vyo  V1—4x2+2xy—1
Klxy)  2x(y—x(1+y?)

= My =
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e ¢(n) = number of n-steps { , ./, -, — }-walks in IN?
1,2,7,21,78, 260, 988, 3458, 13300, 47880, . ..

Question: What is the nature of the generating function

G(t) = i‘bg(n) "2

27 / 40
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e ¢(i,j;n) = number of n-steps { ', ./, +—, — }-walks in IN? from (0,0) to (i, ])

A

Question: What is the nature of the generating function

Glx,y;t)= Y g(i,j;n)x'y/t" 2

ijn=0
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e ¢(i,j;n) = number of n-steps { 7, ./, -, — }-walks in IN? from (0, 0) to (i, f)

Question: What is the nature of the generating function
o0

Glxyt)= Y, g(ij;n)xylt"?

i,j,n=0

b

e Qe

|
!
v

Theorem [B., Kauers, 2010]
G(x,y;t) is an algebraic function®. J

> computer-driven discovery/proof via algorithmic Guess-and-Prove

* Minimal polynomial P(G(x,y;t); x,y,t) = 0 has > 10! terms; ~ 30 Gb (6 DVDs!)
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e ¢(n) = number of n-steps { *, ./, -, — }-walks in IN?

Question: What is the nature of the generating function
G(t)y=) gm)t"?
n=0

(Bn+1)g(2n) =(12n+2)g(2n—1)and (n+1)g(2n+1) = (4n +2) g(2n)

> computer-driven discovery/proof via algorithmic Guess-and-Prove

27 /40



Guess-and-Prove

Guessing and Proving

George Pélya

What is “scientific method”? Philosophers and non-philosophers have
discussed this question and have not yet finished discussing it. Yet as a first introduction
it can be described in three syllables:

Guess and test.

Mathematicians too follow this advice in their research although they sometimes refuse to
confess it. They have, however, something which the other scientists cannot really have.
For mathematicians the advice is

First guess, then prove.

Alin Bostan Computer algebra for enumerative combinatorics



Guess-and-Prove

How to Solve It

Guessing and Proving

George Pélya

What is “scientific method”? Philosophers and non-philosophers have
discussed this question and have not yet finished discussing it. Yet as a first introduction
it can be described in three syllables:

Guess and test.

Mathematicians too follow this advice in their research although they sometimes refuse to
confess it. They have, however, something which the other scientists cannot really have.
For mathematicians the advice is

First guess, then prove.

[ generate data ]—)[ make conjectures )—)[prove them]

Alin Bostan Computer algebra for enumerative combinatorics




Question: Find B;; := the number of {—, 1}-walks in IN? from (0,0) to (i, )
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Question: Find B;; := the number of {—, 1}-walks in IN? from (0,0) to (i, )

@ There are 2 ways to get to (i, ), either from (i — 1, ), or from (i,j — 1):
Bij = Bi_1,;+ Bjj1
@ There is only one way to get to a point on an axis: B;y = Bp; =1

> These two rules completely determine all the numbers B; ;
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Guess-an

Question: Find B;; := the number of {—, 1}-walks in IN? from (0,0) to (i, )

@ There are 2 ways to get to (i, ), either from (i — 1, ), or from (i,j — 1):
Bij = Bi—1,+ Bij—1
@ There is only one way to get to a point on an axis: B;y = Bp; =1

> These two rules completely determine all the numbers B; ;
(1) Generate data:

28 84 210 462 924
21 56 126 252 462
15 35 70 126 210
10 20 35 56 84
6 10 15 21 28
4 5 6 7
1 1 1 1 1

L = T W S Gy S e
= N W ke U NN
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Guess-and

Question: Find B;; := the number of {—, 1}-walks in IN? from (0,0) to (i)

@ There are 2 ways to get to (i, f), either from (i — 1, ), or from (i,j — 1):
Bij = Bi_1,;+ Bij1
@ There is only one way to get to a point on an axis: B;g = By; =1

> These two rules completely determine all the numbers B, ;

(1) Generate data:

1 7 28 84 210 462 924

1 6 21 56 126 252 462 (I Guess:
1 5 15 35 70 126 210

1 4 10 20 35 56 84 —

1 3 10 15 21 28 — (L)+2)

1 2 4 5 6 7 — i1

11 1

29 / 40
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Guess-and

Question: Find B;; := the number of {—, 1}-walks in IN? from (0,0) to (i, )

@ There are 2 ways to get to (i, ), either from (i — 1, ), or from (i,j — 1):
Bij = Bi—1,+ Bij—1
@ There is only one way to get to a point on an axis: B;y = Bp; =1

> These two rules completely determine all the numbers B; ;
(1) Generate data:

28 84 210 462 924

v (IT) Guess:

1 6 21 56 126 252 462

1 5 15 35 70 126 210 B, L (iT"]')'
1 4 10 20 35 56 84 Br
1 3 6 10 15 21 28

1 2 4 6 7

111 1 1 1 1

29/ 40
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Question: Find B;; := the number of {—, 1}-walks in IN? from (0,0) to (i, )

@ There are 2 ways to get to (i, ), either from (i — 1, ), or from (i,j — 1):
Bij = Bi-1j+Bij1
@ There is only one way to get to a point on an axis: B;y = Bp; =1
> These two rules completely determine all the numbers B; ;

(1) Generate data:

(IIT) Prove: If
28 84 210 462 924 C. . def (i)

1 Z 21 56 126 252 462 ij = 7y then

1 5 15 35 70 126 210 Civj Gy _ i
1 4 10 20 35 56 84 Cij Cij i+j i+j

1 3 6 10 15 21 28 and Cyo = Co; = 1.

1 2 4 5 6 7

111 1 1 1 1 Thus B;j = C;;

29 /40
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Guess-and-Prove for Ges

e ¢(i,j;n) = number of n-steps { 7, ./, -, — }-walks in IN? from (0, 0) to (i, f)

A

Question: What is the nature of the generating function
(o]

Glxyt)= Y gli,jn)x'yt"?
i,j,n=0

Answer: [B., Kauers, 2010] G(x, y;t) is an algebraic function®.

