

Alin Bostan Computer algebra for enumerative combinatorics

Two exercises from last time

① Compute a telescoper for the diagonal of the rational power series

$$\frac{1}{1-x-y} = \sum_{i,j \ge 0} \binom{i+j}{i} x^i y^j$$

in two different ways:

- using the Almkvist-Zeilberger (2G) creative telescoping algorithm;
- using the Hermite reduction-based (4G) creative telescoping algorithm.
- **2** Let $f, g \in \mathbb{Q}[x]$ be two coprime polynomials. Let $h \in \mathbb{Q}[x]$ be another polynomial such that $\deg h < \deg f + \deg g$.
 - Show that the equation

$$sf + tg = h$$

admits an unique solution $(s, t) \in \mathbb{Q}[x]^2$ s.t. deg $s < \deg g$, deg $t < \deg f$. • Design an algorithm for computing the solution (s, t) starting from (f, g, h)

in quasi-optimal complexity.

- ② Let *f*, *g* ∈ Q[*x*] be two coprime polynomials. Let *h* ∈ Q[*x*] be another polynomial such that deg *h* < deg *f* + deg *g*.
 - Show that the equation

$$sf + tg = h$$

admits an unique solution (s, t) ∈ Q[x]² s.t. deg s < deg g, deg t < deg f.
Design an algorithm for computing the solution (s, t) starting from (f, g, h) in quasi-optimal complexity.

- ② Let $f, g \in \mathbb{Q}[x]$ be two coprime polynomials. Let $h \in \mathbb{Q}[x]$ be another polynomial such that $\deg h < \deg f + \deg g$.
 - Show that the equation

$$sf + tg = h$$

admits an unique solution (s, t) ∈ Q[x]² s.t. deg s < deg g, deg t < deg f.
Design an algorithm for computing the solution (s, t) starting from (f, g, h) in quasi-optimal complexity.

▷ **Uniqueness:** If (\tilde{s}, \tilde{t}) is another solution, then $(s - \tilde{s})f = (\tilde{t} - t)g$, so g divides $s - \tilde{s}$ and since deg $g > \text{deg}(s - \tilde{s})$, we get $s = \tilde{s}$, and also $t = \tilde{t}$.

 \triangleright Denote by *t* the remainder of the Euclidean division of *T* by *f*:

T = qf + t, $\deg t < \deg f$, $\deg q = \deg T - \deg f$

and let s := S + qg. In other words:

$$(s,t) := (S,T) + q(g,-f).$$

 \triangleright Denote by *t* the remainder of the Euclidean division of *T* by *f*:

T = qf + t, $\deg t < \deg f$, $\deg q = \deg T - \deg f$

and let s := S + qg. In other words:

$$(s,t) := (S,T) + q(g,-f).$$

▷ Obviously we have sf + tg = h and moreover

$$\deg(sf) = \deg(h - tg) < \deg f + \deg g.$$

 \triangleright Denote by *t* the remainder of the Euclidean division of *T* by *f*:

T = qf + t, $\deg t < \deg f$, $\deg q = \deg T - \deg f$

and let s := S + qg. In other words:

$$(s,t) := (S,T) + q(g,-f).$$

▷ Obviously we have sf + tg = h and moreover

$$\deg(sf) = \deg(h - tg) < \deg f + \deg g.$$

 \triangleright Thus, deg *s* < deg *g*.

 \triangleright Denote by *t* the remainder of the Euclidean division of *T* by *f*:

$$T = qf + t$$
, $\deg t < \deg f$, $\deg q = \deg T - \deg f$

and let s := S + qg. In other words:

$$(s,t) := (S,T) + q(g,-f).$$

▷ Obviously we have sf + tg = h and moreover

$$\deg(sf) = \deg(h - tg) < \deg f + \deg g.$$

 \triangleright Thus, deg *s* < deg *g*.

▷ **Algorithm** of complexity $O(M(n) \log n)$, where $n = \deg f + \deg g$.

$$\frac{1}{1-x-y} = \sum_{i,j \ge 0} \binom{i+j}{i} x^i y^j$$

using the Almkvist-Zeilberger (2G) creative telescoping algorithm;

$$\frac{1}{1-x-y} = \sum_{i,j \ge 0} \binom{i+j}{i} x^i y^j$$

using the Almkvist-Zeilberger (2G) creative telescoping algorithm;

▷ We need to compute a linear differential equation for the integral

$$I(t) = \oint H(t, x) dx$$
, where $H = \frac{1}{x - x^2 - t}$

$$\frac{1}{1-x-y} = \sum_{i,j \ge 0} \binom{i+j}{i} x^i y^j$$

using the Almkvist-Zeilberger (2G) creative telescoping algorithm;

▷ We need to compute a linear differential equation for the integral

$$I(t) = \oint H(t, x) dx$$
, where $H = \frac{1}{x - x^2 - t}$

▷ We will use the AZ algorithm to solve the *telescoping equation*

$$\mathbf{L}(t,\partial_t)(H) = \partial_x(\mathbf{G}\cdot H)$$

$$\frac{1}{1-x-y} = \sum_{i,j \ge 0} \binom{i+j}{i} x^i y^j$$

using the Almkvist-Zeilberger (2G) creative telescoping algorithm;

▷ We need to compute a linear differential equation for the integral

$$I(t) = \oint H(t, x) dx$$
, where $H = \frac{1}{x - x^2 - t}$

▷ We will use the AZ algorithm to solve the *telescoping equation*

$$\mathbf{L}(t,\partial_t)(H) = \partial_x(\mathbf{G}\cdot H)$$

▷ Conclusion:
$$(1 - 4t) \cdot H_t - 2 \cdot H = \partial_x \left(\frac{2x - 1}{x - x^2 - t}\right)$$
, where $H_t := \partial_t H$

 $\mathbf{L}(t,\partial_t)(H) = \partial_x(\mathbf{G}\cdot H)$

 $\mathbf{L}(t,\partial_t)(H) = \partial_x(\mathbf{G}\cdot H)$

 \triangleright No solution for *L* of order 0; we look at order 1

 $\mathbf{L}(t,\partial_t)(H) = \partial_x(\mathbf{G}\cdot H)$

 \triangleright No solution for *L* of order 0; we look at order 1

▷ I.e., we search for $c_0(t) \in \mathbb{C}(t)$ and $G(t, x) \in \mathbb{C}(t, x)$, such that

 $H_t + c_0(t) \cdot H = \mathbf{G}_x \cdot H + \mathbf{G} \cdot H_x$

 $L(t,\partial_t)(H) = \partial_x(\mathbf{G} \cdot H)$

 \triangleright No solution for *L* of order 0; we look at order 1

▷ I.e., we search for $c_0(t) \in \mathbb{C}(t)$ and $G(t, x) \in \mathbb{C}(t, x)$, such that

 $H_t + c_0(t) \cdot H = \mathbf{G}_x \cdot H + \mathbf{G} \cdot H_x$

▷ Dividing by *H* and switching LHS and RHS yields the equivalent equation

$$\mathbf{G}_x + \mathbf{G} \cdot \frac{H_x}{H} = \frac{H_t}{H} + c_0(t),$$

i.e.

$$G_x + G \cdot \frac{2x-1}{x-x^2-t} = \frac{1}{x-x^2-t} + c_0(t)$$

$$G_x + G \cdot \frac{2x-1}{x-x^2-t} = \frac{1}{x-x^2-t} + c_0(t)$$
(1)

$$G_x + G \cdot \frac{2x-1}{x-x^2-t} = \frac{1}{x-x^2-t} + c_0(t)$$
(1)

 \triangleright Possible poles of *G* at $X_{\pm} = \frac{1}{2} \cdot (1 \pm \sqrt{1 - 4t})$, with local behavior:

$$G = (x - X_{\pm})^{v} + (\text{h.o.t.}), \quad G_{x} = v \cdot (x - X_{\pm})^{v-1} + (\text{h.o.t.})$$

$$\mathbf{G}_x + \mathbf{G} \cdot \frac{2x-1}{x-x^2-t} = \frac{1}{x-x^2-t} + c_0(t) \tag{1}$$

▷ Possible poles of *G* at $X_{\pm} = \frac{1}{2} \cdot (1 \pm \sqrt{1 - 4t})$, with local behavior:

$$G = (x - X_{\pm})^{v} + (\text{h.o.t.}), \quad G_{x} = v \cdot (x - X_{\pm})^{v-1} + (\text{h.o.t.})$$

▷ Around $x = X_{\pm}$, LHS of (1) writes

$$\left(v\cdot(x-X_{\pm})^{v-1}+\cdots\right)+\left(\frac{1-2x}{x-X_{\mp}}\cdot(x-X_{\pm})^{v-1}+\cdots\right)$$

It has valuation v - 1, while RHS of (1) has valuation -1; thus v = 0

$$G_x + G \cdot \frac{2x-1}{x-x^2-t} = \frac{1}{x-x^2-t} + c_0(t)$$
(1)

▷ Possible poles of *G* at $X_{\pm} = \frac{1}{2} \cdot (1 \pm \sqrt{1 - 4t})$, with local behavior:

$$G = (x - X_{\pm})^{v} + (\text{h.o.t.}), \quad G_{x} = v \cdot (x - X_{\pm})^{v-1} + (\text{h.o.t.})$$

▷ Around $x = X_{\pm}$, LHS of (1) writes

$$\left(v\cdot(x-X_{\pm})^{v-1}+\cdots\right)+\left(\frac{1-2x}{x-X_{\mp}}\cdot(x-X_{\pm})^{v-1}+\cdots\right)$$

It has valuation v - 1, while RHS of (1) has valuation -1; thus v = 0 \triangleright Look for polynomial $G = g_N(t) \cdot x^N + (l.o.t.)$ with $g_N \neq 0$. Then

$$G_x = N \cdot g_N(t) \cdot x^{N-1} + (\text{l.o.t.})$$

so numer(LHS): $(-x^2 \cdot N \cdot g_N(t) \cdot x^{N-1} + \cdots) + ((2x-1) \cdot g_N(t) \cdot x^N + \cdots)$ has degree N + 1 if $N \neq 2$, while numer(RHS) has degree ≤ 2

$$\mathbf{G}_x + \mathbf{G} \cdot \frac{2x-1}{x-x^2-t} = \frac{1}{x-x^2-t} + c_0(t) \tag{1}$$

▷ Possible poles of *G* at $X_{\pm} = \frac{1}{2} \cdot (1 \pm \sqrt{1 - 4t})$, with local behavior:

$$G = (x - X_{\pm})^{v} + (\text{h.o.t.}), \quad G_{x} = v \cdot (x - X_{\pm})^{v-1} + (\text{h.o.t.})$$

▷ Around $x = X_{\pm}$, LHS of (1) writes

$$\left(v\cdot(x-X_{\pm})^{v-1}+\cdots\right)+\left(\frac{1-2x}{x-X_{\mp}}\cdot(x-X_{\pm})^{v-1}+\cdots\right)$$

It has valuation v - 1, while RHS of (1) has valuation -1; thus v = 0 \triangleright Look for polynomial $G = g_N(t) \cdot x^N + (l.o.t.)$ with $g_N \neq 0$. Then

$$G_x = N \cdot g_N(t) \cdot x^{N-1} + (\text{l.o.t.})$$

so numer(LHS): $(-x^2 \cdot N \cdot g_N(t) \cdot x^{N-1} + \cdots) + ((2x-1) \cdot g_N(t) \cdot x^N + \cdots)$ has degree N + 1 if $N \neq 2$, while numer(RHS) has degree ≤ 2 \triangleright Thus $N \leq 2$, and $G = g_2 x^2 + g_1 x + g_0$, so (1) yields a linear system / $\mathbb{C}(t)$ $c_0 + g_1 + g_2 = 0$, $2tg_2 + c_0 - 2g_0 = 0$, $t \cdot (c_0 - g_1) - 1 - g_0 = 0$

$$G_x + G \cdot \frac{2x-1}{x-x^2-t} = \frac{1}{x-x^2-t} + c_0(t)$$
(1)

▷ Possible poles of *G* at $X_{\pm} = \frac{1}{2} \cdot (1 \pm \sqrt{1 - 4t})$, with local behavior:

$$G = (x - X_{\pm})^{v} + (\text{h.o.t.}), \quad G_{x} = v \cdot (x - X_{\pm})^{v-1} + (\text{h.o.t.})$$

▷ Around $x = X_{\pm}$, LHS of (1) writes

$$\left(v\cdot(x-X_{\pm})^{v-1}+\cdots\right)+\left(\frac{1-2x}{x-X_{\mp}}\cdot(x-X_{\pm})^{v-1}+\cdots\right)$$

It has valuation v - 1, while RHS of (1) has valuation -1; thus v = 0 \triangleright Look for polynomial $G = g_N(t) \cdot x^N + (l.o.t.)$ with $g_N \neq 0$. Then

$$G_x = N \cdot g_N(t) \cdot x^{N-1} + (\text{l.o.t.})$$

so numer(LHS): $(-x^2 \cdot N \cdot g_N(t) \cdot x^{N-1} + \cdots) + ((2x-1) \cdot g_N(t) \cdot x^N + \cdots)$ has degree N + 1 if $N \neq 2$, while numer(RHS) has degree ≤ 2 \triangleright Thus $N \leq 2$, and $G = g_2 x^2 + g_1 x + g_0$, so (1) yields a linear system / $\mathbb{C}(t)$ $c_0 + g_1 + g_2 = 0$, $2t g_2 + c_0 - 2g_0 = 0$, $t \cdot (c_0 - g_1) - 1 - g_0 = 0$

$$\triangleright c_0 = \frac{2}{4t-1}, \ g_0 = \frac{4g_2t^2 - g_2t+1}{4t-1}, \ g_1 = \frac{-4g_2t + g_2 - 2}{4t-1}; \quad G = (x^2 + t - x)g_2 + \frac{1-2x}{4t-1}$$

$$G_x + G \cdot \frac{2x-1}{x-x^2-t} = \frac{1}{x-x^2-t} + c_0(t)$$
(1)

