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Give (and prove!) a simple formula for

L))



Guessing the answer

Give (and prove!) a simple formula for
frur k) \n

> T:=(-1) "kx*binomial (n,k)*binomial (2*k,n) :
> first_terms:=[seq(add(T, k=0..n), n=0..6)]:
> guess_rec:=gfun:-listtorec(terms, u(n))[1];

{u(n+1)+2u(n) =0, u(0)=1}

> rsolve(guess_rec,u(n));

(=2)"

> Is this a proof?
> Can it be turned into a proof?
> Is this guessing procedure always guaranteed to work?




Give (and prove!) a simple formula for
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Guessi

Give (and prove!) a simple formula for

L) G)

> Table look-up:

»(561&)2 (1)( ( )-(1)"(:,!:") 2

k=0

0, 0<£j<n,

5 K n x + kz -~
3.150) z (-1) ( =
‘ k 3 (-1 2"

k=0 2, Jj=n

> Is this a proof?
> Can it be turned into a proof?

> Is this guessing procedure always guaranteed to work?
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Provin

Give (and prove!) a simple formula for

56

> T:=(-1) "k*binomial (n,k)*binomial (2*k,n):
> sum(T, k=0..n);

(=2)"

> Is this a proof?
> Is it always guaranteed to work?

> What is behind this proof?
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Proving the answer

n
Give (and prove!) a simple formula for Z (—1)k (”) (Zk)

= k)\n
> T:=(-1) "k*binomial(n,k)*binomial (2*k,n):
> Zpair:=SumTools [Hypergeometric] [Zeilberger] (T, n, k, Sn):

> tel:=Zpair[1];

Sn+2

> cert:=Zpair[2];

(2k—n—1) (2k —n) (-1 () (¥
(—n+k—1)(n+1)

> is_zero:=(subs(n=n+1,T) + 2*T) - (subs(k=k+1,cert) - cert):
> simplify(convert(is_zero,GAMMA)) ;




Proving the answe

n
Give (and prove!) a simple formula for E (—1)k <Z> (2k)

k=0 n
> with(BinomSums) :
> T2:=(-1)"k * Binomial2(n,k)*Binomial2(2*k,n):
> 8 := Sum(t"n*Sum(T2, k=0..infinity), n=0..infinity):
> series(BinomSums [computesum] (S, 5), t);

1—2t + 42 — 813 + 16t* — 32t + O(t%)

A\

R, ord := BinomSums[sumtores] (S, u);

1
2t+17 1

T o s1geb for combinatoric




n
Give (and prove!) a simple formula for ) (—1)k (:) (an)
k=0

> What really happened in the previous slide?
> The algorithm started from the pre-tabulated formulas

(2) = res L0 () (02

k uk+1 un+1

© 1 n 2k
. e (tw)" (tw)
> It then performed the summation Z%”(Z%)(fl) Ry =S e t"
n=0k=
expressing the GF of the input binomial sum as the residue (w.r.t. # and v) of

1 (1+0)*
0(1,%) wo <1+ (l+v)2(l+u)t>
R := >
v +u+2v0+1

> It finally performed a successive pole/residue analysis, proving that

v - 1
Fo3 4+ 2t02 + 02 2+ 17

res,» R = res,
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Bonus: a “hyper

n —
Up to k <+ n — k, the identity is equivalent to ) (1) <Z) (Zn ; Zk) =",
k=0

> Let us re-write binomials as quotients of products of factorials
2n—2k)! & P 1 1 (2n — 2k)!

t n
””:kg(_l)k'kz(n—k)!'n!(n—zk)! —k_;(— I (n—k)! (n—2k)!

and then in terms of “rising factorials” (or, “Pochhammer symbols”)
(a)p =a(a+1)---(a+n—1), using the rewriting rules:

(n—k)! = m and (a)2k24k' (g)k (a—;l)k

(=n)k
weger = (%) 2 GG (an) g (D (28,

= (Wi (=2n)x% n) = (1) (% _ n)k
> We conclude using the “Chu-Vandermonde” hypergeometric identity that

2N _nl_n
= -oF 2 201 ) =2"
w= () (1)

> “We reduced an identity to another identity: what’s the point?”
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Bonus:

n

Up to k <+ n — k, the identity is equivalent to ) (1)

k=0
> Consider the polynomial
P, — 1 an 2 1 n
n(x) := E'W(x -1
> By the Leibniz differentiation rule,
1 & <n> ok ok
Pu(x) = — - S (x+ 1)
n(®) n! ;;) k Bxk( ) ox"k

(

]

2n — 2k _on
" .

x—1)",

n 2
hence Py(x) =) (n) (x = 1)"*(x + 1), in particular P, (1) = 2".

k=0 k

k

n
> By the binomial theorem, (x? —1)" = ) (—1)k (n) x?"=2k hence

k=0

Py(x) = i (—1)F (Z) <2" ; Zk) 2k

k=0

n —
> In conclusion, 2" = P, (1) = Z(—l)k (Z) <2n Zk).

k=0 n
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Bonus: a combinatorial proo

We will prove that
Z":(_l)k n\ (2n — 2k _on
= k n o

by counting subsets of {1,...,n} in the following way:

(1) There is an obvious bijection betxiveen subsets of {1,...,n} and subsets
with n elements of the set {1,...,1,1,...,7} which contain either k or k

(2) Now to count the latter we can do inclusion/exclusion:

) (Zn”) counts all n-element sets
© This counts too many, because it counts also subsets which contain both
k and k
2n—2
© To delete those, we subtract (}) - (5'5)
© But this deletes too many, since it counts those who have k and k and ¢
and ¢ twice
2n—4
© Hence one adds (5) - (5'7)

® And so on.




Summary: ingredients of an exp

© Trial and error phase

© Guess the answer Hermite-Padé approximants
© Look up for possible generalizations bibliographic searches

© Reasoning and proving phase — understand what’s “inside the box”

© Use built-in routines computer algebra software
© Use a specific summation approach Zeilberger’s algorithm
© Use an alternative / better one residues

© Bonus phase — attacking from different angles

© Hypergeometric approach Chu-Vandermonde identity
© Direct algebraic approach Legendre polynomials
© Combinatorial approach Bijection (most human creativity demanding)

> What is your favorite proof?

> Why? (Criteria: length/beauty/trickiness/naturalness)




Computer Algebra for Enu

Enumerative Combinatorics: science of counting J

Area of mathematics primarily concerned with counting discrete objects.

> Main outcome: theorems

Computer Algebra: effective mathematics

Area of computer science primarily concerned with the algorithmic
manipulation of algebraic objects.

> Main outcome: algorithms

Computer Algebra for Enumerative Combinatorics
Today: Algorithms for proving Theorems on Lattice Paths Combinatorics. J




~ An nnocentloking) combinaorial quesion

Let ¥ = {1, +, \,}. An .-walk is a path in Z? using only steps from .7
Show that, for any integer 7, the following quantities are equal:

(i) number a, of n-steps .#-walks confined to the upper half plane Z x IN
that start and finish at the origin (0,0) (excursions);

(ii) number by, of n-steps .#-walks confined to the quarter plane IN? that
start at the origin (0,0) and finish on the diagonal of IN? (diagonal walks).
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Let ¥ = {1, +, \,}. An .-walk is a path in Z? using only steps from .7
Show that, for any integer 7, the following quantities are equal:

(i) number a, of n-steps .-walks confined to the upper half plane Z x IN
that start and finish at the origin (0,0) (excursions);

(ii) number by, of n-steps .#-walks confined to the quarter plane IN? that
start at the origin (0,0) and finish on the diagonal of IN? (diagonal walks).

For instance, for n = 3, this common value is a3 = b3 = 3:

HSREERN

(ii)
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Teaser 1: This “exercise” is non-trivial
Teaser 2: It can be solved using Experimental Math and Computer Algebra

Teaser 3: ...by two robust and efficient algorithmic techniques,
Guess-and-Prove and Creative Telescoping



Why count walks?

Many objects can be encoded by (confined) walks:

© probability theory (voting, games of chance, branching processes, ...

© discrete mathematics (permutations, trees, words, urns, ...)
@ statistical physics (Ising model, ...)

© operations research (queueing theory, ...)

7™M INTERNATIONAL CONFERENCE ON
ATTICE PATH COM D APPLICATIONS

— rd

HOME TOPICS to be covered include (but are not limited to) :

m Lattice path enumeration Random walks
Plane Partitions Non parametric statistical inference
Discrete distributions and urn models
Young tableaux Queueing theory
fenmean | acalculus Analysis of algorithms
Orthogonal polynomials Graph Theory and Applications

Important dates Self-dual codes and unimodular lattices
- Bijections between paths and other

Perticipants combinatoric structures

General Information

Alin Bostan Computer algebra for combinatorics



Suppose that candidates A and B are running in an election. If a votes are cast
for A and b votes are cast for B, where a > b, then the probability that A stays
ahead of B throughout the counting of the ballots is (@ — b)/(a + b).

Lattice path reformulation: find the number of paths in Z2 with a upsteps
and b downsteps ™\ that start at the origin and never touch the x-axis

T(a+b,a—b)

(0,0)

> Without the constraint, the number of such paths is ("Zb)
— a Guess-and-Prove proof in a few slides
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Counting walks is an old topic

Suppose that candidates A and B are running in an election. If a votes are cast
for A and b votes are cast for B, where a > b, then the probability that A stays
ahead of B throughout the counting of the ballots is (@ — b)/(a + b).