Approach:
@ Generate data: compute G to precision ¢'2%0 (=~ 1.5 billion coeffs!)

@ Guess: conjecture polynomial equations for G(x,0;t) and G(0,y; t)
(degree 24 each, coeffs. of degree (46,56), with 80-bits digits coeffs.)

@ Prove: multivariate resultants of (very big) polynomials (30 pages each)

* Minimal polynomial P(G(x,y;t);x,y,t) = 0 has > 10" terms; ~ 30 Gb (6 DVDs!)
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g(t) := G(0,0;vt) = E (5/6)u(1/2) (16)" is algebraic.

(5/3)n (2




g(t) := G(0,0;vt) = E (S(é?)SISEll(é)z,zn (16)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y5 gnt" as a root.
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g(t) := G(0,0;vt) = E (S(é?);sg,l(é)z,zn (16)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y5 gnt" as a root.

® Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.
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Theorem [“Gessel excursions are algebraic”]

g(t) := G(0,0;vt) = E (5(22’" 1(;;3" (16)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y5 gnt" as a root.

® Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.
@ Implicit function theorem: 3! root r(t) € Q[[t]] of P.
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A typical Guess-

Theorem [“Gessel excursions are algebraic”]

= G(0,0;Vt) = 3 M
8= GO0V = ¥, T .

(16)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y5 gnt" as a root.

® Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.

@ Implicit function theorem: 3! root r(t) € Q[[t]] of P.

@ r(t) =Y, rat" being algebraic, it is D-finite, and so (r,) is P-recursive:
(n+2)(3n+5)r,.1 —4(6n+5)2n+1)r, =0, ro=1

_ (5/6),1/2)uqn

= solution r,;, = G302, 16" =g thus g(t) = r(t) is algebraic.

31 /40
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A typical Guess-and-Prove algorithmi_

Theorem [“Gessel excursions are algebraic”]

= G(0,0;vE) = . 5761/
80):=600VH =) 57, @,

(16)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y5 gnt" as a root.

® Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.

@ Implicit function theorem: 3! root r(t) € Q[[t]] of P.

@ r(t) =Y, rat" being algebraic, it is D-finite, and so (r,) is P-recursive:
(n+2)(3n+5)r,41 —4(6n+5)(2n+1)r, =0, ro=1

= solution r,;, = %16" = gn, thus g(t) = r(t) is algebraic.

> P:=gfun:-listtoalgeq([seq(pochhammer (5/6,n)*pochhammer(1/2,n)/
pochhammer (5/3,n) /pochhammer (2,n)*16™n, n=0..100)], g(t)):
> gfun:-diffeqtorec(gfun:-algeqtodiffeq(P[1], g(t)), gt), r(n));
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Algorithmic classification of models with D-Finite Q »(t) :=

QY(L 1; t)

OEIS .¥ Polsize LDE size Rec size OEIS .¥ Polsize LDE size Rec size
1]a005566 € — (3,4 (22 [13latsiers & —  (5,24) (9, 18)
21A018224 & — (3,5 (2,3) ||14]A151314 @&  —  (5,24) (9,18)
3(A151312 3K —  (3,8) (4,5 [15A151255 N —  (4,16) (6 9)
4|A151331 3B — (3,6) (34 ||16/A151287 R —  (5,19) (7,11)
5(A151266 Y —  (5,16) (7,10) ||17]A001006 &; 2,2) 23 1)
6(A151307 ¥ — (5,200 (8 15) [18/A129400 R (2,20 (2,3) (1)
7(a151201 T — (5,15 (6,10) [|19/A005558 Y —  (3,5) (2,3)
8|A151326 B (5,18) (7,14)
9(a151302 K, —  (5,24) (9,18) [20|A151265 <7 (6,8) (4,9 (6 4)
10/A151329 38  —  (5,24) (9,18) |[21|A151278 > (6,8) (4,12) (7, 4)
11|A151261 & — 415 (5,8 ||22(a151323 B 4,4 (23 @1)
12|A151297 R —  (5,18) (7,11) ||23|A060900 %5 (8,9) (3,5) (2 3)

Equation sizes = (order, degree)
> Computerized discovery: enumeration + guessing [B., Kauers, 2009]
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http://oeis.org/A005566
http://oeis.org/A151275
http://oeis.org/A018224
http://oeis.org/A151314
http://oeis.org/A151312
http://oeis.org/A151255
http://oeis.org/A151331
http://oeis.org/A151287
http://oeis.org/A151266
http://oeis.org/A001006
http://oeis.org/A151307
http://oeis.org/A129400
http://oeis.org/A151291
http://oeis.org/A005558
http://oeis.org/A151326
http://oeis.org/A151302
http://oeis.org/A151265
http://oeis.org/A151329
http://oeis.org/A151278
http://oeis.org/A151261
http://oeis.org/A151323
http://oeis.org/A151297
http://oeis.org/A060900

Algorithmic classification of models with D-Finite Q »(¢) := Q#(1,1;¢)

OEIS .¥ Polsize LDE size Rec size OEIS .¥ Polsize LDE size Rec size
1]a005566 € — (3,4 (22 [13latsiers & —  (5,24) (9, 18)
21A018224 & — (3,5 (2,3) ||14]A151314 @&  —  (5,24) (9,18)
3(A151312 3K —  (3,8) (4,5 [15A151255 N —  (4,16) (6 9)
4|A151331 3B — (3,6) (34 ||16/A151287 R —  (5,19) (7,11)
5(A151266 Y —  (5,16) (7,10) ||17]A001006 &; 2,2) 23 1)
6(A151307 ¥ — (5,200 (8 15) [18/A129400 R (2,20 (2,3) (1)
7(a151201 T — (5,15 (6,10) [|19/A005558 Y —  (3,5) (2,3)
8|A151326 B (5,18) (7,14)
9(a151302 K, —  (5,24) (9,18) [20|A151265 <7 (6,8) (4,9 (6 4)
10/A151329 38  —  (5,24) (9,18) |[21|A151278 > (6,8) (4,12) (7, 4)
11|A151261 & — 415 (5,8 ||22(a151323 B 4,4 (23 @1)
12|A151297 R —  (5,18) (7,11) ||23|A060900 %5 (8,9) (3,5) (2 3)