▷ Possible poles of *G* at $X_{\pm} = \frac{1}{2} \cdot (1 \pm \sqrt{1 - 4t})$, with local behavior:

$$G = (x - X_{\pm})^{v} + (\text{h.o.t.}), \quad G_{x} = v \cdot (x - X_{\pm})^{v-1} + (\text{h.o.t.})$$

▷ Around $x = X_{\pm}$, LHS of (1) writes

$$\left(v\cdot(x-X_{\pm})^{v-1}+\cdots\right)+\left(\frac{1-2x}{x-X_{\mp}}\cdot(x-X_{\pm})^{v-1}+\cdots\right)$$

It has valuation v - 1, while RHS of (1) has valuation -1; thus v = 0 \triangleright Look for polynomial $G = g_N(t) \cdot x^N + (1.o.t.)$ with $g_N \neq 0$. Then

$$G_x = N \cdot g_N(t) \cdot x^{N-1} + (\text{l.o.t.})$$

so numer(LHS): $(-x^2 \cdot N \cdot g_N(t) \cdot x^{N-1} + \cdots) + ((2x-1) \cdot g_N(t) \cdot x^N + \cdots)$ has degree N + 1 if $N \neq 2$, while numer(RHS) has degree ≤ 2 \triangleright Thus $N \leq 2$, and $G = g_2 x^2 + g_1 x + g_0$, so (1) yields a linear system / $\mathbb{C}(t)$ $c_0 + g_1 + g_2 = 0$, $2tg_2 + c_0 - 2g_0 = 0$, $t \cdot (c_0 - g_1) - 1 - g_0 = 0$

$$\triangleright c_0 = \frac{2}{4t-1}, g_0 = \frac{4g_2t^2 - g_2t+1}{4t-1}, g_1 = \frac{-4g_2t + g_2 - 2}{4t-1}; \quad G = (x^2 + t - x)g_2 + \frac{1-2x}{4t-1}$$

$$\triangleright \text{ Conclusion: } (4t-1)H_t + 2H = \partial_x \left(\frac{1-2x}{x-x^2-t}\right).$$

Compute a telescoper for the diagonal of the rational power series

$$\frac{1}{1-x-y} = \sum_{i,j \ge 0} \binom{i+j}{i} x^i y^j$$

using the Hermite reduction-based (4G) creative telescoping algorithm.

Compute a telescoper for the diagonal of the rational power series

$$\frac{1}{1-x-y} = \sum_{i,j \ge 0} \binom{i+j}{i} x^i y^j$$

using the Hermite reduction-based (4G) creative telescoping algorithm. > We need to compute a linear differential equation for the integral

$$I(t) = \oint \frac{dx}{x - x^2 - t}$$

Compute a telescoper for the diagonal of the rational power series

$$\frac{1}{1-x-y} = \sum_{i,j \ge 0} \binom{i+j}{i} x^i y^j$$

using the Hermite reduction-based (4G) creative telescoping algorithm. > We need to compute a linear differential equation for the integral

$$I(t) = \oint \frac{dx}{x - x^2 - t}$$

▷ *H* has only simple roots, so it is its own Hermite reduction:

$$H = \frac{1}{x - x^2 - t} + \partial_x(0).$$

$$\frac{1}{1-x-y} = \sum_{i,j \ge 0} \binom{i+j}{i} x^i y^j$$

using the Hermite reduction-based (4G) creative telescoping algorithm. > We need to compute a linear differential equation for the integral

$$I(t) = \oint \frac{dx}{x - x^2 - t}$$

▷ *H* has only simple roots, so it is its own Hermite reduction:

$$H = \frac{1}{x - x^2 - t} + \partial_x(0).$$

 \triangleright The derivative w.r.t. *t* of *H* has double poles, and Hermite reduction

$$H_t = \frac{1}{(x - x^2 - t)^2} = \frac{2/(1 - 4t)}{x - x^2 - t} + \partial_x \left(\frac{(2x - 1)/(1 - 4t)}{x - x^2 - t}\right).$$

$$\frac{1}{1-x-y} = \sum_{i,j \ge 0} \binom{i+j}{i} x^i y^j$$

using the Hermite reduction-based (4G) creative telescoping algorithm. > We need to compute a linear differential equation for the integral

$$I(t) = \oint \frac{dx}{x - x^2 - t}$$

▷ *H* has only simple roots, so it is its own Hermite reduction:

$$H = \frac{1}{x - x^2 - t} + \partial_x(0).$$

 \triangleright The derivative w.r.t. *t* of *H* has double poles, and Hermite reduction

$$H_t = \frac{1}{(x - x^2 - t)^2} = \frac{2/(1 - 4t)}{x - x^2 - t} + \partial_x \left(\frac{(2x - 1)/(1 - 4t)}{x - x^2 - t}\right).$$

▷ Therefore, $(1-4t)H_t - 2H = \partial_x \left(\frac{2x-1}{x-x^2-t}\right)$.

7 / 40

▷ Hermite reduction computation: extended gcd of $g = x - x^2 - t$ and g_x :

$$g + \left(\frac{1}{4} - \frac{x}{2}\right)g_x = \delta := \frac{1}{4} - t.$$

▷ Hermite reduction computation: extended gcd of $g = x - x^2 - t$ and g_x :

$$g + \left(\frac{1}{4} - \frac{x}{2}\right)g_x = \delta := \frac{1}{4} - t.$$

▷ As a consequence

$$\frac{1}{g^2} = \frac{1}{\delta} \cdot \frac{g + \frac{1 - 2x}{4}g_x}{g^2} = \frac{1}{\delta} \cdot \frac{1}{g} + \frac{1 - 2x}{4\delta} \cdot \frac{g_x}{g^2} = \frac{1}{\delta} \cdot \frac{1}{g} + \frac{2x - 1}{4\delta} \cdot \left(\frac{1}{g}\right)_x$$

▷ Hermite reduction computation: extended gcd of $g = x - x^2 - t$ and g_x :

$$g + \left(\frac{1}{4} - \frac{x}{2}\right)g_x = \delta := \frac{1}{4} - t.$$

▷ As a consequence

$$\frac{1}{g^2} = \frac{1}{\delta} \cdot \frac{g + \frac{1-2x}{4}g_x}{g^2} = \frac{1}{\delta} \cdot \frac{1}{g} + \frac{1-2x}{4\delta} \cdot \frac{g_x}{g^2} = \frac{1}{\delta} \cdot \frac{1}{g} + \frac{2x-1}{4\delta} \cdot \left(\frac{1}{g}\right)_x.$$

▷ Integrating by parts yields:

$$\frac{1}{g^2} = \frac{1}{2\delta} \cdot \frac{1}{g} + \partial_x \left(\frac{2x-1}{4\delta \cdot g}\right).$$

i.e.,

$$\frac{1}{g^2} = \frac{2}{1-4t} \cdot \frac{1}{g} + \partial_x \left(\frac{2x-1}{(1-4t)g} \right).$$

Computer Algebra for Enumerative Combinatorics

Enumerative Combinatorics: science of counting

Area of mathematics primarily concerned with counting discrete objects.

Main outcome: theorems

Computer Algebra: effective mathematics

Area of computer science primarily concerned with the algorithmic manipulation of algebraic objects.

▷ Main outcome: algorithms

Computer Algebra for Enumerative Combinatorics

Today: Algorithms for proving Theorems on Lattice Paths Combinatorics.

An (innocent looking) combinatorial question

Let $\mathscr{S} = \{\uparrow, \leftarrow, \searrow\}$. An \mathscr{S} -walk is a path in \mathbb{Z}^2 using only steps from \mathscr{S} . Show that, for any integer *n*, the following quantities are equal:

(*i*) number a_n of *n*-steps \mathscr{S} -walks confined to the upper half plane $\mathbb{Z} \times \mathbb{N}$ that start and finish at the origin (0,0) (*excursions*);

(*ii*) number b_n of *n*-steps S-walks confined to the quarter plane \mathbb{N}^2 that start at the origin (0,0) and finish on the diagonal of \mathbb{N}^2 (*diagonal walks*).

An (innocent looking) combinatorial question

Let $\mathscr{S} = \{\uparrow, \leftarrow, \searrow\}$. An \mathscr{S} -walk is a path in \mathbb{Z}^2 using only steps from \mathscr{S} . Show that, for any integer *n*, the following quantities are equal:

(*i*) number a_n of *n*-steps \mathscr{S} -walks confined to the upper half plane $\mathbb{Z} \times \mathbb{N}$ that start and finish at the origin (0,0) (*excursions*);

(*ii*) number b_n of *n*-steps \mathscr{S} -walks confined to the quarter plane \mathbb{N}^2 that start at the origin (0,0) and finish on the diagonal of \mathbb{N}^2 (*diagonal walks*).

For instance, for n = 3, this common value is $a_3 = b_3 = 3$:

Teaser 1: This "exercise" is non-trivial

Teaser 2: It can be solved using Experimental Math and Computer Algebra

Teaser 3: ... by two robust and efficient algorithmic techniques, Guess-and-Prove and Creative Telescoping
Why care about counting walks?

Many objects can be encoded by walks:

- probability theory (voting, games of chance, branching processes, ...)
- discrete mathematics (permutations, trees, words, urns, ...)
- statistical physics (Ising model, ...)
- operations research (queueing theory, ...)

Suppose that candidates A and B are running in an election. If a votes are cast for A and b votes are cast for B, where a > b, then the probability that A stays ahead of B throughout the counting of the ballots is (a - b)/(a + b).

Lattice path reformulation: find the number of paths in \mathbb{Z}^2 with *a* upsteps \nearrow and *b* downsteps \searrow that start at the origin and never touch the *x*-axis

Counting walks is an old topic: the ballot problem [Bertrand, 1887]

Suppose that candidates A and B are running in an election. If a votes are cast for A and b votes are cast for B, where a > b, then the probability that A stays ahead of B throughout the counting of the ballots is (a - b)/(a + b).

Lattice path reformulation: find the number of paths in \mathbb{Z}^2 with a - 1 upsteps \nearrow and b downsteps \searrow that start at (1, 1) and never touch the *x*-axis

Reflection principle [Aebly, 1923]: *paths in* \mathbb{Z}^2 *from* (1, 1) *to* T(a + b, a - b) *that do touch the x-axis* **are in bijection with** *paths in* \mathbb{Z}^2 *from* (1, -1) *to* T

Answer: $(paths in \mathbb{Z}^2 from (1, 1) to T) - (paths in \mathbb{Z}^2 from (1, -1) to T)$

$$\begin{pmatrix} a+b-1\\ a-1 \end{pmatrix} \qquad \qquad \begin{pmatrix} a+b-1\\ b-1 \end{pmatrix}$$

Counting walks is an old topic: the ballot problem [Bertrand, 1887]

Suppose that candidates A and B are running in an election. If a votes are cast for A and b votes are cast for B, where a > b, then the probability that A stays ahead of B throughout the counting of the ballots is (a - b)/(a + b).

Lattice path reformulation: find the number of paths in \mathbb{Z}^2 with a - 1 upsteps \nearrow and b downsteps \searrow that start at (1, 1) and never touch the *x*-axis

Reflection principle [Aebly, 1923]: *paths in* \mathbb{Z}^2 *from* (1,1) *to* T(a + b, a - b) *that do touch the x-axis* are in bijection with *paths in* \mathbb{Z}^2 *from* (1, -1) *to* T

Answer: (*paths in* \mathbb{Z}^2 *from* (1, 1) *to T*) – (*paths in* \mathbb{Z}^2 *from* (1, -1) *to T*)

$$\binom{a+b-1}{a-1} - \binom{a+b-1}{b-1} = \frac{a-b}{a+b}\binom{a+b}{a}$$

... but it is still a very hot topic

Lot of recent activity; many recent contributors:

Arquès, Bacher, Banderier, Beaton, Bernardi, Biane, Bostan, Bousquet-Mélou, Buchacher, Budd, Chyzak, Cori, Courtiel, Denisov, Dreyfus, Du, Duchon, Dulucq, Duraj, Fayolle, Fisher, Flajolet, Fusy, Garbit, Gessel, Gouyou-Beauchamps, Guttmann, Guy, Hardouin, van Hoeij, Hou, Iasnogorodski, Johnson, Kauers, Kenyon, Koutschan, Krattenthaler, Kreweras, Kurkova, Lecouvey, Malyshev, Melczer, Miller, Mishna, Niederhausen, Owczarek, Pech, Petkovšek, Prellberg, Raschel, Rechnitzer, Roques, Sagan, Salvy, Sheffield, Singer, Tarrago, Trotignon, Verron, Viennot, Wachtel, Wallner, Wang, Wilf, D. Wilson, M. Wilson, Xu, Yatchak, Yeats, Zeilberger, ...

etc.