Lattice path reformulation: find the number of paths in Z? with a — 1
upsteps * and b downsteps \, that start at (1,1) and never touch the x-axis

Reflection principle [Aebly, 1923]: paths in Z>
from (1,1) to T(a+ b,a — b) that do touch the x-axis
are in bijection with paths in Z? from (1,~1) to T

Answer: (paths in Z? from (1,1) to T) — (paths in Z* from (1, 1) to T)
a+b-1 a+b-1
a—1 b—-1




Counting walks is an old topic:

Suppose that candidates A and B are running in an election. If a votes are cast
for A and b votes are cast for B, where a > b, then the probability that A stays
ahead of B throughout the counting of the ballots is (@ — b)/(a + b).

Lattice path reformulation: find the number of paths in Z? with a — 1
upsteps * and b downsteps \, that start at (1,1) and never touch the x-axis

Reflection principle [Aebly, 1923]: paths in Z>
from (1,1) to T(a+ b,a — b) that do touch the x-axis
are in bijection with paths in Z? from (1,~1) to T

Answer: (paths in Z* from (1,1) to T) — (paths in Z* from (1,—1) to T)
at+b—-1\ (a+b—-1\ a—-bla+b
a—1 b—1 ) a+b\ a




Lot of recent activity; many recent contributors:

Arques, Bacher, Banderier, Beaton, Bernardi, Biane, Bostan, Bousquet-Mélou,
Buchacher, Budd, Chyzak, Cori, Courtiel, Denisov, Dreyfus, Du, Duchon,
Dulucq, Duraj, Fayolle, Fisher, Flajolet, Fusy, Garbit, Gessel,
Gouyou-Beauchamps, Guttmann, Guy, Hardouin, van Hoeij, Hou,
Iasnogorodski, Johnson, Kauers, Kenyon, Koutschan, Krattenthaler,
Kreweras, Kurkova, Lecouvey, Malyshev, Melczer, Miller, Mishna,
Niederhausen, Owczarek, Pech, Petkovsek, Prellberg, Raschel, Rechnitzer,
Roques, Sagan, Salvy, Sheffield, Singer, Tarrago, Trotignon, Verron, Viennot,
Wachtel, Wallner, Wang, Wilf, D. Wilson, M. Wilson, Xu, Yatchak, Yeats,
Zeilberger, ...

etc.
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...butitisstill a v

Lot of recent activity; many recent contributors:

Arques, Bacher, Banderier, Beaton, Bernardi, Biane, Bostan, Bousquet-Mélou,
Buchacher, Budd, Chyzak, Cori, Courtiel, Denisov, Dreyfus, Du, Duchon,
Dulucq, Duraj, Fayolle, Fisher, Flajolet, Fusy, Garbit, Gessel,
Gouyou-Beauchamps, Guttmann, Guy, Hardouin, van Hoeij, Hou,
Iasnogorodski, Johnson, Kauers, Kenyon, Koutschan, Krattenthaler,
Kreweras, Kurkova, Lecouvey, Malyshev, Melczer, Miller, Mishna,
Niederhausen, Owczarek, Pech, Petkovsek, Prellberg, Raschel, Rechnitzer,
Roques, Sagan, Salvy, Sheffield, Singer, Tarrago, Trotignon, Verron, Viennot,
Wachtel, Wallner, Wang, Wilf, D. Wilson, M. Wilson, Xu, Yatchak, Yeats,
Zeilberger, ...

etc.

—= Systematic approach
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.but it is still a very hot topi

HANDBOOK OF

ENUMERATIVE
COMBINATORICS

Ho

16 s

v = P

a2

[T, S

Edited by

Mikl6s Bona
CRC Press
et

A CHAPMAN & HAL

Chapter 10

Lattice Path Enumeration

Christian Krattenthaler
Universitit Wien

CONTENTS

10.1
10.2
103
10.4
10.5
10.6
107
10.8
10.9
10,10
1011
1012
1013
1014
1015
10.16
1017
1018
1019
10.20

References ......

Introduction ..
Lanice paths without restrictions .
Linear boundaries of slope 1 ...
Simple paths with linear boundaries of rational slope, I .
Simple paths with linear boundaries with rational slope, I
Simple paths with a piecewise linear boundary
Simple paths with general boundaries ...
Elementary results on Motzkin and Sehriider paths
A continued fraction for the weighted counting of Motzkin paths
Lattice paths and orthogonal polynomials
Motzkin paths in a strip .
Further results for lattice palhs inthe plane
Non-intersecting lattice paths .
Lattice paths and their tums
Multidimensional lattice paths
Multidimensional lattice paths bounded by a hyperplane
Multidimensional paths with a general boundary
The reflection principle in full generality ...
g-Counting of lattice paths and Rogers-Ramanujan identit
Self-avoiding walks .
i
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Our approach: Experimental Mathematics using Computer Algebra

David H. Bailey

Modern computer Algebra Second Edition

Joachim von zur Gathen and Jirgen Gerhard

Victor H. Moll

Experimental
Mathematics
in Action

Alin Bostan Computer algebra for combinatorics



Our approach: Experimental Mathematics using Computer Algebra

David H. Bailey

Algorithmes Efficaces
en Calcul Formel

. Alin Bostan
E)‘perlmenta]. Frédéric Cryzak
Marc Grusti

Maﬂlema._tics Romain LEBRETON

Grégoire LECERF

mn Actlon ” Bruno SaLvy

Eric Scrost
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> Walks in IN? starting at (0,0) and using steps in a fixed subset .# of
{1// <, ’\/ T/ /‘/ —, \U \L}'

> Counting sequence: g (1) = number of .¥-walks of length n

> Length generating function:

Qu(t) = ioqy(nﬁ" e Z[[1]

21/ 51



 Latice walks with small seps i the quarterplane

> Walks in IN? starting at (0,0) and using steps in a fixed subset .# of
{1// <_/ ,\/ TI /‘/ _>/ \U \l/}'

> Refinement: g, (7, j; 1) = number of .7-walks of length 1 ending at (i, )

> Full generating function (with “catalytic ” variables x, y):

Qulxyit) = Y qo(i,pn)x'yt" € Z[[x,y,t]

i,jn=0

> Actually: Qo (x,y;t) € Z[x,y][[t]] and Q »(1,1;t) = Q (1)

" AlnBostan  Computer algebra for combinatoric




Entire books dedicated to small-steps walks in the quarter plane!

Probability Theory and Stochastic Modelling 40

Guy Fayolle Guy FaonIe /
Roudolf Tasnogorodski Roudolf lasnogorodski
Vadim Malyshev Vadim Malyshev

Random Walks

in thé Quarter-Plane Ra n d O m
Walks in the
Quarter Plane

Springer @ Springer
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Among the 28 step sets . C {—1,0,1}2\ {(0,0)}, some are:
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Among the 28 step sets . C {—1,0,1}2\ {(0,0)}, some are:

trivial,
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Among the 28 step sets . C {—1,0,1}2\ {(0,0)}, some are:

trivial, simple,
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Among the 28 step sets . C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the

trivial, simple, half plane,
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Among the 28 step sets . C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the
half plane,

trivial, simple,

symmetrical.
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Among the 28 step sets . C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the
half plane,

trivial, simple,

symmetrical.

One is left with 79 interesting distinct models.
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The 79 small-steps quadrant mode

HOIHOH
HIAOH
HOATK
HOHOK
HOAICHK
AT AIGH
PRGN
HOKHAHHOCH
A A

i%%%%%%
X

AORAKK




Task: classify their generating functions!

P i

FLATIAE

*Cartness marsiniquonsts’
Tavia, 134

Bolte 3 - Collection Colbrant
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differentially algebraic




differentially algebraic




differentially algebraic




differentially algebraic




differentially algebraic

ab
21:1<C

— v @n(b)n t" _
t) = n;o On al’ where (a), =a(a+1)---(a+n-1).
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differentially algebraic




differentially algebraic

ab
21:1<C

— v @n(b)n t" _
t) = n;o On al’ where (a), =a(a+1)---(a+n-1).
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differentially algebraic

tan(t)

ab
21:1<C

— v @n(b)n t" _
t) = n;o On al’ where (a), =a(a+1)---(a+n-1).

25 /51



D-algebraic
(solutions of polynomial differential equations)

y =1+y? tan(t)

\ J

D-transcendental I(t) = [o°x" e Xdx

26 / 51



D-algebraic
(solutions of polynomial differential equations)

yo1ey tan(t)
2F (”Cb t) = yg:o % :Tn!, where (a), =a(a+1)---(a+n—1).

26 / 51



Algebr

Generating function: Q(x,y) = Q(x,y;t) = Y q(i, j;m)x'yit" € Z][[x,y,t]]
i,jn=0

Recursive construction yields the kernel equation

1 1 1 1
Q(x,y) =1+t <y+ o + x;) Q(x,y) — t;Q(O,y) — tx};Q(x,O)
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Alge

Generating function: Q(x,y) = Q(x,y;t) = ) q(i, j;n)x'yit" € Z[[x,y,1]]

i,jn=0

Recursive construction yields the kernel equation

(1=t (v 3 +25 ) ) Q) = 3y - 9Q(O.9) ~ 12Q(x0)

" AlnBostan  Computer algebra for combinatoric




Algebraic r

Generating function: Q(x,y) = Q(x,y;t) = ) q(i, j;m)x'y/t" € Z][[x,y,t]]

ijn=0

Recursive construction yields the kernel equation

(1 —t (y + % + x;)) xyQ(x,y) = xy — tyQ(0,y) — tx*Q(x,0)

New task: Solve this functional equation!

" AlnBostan  Computer algebra for combinatoric




Algebraic ref

Generating function: Q(x,y) = Q(x,y;t) = ) q(i,j;n)x'y/t" € Z[[x,y,1]]

i,j,1=0

Recursive construction yields the kernel equation

(1 —t (y + % + x;)) xyQ(x,y) = xy — tyQ(0,y) — tx*Q(x,0)

N

New task: For the other models — solve 78 similar equations!