Equation sizes = (order, degree)
> Computerized discovery: enumeration + guessing [B., Kauers, 2009]
> 1-22: DF confirmed by human proofs in [Bousquet-Mélou, Mishna, 2010]
> 23: DF confirmed by a human proof in [B., Kurkova, Raschel, 2017]
> All: explicit egs. proved via CA [B., Chyzak, van Hoeij, Kauers, Pech, 2017]
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http://oeis.org/A005566
http://oeis.org/A151275
http://oeis.org/A018224
http://oeis.org/A151314
http://oeis.org/A151312
http://oeis.org/A151255
http://oeis.org/A151331
http://oeis.org/A151287
http://oeis.org/A151266
http://oeis.org/A001006
http://oeis.org/A151307
http://oeis.org/A129400
http://oeis.org/A151291
http://oeis.org/A005558
http://oeis.org/A151326
http://oeis.org/A151302
http://oeis.org/A151265
http://oeis.org/A151329
http://oeis.org/A151278
http://oeis.org/A151261
http://oeis.org/A151323
http://oeis.org/A151297
http://oeis.org/A060900

Algorithmic classification of mo

OEIS . algebraic? asymptotics OEIS .7  algebraic? asymptotics
1]A005566 > N 42 g3l A151275 X N 12/ eVr
2|A018224 2K 24 gl A151314 % N YRuCegr
3lasi &K N Y& |45 A151255 A N maer
TIISEIESEJN 28 el Al51287 & NS YT
5la151266 Y. N 3/23% |l Aooi006 & Y 3/
6|a151307 B N W am |[18]  A129400 M Y 3 \/g o
7laision YN i ol Aoossss = N 841
8 |A151326 %g N ﬁﬁ’}z A=1+VZ B=14V3, C=14v6 A =7+3v6, = /21
olatsizz K N L/ llo|  Ats1265 @ Y 222
10[A151320 P& N Wikn ||z A151278 e Y %ﬁﬁ
njasize by N BRIl Als133 X Y oA UK
2[A151207 F N VBB sl 060900 & Y

> Computerized discovery: convergence acceleration + LLL [B., Kauers, '09]
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http://oeis.org/A005566
http://oeis.org/A151275
http://oeis.org/A018224
http://oeis.org/A151314
http://oeis.org/A151312
http://oeis.org/A151255
http://oeis.org/A151331
http://oeis.org/A151287
http://oeis.org/A151266
http://oeis.org/A001006
http://oeis.org/A151307
http://oeis.org/A129400
http://oeis.org/A151291
http://oeis.org/A005558
http://oeis.org/A151326
http://oeis.org/A151302
http://oeis.org/A151265
http://oeis.org/A151329
http://oeis.org/A151278
http://oeis.org/A151261
http://oeis.org/A151323
http://oeis.org/A151297
http://oeis.org/A060900

Algorithmic classification of models with D-Finite Q »(¢) := Q#(1,1;¢)

OEIS . algebraic? asymptotics OEIS .7  algebraic? asymptotics
1]a005566 4 N 44 13 A151275 X N 12;@%@
2|n018224 X N 24 gl A151314 b N %:s/z%
slas32 @K N Yo' 15| A151255 X N vz V2]
4|a51331 BN 38 el A151287 & N 222 ear
5|A151266 'Y N %ﬁ 25 |[17]  A001006 & Y g\/g 2,
6latsi307 N L/E % |ls|  A120400 % Y 3/24,
7|as1201 Y N saar (|19 A005558 N N LEa
8asi326 F N Fim A=14VZ B=1+V3, C=1+V6, A=743V6, =/ *E2
9 |A151302 X N W3 |20 A151265 { Y Fé% 2
10a151329 B N Wi |2t A151278 S Y ﬁi(@/ 5 =
11|A151261 ,2\ N 2B A151323 % Y el
1a151207 g N VG2 @B 1123]  A060900 & Y e

> Computerized discovery: convergence acceleration + LLL [B., Kauers, '09]

> Asympt. confirmed by human proofs via ACSV in [Melczer, Wilson, 2016]
> Transcendence proofs via CA [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Alin Bostan
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http://oeis.org/A005566
http://oeis.org/A151275
http://oeis.org/A018224
http://oeis.org/A151314
http://oeis.org/A151312
http://oeis.org/A151255
http://oeis.org/A151331
http://oeis.org/A151287
http://oeis.org/A151266
http://oeis.org/A001006
http://oeis.org/A151307
http://oeis.org/A129400
http://oeis.org/A151291
http://oeis.org/A005558
http://oeis.org/A151326
http://oeis.org/A151302
http://oeis.org/A151265
http://oeis.org/A151329
http://oeis.org/A151278
http://oeis.org/A151261
http://oeis.org/A151323
http://oeis.org/A151297
http://oeis.org/A060900

Let . be one of the models 1-19. Then
© Q. (x,y;t) is expressible using iterated integrals of 5 F; expressions.

© Q. (x,y;t) is transcendental.
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Models 1-19: proofs, explicit e

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Let . be one of the models 1-19. Then
© Q. (1) is expressible using iterated integrals of ,F; expressions.

© Q (1) is transcendental, except for .77 = & and .¥ = % .

Example (King walks in the quarter plane, A151331)

16x(1 + x)
e )

1/ 1 3 3
Oggr (=5 |, e 25 (2

=1+ 3t + 182 + 105¢> + 684+* + 4550¢° + 31340£° + 219555¢7 + - - -
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Models 1-19: proofs, explicit expressi_

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Let . be one of the models 1-19. Then
© Q. (1) is expressible using iterated integrals of ,F; expressions.