... but it is still a very hot topic

Lot of recent activity; many recent contributors:

Arquès, Bacher, Banderier, Beaton, Bernardi, Biane, Bostan, Bousquet-Mélou, Buchacher, Budd, Chyzak, Cori, Courtiel, Denisov, Dreyfus, Du, Duchon, Dulucq, Duraj, Fayolle, Fisher, Flajolet, Fusy, Garbit, Gessel, Gouyou-Beauchamps, Guttmann, Guy, Hardouin, van Hoeij, Hou, Iasnogorodski, Johnson, Kauers, Kenyon, Koutschan, Krattenthaler, Kreweras, Kurkova, Lecouvey, Malyshev, Melczer, Miller, Mishna, Niederhausen, Owczarek, Pech, Petkovšek, Prellberg, Raschel, Rechnitzer, Roques, Sagan, Salvy, Sheffield, Singer, Tarrago, Trotignon, Verron, Viennot, Wachtel, Wallner, Wang, Wilf, D. Wilson, M. Wilson, Xu, Yatchak, Yeats, Zeilberger, ...

etc.

... but it is still a very hot topic

DISCRETE MATHEMATICS AND ITS APPLICATION

HANDBOOK OF ENUMERATIVE COMBINATORICS

Chapter 10

Lattice Path Enumeration

Christian Krattenthaler

Universität Wien

CONTENTS

10.1	Introduction	589
10.2	Lattice paths without restrictions	592
10.3	Linear boundaries of slope 1	594
10.4	Simple paths with linear boundaries of rational slope, I	598
10.5	Simple paths with linear boundaries with rational slope, II	606
10.6	Simple paths with a piecewise linear boundary	611
10.7	Simple paths with general boundaries	612
10.8	Elementary results on Motzkin and Schröder paths	615
10.9	A continued fraction for the weighted counting of Motzkin paths	618
10.10	Lattice paths and orthogonal polynomials	622
10.11	Motzkin paths in a strip	629
10.12	Further results for lattice paths in the plane	633
10.13	Non-intersecting lattice paths	638
10.14	Lattice paths and their turns	651
10.15	Multidimensional lattice paths	657
10.16	Multidimensional lattice paths bounded by a hyperplane	658
10.17	Multidimensional paths with a general boundary	658
10.18	The reflection principle in full generality	659
10.19	q-Counting of lattice paths and Rogers-Ramanujan identities	667
10.20	Self-avoiding walks	670
R	eferences	670

Our approach: Experimental Mathematics using Computer Algebra

Alin Bostan

David H. Bailey Jonathan M. Borwein Neil J. Calkin Roland Girgensohn D. Rassell Luke Victor H. Moll

Experimental Mathematics in Action

Our approach: Experimental Mathematics using Computer Algebra

Lattice walks with small steps in the quarter plane

\triangleright Nearest-neighbor walks in the quarter plane: \mathscr{S} -walks in \mathbb{N}^2 : starting at (0,0) and using steps in a *fixed* subset \mathscr{S} of

 $\{\swarrow,\leftarrow,\nwarrow,\uparrow,\nearrow,\rightarrow,\searrow,\downarrow\}$

▷ Counting sequence $q_{\mathscr{S}}(n)$: number of \mathscr{S} -walks of length n

▷ Generating function:

$$Q_{\mathscr{S}}(t) = \sum_{n=0}^{\infty} q_{\mathscr{S}}(n) t^n \in \mathbb{Z}[[t]]$$

Lattice walks with small steps in the quarter plane

▷ Nearest-neighbor walks in the quarter plane: \mathscr{S} -walks in \mathbb{N}^2 : starting at (0,0) and using steps in a *fixed* subset \mathscr{S} of

 $\{\swarrow,\leftarrow,\nwarrow,\uparrow,\nearrow,\rightarrow,\searrow,\downarrow\}$

▷ Counting sequence $q_{\mathscr{G}}(i, j; n)$: number of walks of length *n* ending at (i, j)

▷ Complete generating function (with "catalytic " variables *x*, *y*):

$$Q_{\mathscr{S}}(x,y;t) = \sum_{i,j,n=0}^{\infty} q_{\mathscr{S}}(i,j;n) x^{i} y^{j} t^{n} \in \mathbb{Z}[[x,y,t]]$$

Entire books dedicated to small step walks in the quarter plane!

and Applied Proba ations of Mathem Modelling

40

Guy Fayolle Roudolf Iasnogorodski Vadim Malyshev

Random Walks in the Quarter-Plane

Algebraic Methods, Boundary Value Problems and Applications

Springer

Probability Theory and Stochastic Modelling 40

Guy Fayolle Roudolf lasnogorodski Vadim Malyshev

Random Walks in the Quarter Plane

Algebraic Methods, Boundary Value Problems, Applications to Queueing Systems and Analytic Combinatorics

Second Edition

Among the 2^8 step sets $\mathscr{S} \subseteq \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$, some are:

Among the 2^8 step sets $\mathscr{S} \subseteq \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$, some are:

trivial,

Among the 2^8 step sets $\mathscr{S} \subseteq \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$, some are:

trivial,

simple,

Among the 2^8 step sets $\mathscr{S} \subseteq \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$, some are:

trivial,

simple,

intrinsic to the half plane,

Among the 2^8 step sets $\mathscr{S} \subseteq \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$, some are:

trivial,

simple,

intrinsic to the half plane,

symmetrical.

Among the 2^8 step sets $\mathscr{S} \subseteq \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$, some are:

trivial,

intrinsic to the

half plane,

symmetrical.

One is left with 79 interesting distinct models.

simple,

The 79 small steps models of interest

Task: classify their generating functions!

Non-singular

$$l=0$$
 (ℓ) n for $lin Bostan (lin Bostan) (lin Bostan$

$$t$$
) := $\sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n} \frac{t^n}{n!}$, where $(a)_n = a(a+1)\cdots(a+n-1)$.

$$_{2}F_{1}\begin{pmatrix}a & b \\ c \end{pmatrix} := \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{t^{n}}{n!}, \text{ where } (a)_{n} = a(a+1)\cdots(a+n-1).$$

Computer algebra for enumerative combinatorics

Generating function:
$$Q(x, y) \equiv Q(x, y; t) = \sum_{i,j,n=0}^{\infty} q(i, j; n) x^i y^j t^n \in \mathbb{Z}[[x, y, t]]$$

Recursive construction yields the kernel equation

$$Q(x,y) = 1 + t\left(y + \frac{1}{x} + x\frac{1}{y}\right)Q(x,y) - t\frac{1}{x}Q(0,y) - tx\frac{1}{y}Q(x,0)$$

Generating function:
$$Q(x, y) \equiv Q(x, y; t) = \sum_{i,j,n=0}^{\infty} q(i, j; n) x^i y^j t^n \in \mathbb{Z}[[x, y, t]]$$

Recursive construction yields the kernel equation

$$\left(1-t\left(y+\frac{1}{x}+x\frac{1}{y}\right)\right)xyQ(x,y) = xy-tyQ(0,y)-tx^2Q(x,0)$$

Generating function:
$$Q(x, y) \equiv Q(x, y; t) = \sum_{i,j,n=0}^{\infty} q(i, j; n) x^i y^j t^n \in \mathbb{Z}[[x, y, t]]$$

Recursive construction yields the kernel equation

$$\left(1-t\left(y+\frac{1}{x}+x\frac{1}{y}\right)\right)xyQ(x,y) = xy-tyQ(0,y)-tx^2Q(x,0)$$

New task: Solve this functional equation!

Generating function:
$$Q(x, y) \equiv Q(x, y; t) = \sum_{i,j,n=0}^{\infty} q(i, j; n) x^i y^j t^n \in \mathbb{Z}[[x, y, t]]$$

Recursive construction yields the kernel equation

$$\left(1-t\left(y+\frac{1}{x}+x\frac{1}{y}\right)\right)xyQ(x,y) = xy-tyQ(0,y)-tx^2Q(x,0)$$

New task: For the other models – solve 78 similar equations!

"Special" models of walks in the quarter plane

- **(1)** Let $M_{n,k}$ be the number of $\{(1,1), (1,-1)\}$ -walks in \mathbb{N}^2 of length n that start at (0,0) and end at vertical altitude k. Let $M(x,y) = \sum_{n,k} M_{n,k} x^n y^k$.

 - (a) Show that (y − x(1 + y²)) · M(x, y) = y − x · M(x, 0)
 (b) Deduce that M(x, y) = √(1 − 4x² + 2xy − 1)/(2x(y − x(1 + y²)))

$$\mathscr{S} = \{(1,1), (1,-1)\}$$

 $M_{n+1,k} = M_{n,k-1} + M_{n,k+1}, \quad M_{0,0} = 1, \ M_{-1,k} = M_{n,-1} = 0 \text{ for } k, n \ge 0$

Multiply by $x^{n+1}y^{k+1}$, and sum over $n, k \in \mathbb{N}$

$$\implies \qquad y \cdot \left(M(x,y) - \sum_{\substack{k \ge 0 \\ M(0,y) = 1}} M_{0,k} y^k \right) = y^2 x \cdot M(x,y) + x \cdot \left(M - \sum_{\substack{n \ge 0 \\ M(x,0)}} M_{n,0} x^n \right)$$

 $\implies (y - x(1 + y^2)) \cdot M(x, y) = y - x \cdot M(x, 0)$ (kernel equation)

$$\mathscr{S} = \{(1,1), (1,-1)\}$$

$$(y - x(1 + y^2)) \cdot M(x, y) = y - x \cdot M(x, 0)$$
 (kernel equation)

Kernel method: let $y_0 \in \mathbb{Q}[[x]]$ the power series root of $K = y - x(1 + y^2)$

$$y_0 = \frac{1 - \sqrt{1 - 4x^2}}{2x} = x + x^3 + 2x^5 + \dots \in \mathbb{Q}[[x]]$$

Plugging $y = y_0$ in the (kernel equation) $\implies E(x) = M(x, 0) = \frac{y_0}{x}$

$$\implies \qquad M(x,y) = \frac{y - y_0}{K(x,y)} = \frac{\sqrt{1 - 4x^2} + 2xy - 1}{2x(y - x(1 + y^2))}$$

• g(n) = number of *n*-steps { $\nearrow, \checkmark, \leftarrow, \rightarrow$ }-walks in \mathbb{N}^2 1, 2, 7, 21, 78, 260, 988, 3458, 13300, 47880,...

Question: What is the nature of the generating function $G(t) = \sum_{n=0}^{\infty} g(n) t^n ?$

• g(i, j; n) = number of *n*-steps { $\nearrow, \checkmark, \leftarrow, \rightarrow$ }-walks in \mathbb{N}^2 from (0, 0) to (*i*, *j*)

Question: What is the nature of the generating function

$$G(x,y;t) = \sum_{i,j,n=0}^{\infty} g(i,j;n) x^i y^j t^n ?$$

• g(i, j; n) = number of *n*-steps { $\nearrow, \checkmark, \leftarrow, \rightarrow$ }-walks in \mathbb{N}^2 from (0, 0) to (*i*, *j*)

Theorem [B., Kauers, 2010]

G(x, y; t) is an algebraic function[†].

computer-driven discovery/proof via algorithmic Guess-and-Prove

[†] Minimal polynomial P(G(x, y; t); x, y, t) = 0 has $> 10^{11}$ terms; ≈ 30 Gb (6 DVDs!)

• g(n) = number of *n*-steps { $\nearrow, \checkmark, \leftarrow, \rightarrow$ }-walks in \mathbb{N}^2

Question: What is the nature of the generating function $G(t) = \sum_{n=0}^{\infty} g(n) t^n ?$

Corollary [B., Kauers, 2010] (former conjecture of Gessel's) (3n+1) g(2n) = (12n+2) g(2n-1) and (n+1) g(2n+1) = (4n+2) g(2n)

▷ computer-driven discovery/proof via *algorithmic Guess-and-Prove*

Guess-and-Prove

What is "scientific method"? Philosophers and non-philosophers have discussed this question and have not yet finished discussing it. Yet as a first introduction it can be described in three syllables:

Guess and test.

Mathematicians too follow this advice in their research although they sometimes refuse to confess it. They have, however, something which the other scientists cannot really have. For mathematicians the advice is

Guess-and-Prove

What is "scientific method"? Philosophers and non-philosophers have discussed this question and have not yet finished discussing it. Yet as a first introduction it can be described in three syllables:

Guess and test.

Mathematicians too follow this advice in their research although they sometimes refuse to confess it. They have, however, something which the other scientists cannot really have. For mathematicians the advice is

First guess, then prove.