T o s1geb for combinatoric




Dyck:; ;
Motzkin:; E

Poélya:

Kreweras: E * E
Gessel: E E
Gouyou-Beauchamps: ; E

King walks: %
Tandem walks: E £

28 /51




_Anessymodel Dyckwalks 7=

> Kernel equation:
(y = tx(1+%) - Qx,y) =y — tx- Q(x,0)

> Kernel method [Knuth, 1968]:
© let yo € Q[t][[x]] be the power series root of K = y — tx(1 + y?)

11— 4822

- 3.3 1 05,5 4 ..
x =tx + °x° + 28°x° + - - - € Q[t][[«]]

Yo

© plug y = yp in the kernel equation = Q(x,0) = }:—2

© conclude algebraicity:

—yo _ V1—42x2 4 2txy — 1

_Y
Q(xry) - K th(y — tx(l + yz))

> Same method proves algebraicity for all models intrinsic to the half plane

" AlnBostan  Computer algebra for combinatoric




A difficult mo

e ¢(n) = number of n-steps { , ./, -, — }-walks in IN?
1,2,7,21,78, 260, 988, 3458, 13300, 47880, . ..

Question: What is the nature of the generating function

G(t) = i‘bg(n) "2

30/ 51
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e ¢(i,j;n) = number of n-steps { ', ./, +—, — }-walks in IN? from (0,0) to (i, ])

A

Question: What is the nature of the generating function

Glx,y;t)= Y g(i,j;n)x'y/t" 2

ijn=0

30 / 51



A difficult mi

e ¢(i,j;n) = number of n-steps { 7, ./, -, — }-walks in IN? from (0, 0) to (i, f)

A

Question: What is the nature of the generating function
o0

Glxyt)= Y, g(ij;n)xylt"?

i,j,n=0

Theorem [B., Kauers, 2010] J

G(x,y;t) is an algebraic function®.

> computer-driven discovery/proof via algorithmic Guess-and-Prove

* Minimal polynomial P(G(x,y;t); x,y,t) = 0 has > 10! terms; ~ 30 Gb (6 DVDs!)

30 / 51
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A difficu

e ¢(n) = number of n-steps { *, ./, -, — }-walks in IN?

Question: What is the nature of the generating function

G(t) = iog(n) "2

Corollary [B., Kauers, 2010] (former conjecture of Gessel’s)
(Bn+1)g(2n) =(12n+2)g(2n—1)and (n+1)g(2n+1) = (4n +2) g(2n) J

> computer-driven discovery/proof via algorithmic Guess-and-Prove

30 / 51
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Guess-and-Prove

Guessing and Proving

George Pélya

What is “scientific method”? Philosophers and non-philosophers have
discussed this question and have not yet finished discussing it. Yet as a first introduction
it can be described in three syllables:

Guess and test.

Mathematicians too follow this advice in their research although they sometimes refuse to
confess it. They have, however, something which the other scientists cannot really have.
For mathematicians the advice is

First guess, then prove.

Alin Bostan Computer algebra for combinatorics



Guess-and-Prove

How to Solve It

Guessing and Proving

George Pélya

What is “scientific method”? Philosophers and non-philosophers have
discussed this question and have not yet finished discussing it. Yet as a first introduction
it can be described in three syllables:

Guess and test.

Mathematicians too follow this advice in their research although they sometimes refuse to
confess it. They have, however, something which the other scientists cannot really have.
For mathematicians the advice is

First guess, then prove.

[ generate data ]—)[ make conjectures )—)[prove them]

Alin Bostan Computer algebra for combinatorics




Question: Find B;; := the number of {—, 1}-walks in IN? from (0,0) to (i, )
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Question: Find B;; := the number of {—, 1}-walks in IN? from (0,0) to (i, )

@ There are 2 ways to get to (i, ), either from (i — 1, ), or from (i,j — 1):
Bij=Bj_1,;+Bjj1
@ There is only one way to get to a point on an axis: B;y = Bp; =1

> These two rules completely determine all the numbers B; ;
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Guess-an

Question: Find B;; := the number of {—, 1}-walks in IN? from (0,0) to (i, )

@ There are 2 ways to get to (i, ), either from (i — 1, ), or from (i,j — 1):
Bij = Bi—1,+ Bij—1
@ There is only one way to get to a point on an axis: B;y = Bp; =1

> These two rules completely determine all the numbers B; ;
(1) Generate data:

28 84 210 462 924
21 56 126 252 462
15 35 70 126 210
10 20 35 56 84
6 10 15 21 28
4 5 6 7
1 1 1 1 1

L = T W S Gy S e
= N W ke U NN

32/ 51

" AlnBostan  Computer algebra for combinatoric




Guess-and

Question: Find B;; := the number of {—, 1}-walks in IN? from (0,0) to (i)

@ There are 2 ways to get to (i, f), either from (i — 1, ), or from (i,j — 1):
Bij = Bi_1,;+ Bij1
@ There is only one way to get to a point on an axis: B;g = By; =1

> These two rules completely determine all the numbers B, ;

(1) Generate data:

1 7 28 84 210 462 924

1 6 21 56 126 252 462 (I Guess:
1 5 15 35 70 126 210

1 4 10 20 35 56 84 —

1 3 10 15 21 28 — (L)+2)

1 2 4 5 6 7 — i1

11 1
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Guess-and

Question: Find B;; := the number of {—, 1}-walks in IN? from (0,0) to (i, )

@ There are 2 ways to get to (i, ), either from (i — 1, ), or from (i,j — 1):
Bij = Bi—1,+ Bij—1
@ There is only one way to get to a point on an axis: B;y = Bp; =1

> These two rules completely determine all the numbers B; ;
(1) Generate data:

28 84 210 462 924

(II) Guess:
21 56 126 252 462
15 35 70 126 210 Bij;(iﬂ)'
. 1171
10 20 35 56 84 EJ:

6 10 15 21 28
4 5 6 7
1 1 1 1 1

L = T W S Gy S e
= N W ke U NN

32/51
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Question: Find B;; := the number of {—, 1}-walks in IN? from (0,0) to (i, )

@ There are 2 ways to get to (i, ), either from (i — 1, ), or from (i,j — 1):
Bij = Bi-1j+Bij1
@ There is only one way to get to a point on an axis: B;y = Bp; =1
> These two rules completely determine all the numbers B; ;

(1) Generate data:

(IIT) Prove: If
28 84 210 462 924 C. . def (i)

1 Z 21 56 126 252 462 ij = 7y then

1 5 15 35 70 126 210 Civj Gy _ i
1 4 10 20 35 56 84 Cij Cij i+j i+j

1 3 6 10 15 21 28 and Cyo = Co; = 1.

1 2 4 5 6 7

111 1 1 1 1 Thus B;j = C;;
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Guess-and-Prove for Gesse

e ¢(i,j;n) = number of n-steps { *, ./, +—, — }-walks in IN? from (0, 0) to (i, f)

A

Question: What is the nature of the generating function
(o]

Glxyt)=Y gl jn)xyt"?
i,j,n=0

Answer: [B., Kauers, 2010] G(x,y;¢) is an algebraic function®.

Approach: — very general and robust!
® Generate data: compute G to precision #'2% (a~ 1.5 billion coeffs!)

@ Guess: conjecture polynomial equations for G(x,0; t) and G(0,y; t)
(degree 24 each, coeffs. of degree (46,56), with 80-bits digits coeffs.)

@ Prove: multivariate resultants of (very big) polynomials (30 pages each)

* Minimal polynomial P(G(x,y;t);x,y,t) = 0 has > 10" terms; ~ 30 Gb (6 DVDs!)




g(t) := G(0,0;vt) = E (5/6)u(1/2) (16t)" is algebraic.

(5/3)n (2




g(t) := G(0,0;vt) = E (S(é?)SISEll(é)z,zn (16)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y5 gnt" as a root.
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g(t) := G(0,0;vt) = E (S(é?);sg,l(é)z,zn (16)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y5 gnt" as a root.

® Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.
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Theorem [“Gessel excursions are algebraic”]

g(t) := G(0,0;vt) = E (5(22’" 1(;;3" (16)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y5 gnt" as a root.

® Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.
@ Implicit function theorem: 3! root r(t) € Q[[t]] of P.
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A typical Guess-

Theorem [“Gessel excursions are algebraic”]

= G(0,0;Vt) = 3 M
8= GO0V = ¥, T .

(16)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y5 gnt" as a root.

® Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.

@ Implicit function theorem: 3! root r(t) € Q[[t]] of P.

@ r(t) =Y, rat" being algebraic, it is D-finite, and so (r,) is P-recursive:
(n+2)(3n+5)r,.1 —4(6n+5)2n+1)r, =0, ro=1

_ (5/6),1/2)uqn

= solution r, = G302, 16" =8 thus g(t) = r(t) is algebraic.
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A typical Guess-and-Prove algorithmi_

Theorem [“Gessel excursions are algebraic”]

= G(0,0;vE) = . 5761/
80):=600VH =) 57, @,

(16)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y5 gnt" as a root.

® Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.

@ Implicit function theorem: 3! root r(t) € Q[[t]] of P.

@ r(t) =Y, rat" being algebraic, it is D-finite, and so (r,) is P-recursive:
(n+2)(3n+5)r,41 —4(6n+5)(2n+1)r, =0, ro=1

= solution r, = %16” = gn, thus g(t) = r(t) is algebraic.

> P:=gfun:-listtoalgeq([seq(pochhammer (5/6,n)*pochhammer(1/2,n)/
pochhammer (5/3,n) /pochhammer (2,n)*16™n, n=0..100)], g(t)):
> gfun:-diffeqtorec(gfun:-algeqtodiffeq(P[1], g(t)), gt), r(n));




A typical Guess-and-Prove algorithmic proof

Theorem [“Gessel excursions are algebraic”]

g()) == G(0,0;vF) = ¥ &6/

no: .
n=0 (5/3)n(2)n (16t) is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T], then prove that P admits
the power series g(t) = Y, gnt" as a root.

@ Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.

@ Implicit function theorem: 3! root r(t) € QI[#]] of P.

@ r(t) =Y rat" being algebraic, it is D-finite, and so (r;) is P-recursive:
(n+2)Bn+5)r,1 —46n+52n+1)r, =0, ro=1

= solution r, = %16" = gn, thus g(t) = r(t) is algebraic.

> P:=gfun:-listtoalgeq([seq(pochhammer(5/6,n)*pochhammer(1/2,n)/
pochhammer (5/3,n) /pochhammer (2,n)*16°n, n=0..100)]1, g(t)):
> gfun:-diffeqtorec(gfun:-algeqtodiffeq(P[1], g(t)), g(t), r(n));

> Steps 1 & 3 rely on polynomial linear algebra (Hermite-Padé approximants).
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Hermite-Padé approximants [Hermite, 1893], [Padé, 1894]

Sur la généralisation
des fractions continues algébriques.

(Par M. Cu. Herwite, membre de ' Institut, & Paris.)

[Extrait d’une lettre a M. Pincherle (*).]

...... Le probleme que j'ai en vue est lo suivant: Etant donné n
séries S, S,,... S, procédant suivant les puissances d’'une variable z, déter-
miner les polyndmes X,, X;,... X, des degrés p,, u,,... pn de maniére & avoir

S X+ 858X+ + 8, X, = Sattegt: R

ot S est une série de méme nature que S, S,, ete. La question ainsi posée
est entierement déterminée, et une remarque de calcul intégral en donne la
compléte solution dans le cas particulier ol les séries sont de simples expo-
nentielles. C’est ce que je vais montrer, je me proposerai ensuite de faire
sortir, en vue du cas général, les enseignements que contient cette solution.
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Hermite-Padé ap

Sur la généralisation des fractions continues algébriques;

Par M. H. PADE,

Docteur &s Sciences mathématiques,
Professeur au lycée de Lille.

INTRODUCTION.

M. Hermite s'est, dans un travail récemment paru ('), occupé de
la généralisation des fractions continues algébriques. La question est
de déterminer les polynomes X, X,, ..., X,, de degrés ,, pyy ..y iy,
qui satisfont & I'équation

S, X, + 8,X, +...+ 5. X, = S gttt
S,, 8, ..., S, étant des séries entiéres données, et S une série égale-
ment entiére. Ou plutét, il B’ngi permette
le calcul de proche en proche de ces systémes de n polynomes, et qui’
" AlnBostan  Computer algebra for combinatoric




Definition: A Hermite-Padé approximant of type d = (dy,...,d,) € N" for
F=(fi,....fn) eK[[x]]"isaP = (P,...,P;) € K[x]"\ {0} such that:

1) PLfi+---+Puifu= O(JC‘T) with o = Zi(di +1) -1,
(2) deg(P;) < dj for all i.
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Hermite-Padé approximan

Definition: A Hermite-Padé approximant of type d = (dy,...,d,) € IN" for
F=(fi,....fn) eK[[x]]"isaP = (P,...,P;) € K[x]" \ {0} such that:

(1) Pifi+ -+ Pufy = O(x%) with o = Y (d; +1) — 1,
(2) deg(P;) < d for all i.

> Very useful concept in number theory (irrationality/transcendence):
© [Hermite, 1873]: e is transcendent; [Lindemann, 1882]: 7t is transc.

© [Apéry, 1978; Beukers, 1981]: {(3) = ¥;>1 711—3 is irrational;
[Rivoal, 2000]: there are infinitely many k such that {(2k + 1) ¢ Q.

> Very useful tool in computer algebra
® algebraic approximants when f; = A“"! for a given A € K[[x]]
e differential approximants when f; = A=Y for a given A € K[[x]]




Hermite-Padé ap

Definition: A Hermite-Padé approximant of type d = (dy,...,d,) € N" for
F=(fi,....fx) eK[[x]]"isaP = (P,...,P;) € K[x]"\ {0} such that:

(1) Pifit +Pufa=0(x7) withe =Y ,(d; +1) - 1,
(2) deg(P;) < d; for all i.

> Many fast algorithms: [Beckermann, Labahn, 1994], [Giorgi, Jeannerod,
Villard, 2003], [B., Jeannerod, Schost, 2007, 2008], [Zhou, Labahn, 2012],
[Jeannerod, Neiger, Villard, 2020], [Rosenkilde, Storjohann, 2016, 2021], etc.

> gfun (Maple), Guess.m (Mathematica), ore_algebra (SageMath), etc.
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Algorithmic classification of models with D-finite Q »(f) :=

Qﬂ(ll 1; t)

OEIS .¥ Polsize LDE size Rec size OEIS .¥ Polsize LDE size Rec size
1]a005566 € — (3,4 (22 [13latsiers & —  (5,24) (9, 18)
21A018224 & — (3,5 (2,3) ||14]A151314 @&  —  (5,24) (9,18)
3(A151312 3K —  (3,8) (4,5 [15A151255 N —  (4,16) (6 9)
4|A151331 3B — (3,6) (34 ||16/A151287 R —  (5,19) (7,11)
5(A151266 Y —  (5,16) (7,10) ||17]A001006 &; 2,2) 23 1)
6(A151307 ¥ — (5,200 (8 15) [18/A129400 R (2,20 (2,3) (1)
7(a151201 T — (5,15 (6,10) [|19/A005558 Y —  (3,5) (2,3)
8|A151326 B (5,18) (7,14)
9|A151302 K —  (5,24) (9,18) ||20{A151265 <* (6,8) (4,9) (6, 4)
10/A151329 38  —  (5,24) (9,18) |[21|A151278 > (6,8) (4,12) (7, 4)
11|A151261 & — 415 (5,8 ||22(a151323 B 4,4 (23 @1)
12|A151297 R —  (5,18) (7,11) ||23|A060900 %5 (8,9) (3,5) (2 3)

Equation sizes = (order, degree)
> Computerized discovery: enumeration + guessing [B., Kauers, 2009]
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http://oeis.org/A005566
http://oeis.org/A151275
http://oeis.org/A018224
http://oeis.org/A151314
http://oeis.org/A151312
http://oeis.org/A151255
http://oeis.org/A151331
http://oeis.org/A151287
http://oeis.org/A151266
http://oeis.org/A001006
http://oeis.org/A151307
http://oeis.org/A129400
http://oeis.org/A151291
http://oeis.org/A005558
http://oeis.org/A151326
http://oeis.org/A151302
http://oeis.org/A151265
http://oeis.org/A151329
http://oeis.org/A151278
http://oeis.org/A151261
http://oeis.org/A151323
http://oeis.org/A151297
http://oeis.org/A060900

Algorithmic classification of models with D-finite Q »(f) :=

QY(ll 1; t)

OEIS .¥ Polsize LDE size Rec size OEIS .¥ Polsize LDE size Rec size
1]a005566 € — (3,4 (22 [13latsiers & —  (5,24) (9, 18)
21A018224 & — (3,5 (2,3) ||14]A151314 @&  —  (5,24) (9,18)
3(A151312 3K —  (3,8) (4,5 [15A151255 N —  (4,16) (6 9)
4|A151331 3B — (3,6) (34 ||16/A151287 R —  (5,19) (7,11)
5(A151266 Y —  (5,16) (7,10) ||17]A001006 &; 2,2) 23 1)
6(A151307 ¥ — (5,200 (8 15) [18/A129400 R (2,20 (2,3) (1)
7(a151201 T — (5,15 (6,10) [|19/A005558 Y —  (3,5) (2,3)
8|A151326 B (5,18) (7,14)
9|A151302 K —  (5,24) (9,18) ||20{A151265 <* (6,8) (4,9) (6, 4)
10/A151329 38  —  (5,24) (9,18) |[21|A151278 > (6,8) (4,12) (7, 4)
11|A151261 & — 415 (5,8 ||22(a151323 B 4,4 (23 @1)
12|A151297 R —  (5,18) (7,11) ||23|A060900 %5 (8,9) (3,5) (2 3)

> 1-22: DF confirmed by human proofs in [Bousquet-Mélou, Mishna, 2010]

Equation sizes = (order, degree)
> Computerized discovery: enumeration + guessing [B., Kauers, 2009]

> 23: DF confirmed by a human proof in [B., Kurkova, Raschel, 2017]
> All: explicit egs. proved via CA [B., Chyzak, van Hoeij, Kauers, Pech, 2017]
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http://oeis.org/A005566
http://oeis.org/A151275
http://oeis.org/A018224
http://oeis.org/A151314
http://oeis.org/A151312
http://oeis.org/A151255
http://oeis.org/A151331
http://oeis.org/A151287
http://oeis.org/A151266
http://oeis.org/A001006
http://oeis.org/A151307
http://oeis.org/A129400
http://oeis.org/A151291
http://oeis.org/A005558
http://oeis.org/A151326
http://oeis.org/A151302
http://oeis.org/A151265
http://oeis.org/A151329
http://oeis.org/A151278
http://oeis.org/A151261
http://oeis.org/A151323
http://oeis.org/A151297
http://oeis.org/A060900

Algorithmic classification of mo

OEIS . algebraic? asymptotics OEIS .7  algebraic? asymptotics
1]A005566 G N ae gl A151275 < N 2000
2|A018224 2K 24 gl A151314 % N YRuCegr
3 |A151312 x N vee 15 A151255 ,& N L;T/i%
4 |A151331 % N S8 e A151287 & N @%
5la151266 Y. N 3/23% |l Aooi006 & Y 3/2:2;
6|at5137 B N 1/E 3, 18] A120400 % Y 3/28,
7laision YN i ol Aoossss R N 841
8|atsiae BN Fim A=14V2 B=14V3, C=14vE A =7+3v6, = /21
9 |A151302 X N W3 |20 A151265 { Y % 2
10| A151329 §§ N Wi n% 21 A151278 } Y % ngﬁ
11|A151261 K& N R2BeE" ) A151323 & Y &5
1a151207 g N VG2 @B \l23|  A060900 & Y o