© Q (1) is transcendental, except for .77 = ‘E and .¥ = % .

Example (King walks in the quarter plane, A151331)

1t 1 33| 16x(1+2)
o 0= [ i (e Gae ) o

(1 +4x)2
=1+ 3t + 182 + 105¢> + 684+* + 4550¢° + 31340£° + 219555¢7 + - - -

> Computer-driven discovery and proof; no human proof yet.
> Proof uses: (1) kernel method + (2) creative telescoping.

~ AinBosan  Computer algebra for
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The kernel K(x,y;t) :=1—t L) Xyl =1t (x +1l4y+ %)
is left invariant under the change of (x,y) into the elements of

0 = {9 (2, (1 D), (v )}
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The kernel K(x,y;t) :=1—t L) Xyl =1t (x +1l4y+ %)
is left invariant under the change of (x,y) into the elements of

0 = {2, (L), (L D). (v )}

Kernel equation:

K(x,y; H)xyQ(x, ;) = xy — txQ(x,0; ) — tyQ(0, y; )
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1) Kernel mthod [BousquetMelow, Mishna, 20100

The kernel K(x,y;t) :=1—t L) Xyl =1t (x +1l4y+ %)
is left invariant under the change of (x,y) into the elements of

6 = {9, (L), (L D), (v )}

Kernel equation:

K(x,y;t)xyQ(x,y5t) = xy — txQ(x,0;t) — tyQ(0, y; t)
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1) Kernel mthod [BousquetMelow, Mishna, 20100

The kernel K(x,y;t) :=1—t L) Xyl =1t (x +1l4y+ %)
is left invariant under the change of (x,y) into the elements of

G = {(wy). (L), (1), (= ))}

Kernel equation:
K(x,y;t)xyQ(x,y5t) = xy — txQ(x,0;t) — tyQ(0, y; t)
—K(x,y;)1yQ(L, y;t) = — -y+t Q(1 0;t) +tyQ(0,y; 1)

K(xy:nilad, L

35/ 40
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(1) Kerne

The kernel K(x,y;t) :=1—t L) Xyl =1t (x +1l4y+ %)
is left invariant under the change of (x,y) into the elements of

0 = {9 (1), (1 D), (v D)}

Kernel equation:
K(x,y;H)xyQ(x,y;t) = xy — txQ(x,0;£) — tyQ(0, y; t)
—K(xy; )ny(x,y, ) y+t 1Q(3,0;6) + tyQ(0,y;t)
K(x,yit) 5y (x,y,) };5 1Q(%,0:1) — £5Q(0, ;1)
—K(x,y;t) Qlx, ) —xy +th(x 0; t)+t Q(O,%,t)

35/ 40
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(1) Kernel m:

The kernel K(x,y;t) :=1—t L) Xyl =1t (x +1l4y+ %)
is left invariant under the change of (x,y) into the elements of

0 = {9 (2, (1 D), (v )}

Kernel equation:
K(x,y;)xyQ(x,y;t) = xy — txQ(x, 0;) — tyQ(0, y; t)
—K(xy; )ny(x,y, ) y+t Q(5,0:1) + tyQ(0, y;t)
K(x,yit) 53 Q( yit) %5 1Q(%,0:1) — £5Q(0, ;1)
— K(x, )1y Q(x, 1) = —xy +xQ(x,0;4) + 1Q(0, 1)

Summing up yields the orbit equation: .

1 11

Yoy txy Ty

—199xQx, i) = y y
gezg( ) (y ( Y )) K(X,y,‘f)
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(1) Kernel m:

The kernel K(x,y;t) :=1—t L) Xyl =1t (x +1l4y+ %)
is left invariant under the change of (x,y) into the elements of

0 = {9 (2, (1 D), (v )}

Kernel equation:
K(x,y;)xyQ(x,y;t) = xy — txQ(x, 0;) — tyQ(0, y; t)
—K(xy; )ny(x,y, ) y+t Q(5,0:1) + tyQ(0, y;t)
K(x,yit) 5y (x,y,) %5 1Q(%,0:1) — £5Q(0, ;1)
— K(x, )1y Q(x, 1) = —xy +xQ(x,0;4) + 1Q(0, 1)

Taking positive parts yields: .

1 11
) o YYy— Yty oy
[y LDy QLeyin) = by )=y
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(1) Kernel m:

The kernel K(x,y;t) :=1—t L) Xyl =1t (x +1l4y+ %)
is left invariant under the change of (x,y) into the elements of

G = {(xy), (Ly), (1 1), (1)}

Kernel equation:
K(x,y;)xyQ(x,y;t) = xy — txQ(x, 0;) — tyQ(0, y; t)
—K(xy; )ny(x,y, ) y+t Q(5,0:1) + tyQ(0, y;t)
K(x,yit) 5y (x,y,) %5 1Q(%,0:1) — £5Q(0, ;1)
— K(x, )1y Q(x, 1) = —xy +xQ(x,0;4) + 1Q(0, 1)

Summing up and taking positive parts yields: ) . .
XY= Yty oy

K(x,y;t)

xyQx,yt) =[xy

35/ 40
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(1) Kernel met

The kernel K(x,y;t) :==1—t- Y jjc.o Xyl =1t (x +1l+y+ %)
is left invariant under the change of (x,y) into the elements of

G i={(ow), (L) (L 1), (0 1))

Kernel equation:
K(x,y; )xyQ(x,y; 1) = xy — txQ(x,0;t) — tyQ(0, y; 1)
~K(xy;t)y yQ(x,y,) T+ Q5 0:1) + tyQ(0, ;1)
K(x,y:t) 3 3Q(5, yit) }75 t3Q(%,0; t)—tlQ(Orﬁ;t)
—K(x,y,t)x (x,y, ) —xy L4 txQ(x,0; t)+t Q(0 ,y, t)