Question: Find $B_{i,j}$:= the number of $\{\rightarrow,\uparrow\}$ -walks in \mathbb{N}^2 from (0,0) to (i,j)

Question: Find $B_{i,j}$:= the number of $\{\rightarrow,\uparrow\}$ -walks in \mathbb{N}^2 from (0,0) to (i,j)

() There are 2 ways to get to (i, j), either from (i - 1, j), or from (i, j - 1):

$$B_{i,j} = B_{i-1,j} + B_{i,j-1}$$

Question: Find $B_{i,j}$:= the number of $\{\rightarrow,\uparrow\}$ -walks in \mathbb{N}^2 from (0,0) to (i,j)

① There are 2 ways to get to (i, j), either from (i - 1, j), or from (i, j - 1):

. .

$$B_{i,j} = B_{i-1,j} + B_{i,j-1}$$

÷	(I) Generate data:											
1	7	28	84	210	462	924						
1	6	21	56	126	252	462						
1	5	15	35	70	126	210						
1	4	10	20	35	56	84						
1	3	6	10	15	21	28						
1	2	3	4	5	6	7						
1	1	1	1	1	1	1						

Question: Find $B_{i,j}$:= the number of $\{\rightarrow,\uparrow\}$ -walks in \mathbb{N}^2 from (0,0) to (i,j)

() There are 2 ways to get to (i, j), either from (i - 1, j), or from (i, j - 1):

$$B_{i,j} = B_{i-1,j} + B_{i,j-1}$$

÷			(I)	Genera	ate dat	ta:	
1	7	28	84	210	462	924	
1	6	21	56	126	252	462	(II) Guess:
1	5	15	35	70	126	210	
1	4	10	20	35	56	84	$\longrightarrow \cdots$
1	3	6	10	15	21	28	$\longrightarrow \frac{(i+1)(i+2)}{2}$
1	2	3	4	5	6	7	$\longrightarrow i+1$
1	1	1	1	1	1	1	$\rightarrow 1$

Question: Find $B_{i,j}$:= the number of $\{\rightarrow,\uparrow\}$ -walks in \mathbb{N}^2 from (0,0) to (i,j)

() There are 2 ways to get to (i, j), either from (i - 1, j), or from (i, j - 1):

. . .

$$B_{i,j} = B_{i-1,j} + B_{i,j-1}$$

② There is only one way to get to a point on an axis: $B_{i,0} = B_{0,j} = 1$ ▷ These two rules completely determine all the numbers $B_{i,j}$

÷			(I)	Genera	ate dat	ta:	
1	7	28	84	210	462	924	
1	6	21	56	126	252	462	
1	5	15	35	70	126	210	
1	4	10	20	35	56	84	
1	3	6	10	15	21	28	
1	2	3	4	5	6	7	
1	1	1	1	1	1	1	

(II) Guess:

$$B_{i,j} \stackrel{?}{=} \frac{(i+j)!}{i!j!}$$

Question: Find $B_{i,j}$:= the number of $\{\rightarrow,\uparrow\}$ -walks in \mathbb{N}^2 from (0,0) to (i,j)

() There are 2 ways to get to (i, j), either from (i - 1, j), or from (i, j - 1):

$$B_{i,j} = B_{i-1,j} + B_{i,j-1}$$

:			(I)	Genera	ate da	ta:	
1	7	28	84	210	462	924	(III) Prove: If $C = \frac{\det (i+j)!}{t}$ then
1	6	21	56	126	252	462	$C_{i,j} = -\frac{1}{i!j!}$, then
1	5	15	35	70	126	210	$C_{i-1,j}$, $C_{i,j-1}$, i , j , 1
1	4	10	20	35	56	84	$-\overline{C_{i,j}} + \overline{C_{i,j}} - \overline{i+j} + \overline{i+j} - 1$
1	3	6	10	15	21	28	and $C_{i,0} = C_{0,i} = 1$.
1	2	3	4	5	6	7	
1	1	1	1	1	1	1	$\dots \qquad \qquad$

• g(i, j; n) = number of *n*-steps { $\nearrow, \checkmark, \leftarrow, \rightarrow$ }-walks in \mathbb{N}^2 from (0, 0) to (*i*, *j*)

Question: What is the nature of the generating function

$$G(x,y;t) = \sum_{i,j,n=0}^{\infty} g(i,j;n) x^i y^j t^n ?$$

Answer: [B., Kauers, 2010] G(x, y; t) is an algebraic function[†].

Approach:

- **(1)** Generate data: compute *G* to precision t^{1200} (≈ 1.5 billion coeffs!)
- **Q** Guess: conjecture polynomial equations for G(x, 0; t) and G(0, y; t) (degree 24 each, coeffs. of degree (46, 56), with 80-bits digits coeffs.)
- 3 Prove: multivariate resultants of (very big) polynomials (30 pages each)

[†] Minimal polynomial P(G(x, y; t); x, y, t) = 0 has $> 10^{11}$ terms; ≈ 30 Gb (6 DVDs!)

Theorem ["Gessel excursions are algebraic"]

$$g(t) := G(0,0;\sqrt{t}) = \sum_{n=0}^{\infty} \frac{(5/6)_n (1/2)_n}{(5/3)_n (2)_n} (16t)^n$$
 is algebraic.

Theorem ["Gessel excursions are algebraic"]

$$g(t) := G(0,0;\sqrt{t}) = \sum_{n=0}^{\infty} \frac{(5/6)_n (1/2)_n}{(5/3)_n (2)_n} (16t)^n$$
 is algebraic.

Proof: First guess a polynomial P(t, T) in $\mathbb{Q}[t, T]$, then prove that P admits the power series $g(t) = \sum_{n=0}^{\infty} g_n t^n$ as a root.

Theorem ["Gessel excursions are algebraic"] $g(t) := G(0,0; \sqrt{t}) = \sum_{n=0}^{\infty} \frac{(5/6)_n (1/2)_n}{(5/3)_n (2)_n} (16t)^n \text{ is algebraic.}$

Proof: First guess a polynomial P(t, T) in $\mathbb{Q}[t, T]$, then prove that P admits the power series $g(t) = \sum_{n=0}^{\infty} g_n t^n$ as a root.

() Find *P* such that $P(t, g(t)) = 0 \mod t^{100}$ by (structured) linear algebra.

Theorem ["Gessel excursions are algebraic"]

$$g(t) := G(0,0;\sqrt{t}) = \sum_{n=0}^{\infty} \frac{(5/6)_n (1/2)_n}{(5/3)_n (2)_n} (16t)^n$$
 is algebraic.

Proof: First guess a polynomial P(t, T) in $\mathbb{Q}[t, T]$, then prove that P admits the power series $g(t) = \sum_{n=0}^{\infty} g_n t^n$ as a root.

- **(**) Find *P* such that $P(t, g(t)) = 0 \mod t^{100}$ by (structured) linear algebra.
- ② Implicit function theorem: \exists ! root $r(t) \in \mathbb{Q}[[t]]$ of *P*.

Theorem ["Gessel excursions are algebraic"]

$$g(t) := G(0,0;\sqrt{t}) = \sum_{n=0}^{\infty} \frac{(5/6)_n (1/2)_n}{(5/3)_n (2)_n} (16t)^n$$
 is algebraic.

Proof: First guess a polynomial P(t, T) in $\mathbb{Q}[t, T]$, then prove that P admits the power series $g(t) = \sum_{n=0}^{\infty} g_n t^n$ as a root.

- **(**) Find *P* such that $P(t, g(t)) = 0 \mod t^{100}$ by (structured) linear algebra.
- ② Implicit function theorem: \exists ! root $r(t) \in \mathbb{Q}[[t]]$ of *P*.
- ③ $r(t) = \sum_{n=0}^{\infty} r_n t^n$ being algebraic, it is D-finite, and so (r_n) is P-recursive: $(n+2)(3n+5)r_{n+1} - 4(6n+5)(2n+1)r_n = 0, \quad r_0 = 1$ ⇒ solution $r_n = \frac{(5/6)_n (1/2)_n}{(5/2)_n (2)_n} 16^n = g_n$, thus g(t) = r(t) is algebraic.

Theorem ["Gessel excursions are algebraic"]

$$g(t) := G(0,0;\sqrt{t}) = \sum_{n=0}^{\infty} \frac{(5/6)_n (1/2)_n}{(5/3)_n (2)_n} (16t)^n$$
 is algebraic.

Proof: First guess a polynomial P(t, T) in $\mathbb{Q}[t, T]$, then prove that P admits the power series $g(t) = \sum_{n=0}^{\infty} g_n t^n$ as a root.

- **(**) Find *P* such that $P(t, g(t)) = 0 \mod t^{100}$ by (structured) linear algebra.
- ② Implicit function theorem: \exists ! root $r(t) \in \mathbb{Q}[[t]]$ of *P*.
- (a) $r(t) = \sum_{n=0}^{\infty} r_n t^n$ being algebraic, it is D-finite, and so (r_n) is P-recursive: $(n+2)(3n+5)r_{n+1} - 4(6n+5)(2n+1)r_n = 0, \quad r_0 = 1$

⇒ solution $r_n = \frac{(5/6)_n (1/2)_n}{(5/3)_n (2)_n} 16^n = g_n$, thus g(t) = r(t) is algebraic.

> P:=gfun:-listtoalgeq([seq(pochhammer(5/6,n)*pochhammer(1/2,n)/ pochhammer(5/3,n)/pochhammer(2,n)*16^n, n=0..100)], g(t)): > gfun:-diffeqtorec(gfun:-algeqtodiffeq(P[1], g(t)), g(t), r(n));

Algorithmic classification of models with D-Finite $Q_{\mathscr{S}}(t) := Q_{\mathscr{S}}(1,1;t)$

	OEIS	S	Pol size	LDE size	e Rec size		OEIS	S	Pol size	LDE size	Rec size
1	A005566	\Leftrightarrow	_	(3, 4)	(2, 2)	13	A151275	\mathbf{X}	_	(5, 24)	(9, 18)
2	A018224	Х	_	(3, 5)	(2, 3)	14	A151314	\mathbf{X}	—	(5, 24)	(9, 18)
3	A151312	\mathbb{X}	_	(3, 8)	(4, 5)	15	A151255	ک	_	(4, 16)	(6, 8)
4	A151331	翜	_	(3, 6)	(3, 4)	16	A151287	☆	_	(5, 19)	(7, 11)
5	A151266	Ŷ	_	(5, 16)	(7, 10)	17	A001006	÷,	(2, 2)	(2, 3)	(2, 1)
6	A151307	₩	_	(5, 20)	(8, 15)	18	A129400	敎	(2, 2)	(2, 3)	(2, 1)
7	A151291	₩.	_	(5, 15)	(6, 10)	19	A005558	${\leftarrow}$	—	(3, 5)	(2, 3)
8	A151326	₩.	_	(5, 18)	(7, 14)						
9	A151302	X	_	(5, 24)	(9, 18)	20	A151265	\checkmark	(6, 8)	(4, 9)	(6, 4)
10	A151329	翜	_	(5, 24)	(9, 18)	21	A151278		(6, 8)	(4, 12)	(7, 4)
11	A151261	Æ	_	(4, 15)	(5, 8)	22	A151323	₩	(4, 4)	(2, 3)	(2, 1)
12	A151297	쉆	_	(5, 18)	(7, 11)	23	A060900	\mathbf{A}	(8, 9)	(3, 5)	(2, 3)

Equation sizes = (order, degree)

▷ Computerized discovery: enumeration + guessing [B., Kauers, 2009]

Algorithmic classification of models with D-Finite $Q_{\mathscr{S}}(t) := Q_{\mathscr{S}}(1,1;t)$

	OFIC	<u></u>	D.1.	IDE .	D		OFIC	<u></u>	D 1	IDE	D
	OEIS	9	Pol size	LDE SIZ	e kec size		OEIS	9	Pol size	LDE SIZE	Rec size
1	A005566	↔	—	(3, 4)	(2, 2)	13	A151275	\mathbb{X}	—	(5, 24)	(9, 18)
2	A018224	Х	—	(3, 5)	(2, 3)	14	A151314	\mathbb{X}	—	(5, 24)	(9, 18)
3	A151312	\mathbb{X}	—	(3, 8)	(4, 5)	15	A151255	Å	—	(4, 16)	(6, 8)
4	A151331	畿	—	(3, 6)	(3, 4)	16	A151287	捡	—	(5, 19)	(7, 11)
5	A151266	Ŷ	—	(5, 16)	(7, 10)	17	A001006	÷,	(2, 2)	(2, 3)	(2, 1)
6	A151307	₩	—	(5, 20)	(8, 15)	18	A129400	敎	(2, 2)	(2, 3)	(2, 1)
7	A151291	Ŷ	—	(5, 15)	(6, 10)	19	A005558		—	(3, 5)	(2, 3)
8	A151326	₩	—	(5, 18)	(7, 14)						
9	A151302	X	_	(5, 24)	(9, 18)	20	A151265	\checkmark	(6, 8)	(4, 9)	(6, 4)
10	A151329	翜	—	(5, 24)	(9, 18)	21	A151278	\rightarrow	(6, 8)	(4, 12)	(7, 4)
11	A151261	Â	—	(4, 15)	(5, 8)	22	A151323	⋪	(4, 4)	(2, 3)	(2, 1)
12	A151297	鏉	_	(5, 18)	(7, 11)	23	A060900	\not	(8, 9)	(3, 5)	(2, 3)

Equation sizes = (order, degree)

- ▷ Computerized discovery: enumeration + guessing [B., Kauers, 2009]
- ▷ 1–22: DF confirmed by human proofs in [Bousquet-Mélou, Mishna, 2010]
- ▷ 23: DF confirmed by a human proof in [B., Kurkova, Raschel, 2017]
- ▷ All: explicit eqs. proved via CA [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Algorithmic classification of models with D-Finite $Q_{\mathscr{S}}(t) := Q_{\mathscr{S}}(1,1;t)$