> Computerized discovery: convergence acceleration + LLL [B., Kauers, '09]



http://oeis.org/A005566
http://oeis.org/A151275
http://oeis.org/A018224
http://oeis.org/A151314
http://oeis.org/A151312
http://oeis.org/A151255
http://oeis.org/A151331
http://oeis.org/A151287
http://oeis.org/A151266
http://oeis.org/A001006
http://oeis.org/A151307
http://oeis.org/A129400
http://oeis.org/A151291
http://oeis.org/A005558
http://oeis.org/A151326
http://oeis.org/A151302
http://oeis.org/A151265
http://oeis.org/A151329
http://oeis.org/A151278
http://oeis.org/A151261
http://oeis.org/A151323
http://oeis.org/A151297
http://oeis.org/A060900

Algorithmic classification of models with D-finite Q () := Q.»(1,1;)

OEIS . algebraic? asymptotics OEIS .7  algebraic? asymptotics
1]a005566 4 N 44 13 A151275 X N 12;@%@
2|a018224 P& N 241y A151314 b N m;ﬂcm oy
slas32 @K N Yo' 15| A151255 X N vz V2]
4|a5181 BN 38 el A151287 & N A pAr
5|a151266 'Y N 1/22 |l17]  Acowo06 & Y 3./2.2,
6|A151307 ¥ N W n |18 A129400 % Y g\/g o
7|as1201 Y N saar (|19 A005558 N N LEa
g|atsiae N J%n?y;z A=14VZ B=14V3, C=1+V6, A =7+3V6, =/ 2
9 |A151302 X N 1 %ﬂ?jz 20 A151265 { Fé% 1334
10a151329 B N Wi |2t A151278 S Y ﬁi(@/ 5 =
11|A151261 ,2\ N 2B A151323 % Y el
12[A151207 g N 2GR I3l 060900 P Y s

> Computerized discovery: convergence acceleration + LLL [B., Kauers, '09]

> Asympt. confirmed by human proofs via ACSV in [Melczer, Wilson, 2016]
> Transcendence proofs via CA [B., Chyzak, van Hoeij, Kauers, Pech, 2017]
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http://oeis.org/A005566
http://oeis.org/A151275
http://oeis.org/A018224
http://oeis.org/A151314
http://oeis.org/A151312
http://oeis.org/A151255
http://oeis.org/A151331
http://oeis.org/A151287
http://oeis.org/A151266
http://oeis.org/A001006
http://oeis.org/A151307
http://oeis.org/A129400
http://oeis.org/A151291
http://oeis.org/A005558
http://oeis.org/A151326
http://oeis.org/A151302
http://oeis.org/A151265
http://oeis.org/A151329
http://oeis.org/A151278
http://oeis.org/A151261
http://oeis.org/A151323
http://oeis.org/A151297
http://oeis.org/A060900

Let . be one of the models 1-19. Then
© Q. (x,y;t) is expressible using (integrals of) oF; expressions.

© Q. (x,y;t) is transcendental.
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Models 1-19: proofs, explicit e

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Let . be one of the models 1-19. Then
© Q. (1) is expressible using (integrals of) »F; expressions.

© Q. (1) is transcendental, except for .77 = ék, and .¥ = & .

Example (King walks in the quarter plane, A151331)

16x(1 + x) ) ix

2 2| 2T
(1+4x)2

1/ 1 3 3
ogr =1 [, vy oA (2

=1+ 3t + 18t + 105¢> + 684+* + 4550¢° + 31340t° + 219555¢7 + - - -



http://oeis.org/A151331

Models 1-19: proofs, explicit expressio:_

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Let . be one of the models 1-19. Then
© Q. (1) is expressible using (integrals of) »F; expressions.

© Q. (1) is transcendental, except for .77 = Q and .¥ = % .

Example (King walks in the quarter plane, A151331)

16x(1 + x)
{1+ 402 )

pol [ (13
Q%()"?/O (1+4x)3'“< 2
=1+ 3t + 18t + 105¢> + 684+* + 4550¢° + 31340t° + 219555¢7 + - - -

> Computer-driven discovery and proof; no human proof yet.
> Proof uses: (1) kernel method and (2) creative telescoping
+ (3) ODE factoring and (4) ODE solving.
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The kernel K(x,y;t) :=1—t ¥ jjes Xyl =1t (x +1l4y+ %)
is left invariant under the change of (x,y) into the elements of

0 = {9 (1), (1 D). (v )}
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The kernel K(x,y;t) :=1—t ¥ jjes Xyl =1t (x +1l4y+ %)
is left invariant under the change of (x,y) into the elements of

0 = {0, (L), (L D). (v )}

Kernel equation:

K(x,y; H)xyQ(x,y;t) = xy — txQ(x,0; ) — tyQ(0, y; t)
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1)

The kernel K(x,y;t) :=1—t ¥ jjes Xyl =1t (x + % +y+ %)
is left invariant under the change of (x,y) into the elements of

0 = {9, (L), (1 D), (v )}

Kernel equation:

K(x,y;t)xyQ(x,y3t) = xy — txQ(x,0;t) — tyQ(0, y; t)
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() Kernel method [Bousquet-Melow Mishna, 2010) 7 =%

The kernel K(x,y;t) :=1—t ¥ jjes Xyl =1t (x +1l4y+ %)
is left invariant under the change of (x,y) into the elements of

G = {(wy). (L), (1), (=)}

Kernel equation:
K(x,y;H)xyQ(x,y;t) = xy — txQ(x,0;t) — tyQ(0, y; t)
—K(x,y;)1yQ(L,y;t) = — Ly +t1Q(L,0;) + tyQ(0, y; t)
K(x,y; f)%Q(x, y,f) %% —t1Q(L,0t) - %Q(Of %}f)
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(1) Kerne

The kernel K(x,y;t) :=1—t ¥ jjes Xyl =1t (x +1l4y+ %)
is left invariant under the change of (x,y) into the elements of

0 = {9 (2, (1 D), (v D)}

Kernel equation:
K(x,y;H)xyQ(x,y;t) = xy — txQ(x,0;t) — tyQ(0, y; t)
—K(xy; )ny(x,y, ) y+t 1Q(3,0;6) + tyQ(0,y;t)
K(x,yit) 3y (x,y,) };5 1Q(%,0:1) — 5Q(0, ;1)
—K(x,y;t) Qlx, ) —xy +th(x 0; t)+t Q(O,%,t)

40 /51
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(1) Kernel met

The kernel K(x,y;t) :=1—t ¥ jjes Xyl =1t (x +1l4y+ %)
is left invariant under the change of (x,y) into the elements of

0 = {9 (1), (1 D). (v )}

Kernel equation:

K(x,y;t)xyQ(x,y3t) = xy — txQ(x,0;t) — tyQ(0, y; t)
—K(x,y; )ny(x,y, ) y+t Q(3,0;1) + tyQ(0,y;1)
K(x,yit) 3y (x,y,) %; 1Q(%,0:1) — 5Q(0, ;1)
—K(x,y;t)x1Q(x ,y, t)= —xi +th(x 0;t) +td Q(O,%,t)

Summing up yields the orbit equation: .

1 11

Yoy txy Ty

—199xQx, it)) = y y
gezg( ) (y ( Y )) K(X,y,‘f)
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(1) Kernel met

The kernel K(x,y;t) :=1—t ¥ jjes Xyl =1t (x +1l4y+ %)
is left invariant under the change of (x,y) into the elements of

0 = {9 (1), (1 D). (v )}

Kernel equation:

K(x,y;t)xyQ(x,y3t) = xy — txQ(x,0;t) — tyQ(0, y; t)
—K(x,y; )ny(x,y, ) y+t Q(3,0;1) + tyQ(0,y;1)
K(x,yit) 3y (x,y,) %; 1Q(%,0:1) — 5Q(0, ;1)
—K(x,y;t)x1Q(x ,y, t)= —xi +th(x 0;t) +td Q(O,%,t)

Taking positive parts yields: .

1 11
) o XY=y tay oy
[y LDy QLeyin) = by )=y
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(1) Kernel met

The kernel K(x,y;t) :=1—t ¥ jjes Xyl =1t (x +1l4y+ %)
is left invariant under the change of (x,y) into the elements of

G = {(xy), (by), (1 1), (1)}

Kernel equation:
K(x,y;H)xyQ(x,y;t) = xy — txQ(x,0;t) — tyQ(0, y; t)
—K(xy; )ny(x,y, ) y+t Q(L,0;1) + tyQ(0,y; 1)
K(x,yit) 3y (x,y,) %; 1Q(%,0:1) — 5Q(0, ;1)
— K(x,y;£)x2Q(x ,y,) —xd +th(x0t)+t Q(O,%,t)

Summing up and taking positive parts yields: ) . .
XY=y tay oy

K(x,y;t)

xyQx,yt) =[xy

40 /51
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(1) Kernel met

The kernel K(x,y;t) :=1—t- Y jjc.or Xyl =1t (x +1l+y+ %)
is left invariant under the change of (x,y) into the elements of

G i={(ow), (L) (L 1), (0 1))

Kernel equation:
K(x,y; )xyQ(x,y; 1) = xy — txQ(x,0;t) — tyQ(0, y; 1)
~K(xy;t)y yQ(x,y,) T+ QG 0:1) + tyQ(0, ;1)
K(x,y;t) 3 3Q(5, yit) }75 t3Q(%,0; t)—tlQ(Orﬁ;t)
—K(x,y,t)x (x,y, ) —xy L4 txQ(x,0; t)+t Q(0 ,y, t)