GF = PosPart 05 = ﬂRatFrac
kernel

e BEEN e sigebrn for enumenstive combi
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(1) Kernel met

The kernel K(x,y;t) :==1—t- Y jjc.o Xyl =1t (x +1l+y+ %)
is left invariant under the change of (x,y) into the elements of

G i={(ow), (L) (L 1), (0 1))

Kernel equation:
K(x,y; )xyQ(x,y; 1) = xy — txQ(x,0;t) — tyQ(0, y; 1)
~K(xy;t)y yQ(x,y,) T+ Q5 0:1) + tyQ(0, ;1)
K(x,y:t) 3 3Q(5, yit) }75 t3Q(%,0; t)—tlQ(Orﬁ;t)
—K(x,y,t)x (x,y, ) —xy L4 txQ(x,0; t)+t Q(0 ,y, t)

GF = PosPart (%) is D-finite [Lipshitz, 1988]
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(1) Kernel method

The kernel K(x,y;t) :==1—t- Y jjc.o Xyl =1t (x +1l+y+ %)
is left invariant under the change of (x,y) into the elements of

G = {(x9). (1), (1), (1)}

Kernel equation:
K(x, ;) xyQ(x,y; t
— K(x,y:t) 3yQ(5, it
K(x,y; )%iQ(}(,;,t
~ K(xy el QL

— txQ(x,0;t) — tyQ(0, y; t)

- }lcy~|—t%Q(}—C,0;t) +tyQ(0,y;t)
%%_tlQ(}—C,O't)—tlQ(O,;,t)

= —xy +1xQ(x,0;1) + 1700, 3;t)

GF = PosPart (%) is D-finite [Lipshitz, 1988]

35/ 40
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(1) Kernel method

The kernel K(x,y;t) :==1—t- Y jjc.o Xyl =1t (x +1l+y+ %)
is left invariant under the change of (x,y) into the elements of

G = {(x9). (1), (1), (1)}

Kernel equation:
K(x,y;)xyQ(x,y3t) =
— Ky 3yQ(5. w3t
K(x,y;)21Q(%, 5:t)
— K(xp:t)x1Q(x, ;1)

— txQ(x,0;t) — tyQ(0, y; 1)

y+t Q(3,0;1) + tyQ(0,y;1)
}-c%, t—Q(;,Ot)—tlQ(Or;rt)
—xd 4+ xQ(x,0;1) +£1Q(0, ;1)

GF = PosPart (%) is D-finite [Lipshitz, 1988]

> Creative Telescoping finds a differential equation for GF = f RatFrac .

e MNBEEN e sigebrn for enumenstive combi




(2) Creative Telescoping

“An algorithmic toolbox for multiple sums and integrals with parameters”

n
Example [Apéry 1978]: A, = Z (

k=0

2
> satisfies the recurrence

) (i

(n+1)3A +12A, 1 = 2n+1) (1712 +17n+5)A,.

> Key fact used to prove that {(3) :=

1. Journées Arithmétiques de Marseille-Luminy, June 1978

The board of programme changes informed us that R.
Apéry (Caen) would speak Thursday, 14.00 “Sur I'irration-
alité de {(3).” Though there had been earlier rumours of
his claiming a proof, scepticism was general. The lecture
tended to strengthen this view to rank disbelief. Those who
listened casually, or who were afflicted with being non-
Francophone, appeared to hear only a sequence of unlikely
assertions.

1
Z 3 ~ 1.202056903. .. is irrational.
n>1

7.1CM *78, Helsinki, August 1978

Neither Cohen nor I had been able to prove @ or @ in
the intervening 2 months. After a few days of fruitless
effort the specific problem was mentioned to Don Zagier
(Bonn), and with irritating speed he showed that indeed
the sequence {by} satisfies the recurrence (4). This more or
less broke the dam and and were quickly con-
quered. Henri Cohen addressed a very well-attended meet-
ing at 17.00 on Friday, August 18 in the language of the
majority, proving and explaining how this implied the

[Van der Poorten, 1979: “A proof that Euler missed”]

- AlinBostan G
.
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)

“An algorithmic toolbox for multiple sums and integrals with parameters”

mo i\ (n+k\2
Example [Apéry 1978]: A, = ) (k) < K > satisfies the recurrence
k=0

(n+1)3A +12A, 1 = 2n+1) (1712 +17n+5)A,.

> Key fact used to prove that {(3) := ) 711—3 ~ 1.202056903 ... . is irrational.
n>1

36 / 40

[Zeilberger, 1990: “The method of creative telescoping”]




“An algorithmic toolbox for multiple sums and integrals with parameters”

Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

EET A SR R

Principle: Find algorithmically %
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(2) Creativ

“An algorithmic toolbox for multiple sums and integrals with parameters”

Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

=l N @
142 1 1—cu®
| u 1 Zzuvz A\\Mn

Principle: Find algorithmically 5
3442 2 1
((e—e)ae—i—(l—e)ae—&-e)- e | T
T w2

3 7e(—l—u+u2+u3)vz(—3+2u+vz+u2(—2+322—vz))
H (1402 +u?(e2—22))

4o, (2(e(—1+e2)u(1+u3)vz3>

—1+024u?(e?—v2))

& Conclusion: (e —e3) - p"(e) + (1 —¢*) - p'(e) +e- p(e) = 0.
~ AinBostan  Computer algebra for ive combi
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(2) Creative Tel

“An algorithmic toolbox for multiple sums and integrals with parameters”

Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

1-— ezu2 _4 dudov \
1-— u2 o P I .,

[(=Tar S 3
Principle: Find algorithmically "
3142 2 1
((e—e)ae—i—(l—e)ae—&-e)- el
T w2

5 e(—1utt )0 (=34 2ut o+ (—243¢2 —0%) )
H (1402 +u?(e2—22))”

4o, (Z(e(—1+e2)u(1+u3)v:>

—1+v24u?(e?—v2))

1
2
2 2 32

~ AinBostan  Computer algebra for ive combi

_1
> Conclusion: p(e) = z .21:1< % ez) o2 37re4 B
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“An algorithmic toolbox for multiple sums and integrals with parameters”

Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

e @
1oz 1 d—ar
1 u 1 Zzuvz A\\_L/n

Principle: Find algorithmically 5

1
((e — 302 4+ (1 —¢%)o, + e) . (W) =
(T—u?)o?