	OEIS	S	algebraic?	asymptotics		OEIS	S	algebraic?	asymptotics
1	A005566	↔	Ν	$\frac{4}{\pi} \frac{4^n}{n}$	13	A151275	\mathbf{X}	Ν	$\frac{12\sqrt{30}}{\pi} \frac{(2\sqrt{6})^n}{n^2}$
2	A018224	Х	Ν	$\frac{2}{\pi} \frac{4^n}{n}$	14	A151314	\mathbf{X}	Ν	$\frac{\sqrt{6}\lambda\mu C^{5/2}}{5\pi}\frac{(2C)^n}{n^2}$
3	A151312	\mathbb{X}	Ν	$\frac{\sqrt{6}}{\pi} \frac{6^n}{n}$	15	A151255	$\mathbf{\lambda}$	Ν	$\frac{24\sqrt{2}}{\pi} \frac{(2\sqrt{2})^n}{n^2}$
4	A151331	翜	Ν	$\frac{8}{3\pi} \frac{8^n}{n}$	16	A151287	\mathbf{x}	Ν	$\frac{2\sqrt{2}A^{7/2}}{\pi} \frac{(2A)^n}{n^2}$
5	A151266	Ŷ	Ν	$\frac{1}{2}\sqrt{\frac{3}{\pi}}\frac{3^n}{n^{1/2}}$	17	A001006	÷,	Y	$\frac{3}{2}\sqrt{\frac{3}{\pi}}\frac{3^n}{n^{3/2}}$
6	A151307	₩	Ν	$\frac{1}{2}\sqrt{\frac{5}{2\pi}}\frac{5^n}{n^{1/2}}$	18	A129400	₩	Y	$\frac{3}{2}\sqrt{\frac{3}{\pi}}\frac{6^n}{n^{3/2}}$
7	A151291	¥.	Ν	$\frac{4}{3\sqrt{\pi}}\frac{4^n}{n^{1/2}}$	19	A005558	×₹	Ν	$\frac{8}{\pi} \frac{4^n}{n^2}$
8	A151326	₩.	Ν	$\frac{2}{\sqrt{3\pi}} \frac{6^n}{n^{1/2}}$		$A = 1 + \sqrt{2}, B = 1 + \sqrt{3},$	$C = 1 + \sqrt{6},$	$\lambda = 7 + 3\sqrt{6},$	$\mu = \sqrt{\frac{4\sqrt{6}-1}{19}}$
9	A151302	X	Ν	$\frac{1}{3}\sqrt{\frac{5}{2\pi}}\frac{5^n}{n^{1/2}}$	20	A151265	\checkmark	Y	$\frac{2\sqrt{2}}{\Gamma(1/4)} \frac{3^n}{n^{3/4}}$
10	A151329	翜	Ν	$\frac{1}{3}\sqrt{\frac{7}{3\pi}}\frac{7^n}{n^{1/2}}$	21	A151278		Y	$\frac{3\sqrt{3}}{\sqrt{2}\Gamma(1/4)}\frac{3^n}{n^{3/4}}$
11	A151261	Â	Ν	$\frac{12\sqrt{3}}{\pi} \frac{(2\sqrt{3})^n}{n^2}$	22	A151323	₩	Y	$\frac{\sqrt{2}3^{3/4}}{\Gamma(1/4)} \frac{6^n}{n^{3/4}}$
12	A151297	鏉	Ν	$\frac{\sqrt{3}B^{7/2}}{2\pi} \frac{(2B)^n}{n^2}$	23	A060900		Y	$\frac{4\sqrt{3}}{3\Gamma(1/3)}\frac{4^n}{n^{2/3}}$

▷ Computerized discovery: convergence acceleration + LLL [B., Kauers, '09]

Algorithmic classification of models with D-Finite $Q_{\mathscr{S}}(t) := Q_{\mathscr{S}}(1,1;t)$

	OEIS	S	algebraic?	asymptotics		OEIS	S	algebraic?	asymptotics
1	A005566	↔	Ν	$\frac{4}{\pi} \frac{4^n}{n}$	13	A151275	\mathbf{X}	Ν	$\frac{12\sqrt{30}}{\pi} \frac{(2\sqrt{6})^n}{n^2}$
2	A018224	Х	Ν	$\frac{2}{\pi} \frac{4^n}{n}$	14	A151314	\mathbf{X}	Ν	$\frac{\sqrt{6}\lambda\mu C^{5/2}}{5\pi}\frac{(2C)^n}{n^2}$
3	A151312	\mathbb{X}	Ν	$\frac{\sqrt{6}}{\pi} \frac{6^n}{n}$	15	A151255	\mathbf{X}	Ν	$\frac{24\sqrt{2}}{\pi} \frac{(2\sqrt{2})^n}{n^2}$
4	A151331	畿	Ν	$\frac{8}{3\pi} \frac{8^n}{n}$	16	A151287	☆	Ν	$\frac{2\sqrt{2}A^{7/2}}{\pi} \frac{(2A)^n}{n^2}$
5	A151266	Ŷ	Ν	$\frac{1}{2}\sqrt{\frac{3}{\pi}}\frac{3^n}{n^{1/2}}$	17	A001006	₹,	Y	$\frac{3}{2}\sqrt{\frac{3}{\pi}}\frac{3^n}{n^{3/2}}$
6	A151307	₩	Ν	$\frac{1}{2}\sqrt{\frac{5}{2\pi}}\frac{5^n}{n^{1/2}}$	18	A129400	₩	Y	$\frac{3}{2}\sqrt{\frac{3}{\pi}}\frac{6^n}{n^{3/2}}$
7	A151291	₩ 7	Ν	$\frac{4}{3\sqrt{\pi}}\frac{4^n}{n^{1/2}}$	19	A005558	×₹	Ν	$\frac{8}{\pi} \frac{4^n}{n^2}$
8	A151326	₩.	Ν	$\frac{2}{\sqrt{3\pi}} \frac{6^n}{n^{1/2}}$		$A = 1 + \sqrt{2}, B = 1 + \sqrt{3},$	$C=1+\sqrt{6},$	$\lambda = 7 + 3\sqrt{6},$	$\mu = \sqrt{\frac{4\sqrt{6}-1}{19}}$
9	A151302	X	Ν	$\frac{1}{3}\sqrt{\frac{5}{2\pi}}\frac{5^n}{n^{1/2}}$	20	A151265	\checkmark	Y	$\frac{2\sqrt{2}}{\Gamma(1/4)} \frac{3^n}{n^{3/4}}$
10	A151329	翜	Ν	$\frac{1}{3}\sqrt{\frac{7}{3\pi}}\frac{7^n}{n^{1/2}}$	21	A151278	\rightarrow	Y	$\frac{3\sqrt{3}}{\sqrt{2}\Gamma(1/4)}\frac{3^n}{n^{3/4}}$
11	A151261	Â	Ν	$\frac{12\sqrt{3}}{\pi} \frac{(2\sqrt{3})^n}{n^2}$	22	A151323	×	Y	$\frac{\sqrt{2}3^{3/4}}{\Gamma(1/4)} \frac{6^n}{n^{3/4}}$
12	A151297	쉆	Ν	$\frac{\sqrt{3}B^{7/2}}{2\pi} \frac{(2B)^n}{n^2}$	23	A060900	×	Y	$\frac{4\sqrt{3}}{3\Gamma(1/3)}\frac{4^n}{n^{2/3}}$

▷ Computerized discovery: convergence acceleration + LLL [B., Kauers, '09]

▷ Asympt. confirmed by human proofs via ACSV in [Melczer, Wilson, 2016]

▷ Transcendence proofs via CA [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Models 1-19: proofs, explicit expressions and transcendence

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Let $\mathscr S$ be one of the models 1–19. Then

- $Q_{\mathscr{S}}(x, y; t)$ is expressible using iterated integrals of $_2F_1$ expressions.
- $Q_{\mathscr{S}}(x,y;t)$ is transcendental.

Models 1–19: proofs, explicit expressions and transcendence

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Let $\mathscr S$ be one of the models 1–19. Then

- $Q_{\mathcal{S}}(t)$ is expressible using iterated integrals of $_2F_1$ expressions.
- $Q_{\mathscr{S}}(t)$ is transcendental, except for $\mathscr{S} = 4$ and $\mathscr{S} = 4$.

Example (King walks in the quarter plane, A151331)

Models 1-19: proofs, explicit expressions and transcendence

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Let ${\mathscr S}$ be one of the models 1–19. Then

- $Q_{\mathcal{S}}(t)$ is expressible using iterated integrals of $_2F_1$ expressions.
- $Q_{\mathscr{S}}(t)$ is transcendental, except for $\mathscr{S} = 4$ and $\mathscr{S} = 4$.

Example (King walks in the quarter plane, A151331)

$$Q_{\text{present}}(t) = \frac{1}{t} \int_0^t \frac{1}{(1+4x)^3} \cdot {}_2F_1\left(\frac{3}{2} 2^{\frac{3}{2}} \middle| \frac{16x(1+x)}{(1+4x)^2}\right) dx$$

$$= 1 + 3t + 18t^2 + 105t^3 + 684t^4 + 4550t^5 + 31340t^6 + 219555t^7 + \cdots$$

Computer-driven discovery and proof; no human proof yet.
 Proof uses: (1) kernel method + (2) creative telescoping.

The kernel $K(x, y; t) := 1 - t \cdot \sum_{(i,j) \in \mathscr{S}} x^i y^j = 1 - t \left(x + \frac{1}{x} + y + \frac{1}{y} \right)$ is left invariant under the change of (x, y) into the elements of

$$\mathcal{G}_{\mathscr{S}} := \left\{ \left(x, y\right), \left(\frac{1}{x}, y\right), \left(\frac{1}{x}, \frac{1}{y}\right), \left(x, \frac{1}{y}\right) \right\}$$

The kernel $K(x, y; t) := 1 - t \cdot \sum_{(i,j) \in \mathscr{S}} x^i y^j = 1 - t \left(x + \frac{1}{x} + y + \frac{1}{y} \right)$ is left invariant under the change of (x, y) into the elements of

$$\mathcal{G}_{\mathscr{S}} := \left\{ \left(x, y\right), \left(\frac{1}{x}, y\right), \left(\frac{1}{x}, \frac{1}{y}\right), \left(x, \frac{1}{y}\right) \right\}$$

$$K(x,y;t)xyQ(x,y;t) = xy - txQ(x,0;t) - tyQ(0,y;t)$$

The kernel $K(x, y; t) := 1 - t \cdot \sum_{(i,j) \in \mathscr{S}} x^i y^j = 1 - t \left(x + \frac{1}{x} + y + \frac{1}{y} \right)$ is left invariant under the change of (x, y) into the elements of

$$\mathcal{G}_{\mathscr{S}} := \left\{ (x, y), \left(\frac{1}{x}, y\right), \left(\frac{1}{x}, \frac{1}{y}\right), \left(x, \frac{1}{y}\right) \right\}$$

$$K(x,y;t)xyQ(x,y;t) = xy - txQ(x,0;t) - tyQ(0,y;t) - K(x,y;t)\frac{1}{x}yQ(\frac{1}{x},y;t) = -\frac{1}{x}y + t\frac{1}{x}Q(\frac{1}{x},0;t) + tyQ(0,y;t)$$

The kernel $K(x, y; t) := 1 - t \cdot \sum_{(i,j) \in \mathscr{S}} x^i y^j = 1 - t \left(x + \frac{1}{x} + y + \frac{1}{y} \right)$ is left invariant under the change of (x, y) into the elements of

$$\mathcal{G}_{\mathscr{S}} := \left\{ (x, y), (\frac{1}{x}, y), (\frac{1}{x}, \frac{1}{y}), (x, \frac{1}{y}) \right\}$$

$$K(x,y;t)xyQ(x,y;t) = xy - txQ(x,0;t) - tyQ(0,y;t) - K(x,y;t)\frac{1}{x}yQ(\frac{1}{x},y;t) = -\frac{1}{x}y + t\frac{1}{x}Q(\frac{1}{x},0;t) + tyQ(0,y;t) K(x,y;t)\frac{1}{x}\frac{1}{y}Q(\frac{1}{x},\frac{1}{y};t) = \frac{1}{x}\frac{1}{y} - t\frac{1}{x}Q(\frac{1}{x},0;t) - t\frac{1}{y}Q(0,\frac{1}{y};t)$$

The kernel $K(x, y; t) := 1 - t \cdot \sum_{(i,j) \in \mathscr{S}} x^i y^j = 1 - t \left(x + \frac{1}{x} + y + \frac{1}{y} \right)$ is left invariant under the change of (x, y) into the elements of

$$\mathcal{G}_{\mathscr{S}} := \left\{ (x, y), (\frac{1}{x}, y), (\frac{1}{x}, \frac{1}{y}), (x, \frac{1}{y}) \right\}$$

$$\begin{split} &K(x,y;t)xyQ(x,y;t) = xy - txQ(x,0;t) - tyQ(0,y;t) \\ &- K(x,y;t)\frac{1}{x}yQ(\frac{1}{x},y;t) = -\frac{1}{x}y + t\frac{1}{x}Q(\frac{1}{x},0;t) + tyQ(0,y;t) \\ &K(x,y;t)\frac{1}{x}\frac{1}{y}Q(\frac{1}{x},\frac{1}{y};t) = \frac{1}{x}\frac{1}{y} - t\frac{1}{x}Q(\frac{1}{x},0;t) - t\frac{1}{y}Q(0,\frac{1}{y};t) \\ &- K(x,y;t)x\frac{1}{y}Q(x,\frac{1}{y};t) = -x\frac{1}{y} + txQ(x,0;t) + t\frac{1}{y}Q(0,\frac{1}{y};t) \end{split}$$

The kernel $K(x, y; t) := 1 - t \cdot \sum_{(i,j) \in \mathscr{S}} x^i y^j = 1 - t \left(x + \frac{1}{x} + y + \frac{1}{y} \right)$ is left invariant under the change of (x, y) into the elements of

$$\mathcal{G}_{\mathscr{S}} := \left\{ (x, y), \left(\frac{1}{x}, y\right), \left(\frac{1}{x}, \frac{1}{y}\right), \left(x, \frac{1}{y}\right) \right\}$$