GFun = PosPart (M> = #RatFrac

Kernel
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(1) Kernel met

The kernel K(x,y;t) :=1—t- Y jjc.or Xyl =1t (x +1l+y+ %)
is left invariant under the change of (x,y) into the elements of

G i={(ow), (L) (L 1), (0 1))

Kernel equation:
K(x,y; )xyQ(x,y; 1) = xy — txQ(x,0;t) — tyQ(0, y; 1)
~K(xy;t)y yQ(x,y,) T+ QG 0:1) + tyQ(0, ;1)
K(x,y;t) 3 3Q(5, yit) }75 t3Q(%,0; t)—tlQ(Orﬁ;t)
—K(x,y,t)x (x,y, ) —xy L4 txQ(x,0; t)+t Q(0 ,y, t)

GF = PosPart <%) is D-finite [Lipshitz, 1988]
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(1) Kernel method [B

The kernel K(x,y;t) :=1—t- Y jjc.or Xyl =1t (x +1l+y+ %)
is left invariant under the change of (x,y) into the elements of

G = {(xy). (1), (1), (1)}

Kernel equation:
K(x, 3 )xyQ(x,y; t
— K(x, 1) 3yQ(5, it
K(x,y; )%iQ(}(,;,t
—K(xy el Qi

— txQ(x,0;t) — tyQ(0, y; 1)
- %yH%Q(}?,o;t) +tyQ(0,y;1)
%%_tlQ(}—c,O't)—tlQ(O,;,t)
= —xy +1xQ(x,0;1) + 1700, 3;t)

GF = PosPart <%e:sr) is D-finite [Lipshitz, 1988]

> Argument works if OS # 0: algebraic version of the reflection principle

" AinBostan  Computer algebra for combinatoric
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(1) Kernel method

The kernel K(x,y;t) :=1—t- Y jjc.or Xyl =1t (x +1l+y+ %)
is left invariant under the change of (x,y) into the elements of

G = {(xy). (1), (1), (1)}

Kernel equation:
K(x,y;)xyQ(x,y3t) =
— Ky 3yQ(5. w3t
K(x,y;)21Q(%, 5:t)
— K(xpit)x1Q(x, ;1)

— txQ(x,0;t) — tyQ(0, y; 1)

y+t Q(3,0;1) + tyQ(0,y;1)
}-c%, t—Q(E,Ot)—tlQ(Or;rt)
—xd 4+ xQ(x,0;1) +£1Q(0, ;1)

GF = PosPart <%esl') is D-finite [Lipshitz, 1988]

> Creative Telescoping finds a differential equation for GF = f RatFrac o
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“An algorithmic toolbox for multiple sums and integrals with parameters”

VOLUME 4: DIRECT LAPLACE TRANSFORMS

Combinatorial
Identities

H W. Gould
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“An algorithmic toolbox for multiple sums and integrals with parameters”

DOUBLE INTEGRALS 61
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(2) Creative Telescoping

“An algorithmic toolbox for multiple sums and integrals with parameters”

n
Example [Apéry 1978]: A, = Z (

k=0

2
> satisfies the recurrence

) (i

(n+1)3A +12A, 1 = 2n+1) (1712 +17n+5)A,.

> Key fact used to prove that {(3) :=

1. Journées Arithmétiques de Marseille-Luminy, June 1978

The board of programme changes informed us that R.
Apéry (Caen) would speak Thursday, 14.00 “Sur I'irration-
alité de {(3).” Though there had been earlier rumours of
his claiming a proof, scepticism was general. The lecture
tended to strengthen this view to rank disbelief. Those who
listened casually, or who were afflicted with being non-
Francophone, appeared to hear only a sequence of unlikely
assertions.

1
Z 3 ~ 1.202056903. .. is irrational.
n>1

7.1CM *78, Helsinki, August 1978

Neither Cohen nor I had been able to prove @ or @ in
the intervening 2 months. After a few days of fruitless
effort the specific problem was mentioned to Don Zagier
(Bonn), and with irritating speed he showed that indeed
the sequence {by} satisfies the recurrence (4). This more or
less broke the dam and and were quickly con-
quered. Henri Cohen addressed a very well-attended meet-
ing at 17.00 on Friday, August 18 in the language of the
majority, proving and explaining how this implied the

[Van der Poorten, 1979: “A proof that Euler missed”]

- AlinBostan G
.
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)

“An algorithmic toolbox for multiple sums and integrals with parameters”

mo i\ (n+k\2
Example [Apéry 1978]: A, = ) (k) < K > satisfies the recurrence
k=0

(n+1)3A +12A, 1 = 2n+1) (1712 +17n+5)A,.

> Key fact used to prove that {(3) := ) 711—3 ~ 1.202056903 ... . is irrational.
n>1

[Zeilberger, 1990: “The method of creative telescoping”]
B (... g o combmtoric
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“An algorithmic toolbox for multiple sums and integrals with parameters”

Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

1—e2u? dxdy
1_u2d u=4 122x2 F () F

Principle: Find algorithmically
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(2) Creativ

“An algorithmic toolbox for multiple sums and integrals with parameters”

Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

1—e2u? dxdy
12 Tz du=4 1 ezxz F () F

Principle: Find algorithmically
(e~ R+ (1-Aete) | o | =
(e ¢ )% ¢ )T e 1 1= -
(

=
5 e(1+x—x2—x%)y? (2x—3+y2+x2 (32 -2) )
! (2 (ey) 1)

L, (Ze(ezfl)x(l+x3)y3>

(@)1

> Conclusion: (e —e) - p"(e) + (1 —¢*) - p'(e) +e- p(e) = 0.
" AinBostan  Computer algebra for combinatoric
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(2) Creative Tel

“An algorithmic toolbox for multiple sums and integrals with parameters”

Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

1—e2u? dxdy
12 Tz du=4 1 ezx2 £ Q F .

Principle: Find algorithmically
392 4 (1 — )9, + 1 _
(=t +1=ehare) | e | =

A=)

5 (e(l+x—x2—x3)y2 (2x—3+y?+x2(3e2—y?-2)) >
x

(P42 (e—y?)-1)°
2e(e?—1)x(1+x3)y?
+%(ww%Lw4f
1
7]
2 2 32
D ATrBosE  Computer algebra for combinatoric

_1
> Conclusion: p(e) = z .21:1< % ez) o2 37re4 B
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“An algorithmic toolbox for multiple sums and integrals with parameters”

Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

1—e2u? dxdy
12 Tz du=4 1 ezxz F () F

Principle: Find algorithmically
(=R +(1-Aete) | e | =
e—e’)o; €°)de [ i-ae =

1)y

5 <e(1+x7x27x3)y2 (2x—3+y2+x2(3e2—y?-2)) >
x

(P (e —y?)-1)?

L, (Ze(ezfl)x(l+x3)y3>

(42 (2—y2) 1)

> Drawback: Size(certificate) >> Size(telescoper).

" AinBostan  Computer algebra for combinatoric
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(2) Creative Telescoping: sev

© 1G, elimination-based: [Fasenmyer, 1947], [Lipshitz, 1988], [Zeilberger,
1990], [Takayama, 1990], [Wilf, Zeilberger, 1990], [Chyzak, Salvy, 2000]

© 2G, linear diff/rec rational solving: [Zeilberger, 1990], [Zeilberger, 1991],
[Almkvist, Zeilberger, 1990], [Chyzak, 2000], [Koutschan, 2010]

© 3G, combines 1G + 2G + linear algebra: [Apagodu, Zeilberger, 2005],
[Koutschan 2010], [Chen, Kauers 2012], [Chen, Kauers, Koutschan 2014]

> Advantages:
© 1G-3G: very general algorithms;
© 2G/3G algorithms are able to solve non-trivial applications.

> Drawbacks:
@ 1G: slow;
© 2G: bad or unknown complexity;
© 1G and 3G: non-minimality of telescopers;
© 1G-3G: all compute (big) certificates.




(2) Creative Telescoping: sever

4G: roots in [Ostrogradsky, 1845], [Hermite, 1872] and [Picard, 1902]

©® univariate:

© rational [: [B., Chen, Chyzak, Li, 2010]

© hyperexponential f : [B., Chen, Chyzak, Li, Xin, 2013]

© hypergeometric } : [Chen, Huang, Kauers, Li, 2015], [Huang, 2016]
© mixed [+ Y [B., Dumont, Salvy, 2016]
©
©

algebraic f : [Chen, Kauers, Koutschan, 2016]
D-finite Fuchsian [: [Chen, van Hoeij, Kauers, Koutschan, 2018]
© D-finite f : [B., Chyzak, Lairez, Salvy, 2018], [van der Hoeven, 2018]

© multiple:
© rational bivariate ¢p: [Chen, Kauers, Singer, 2012], [Chen, Du, Kauers, 2021]

© rational: [B., Lairez, Salvy, 2013], [Lairez 2016]
© binomial sums: [B., Lairez, Salvy, 2017]
> Advantages:
© good complexity;
© minimality of telescopers;
© do not need to compute certificates;
© fast in practice.

> Drawback: not (yet) as general as 1G-3G algorithms.
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(2) 4G Creative Telescoping

Algorithm for the integration of rational functions [B., Lairez, Salvy, 2013]

Input: R(e,x) a rational function in e and x = x1, ..., xy.

© Output: A linear ODE T/(e, 9, )y = 0 satisfied by y(¢) = {f R(e, x)dx.
© Complexity: O(D¥+2), where D = degR.
®

Output size: T has order < D" in 9, and degree < D312 i e,

v

Roots in [B., Chen, Chyzak, Li, 2010] (n = 1).

Relies on generalized Hermite reduction and polynomial linear algebra.

v

Avoids the (costly) computation of certificates, of size Q(D”Z/ 2).

Previous algorithms: complexity (at least) doubly exponential in .

v Vv V

Highly non-trivial extension by [Lairez, 2016]: very efficient in practice.