3 e(—1utit )0 (=34 2ut v +uP (—243¢2—0%) )
H (1402 +u2(e2—22))

+ 0y (M)

(—1+o2+u2(e2—0?))’

> Drawback: Size(certificate) >> Size(telescoper).
MO o b for enmrativ comb
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(2) 4G Creative Teles

Algorithm for the integration of rational functions [B., Lairez, Salvy, 2013]

Input: R(e,x) a rational function in e and x = x1, ..., xy.

© Output: A linear ODE T(e,d,)y = 0 satisfied by y(e) = {f R(e, x)dx.
© Complexity: O(D¥+2), where D = degR.
®

Output size: T has order < D" in 9, and degree < D¥*? inee.

> Avoids the (costly) computation of certificates, of size Q(D”z/ 2).
> Previous algorithms: complexity (at least) doubly exponential in 7.

> Very efficient in practice.

37 /40
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n 2 2
ft)=Y_Aut", where A, =Y <n> (n +k> , is transcendental.
n

k k

k=0
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n 2 2
ft)=Y_Aut", where A, =Y <n> (n +k> , is transcendental.
n

k k

k=0

Proof:
@ Creative telescoping:

(n+1)P3A, 1 +1%A,_1 = 2n+1) (170> +17n+5)A,, Ag=1,A; =5
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n 2 2
ft)=Y_Aut", where A, =Y (n) (n +k> , is transcendental.
n

k k

k=0

Proof:
@ Creative telescoping:

(n+1)P3A, 1 +1%A,_1 = 2n+1) (170> +17n+5)A,, Ag=1,A; =5
@ Conversion from recurrence to differential equation L(f) = 0, where

L= (t* — 3413 + 12)07 + (61> — 1532 4+ 34)? + (7t — 112t +1)d; +t — 5
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A toy transc

Theorem (Apéry’s power series is transcendental)

o 2 n+k 2
ft)=Y_Aut", where A, =Y (k) ( k ) , is transcendental.
@ k=0

Proof:
@ Creative telescoping:

(n+1)P3A, 1 +13A,_1 = 2n+1)(17n® +17n+5)A,, Ag=1,A; =5
@ Conversion from recurrence to differential equation L(f) = 0, where
L= (t* — 3413 + 12)07 + (61> — 1532 4+ 34)? + (7t — 112t +1)d; +t — 5

@ Guess-and-Prove: . .
compute least-order L™ in Q()(0;) such that L™ (f) = 0

38 /40
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A toy transcendenc

Theorem (Apéry’s power series is transcendental)

o 2 n+k 2
ft)=Y_Aut", where A, =Y (k) ( k ) , is transcendental.
@ k=0

Proof:
@ Creative telescoping:

(n+1)P3A, 1 +13A,_1 = 2n+1)(17n® +17n+5)A,, Ag=1,A; =5
@ Conversion from recurrence to differential equation L(f) = 0, where
L= (t* — 3413 + 12)07 + (61> — 1532 4+ 34)? + (7t — 112t +1)d; +t — 5

@ Guess-and-Prove: . .
compute least-order Lj}““ in Q(t)(d;) such that L}mn (f)=0

@ Basis of formal solutions of L}“i“ att=0:

{1 +5t+0(f), In(t) + (5In(t) +12)t + O(2), In(t)? + (5In(t)2 +241In(t))t + O(2) }

38 /40
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A toy transcendence proo

Theorem (Apéry’s power series is transcendental)

o 2 n+k 2
ft)=Y_Aut", where A, =Y (k) ( k ) , is transcendental.
@ k=0

Proof:
@ Creative telescoping:

(n+1)P3A, 1 +13A,_1 = 2n+1)(17n® +17n+5)A,, Ag=1,A; =5
@ Conversion from recurrence to differential equation L(f) = 0, where

L= (t* — 3413 + 12)07 + (61> — 1532 4+ 34)? + (7t — 112t +1)d; +t — 5
@ Guess-and-Prove:

compute least-order L}“i“ in Q(t)(d;) such that L}“i“ (f)=0

@ Basis of formal solutions of L}“i“ att=0:
{1 +5t+0(f), In(t) + (5In(t) +12)t + O(2), In(t)? + (5In(t)2 +241In(t))t + O(2) }

® Conclusion: f is transcendental®

* f algebraic would imply a full basis of algebraic solutions for Lfmin [Tannery, 1875].
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Q.» is D-finite <= a certain group G » is finite (!)

quadrant models .7: 79

— T~

|G| <c0: 23 |G | = c0: 56

RN |

orbit sum = 0: 4 orbit sum # 0: 19  asymptotics + GB

Guess-and-Prove  Creative Telescoping  non-D-finite

algebraic D-finite

39 /40
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Summary: classification of

Q.o is D-finite <= a certain group G  is finite (!)
quadrant models .%: 79
/ \
|G| <o0: 23 |G| = co: 56
OS=0:4 OS #0:19 I decoupling*: 9 A decoupling: 47
| | | |

Guess-and-Prove  kernel + CT  Tutte’s invariants diff. Galois

algebraic transcendental =~ D-algebraic D-transcendental
U € Q(x, 1),V € Q(y,t) s.t. U(x) + V(y) = xy on the kernel K(x,y;t) = 0.
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Summary: classification of walks

Q.o is D-finite <= a certain group G  is finite (!)
quadrant models .¥: 79
/ \
|G 5| <o0: 23 |G| = co: 56
0OS=0:4 OS #0:19 I decoupling*: 9 A decoupling: 47
| | | |
Guess-and-Prove  kernel + CT  Tutte’s invariants diff. Galois
algebraic transcendental = D-algebraic D-transcendental

> Many contributors (2010-2019): Bernardi, B., Bousquet-Mélou, Chyzak,
Dreyfus, Hardouin, van Hoeij, Kauers, Kurkova, Mishna, Pech, Raschel,
Roques, Salvy, Singer
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Summary: classification of walks with small steps in IN?