Kernel equation:

$$\begin{split} & K(x,y;t)xyQ(x,y;t) = xy - txQ(x,0;t) - tyQ(0,y;t) \\ & - K(x,y;t)\frac{1}{x}yQ(\frac{1}{x},y;t) = -\frac{1}{x}y + t\frac{1}{x}Q(\frac{1}{x},0;t) + tyQ(0,y;t) \\ & K(x,y;t)\frac{1}{x}\frac{1}{y}Q(\frac{1}{x},\frac{1}{y};t) = \frac{1}{x}\frac{1}{y} - t\frac{1}{x}Q(\frac{1}{x},0;t) - t\frac{1}{y}Q(0,\frac{1}{y};t) \\ & - K(x,y;t)x\frac{1}{y}Q(x,\frac{1}{y};t) = -x\frac{1}{y} + txQ(x,0;t) + t\frac{1}{y}Q(0,\frac{1}{y};t) \end{split}$$

Summing up yields the orbit equation:

$$\sum_{\theta \in \mathcal{G}} (-1)^{\theta} \theta \left(xy \, Q(x,y;t) \right) = \frac{xy - \overline{x}y + \overline{x} \, \overline{y} - x \overline{y}}{K(x,y;t)}$$

The kernel $K(x, y; t) := 1 - t \cdot \sum_{(i,j) \in \mathscr{S}} x^i y^j = 1 - t \left(x + \frac{1}{x} + y + \frac{1}{y} \right)$ is left invariant under the change of (x, y) into the elements of

$$\mathcal{G}_{\mathscr{S}} := \left\{ (x, y), \left(\frac{1}{x}, y\right), \left(\frac{1}{x}, \frac{1}{y}\right), \left(x, \frac{1}{y}\right) \right\}$$

Kernel equation:

$$\begin{split} & K(x,y;t)xyQ(x,y;t) = xy - txQ(x,0;t) - tyQ(0,y;t) \\ & - K(x,y;t)\frac{1}{x}yQ(\frac{1}{x},y;t) = -\frac{1}{x}y + t\frac{1}{x}Q(\frac{1}{x},0;t) + tyQ(0,y;t) \\ & K(x,y;t)\frac{1}{x}\frac{1}{y}Q(\frac{1}{x},\frac{1}{y};t) = \frac{1}{x}\frac{1}{y} - t\frac{1}{x}Q(\frac{1}{x},0;t) - t\frac{1}{y}Q(0,\frac{1}{y};t) \\ & - K(x,y;t)x\frac{1}{y}Q(x,\frac{1}{y};t) = -x\frac{1}{y} + txQ(x,0;t) + t\frac{1}{y}Q(0,\frac{1}{y};t) \end{split}$$

Taking positive parts yields:

$$[x^{>}y^{>}]\sum_{\theta\in\mathcal{G}}(-1)^{\theta}\theta(xy\,Q(x,y;t)) = [x^{>}y^{>}]\frac{xy - \frac{1}{x}y + \frac{1}{x}\frac{1}{y} - x\frac{1}{y}}{K(x,y;t)}$$

The kernel $K(x, y; t) := 1 - t \cdot \sum_{(i,j) \in \mathscr{S}} x^i y^j = 1 - t \left(x + \frac{1}{x} + y + \frac{1}{y} \right)$ is left invariant under the change of (x, y) into the elements of

$$\mathcal{G}_{\mathscr{S}} := \left\{ (x, y), \left(\frac{1}{x}, y\right), \left(\frac{1}{x}, \frac{1}{y}\right), \left(x, \frac{1}{y}\right) \right\}$$

Kernel equation:

$$\begin{split} & K(x,y;t)xyQ(x,y;t) = xy - txQ(x,0;t) - tyQ(0,y;t) \\ & - K(x,y;t)\frac{1}{x}yQ(\frac{1}{x},y;t) = -\frac{1}{x}y + t\frac{1}{x}Q(\frac{1}{x},0;t) + tyQ(0,y;t) \\ & K(x,y;t)\frac{1}{x}\frac{1}{y}Q(\frac{1}{x},\frac{1}{y};t) = \frac{1}{x}\frac{1}{y} - t\frac{1}{x}Q(\frac{1}{x},0;t) - t\frac{1}{y}Q(0,\frac{1}{y};t) \\ & - K(x,y;t)x\frac{1}{y}Q(x,\frac{1}{y};t) = -x\frac{1}{y} + txQ(x,0;t) + t\frac{1}{y}Q(0,\frac{1}{y};t) \end{split}$$

Summing up and taking positive parts yields: $xy Q(x,y;t) = [x^{>}y^{>}] \frac{xy - \frac{1}{x}y + \frac{1}{x}\frac{1}{y} - x\frac{1}{y}}{K(x,y;t)}$

The kernel
$$K(x, y; t) := 1 - t \cdot \sum_{(i,j) \in \mathscr{S}} x^i y^j = 1 - t \left(x + \frac{1}{x} + y + \frac{1}{y} \right)$$

is left invariant under the change of (x, y) into the elements of

$$\mathcal{G}_{\mathscr{S}} := \left\{ (x, y), \left(\frac{1}{x}, y\right), \left(\frac{1}{x}, \frac{1}{y}\right), \left(x, \frac{1}{y}\right) \right\}$$

$$\begin{split} &K(x,y;t)xyQ(x,y;t) = xy - txQ(x,0;t) - tyQ(0,y;t) \\ &- K(x,y;t)\frac{1}{x}yQ(\frac{1}{x},y;t) = -\frac{1}{x}y + t\frac{1}{x}Q(\frac{1}{x},0;t) + tyQ(0,y;t) \\ &K(x,y;t)\frac{1}{x}\frac{1}{y}Q(\frac{1}{x},\frac{1}{y};t) = \frac{1}{x}\frac{1}{y} - t\frac{1}{x}Q(\frac{1}{x},0;t) - t\frac{1}{y}Q(0,\frac{1}{y};t) \\ &- K(x,y;t)x\frac{1}{y}Q(x,\frac{1}{y};t) = -x\frac{1}{y} + txQ(x,0;t) + t\frac{1}{y}Q(0,\frac{1}{y};t) \end{split}$$

$$\mathsf{GF} = \mathsf{PosPart}\left(\frac{\mathsf{OS}}{\mathsf{kernel}}\right) = \oiint \mathsf{RatFrac}$$

The kernel
$$K(x, y; t) := 1 - t \cdot \sum_{(i,j) \in \mathscr{S}} x^i y^j = 1 - t \left(x + \frac{1}{x} + y + \frac{1}{y} \right)$$
 is left invariant under the change of (x, y) into the elements of

$$\mathcal{G}_{\mathscr{S}} := \left\{ (x, y), (\frac{1}{x}, y), (\frac{1}{x}, \frac{1}{y}), (x, \frac{1}{y}) \right\}$$

$$\begin{split} &K(x,y;t)xyQ(x,y;t) = xy - txQ(x,0;t) - tyQ(0,y;t) \\ &- K(x,y;t)\frac{1}{x}yQ(\frac{1}{x},y;t) = -\frac{1}{x}y + t\frac{1}{x}Q(\frac{1}{x},0;t) + tyQ(0,y;t) \\ &K(x,y;t)\frac{1}{x}\frac{1}{y}Q(\frac{1}{x},\frac{1}{y};t) = \frac{1}{x}\frac{1}{y} - t\frac{1}{x}Q(\frac{1}{x},0;t) - t\frac{1}{y}Q(0,\frac{1}{y};t) \\ &- K(x,y;t)x\frac{1}{y}Q(x,\frac{1}{y};t) = -x\frac{1}{y} + txQ(x,0;t) + t\frac{1}{y}Q(0,\frac{1}{y};t) \end{split}$$

$$\mathsf{GF} = \mathsf{PosPart}\left(\frac{\mathsf{OS}}{\mathsf{ker}}\right) \text{ is D-finite [Lipshitz, 1988]}$$
(1) Kernel method [Bousquet-Mélou, Mishna, 2010]

The kernel
$$K(x, y; t) := 1 - t \cdot \sum_{(i,j) \in \mathscr{S}} x^i y^j = 1 - t \left(x + \frac{1}{x} + y + \frac{1}{y} \right)$$
 is left invariant under the change of (x, y) into the elements of

$$\mathcal{G}_{\mathscr{S}} := \left\{ (x,y), (\frac{1}{x},y), (\frac{1}{x},\frac{1}{y}), (x,\frac{1}{y}) \right\}$$

Kernel equation:

$$\begin{split} &K(x,y;t)xyQ(x,y;t) = xy - txQ(x,0;t) - tyQ(0,y;t) \\ &- K(x,y;t)\frac{1}{x}yQ(\frac{1}{x},y;t) = -\frac{1}{x}y + t\frac{1}{x}Q(\frac{1}{x},0;t) + tyQ(0,y;t) \\ &K(x,y;t)\frac{1}{x}\frac{1}{y}Q(\frac{1}{x},\frac{1}{y};t) = \frac{1}{x}\frac{1}{y} - t\frac{1}{x}Q(\frac{1}{x},0;t) - t\frac{1}{y}Q(0,\frac{1}{y};t) \\ &- K(x,y;t)x\frac{1}{y}Q(x,\frac{1}{y};t) = -x\frac{1}{y} + txQ(x,0;t) + t\frac{1}{y}Q(0,\frac{1}{y};t) \end{split}$$

$$\mathsf{GF} = \mathsf{PosPart}\left(\frac{\mathsf{OS}}{\mathsf{ker}}\right) \text{ is D-finite [Lipshitz, 1988]}$$

 \triangleright Argument works if $OS \neq 0$: algebraic version of the reflection principle

(1) Kernel method [Bousquet-Mélou, Mishna, 2010]

The kernel
$$K(x, y; t) := 1 - t \cdot \sum_{(i,j) \in \mathscr{S}} x^i y^j = 1 - t \left(x + \frac{1}{x} + y + \frac{1}{y} \right)$$
 is left invariant under the change of (x, y) into the elements of

$$\mathcal{G}_{\mathscr{S}} := \left\{ (x, y), \left(\frac{1}{x}, y\right), \left(\frac{1}{x}, \frac{1}{y}\right), \left(x, \frac{1}{y}\right) \right\}$$

Kernel equation:

$$\begin{split} &K(x,y;t)xyQ(x,y;t) = xy - txQ(x,0;t) - tyQ(0,y;t) \\ &- K(x,y;t)\frac{1}{x}yQ(\frac{1}{x},y;t) = -\frac{1}{x}y + t\frac{1}{x}Q(\frac{1}{x},0;t) + tyQ(0,y;t) \\ &K(x,y;t)\frac{1}{x}\frac{1}{y}Q(\frac{1}{x},\frac{1}{y};t) = \frac{1}{x}\frac{1}{y} - t\frac{1}{x}Q(\frac{1}{x},0;t) - t\frac{1}{y}Q(0,\frac{1}{y};t) \\ &- K(x,y;t)x\frac{1}{y}Q(x,\frac{1}{y};t) = -x\frac{1}{y} + txQ(x,0;t) + t\frac{1}{y}Q(0,\frac{1}{y};t) \end{split}$$

$$\mathsf{GF} = \mathsf{PosPart}\left(\frac{\mathsf{OS}}{\mathsf{ker}}\right) \text{ is D-finite [Lipshitz, 1988]}$$

 \triangleright Creative Telescoping finds a differential equation for GF = \iint RatFrac

"An algorithmic toolbox for multiple sums and integrals with parameters"

Example [Apéry 1978]:
$$A_n = \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k}^2$$
 satisfies the recurrence
 $(n+1)^3 A_{n+1} + n^3 A_{n-1} = (2n+1)(17n^2 + 17n + 5)A_n.$
 \triangleright Key fact used to prove that $\zeta(3) := \sum_{n\geq 1} \frac{1}{n^3} \approx 1.202056903...$ is irrational.

1. Journées Arithmétiques de Marseille-Luminy, June 1978

The board of programme changes informed us that R. Apery (Caen) would speak Thursday, 14.00 "Sur l'irrationalité de $\xi(3)$." Though there had been earlier rumours of his claiming a proof, scepticism was general. The lecture tended to strengthen this view to rank disbelief. Those who listened casually, or who were afflicted with being non-Francophone, appeared to hear only a sequence of unlikely assertions.

7. ICM '78, Helsinki, August 1978

Neither Cohen nor I had been able to prove (5) or (5) in the intervening 2 months. After a few days of fruitless effort the specific problem was mentioned to Don Zagier (Bonn), and with irritating speed he showed that indeed the sequence $\{b_n^{L}\}$ satisfies the recurrence (4). This more or less broke the dam and (5) and (5) were quickly conquered. Henri Cohen addressed a very well-attended meeting at 17.00 on Friday, August 18 in the language of the majority, proving (5) and explaining how this implied the

[Van der Poorten, 1979: "A proof that Euler missed"]

"An algorithmic toolbox for multiple sums and integrals with parameters"

Example [Apéry 1978]:
$$A_n = \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k}^2$$
 satisfies the recurrence
 $(n+1)^3 A_{n+1} + n^3 A_{n-1} = (2n+1)(17n^2 + 17n + 5)A_n.$
 \triangleright Key fact used to prove that $\zeta(3) := \sum_{n\geq 1} \frac{1}{n^3} \approx 1.202056903...$ is irrational.