Models 1-19: explicit expressions and —

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Let . be one of the models 1-19. Then
© Q. (1) is expressible using (integrals of) »F; expressions.

© Q. (1) is transcendental, except for .77 = ék, and .¥ = % .

Example (King walks in the quarter plane, A151331)

16x(1 + x)
1+ 4072 )

pol [ (13
Q%()"?/O (1+4x)3'“< 2
=1+ 3t + 18t + 105¢> + 684+* + 4550¢° + 31340t° + 219555¢7 + - - -

> Computer-driven discovery and proof; no human proof yet.
> Proof uses: (1) kernel method and (2) creative telescoping
+ (3) ODE factoring and (4) ODE solving.
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http://oeis.org/A151331

n 2 2
ft)=Y_Aut", where A, =Y <n> (n +k> , is transcendental.
n

k k

k=0
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n 2 2
ft)=Y_Aut", where A, =Y <n> (n +k> , is transcendental.
n

k k

k=0

Proof:
@ Creative telescoping:

(n+1)P3A, 1 +1%A,_1 = 2n+1) (170> +17n+5)A,, Ag=1,A; =5
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n 2 2
ft)=Y_Aut", where A, =Y (n) (n +k> , is transcendental.
n

k k

k=0

Proof:
@ Creative telescoping:

(n+1)P3A, 1 +1%A,_1 = 2n+1) (170> +17n+5)A,, Ag=1,A; =5
@ Conversion from recurrence to differential equation L(f) = 0, where

L= (t* — 3413 + 12)07 + (61> — 1532 4+ 34)? + (7t — 112t +1)d; +t — 5
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Algorithmic t

Theorem (Apéry’s power series is transcendental)

o 2 n+k 2
ft)=Y_Aut", where A, =Y (k) ( k ) , is transcendental.
@ k=0

Proof:
@ Creative telescoping:

(n+1)P3A, 1 +13A,_1 = 2n+1)(17n® +17n+5)A,, Ag=1,A; =5
@ Conversion from recurrence to differential equation L(f) = 0, where
L= (t* — 3413 + 12)07 + (61> — 1532 4+ 34)? + (7t — 112t +1)d; +t — 5

@ Guess-and-Prove: . .
compute least-order L™ in Q()(0;) such that L™ (f) = 0

" AinBostan  Computer algebra for combinatoric




Algorithmic transce

Theorem (Apéry’s power series is transcendental)

o 2 n+k 2
ft)=Y_Aut", where A, =Y (k) ( k ) , is transcendental.
@ k=0

Proof:
@ Creative telescoping:

(n+1)P3A, 1 +13A,_1 = 2n+1)(17n® +17n+5)A,, Ag=1,A; =5
@ Conversion from recurrence to differential equation L(f) = 0, where
L= (t* — 3413 + 12)07 + (61> — 1532 4+ 34)? + (7t — 112t +1)d; +t — 5

@ Guess-and-Prove: . .
compute least-order Lj}““ in Q(t)(d;) such that L}mn (f)=0

@ Basis of formal solutions of L}“i“ att=0:

{1 +5t+0(f), In(t) + (5In(t) +12)t + O(2), In(t)? + (5In(t)2 +241In(t))t + O(2) }
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Algorithmic transcendenc

Theorem (Apéry’s power series is transcendental)

o 2 n+k 2
ft)=Y_Aut", where A, =Y (k) ( k ) , is transcendental.
@ k=0

Proof:
@ Creative telescoping:

(n+1)P3A, 1 +13A,_1 = 2n+1)(17n® +17n+5)A,, Ag=1,A; =5
@ Conversion from recurrence to differential equation L(f) = 0, where

L= (t* — 3413 + 12)07 + (61> — 1532 4+ 34)? + (7t — 112t +1)d; +t — 5
@ Guess-and-Prove:

compute least-order L}“i“ in Q(t)(d;) such that L}“i“ (f)=0

@ Basis of formal solutions of L}“i“ att=0:
{1 +5t+0(f), In(t) + (5In(t) +12)t + O(2), In(t)? + (5In(t)2 +241In(t))t + O(2) }

® Conclusion: f is transcendental®

* f algebraic would imply a full basis of algebraic solutions for Lfmin [Tannery, 1875].
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Q.» is D-finite <= a certain group G » is finite (!)
quadrant models .7: 79
|G| <00 23/ \|g5p|=oo: 56
orbit sum :{ 4 oﬁsum #0:19  asymptotics +|Gr6bner Bases
Guess—a1|1d—Prove Creative T|e1escoping non-Dl-ﬁnite
alge]|3raic D-ﬁlnite
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Summary: classification

Q.o is D-finite <= a certain group G  is finite (!)
quadrant models .%: 79
/ \
|G| <o0: 23 |G| = co: 56
OS=0:4 OS #0:19 I decoupling*: 9 A decoupling: 47
| | | |

Guess-and-Prove  kernel + CT  Tutte’s invariants diff. Galois

algebraic D-finite transc. ~ D-algebraic D-transcendental
U € Q(x, 1),V € Q(y,t) s.t. U(x) + V(y) = xy on the kernel K(x,y;t) = 0.
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Summary: classification of walks

Q.o is D-finite <= a certain group G  is finite (!)
quadrant models .¥: 79
/ \
|G 5| <o0: 23 |G| = co: 56
0OS=0:4 OS #0:19 I decoupling*: 9 A decoupling: 47
| | | |
Guess-and-Prove  kernel + CT  Tutte’s invariants diff. Galois
algebraic D-finite transc. ~ D-algebraic D-transcendental

> Many contributors (2010-2021): Bernardi, B., Bousquet-Mélou, Chyzak,
Dreyfus, Hardouin, van Hoeij, Kauers, Kurkova, Mishna, Pech, Raschel,
Roques, Salvy, Singer




Summary: classification of walks with small steps in IN?

Q o is D-finite <= a certain group G & is finite (!)

quadrant models .¥: 79

— T~

|G| <o0: 23 |G| = o0: 56
OS = O:{ é #0:19 4 decoupling/*: 9 ﬂ@oupling: 47
Guess—al‘nd-Prove kernel +CT Tutte’s iI‘wariants diff. ‘Galois
algebraic D-finite transc. =~ D-algebraic D-transcendental

> Many contributors (2010-2021): Bernardi, B., Bousquet-Mélou, Chyzak,
Dreyfus, Hardouin, van Hoeij, Kauers, Kurkova, Mishna, Pech, Raschel,
Roques, Salvy, Singer

> Proofs use various tools: algebra, complex analysis, probability theory,
differential Galois theory, computer algebra, etc.
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© Enumerative Combinatorics and Computer Algebra enrich one another
@ Classification of Q(x,y; t) fully completed for 2D small-steps walks

@ Robust algorithmic methods, based on efficient algorithms:

© Guess-and-Prove
© Creative Telescoping

© Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G(x,y;t) =~ 30Gb.
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Conclusion

Enumerative Combinatorics and Computer Algebra enrich one another

Classification of Q(x,y; t) fully completed for 2D small-steps walks

Robust algorithmic methods, based on efficient algorithms:

© Guess-and-Prove
© Creative Telescoping

© ©OO

Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G(x,y;t) ~ 30Gb.

Lack of “purely human” proofs for some results.

Many beautiful open questions for 2D walk models with repeated or
large steps, and in different cones, and in dimension > 2.
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Thanks for your attention!
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Beyond dimension 2: walks

> 231 ~ 67 million models, of which ~ 11 million inherently 3D

3D octant models . with < 6 steps: 20804

— T~

|G| < o0: 170 |G| = co: 20634

— T~ |

orbit sum # 0: 108 orbit sum = 0: 62 non-D-finite?

| N

Creative Telescoping  2D-reducible: 43  not 2D-reducible: 19

D-finite D-finite non-D-finite?

[B., Bousquet-Mélou, Kauers, Melczer, 2016] + [Du, Hou, Wang, 2017];
completed by [Bacher, Kauers, Yatchak, 2016]




Beyond dimension 2: walks with s

> 23 =1 ~ 67 million models, of which ~ 11 million inherently 3D

3D octant models . with < 6 steps: 20804

— T~

|G| < o0: 170 |G| = co: 20634

— T~ |

orbit sum # 0: 108 orbit sum = 0: 62 non-D-finite?

| N

Creative Telescoping  2D-reducible: 43  not 2D-reducible: 19

D-finite D-finite non-D-finite?

[B., Bousquet-Mélou, Kauers, Melczer, 2016] + [Du, Hou, Wang, 2017];
completed by [Bacher, Kauers, Yatchak, 2016]

Question: differential finiteness <= finiteness of the group?

Answer: probably no




19 mysterious 3D-m
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Numerical computations [Dahne, Salvy, 2020] suggest:
kg = C - 256" /n”, fora = 3.3257570041744 ... ¢ Q,

so excursions are very probably non-D-finite
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Beyond small step

quadrant models with steps in {—2, —1,0, 1}2: 13 110

|
[ N

|G| < oo: 240 |G | = o0: 12 870
[ | |
OS # 0: 431 0OS=0:9 « rational: 16 « irrational: 12 854
D-finite D-finite? non-D-finite? non-D-finite

[B., Bousquet-Mélou, Melczer, 2021]

Question: differential finiteness <= finiteness of the group?

Answer: ?