Q o is D-finite <= a certain group G & is finite (!)

quadrant models .¥: 79

— T~

|G| <o0: 23 |G.5| = o0: 56
OS = O:{ é #0:19 4 decoupling/*: 9 ﬂ@oupling: 47
Guess—al‘nd-Prove kernel +CT Tutte’s iI‘wariants diff. ‘Galois
algebraic transcendental =~ D-algebraic D-transcendental

> Many contributors (2010-2019): Bernardi, B., Bousquet-Mélou, Chyzak,
Dreyfus, Hardouin, van Hoeij, Kauers, Kurkova, Mishna, Pech, Raschel,
Roques, Salvy, Singer

> Proofs use various tools: algebra, complex analysis, probability theory,
differential Galois theory, computer algebra, etc.

Alin Bostan Computer algebra for enumerative combinatorics



© Enumerative Combinatorics and Computer Algebra enrich one another
@ Classification of Q(x,y; t) fully completed for 2D small step walks

@ Robust algorithmic methods, based on efficient algorithms:

e Guess-and-Prove
o Creative Telescoping

@ Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G(x,y;t) ~ 30Gb.

40 /40
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Conclusio

Enumerative Combinatorics and Computer Algebra enrich one another
Classification of Q(x,y; t) fully completed for 2D small step walks

Robust algorithmic methods, based on efficient algorithms:

e Guess-and-Prove
o Creative Telescoping

© ©OO

Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G(x,y;t) ~ 30Gb.

Lack of “purely human” proofs for some results.

Many beautiful open questions for 2D models with repeated or large
steps, and in dimension > 2.

40 /40
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Bonus
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Beyond dimension 2: walks

> 231 ~ 67 million models, of which ~ 11 million inherently 3D

3D octant models . with < 6 steps: 20804

— T~

|G| < o0: 170 |G| = co: 20634

— T~ |

orbit sum # 0: 108 orbit sum = 0: 62 non-D-finite?

| N

Creative Telescoping  2D-reducible: 43  not 2D-reducible: 19

D-finite D-finite non-D-finite?

[B., Bousquet-Mélou, Kauers, Melczer, 2016] + [Du, Hou, Wang, 2017];
completed by [Bacher, Kauers, Yatchak, 2016]




Beyond dimension 2: walks with s

> 23 =1 ~ 67 million models, of which ~ 11 million inherently 3D

3D octant models . with < 6 steps: 20804

— T~

|G| < o0: 170 |G| = co: 20634

— T~ |

orbit sum # 0: 108 orbit sum = 0: 62 non-D-finite?

| N

Creative Telescoping  2D-reducible: 43  not 2D-reducible: 19

D-finite D-finite non-D-finite?

[B., Bousquet-Mélou, Kauers, Melczer, 2016] + [Du, Hou, Wang, 2017];
completed by [Bacher, Kauers, Yatchak, 2016]

Question: differential finiteness <= finiteness of the group?

Answer: probably no




19 mysterious 3D-m

B 7
i i
/ /
/ / /
/ / i / /
[ ] / 1] ’L/’ / ]
”* /’* T
i i i T i
| | I | |
/ /
i i
N N
/\ ll\\
I I
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Numerical computations [Dahne, Salvy, 2020] suggest:
kg = C - 256" /n”, fora = 3.3257570041744 ... ¢ Q,

so excursions are very probably non-D-finite

4/16



Beyond small step

quadrant models with steps in {—2, —1,0, 1}2: 13 110

|
[ N

|G| < oo: 240 |G | = o0: 12 870
[ | |
OS # 0: 431 0OS=0:9 « rational: 16 « irrational: 12 854
D-finite D-finite? non-D-finite? non-D-finite

[B., Bousquet-Mélou, Melczer, 2018]

Question: differential finiteness <= finiteness of the group?

Answer: ?

e BEEN e sigebrn for enumenstive combi




Two challenging models with large steps

Conjecture 1 [B., Bousquet-Mélou, Melczer, 2018]

For the model %’ the excursions generating function Q(0,0; t'/2) equals

_ 1 2 2
1 1/ 1-12 LR (53 108t (1 + 4t) N
3t 6t \ (1+36t)1/3 1 (1+36t)2
— 1 21108t(1 + 4t)2
V1—12t-oF( 6 3| ——=— ).
“( 1| (1-1202 >)

Conjecture 2 [B., Bousquet-Mélou, Melczer, 2018]
For the model X the excursions generating function Q(0,0; t) equals

(1—24U+120U% — 144 U3) (1 —4U)
(1-3U)(1—-2U)3/2(1—-6U)%/2

7

where U = t* + 5318 + 436312 + - . - is the unique series in Q[[t]] satisfying

U(l-2u)P®(1-3uP(1-6U)’ =t(1-4U)*

Alin Bostan Computer algebra for enumerative combinatorics
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o The kernel equation reads (with K(x,y) =1 —t(y + & + x7)):
K(x,y)yH(x,y) = y — txH(x,0)
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o The kernel equation reads (with K(x,y) =1 —t(y + & + x7)):
K(x,y)yH(x,y) = y — txH(x,0)
o Let

x—t—\/(t—x)> — 4223
Yo= 2tx

be the (unique) root in Q[x, %|[[]] of K(x,yo) = 0.