[Zeilberger, 1990: "The method of creative telescoping"]

"An algorithmic toolbox for multiple sums and integrals with parameters"

Example [Euler, 1733]: Perimeter of an ellipse of eccentricity *e*, semi-major axis 1

$$p(e) = 4 \int_0^1 \sqrt{\frac{1 - e^2 u^2}{1 - u^2}} du = 4 \oint \frac{du dv}{1 - \frac{1 - e^2 u^2}{(1 - u^2)v^2}}$$

"An algorithmic toolbox for multiple sums and integrals with parameters"

Example [Euler, 1733]: Perimeter of an ellipse of eccentricity *e*, semi-major axis 1

$$p(e) = 4 \int_0^1 \sqrt{\frac{1 - e^2 u^2}{1 - u^2}} du = 4 \oint \frac{du dv}{1 - \frac{1 - e^2 u^2}{(1 - u^2)v^2}}$$

Principle: Find algorithmically

$$\left((e - e^3)\partial_e^2 + (1 - e^2)\partial_e + e \right) \cdot \left(\frac{1}{1 - \frac{1 - e^2u^2}{(1 - u^2)v^2}} \right) = \\ \partial_u \left(-\frac{e(-1 - u + u^2 + u^3)v^2(-3 + 2u + v^2 + u^2(-2 + 3e^2 - v^2))}{(-1 + v^2 + u^2(e^2 - v^2))^2} \right) \\ + \partial_v \left(\frac{2e(-1 + e^2)u(1 + u^3)v^3}{(-1 + v^2 + u^2(e^2 - v^2))^2} \right)$$

▷ Conclusion:
$$(e - e^3) \cdot p''(e) + (1 - e^2) \cdot p'(e) + e \cdot p(e) = 0.$$

"An algorithmic toolbox for multiple sums and integrals with parameters"

Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

$$p(e) = 4 \int_0^1 \sqrt{\frac{1 - e^2 u^2}{1 - u^2}} du = 4 \oint \frac{du dv}{1 - \frac{1 - e^2 u^2}{(1 - u^2)v^2}}$$

Principle: Find algorithmically

$$\begin{pmatrix} (e-e^3)\partial_e^2 + (1-e^2)\partial_e + e \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{1 - \frac{1-e^2u^2}{(1-u^2)v^2}} \end{pmatrix} = \\ \partial_u \left(-\frac{e(-1-u+u^2+u^3)v^2(-3+2u+v^2+u^2(-2+3e^2-v^2))}{(-1+v^2+u^2(e^2-v^2))^2} \right) \\ + \partial_v \left(\frac{2e(-1+e^2)u(1+u^3)v^3}{(-1+v^2+u^2(e^2-v^2))^2} \right)$$

$$\triangleright \text{ Conclusion: } p(e) = \frac{\pi}{2} \cdot {}_2F_1\left(\begin{array}{c} -\frac{1}{2} & \frac{1}{2} \\ 1 & \end{array}\right) = 2\pi - \frac{\pi}{2}e^2 - \frac{3\pi}{32}e^4 - \cdots.$$

"An algorithmic toolbox for multiple sums and integrals with parameters"

Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

$$p(e) = 4 \int_0^1 \sqrt{\frac{1 - e^2 u^2}{1 - u^2}} du = 4 \oint \frac{du dv}{1 - \frac{1 - e^2 u^2}{(1 - u^2)v^2}}$$

Principle: Find algorithmically

$$\begin{pmatrix} (e-e^3)\partial_e^2 + (1-e^2)\partial_e + e \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{1 - \frac{1 - e^2 u^2}{(1 - u^2)v^2}} \end{pmatrix} = \\ \partial_u \left(-\frac{e(-1 - u + u^2 + u^3)v^2(-3 + 2u + v^2 + u^2(-2 + 3e^2 - v^2))}{(-1 + v^2 + u^2(e^2 - v^2))^2} \right) \\ + \partial_v \left(\frac{2e(-1 + e^2)u(1 + u^3)v^3}{(-1 + v^2 + u^2(e^2 - v^2))^2} \right)$$

 \triangleright Drawback: Size(certificate) \gg Size(telescoper).

Algorithm for the integration of rational functions [B., Lairez, Salvy, 2013]

- Input: $R(e, \mathbf{x})$ a rational function in e and $\mathbf{x} = x_1, \ldots, x_n$.
- Output: A linear ODE $T(e, \partial_e)y = 0$ satisfied by $y(e) = \iint R(e, \mathbf{x})d\mathbf{x}$.
- Complexity: $\mathcal{O}(D^{8n+2})$, where $D = \deg R$.
- Output size: *T* has order $\leq D^n$ in ∂_e and degree $\leq D^{3n+2}$ in *e*.

- ▷ Avoids the (costly) computation of certificates, of size $\Omega(D^{n^2/2})$.
- ▷ Previous algorithms: complexity (at least) doubly exponential in *n*.
- ▷ Very efficient in practice.

Theorem (Apéry's power series is transcendental)

$$f(t) = \sum_{n} A_n t^n$$
, where $A_n = \sum_{k=0}^n {\binom{n}{k}}^2 {\binom{n+k}{k}}^2$, is transcendental.

Theorem (Apéry's power series is transcendental)

$$f(t) = \sum_{n} A_{n}t^{n}$$
, where $A_{n} = \sum_{k=0}^{n} {\binom{n}{k}}^{2} {\binom{n+k}{k}}^{2}$, is transcendental.

Proof:

① Creative telescoping:

$$(n+1)^3 A_{n+1} + n^3 A_{n-1} = (2n+1) (17n^2 + 17n + 5)A_n, \quad A_0 = 1, A_1 = 5$$

Theorem (Apéry's power series is transcendental)

$$f(t) = \sum_{n} A_{n}t^{n}$$
, where $A_{n} = \sum_{k=0}^{n} {\binom{n}{k}}^{2} {\binom{n+k}{k}}^{2}$, is transcendental.

Proof:

① Creative telescoping:

 $(n+1)^3 A_{n+1} + n^3 A_{n-1} = (2n+1)(17n^2 + 17n + 5)A_n, \quad A_0 = 1, A_1 = 5$

② Conversion from recurrence to differential equation L(f) = 0, where

 $L = (t^4 - 34t^3 + t^2)\partial_t^3 + (6t^3 - 153t^2 + 3t)\partial_t^2 + (7t^2 - 112t + 1)\partial_t + t - 5$

Theorem (Apéry's power series is transcendental)

$$f(t) = \sum_{n} A_{n}t^{n}$$
, where $A_{n} = \sum_{k=0}^{n} {\binom{n}{k}}^{2} {\binom{n+k}{k}}^{2}$, is transcendental.

Proof:

① Creative telescoping:

 $(n+1)^3 A_{n+1} + n^3 A_{n-1} = (2n+1)(17n^2 + 17n + 5)A_n, \quad A_0 = 1, A_1 = 5$

② Conversion from recurrence to differential equation L(f) = 0, where

$$L = (t^4 - 34t^3 + t^2)\partial_t^3 + (6t^3 - 153t^2 + 3t)\partial_t^2 + (7t^2 - 112t + 1)\partial_t + t - 5$$

3 Guess-and-Prove:

compute least-order L_f^{\min} in $\mathbb{Q}(t)\langle \partial_t \rangle$ such that $L_f^{\min}(f) = 0$

Theorem (Apéry's power series is transcendental)

$$f(t) = \sum_{n} A_{n}t^{n}$$
, where $A_{n} = \sum_{k=0}^{n} {\binom{n}{k}}^{2} {\binom{n+k}{k}}^{2}$, is transcendental.

Proof:

① Creative telescoping:

 $(n+1)^3 A_{n+1} + n^3 A_{n-1} = (2n+1)(17n^2 + 17n + 5)A_n, \quad A_0 = 1, A_1 = 5$

② Conversion from recurrence to differential equation L(f) = 0, where

$$L = (t^4 - 34t^3 + t^2)\partial_t^3 + (6t^3 - 153t^2 + 3t)\partial_t^2 + (7t^2 - 112t + 1)\partial_t + t - 5$$

3 Guess-and-Prove:

compute least-order L_f^{\min} in $\mathbb{Q}(t)\langle \partial_t \rangle$ such that $L_f^{\min}(f) = 0$

④ Basis of formal solutions of L_f^{\min} at t = 0:

$$\left\{1+5t+O(t^2), \ln(t)+(5\ln(t)+12)t+O(t^2), \ln(t)^2+(5\ln(t)^2+24\ln(t))t+O(t^2)\right\}$$

Theorem (Apéry's power series is transcendental)

$$f(t) = \sum_{n} A_{n}t^{n}$$
, where $A_{n} = \sum_{k=0}^{n} {\binom{n}{k}}^{2} {\binom{n+k}{k}}^{2}$, is transcendental.

Proof:

① Creative telescoping:

 $(n+1)^3 A_{n+1} + n^3 A_{n-1} = (2n+1)(17n^2 + 17n + 5)A_n, \quad A_0 = 1, A_1 = 5$

② Conversion from recurrence to differential equation L(f) = 0, where

$$L = (t^4 - 34t^3 + t^2)\partial_t^3 + (6t^3 - 153t^2 + 3t)\partial_t^2 + (7t^2 - 112t + 1)\partial_t + t - 5$$

3 Guess-and-Prove:

compute least-order L_f^{\min} in $\mathbb{Q}(t)\langle \partial_t \rangle$ such that $L_f^{\min}(f) = 0$

④ Basis of formal solutions of L_f^{\min} at t = 0:

$$\left\{1+5t+O(t^2), \ln(t)+(5\ln(t)+12)t+O(t^2), \ln(t)^2+(5\ln(t)^2+24\ln(t))t+O(t^2)\right\}$$

5 Conclusion: f is transcendental[†]

[†] f algebraic would imply a full basis of algebraic solutions for L_f^{\min} [Tannery, 1875].

Many contributors (2010–2019): Bernardi, B., Bousquet-Mélou, Chyzak, Dreyfus, Hardouin, van Hoeij, Kauers, Kurkova, Mishna, Pech, Raschel, Roques, Salvy, Singer

Many contributors (2010–2019): Bernardi, B., Bousquet-Mélou, Chyzak, Dreyfus, Hardouin, van Hoeij, Kauers, Kurkova, Mishna, Pech, Raschel, Roques, Salvy, Singer

▷ Proofs use various tools: algebra, complex analysis, probability theory, differential Galois theory, computer algebra, etc.

Conclusion

 $\overline{}$

Enumerative Combinatorics and Computer Algebra enrich one another

Classification of Q(x, y; t) fully completed for 2D small step walks

Robust algorithmic methods, based on efficient algorithms:

- Guess-and-Prove
- Creative Telescoping

 $\overline{}$

Brute-force and/or use of naive algorithms = hopeless. E.g. size of algebraic equations for $G(x, y; t) \approx 30$ Gb.

Conclusion

Enumerative Combinatorics and Computer Algebra enrich one another

Classification of Q(x, y; t) fully completed for 2D small step walks

Robust algorithmic methods, based on efficient algorithms:

- Guess-and-Prove
- Creative Telescoping

Brute-force and/or use of naive algorithms = hopeless. E.g. size of algebraic equations for $G(x, y; t) \approx 30$ Gb.

Lack of "purely human" proofs for some results.

Many beautiful open questions for 2D models with repeated or large steps, and in dimension > 2.

Bonus

Beyond dimension 2: walks with small steps in \mathbb{N}^3

 \triangleright $2^{3^3-1} \approx 67$ million models, of which ≈ 11 million inherently 3D

[B., Bousquet-Mélou, Kauers, Melczer, 2016] + [Du, Hou, Wang, 2017]; completed by [Bacher, Kauers, Yatchak, 2016] Beyond dimension 2: walks with small steps in \mathbb{N}^3

 \triangleright $2^{3^3-1} \approx 67$ million models, of which ≈ 11 million inherently 3D

[B., Bousquet-Mélou, Kauers, Melczer, 2016] + [Du, Hou, Wang, 2017]; completed by [Bacher, Kauers, Yatchak, 2016]

Question: differential finiteness \iff finiteness of the group?

Answer: probably no

19 mysterious 3D-models: finite $\mathcal{G}_{\mathscr{S}}$ and possibly non-D-finite $Q_{\mathscr{S}}$

Alin Bostan

Open question: 3D Kreweras excursions

Numerical computations [Dahne, Salvy, 2020] suggest:

 $k_{4n} = C \cdot 256^n / n^{\alpha}$, for $\alpha = 3.3257570041744 \dots \notin \mathbb{Q}$,

so excursions are very probably non-D-finite

Beyond small steps: Walks in \mathbb{N}^2 with large steps

[B., Bousquet-Mélou, Melczer, 2018]

Question: differential finiteness \iff finiteness of the group? Answer: ?

Two challenging models with large steps

Conjecture 1 [B., Bousquet-Mélou, Melczer, 2018]

For the model \leftarrow the excursions generating function $Q(0,0;t^{1/2})$ equals

$$\begin{aligned} \frac{1}{3t} &- \frac{1}{6t} \cdot \left(\frac{1 - 12t}{(1 + 36t)^{1/3}} \cdot {}_2F_1 \left(\frac{1}{6} \frac{2}{3} \left| \frac{108t(1 + 4t)^2}{(1 + 36t)^2} \right) + \right. \\ & \left. \sqrt{1 - 12t} \cdot {}_2F_1 \left(-\frac{1}{6} \frac{2}{3} \left| \frac{108t(1 + 4t)^2}{(1 - 12t)^2} \right) \right). \end{aligned}$$

Conjecture 2 [B., Bousquet-Mélou, Melczer, 2018]

For the model X the excursions generating function Q(0, 0; t) equals

$$\frac{(1-24 U+120 U^2-144 U^3) (1-4 U)}{(1-3 U) (1-2 U)^{3/2} (1-6 U)^{9/2}},$$

where $U = t^4 + 53 t^8 + 4363 t^{12} + \cdots$ is the unique series in $\mathbb{Q}[[t]]$ satisfying

$$U(1-2U)^3(1-3U)^3(1-6U)^9 = t^4(1-4U)^4.$$

Bibliography

- Automatic classification of restricted lattice walks, with M. Kauers. Proceedings FPSAC, 2009.
- The complete generating function for Gessel walks is algebraic, with M. Kauers. Proceedings of the American Mathematical Society, 2010.
- Explicit formula for the generating series of diagonal 3D Rook paths, with F. Chyzak, M. van Hoeij and L. Pech. Séminaire Lotharingien de Combinatoire, 2011.
- Non-D-finite excursions in the quarter plane, with K. Raschel and B. Salvy. Journal of Combinatorial Theory A, 2014.
- On 3-dimensional lattice walks confined to the positive octant, with M. Bousquet-Mélou, M. Kauers and S. Melczer. Annals of Comb., 2016.
- A human proof of Gessel's lattice path conjecture, with I. Kurkova, K. Raschel, Transactions of the American Mathematical Society, 2017.
- Hypergeometric expressions for generating functions of walks with small steps in the quarter plane, with F. Chyzak, M. van Hoeij, M. Kauers and L. Pech, European Journal of Combinatorics, 2017.
- Counting walks with large steps in an orthant, with M. Bousquet-Mélou and S. Melczer, preprint, 2018.
- Computer Algebra for Lattice Path Combinatorics, preprint, 2019.