" AinBostan  Computer algebra for combinatoric




Two challenging models with large steps

Conjecture 1 [B., Bousquet-Mélou, Melczer, 2021]

For the model %’ the excursions generating function Q(0,0; t'/2) equals

_ 1 2 2
1 1/ 1-12 LR (53 108t (1 + 4t) N
3t 6t \ (1+36t)1/3 1 (1+36t)2
— 1 21108t(1 + 4t)2
V1—12t-oF( 6 3| ——=— ).
“( 1| (1-1202 >)

Conjecture 2 [B., Bousquet-Mélou, Melczer, 2021]
For the model X the excursions generating function Q(0,0; t) equals

(1—24U+120U% — 144 U3) (1 —4U)
(1-3U)(1—-2U)3/2(1—-6U)%/2

7

where U = t* + 5318 + 436312 + - . - is the unique series in Q[[t]] satisfying

U(l-2u)P®(1-3uP(1-6U)’ =t(1-4U)*

Alin Bostan Computer algebra for combinatorics



three-quadrant models .7 74

— T~

|G| <oo: 23 |G| = 00: 51
| |
D-finite? non-D-finite
3@4?) 3197 1092?) 3427

algebraic  transcendental D-algebraic D-transcendental

> Partial classification due to

[Bousquet-Mélou, 2016], [Raschel, Trotignon, 2019],
[Mustapha, 2019], [Dreyfus, Trotignon, 2020],
[Bousquet-Mélou, Wallner, 2021], [Bousquet-Mélou, 2021]
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A difficult

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Leta, =# {}4 — walks of length 7 in IN? from (0,0) to (*,0)}. Then
f(t) =, ant" =1+t +4t>+ 83 +39+* + 98> + - - - is transcendental.

C algebra for combi ic

\p




A difficult quadrant m

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Leta, =# {}4 — walks of length 7 in IN? from (0,0) to (x,0) } Then
f(t) =Y, ant" =1+t +4t>+813+39t* + 9815 + - - - is transcendental.

Proof:
@ Discover and certify a differential equation L for f(t) of order 11 and
degree 73 high-tech Guess-and-Prove
@ If ord(Lfmin) < 10, then degt(L?in) < 580 apparent singularities
@ Rule out this possibility differential Hermite-Padé approximants
@ Thus, LP™ =L
@ L has a log singularity at t = 0, and so f is transcendental O

" AlnBostan  Computer algebra for combinatoric




A difficult quadrant model

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Leta, =# {% — walks of length 7 in IN? from (0,0) to (x,0) } Then
f(t) =T, ant" =1+t +4t>+ 83 +39+* + 98> + - - - is transcendental.

Proof:
@ Discover and certify a differential equation L for f(t) of order 11 and
degree 73 high-tech Guess-and-Prove
o If ord(L}mn) < 10, then degt(L}nin) < 580 apparent singularities
@ Rule out this possibility
@ Thus, L™ = L
@ L has a log singularity at t = 0, and so f is transcendental O

> General minimization algorithm and application to transcendence
[B., Rivoal, Salvy, 2021]




Solution of the “exercise”
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o The kernel equation reads (with K(x,y) =1 —t(y + & + x7)):
K(x,y)yH(x,y) = y — txH(x,0)

10 /17



o The kernel equation reads (with K(x,y) =1 —t(y + & + x7)):
K(x,y)yH(x,y) = y — txH(x,0)
o Let

x—t—\/(t—x)> — 4223
Yo= 2tx

be the (unique) root in Q[x, %|[[]] of K(x,yo) = 0.

=xt+ 2+ (2 + )P+ Bx+ )4
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o The kernel equation reads (with K(x,y) =1 —t(y + & + x7)):
K(x,y)yH(x,y) = y — txH(x,0)

o Let
e 02 4123
yo = 2= (tthx) A7 —xt+ 2+ (2 + )P+ Bx+ )4
be the (unique) root in Q[x, %|[[]] of K(x,yo) = 0.
e Then
0= K(x,y0)yH(x,y0) = yo — txH(x,0),
thus

H(x,0) = f_g and A(t) = [xo] f_g

10 /17



Excursions

e The kernel equation reads (with K(x,y) =1 —t(y + X + x7)):
K(x,y)yH(x,y) =y — txH(x,0)

o Let
. 02 4123
yo = 2= (tthx) A7 —xt+ 2+ (2 4+ 0P+ CBr+ )+
be the (unique) root in Q[x, %|[[]] of K(x,yo) = 0.
e Then
0= K(x,y0)yH(x,y0) = yo — txH(x,0),
thus

H(x,0) = f_;’ and A(t) = [xo] %2

o Creative telescoping then proves:

(27t — ) A" (t) + (10813 — 4) A’ (t) 4 54t A(t) = 0.

> Zeilberger(1/x * sqrt((t-x)72 - 4%t~2*x"3)/(2*t"2*x"2), t, x, Dt);

10 /17
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Step set . = {(—1,0),(0,1), (1, —1)}, with characteristic polynomial

1 1 i
Xy = L Hy+x g =T+y+ay
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Step set . = {(—1,0),(0,1), (1, —1)}, with characteristic polynomial

1 1 i
Xy = L Hy+x g =T+y+ay

x(x,y) is left unchanged by the rational transformations

D:(x,y)— (fy,y) and ¥:(x,y)— (x,x7).

11/17



Step set . = {(—1,0),(0,1), (1, —1)}, with characteristic polynomial

1 1 _
Xoy) = Syt =Sy

x(x,y) is left unchanged by the rational transformations

D:(x,y)— (fy,y) and ¥:(x,y)— (x,x7).

@ and ¥ are involutions, and generate a finite dihedral group D3 of order 6:

() (ty, %) —~P
(xy) (7, %)
v (nap) — @) 5
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o Orbit equation:

xyQ(x,y) — 22Q(%y, ) + 2yQ(%y, %)
— x7Q(7, %) + x7°Q(7, x7) — ¥*7Q(x, x§) =
xy — Ty + 22y — X + x> — x%7
1—ty+x+x7)
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o Orbit equation:

xyQ(x,y) — 22Q(%y, ) + 2yQ(%y, %)
— x7Q(7, %) + x7°Q(7, x7) — ¥*7Q(x, x§) =
xy — Ty + 22y — X + x> — x%7
1—ty+x+x7)

o Corollary [Bousquet-Mélou & Mishna, 2010]:
xy — &y? + B2y — X7 + xiP? — 227
1—t(y+x+x7)

xyQ(x,y) = [x” %7
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o Orbit equation:

xyQ(x,y) — 22Q(%y, ) + 2yQ(%y, %)
— x7Q(7, %) + x7°Q(7, x7) — ¥*7Q(x, x§) =
xy — Ty + 22y — X + x> — x%7
1—ty+x+x7)

o Corollary [Bousquet-Mélou & Mishna, 2010]:

51,2 =2 S 72 2=
_y>0,,501 XY — XYT A+ XY — XY+ x§° — X7y

o Corollary [B.-Chyzak-van Hoeij-Kauers-Pech, 2017]:

0 — ut? + u0 — uv + 7v* — v

B() = [21Q(2) = ™o = i G ey o)
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o Orbit equation:

xyQ(x,y) — 22Q(%y, ) + 2yQ(%y, %)
— x7Q(7, %) + x7°Q(7, x7) — ¥*7Q(x, x§) =
xy — Ty + 22y — X + x> — x%7
1—ty+x+x7)

o Corollary [Bousquet-Mélou & Mishna, 2010]:

51,2 =2 S 72 2=
_ 130,501 XY — XYT A+ XY — Xj + x§° — x7Y

o Corollary [B.-Chyzak-van Hoeij-Kauers-Pech, 2017]:

0 — ut? + u0 — uv + 7v* — v

z(1—zu)(1 —vz)(1 — (6 + u + @v))

B(t) = [2°]Q(z,2) = [u v '27]

o Creative Telescoping gives a differential equation for B(#):

(27t — 1)B" (1) + (108t — 4)B' (t) + 54t*B(t) = 0.

12/17
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We have proved that A(t) and B(t) are both solutions of

(27¢* — 1)y (1) + (108> — 4)y/ (t) + 54t2y(t) = 0.

Solving this equation proves:

& (3n)! 13"
A(t) = B(t) =2k (1/322/3‘27#”) =) (3') —

Thus the two sequences are equal to

(3n)!

m, and a, = by, =0 if 3 does not divide m.

az, = bz, =

13 /17



 Bxample with infinite group:the searecrows

[B., Raschel, Salvy, 2014]: Q.o (0,0;t) is not D-finite for the models

> For the 1st and the 3rd, the excursions sequence [¢"'] Q »»(0,0; t)

1,0,0,2,4,8,28,108,372,...

is~ K-5"-n~% witha =1+ 7t/ arccos(1/4) = 3.38339%...
[Denisov, Wachtel, 2015]

> The irrationality of a prevents Q »(0,0; ) from being D-finite.
[Katz, 1970; Chudnovsky, 1985; André, 1989]

14/17
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1 1
The characteristic polynomial x .o := x + o +y+ v is left invariant under

p(x,y) = <x§> P(x,y) = (%y)
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CONTEMPORARY
MATHEMATICS
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Algorithmic Probability and
Combinatorics

£
:
2
2
i
i
g

|
%

1 1
The characteristic polynomial x .o := x + p +y+ v is left invariant under

p(x,y) = <x$> P(x,y) = (%y)

and thus under any element of the group
1 11 1
w)={e (v3)- (3) ()}
15 /17
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The generating polynomial x.» := Y x'y/ =Y Bi(y)x' =) Aj(x)y
(ij)es i=—1 =1
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|
CONTEMPORARY
MATHEMATICS
= |

Algorithmic Probability and
Combinatorics

:
2
£
H
§
§

The generating polynomial o == Y x'y/= 2 Bi(y)x'=Y Aj(x)y
(ij)es” i—1 =1
is left invariant under the birational involutions

_ A—l(x)l) _ (Jl >
von = (x5 e = (e )
and thus under any element of the (dihedral) group

G = (P, ¢)-

|
%
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Order 4,
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Order 4, order 6,

17 /17



Order 4, order 6, order 8§,
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Order 4, order 6, order 8§, order oco.
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Exa

Order 4, order 6, order 8§, order co.
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