=xt+ 2+ (2 + )P+ Bx+ )4
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o The kernel equation reads (with K(x,y) =1 —t(y + & + x7)):
K(x,y)yH(x,y) = y — txH(x,0)

o Let
e 02 4123
yo = 2= (tthx) A7 —xt+ 2+ (2 + )P+ Bx+ )4
be the (unique) root in Q[x, %|[[]] of K(x,yo) = 0.
e Then
0= K(x,y0)yH(x,y0) = yo — txH(x,0),
thus

H(x,0) = f_g and A(t) = [xo] f_g

9/16



Excursions

e The kernel equation reads (with K(x,y) =1 —t(y + X + x7)):
K(x,y)yH(x,y) =y — txH(x,0)

o Let
. 02 4123
yo = 2= (tthx) A7 —xt+ 2+ (2 4+ 0P+ CBr+ )+
be the (unique) root in Q[x, %|[[]] of K(x,yo) = 0.
e Then
0= K(x,y0)yH(x,y0) = yo — txH(x,0),
thus

H(x,0) = f_;’ and A(t) = [xo] %2

o Creative telescoping then proves:

(27t — ) A" (t) + (10813 — 4) A’ (t) 4 54t A(t) = 0.

> Zeilberger(1/x * sqrt((t-x)72 - 4%t~2*x"3)/(2*t"2*x"2), t, x, Dt);
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Step set . = {(—1,0),(0,1), (1, —1)}, with characteristic polynomial

1 1 i
Xy = L Hy+x g =T+y+ay
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Step set . = {(—1,0),(0,1), (1, —1)}, with characteristic polynomial

1 1 i
Xy = L Hy+x g =T+y+ay

x(x,y) is left unchanged by the rational transformations

D:(x,y)— (fy,y) and ¥:(x,y)— (x,x7).
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Step set . = {(—1,0),(0,1), (1, —1)}, with characteristic polynomial

1 1 _
Xoy) = Syt =Sy

x(x,y) is left unchanged by the rational transformations

D:(x,y)— (fy,y) and ¥:(x,y)— (x,x7).

@ and ¥ are involutions, and generate a finite dihedral group D3 of order 6:

() (ty, %) —~P
(xy) (7, %)
v (nap) — @) 5

10/ 16



o Orbit equation:

xyQ(x,y) — 22Q(%y, ) + 2yQ(%y, %)
— x7Q(7, %) + x7°Q(7, x7) — ¥*7Q(x, x§) =
xy — Ty + 22y — X + x> — x%7
1—ty+x+x7)
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o Orbit equation:

xyQ(x,y) — 22Q(%y, ) + 2yQ(%y, %)
— x7Q(7, %) + x7°Q(7, x7) — ¥*7Q(x, x§) =
xy — Ty + 22y — X + x> — x%7
1—ty+x+x7)

o Corollary [Bousquet-Mélou & Mishna, 2010]:
xy — &y? + B2y — X7 + xiP? — 227
1—t(y+x+x7)

xyQ(x,y) = [x” %7
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o Orbit equation:

xyQ(x,y) — 22Q(%y, ) + 2yQ(%y, %)
— x7Q(7, %) + x7°Q(7, x7) — ¥*7Q(x, x§) =
xy — Ty + 22y — X + x> — x%7
1—ty+x+x7)

o Corollary [Bousquet-Mélou & Mishna, 2010]:

51,2 =2 S 72 2=
_y>0,,501 XY — XYT A+ XY — XY+ x§° — X7y

o Corollary [B.-Chyzak-van Hoeij-Kauers-Pech, 2015]:

0 — ut? + u0 — uv + 7v* — v

B() = [21Q(2) = ™o = i G ey o)
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o Orbit equation:

xyQ(x,y) — 22Q(%y, ) + 2yQ(%y, %)
— x7Q(7, %) + x7°Q(7, x7) — ¥*7Q(x, x§) =
xy — Ty + 22y — X + x> — x%7
1—ty+x+x7)

o Corollary [Bousquet-Mélou & Mishna, 2010]:

51,2 =2 S 72 2=
_ 130,501 XY — XYT A+ XY — Xj + x§° — x7Y

o Corollary [B.-Chyzak-van Hoeij-Kauers-Pech, 2015]:

0 — ut? + u0 — uv + 7v* — v

z(1—zu)(1 —vz)(1 — (6 + u + @v))

B(t) = [2°]Q(z,2) = [u v '27]

o Creative Telescoping gives a differential equation for B(#):

(27t — 1)B" (1) + (108t — 4)B' (t) + 54t*B(t) = 0.

11/ 16
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We have proved that A(t) and B(t) are both solutions of

(27¢* — 1)y (1) + (108> — 4)y/ (t) + 54t2y(t) = 0.

Solving this equation proves:

& (3n)! 13"
A(t) = B(t) =2k (1/322/3‘27#”) =) (3') —

Thus the two sequences are equal to

(3n)!

m, and a, = by, =0 if 3 does not divide m.

az, = bz, =

12/ 16



Exa

[B., Raschel, Salvy, 2014]: Q.o (0,0;t) is not D-finite for the models

|

> For the 1st and the 3rd, the excursions sequence [¢"'] Q »»(0,0; t)
1,0,0,2,4,8,28,108,372, ...

is~ K-5"-n~% witha =1+ 7t/ arccos(1/4) = 3.38339%...
[Denisov, Wachtel, 2015]

> The irrationality of a prevents Q »(0,0; ) from being D-finite.
[Katz, 1970; Chudnovsky, 1985; André, 1989]

13/ 16
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The characteristic polynomial x .o := x + o +y+ v is left invariant under
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1 1
The characteristic polynomial x .o := x + p +y+ v is left invariant under

p(x,y) = <x$> P(x,y) = (%y)

and thus under any element of the group
1 11 1
w)={e (v3)- (3) ()}
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The generating polynomial o == Y x'y/= 2 Bi(y)x'=Y Aj(x)y
(ij)es” i—1 =1
is left invariant under the birational involutions

_ A—l(x)l) _ (Jl >
von = (x5 e = (e )
and thus under any element of the (dihedral) group

G = (P, ¢)-

|
%
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Order 4, order 6, order 8§, order oco.
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