Solution of the "exercise"

• The kernel equation reads (with $K(x, y) = 1 - t(y + \bar{x} + x\bar{y})$):

K(x,y)yH(x,y) = y - txH(x,0)

• The kernel equation reads (with $K(x, y) = 1 - t(y + \bar{x} + x\bar{y})$):

$$K(x,y)yH(x,y) = y - txH(x,0)$$

• Let

$$y_0 = \frac{x - t - \sqrt{(t - x)^2 - 4t^2 x^3}}{2tx} \qquad = xt + t^2 + (x^2 + \bar{x})t^3 + (3x + \bar{x}^2)t^4 + \cdots$$

be the (unique) root in $\mathbb{Q}[x, \bar{x}][[t]]$ of $K(x, y_0) = 0$.

• The kernel equation reads (with $K(x, y) = 1 - t(y + \bar{x} + x\bar{y})$):

$$K(x,y)yH(x,y) = y - txH(x,0)$$

• Let

$$y_0 = \frac{x - t - \sqrt{(t - x)^2 - 4t^2 x^3}}{2tx} \qquad = xt + t^2 + (x^2 + \bar{x})t^3 + (3x + \bar{x}^2)t^4 + \cdots$$

be the (unique) root in $\mathbb{Q}[x, \bar{x}][[t]]$ of $K(x, y_0) = 0$.

• Then

$$0 = K(x, y_0)yH(x, y_0) = y_0 - txH(x, 0),$$

thus

$$H(x,0) = \frac{y_0}{tx}$$
 and $A(t) = \begin{bmatrix} x^0 \end{bmatrix} \frac{y_0}{tx}$.

• The kernel equation reads (with $K(x, y) = 1 - t(y + \bar{x} + x\bar{y})$):

$$K(x,y)yH(x,y) = y - txH(x,0)$$

• Let

$$y_0 = \frac{x - t - \sqrt{(t - x)^2 - 4t^2 x^3}}{2tx} \qquad = xt + t^2 + (x^2 + \bar{x})t^3 + (3x + \bar{x}^2)t^4 + \cdots$$

be the (unique) root in $\mathbb{Q}[x, \overline{x}][[t]]$ of $K(x, y_0) = 0$.

• Then

$$0 = K(x, y_0)yH(x, y_0) = y_0 - txH(x, 0),$$

thus

$$H(x,0) = \frac{y_0}{tx}$$
 and $A(t) = \begin{bmatrix} x^0 \end{bmatrix} \frac{y_0}{tx}$.

• Creative telescoping then proves:

$$(27t4 - t)A''(t) + (108t3 - 4)A'(t) + 54t2A(t) = 0.$$

> Zeilberger(1/x * sqrt((t-x)^2 - 4*t^2*x^3)/(2*t^2*x^2), t, x, Dt);

The group of the model $\{\uparrow, \leftarrow, \searrow\}$

Step set $\mathscr{S} = \{(-1,0), (0,1), (1,-1)\}$, with characteristic polynomial

$$\chi(x,y) = \frac{1}{x} + y + x \cdot \frac{1}{y} = \bar{x} + y + x\bar{y}$$

The group of the model $\{\uparrow, \leftarrow, \searrow\}$

Step set $\mathscr{S} = \{(-1,0), (0,1), (1,-1)\}$, with characteristic polynomial $\chi(x,y) = \frac{1}{x} + y + x \cdot \frac{1}{y} = \bar{x} + y + x\bar{y}$

 $\chi(x, y)$ is left unchanged by the rational transformations

 $\Phi: (x,y)\mapsto (\bar{x}y,y) \quad \text{and} \quad \Psi: (x,y)\mapsto (x,x\bar{y})\,.$
The group of the model $\{\uparrow, \leftarrow, \searrow\}$

Step set $\mathscr{S} = \{(-1,0), (0,1), (1,-1)\}$, with characteristic polynomial $\chi(x,y) = \frac{1}{x} + y + x \cdot \frac{1}{y} = \bar{x} + y + x\bar{y}$

 $\chi(x, y)$ is left unchanged by the rational transformations

 $\Phi: (x, y) \mapsto (\bar{x}y, y)$ and $\Psi: (x, y) \mapsto (x, x\bar{y})$.

 Φ and Ψ are involutions, and generate a finite dihedral group D_3 of order 6:

• Orbit equation:

$$\begin{aligned} xyQ(x,y) &- \bar{x}y^2Q(\bar{x}y,y) + \bar{x}^2yQ(\bar{x}y,\bar{x}) \\ &- \bar{x}\bar{y}Q(\bar{y},\bar{x}) + x\bar{y}^2Q(\bar{y},x\bar{y}) - x^2\bar{y}Q(x,x\bar{y}) = \\ &\frac{xy - \bar{x}y^2 + \bar{x}^2y - \bar{x}\bar{y} + x\bar{y}^2 - x^2\bar{y}}{1 - t(y + \bar{x} + x\bar{y})} \end{aligned}$$

• Orbit equation:

$$\begin{split} xyQ(x,y) &- \bar{x}y^2Q(\bar{x}y,y) + \bar{x}^2yQ(\bar{x}y,\bar{x}) \\ &- \bar{x}\bar{y}Q(\bar{y},\bar{x}) + x\bar{y}^2Q(\bar{y},x\bar{y}) - x^2\bar{y}Q(x,x\bar{y}) = \\ &\frac{xy - \bar{x}y^2 + \bar{x}^2y - \bar{x}\bar{y} + x\bar{y}^2 - x^2\bar{y}}{1 - t(y + \bar{x} + x\bar{y})} \end{split}$$

• Corollary [Bousquet-Mélou & Mishna, 2010]:

$$xyQ(x,y) = [x^{>0}y^{>0}] \ \frac{xy - \bar{x}y^2 + \bar{x}^2y - \bar{x}\bar{y} + x\bar{y}^2 - x^2\bar{y}}{1 - t(y + \bar{x} + x\bar{y})}$$

• Orbit equation:

$$\begin{split} xyQ(x,y) &- \bar{x}y^2Q(\bar{x}y,y) + \bar{x}^2yQ(\bar{x}y,\bar{x}) \\ &- \bar{x}\bar{y}Q(\bar{y},\bar{x}) + x\bar{y}^2Q(\bar{y},x\bar{y}) - x^2\bar{y}Q(x,x\bar{y}) = \\ &\frac{xy - \bar{x}y^2 + \bar{x}^2y - \bar{x}\bar{y} + x\bar{y}^2 - x^2\bar{y}}{1 - t(y + \bar{x} + x\bar{y})} \end{split}$$

• Corollary [Bousquet-Mélou & Mishna, 2010]:

$$xyQ(x,y) = [x^{>0}y^{>0}] \ \frac{xy - \bar{x}y^2 + \bar{x}^2y - \bar{x}\bar{y} + x\bar{y}^2 - x^2\bar{y}}{1 - t(y + \bar{x} + x\bar{y})}$$

• Corollary [B.-Chyzak-van Hoeij-Kauers-Pech, 2015]:

$$B(t) = [z^0]Q(z,\bar{z}) = [u^{-1}v^{-1}z^{-1}] \frac{\bar{u}\bar{v} - u\bar{v}^2 + u^2\bar{v} - uv + \bar{u}v^2 - \bar{u}^2v}{z(1-zu)(1-v\bar{z})(1-t(\bar{v}+u+\bar{u}v))}$$

• Orbit equation:

$$\begin{aligned} xyQ(x,y) &- \bar{x}y^2Q(\bar{x}y,y) + \bar{x}^2yQ(\bar{x}y,\bar{x}) \\ &- \bar{x}\bar{y}Q(\bar{y},\bar{x}) + x\bar{y}^2Q(\bar{y},x\bar{y}) - x^2\bar{y}Q(x,x\bar{y}) = \\ &\frac{xy - \bar{x}y^2 + \bar{x}^2y - \bar{x}\bar{y} + x\bar{y}^2 - x^2\bar{y}}{1 - t(y + \bar{x} + x\bar{y})} \end{aligned}$$

• Corollary [Bousquet-Mélou & Mishna, 2010]:

$$xyQ(x,y) = [x^{>0}y^{>0}] \ \frac{xy - \bar{x}y^2 + \bar{x}^2y - \bar{x}\bar{y} + x\bar{y}^2 - x^2\bar{y}}{1 - t(y + \bar{x} + x\bar{y})}$$

• Corollary [B.-Chyzak-van Hoeij-Kauers-Pech, 2015]:

$$B(t) = [z^0]Q(z,\bar{z}) = [u^{-1}v^{-1}z^{-1}] \frac{\bar{u}\bar{v} - u\bar{v}^2 + u^2\bar{v} - uv + \bar{u}v^2 - \bar{u}^2v}{z(1-zu)(1-v\bar{z})(1-t(\bar{v}+u+\bar{u}v))}$$

• Creative Telescoping gives a differential equation for B(t):

$$(27t^4 - t)B''(t) + (108t^3 - 4)B'(t) + 54t^2B(t) = 0.$$

Conclusion

We have proved that A(t) and B(t) are both solutions of

(27t⁴ - t)y''(t) + (108t³ - 4)y'(t) + 54t²y(t) = 0.

Solving this equation proves:

$$A(t) = B(t) = {}_{2}F_{1}\left(\frac{1/3}{2}\frac{2}{3}\right) = \sum_{n=0}^{\infty} \frac{(3n)!}{n!^{3}} \frac{t^{3n}}{n+1}.$$

Thus the two sequences are equal to

 $a_{3n} = b_{3n} = \frac{(3n)!}{n!^2 \cdot (n+1)!}$, and $a_m = b_m = 0$ if 3 does not divide m.

Example with infinite group: the scarecrows

[B., Raschel, Salvy, 2014]: $Q_{\mathscr{S}}(0,0;t)$ is not D-finite for the models

▷ For the 1st and the 3rd, the excursions sequence $[t^n] Q_{\mathscr{S}}(0,0;t)$

1, 0, 0, 2, 4, 8, 28, 108, 372, ...

is $\sim K \cdot 5^n \cdot n^{-\alpha}$, with $\alpha = 1 + \pi / \arccos(1/4) = 3.383396...$ [Denisov, Wachtel, 2015]

The irrationality of α prevents Q_S(0,0; t) from being D-finite. [Katz, 1970; Chudnovsky, 1985; André, 1989]

The group of a model: the simple walk case

The characteristic polynomial
$$\chi_{\mathscr{S}} := x + \frac{1}{x} + y + \frac{1}{y}$$

The group of a model: the simple walk case

The characteristic polynomial $\chi_{\mathscr{S}} := x + \frac{1}{x} + y + \frac{1}{y}$ is left invariant under

$$\psi(x,y) = \left(x, \frac{1}{y}\right), \quad \phi(x,y) = \left(\frac{1}{x}, y\right),$$

The group of a model: the simple walk case

The characteristic polynomial $\chi_{\mathscr{S}} := x + \frac{1}{x} + y + \frac{1}{y}$ is left invariant under

$$\psi(x,y) = \left(x, \frac{1}{y}\right), \quad \phi(x,y) = \left(\frac{1}{x}, y\right),$$

and thus under any element of the group

$$\langle \psi, \phi \rangle = \left\{ (x,y), \left(x, \frac{1}{y}\right), \left(\frac{1}{x}, \frac{1}{y}\right), \left(\frac{1}{x}, y\right) \right\}.$$

The group of a model

The generating polynomial $\chi_{\mathscr{S}} := \sum_{(i,j)\in\mathscr{S}} x^i y^j = \sum_{i=-1}^1 B_i(y) x^i = \sum_{j=-1}^1 A_j(x) y^j$

The group of a model

The generating polynomial $\chi_{\mathscr{S}} := \sum_{(i,j) \in \mathscr{S}} x^i y^j = \sum_{i=-1}^1 B_i(y) x^i = \sum_{j=-1}^1 A_j(x) y^j$

is left invariant under the birational involutions

$$\psi(x,y) = \left(x, \frac{A_{-1}(x)}{A_{+1}(x)}\frac{1}{y}\right), \quad \phi(x,y) = \left(\frac{B_{-1}(y)}{B_{+1}(y)}\frac{1}{x}, y\right),$$

and thus under any element of the (dihedral) group

$$\mathcal{G}_{\mathscr{S}} := \langle \psi, \phi \rangle.$$

Order 4,

Order 4,

order 6,

