Exercices sur les chapitres « Approximants de Padé et de Padé-Hermite » et « Matrices creuses »

À préparer pour le 7/11/2019

Exercice 1. Montrer, en employant un argument algorithmique, qu'il n'existe aucun approximant de Padé de type (1,1) de $1+x^2$.

Exercice 2. Soit $\mathbb{K} = \mathbb{Z}/5\mathbb{Z}$ le corps fini à 5 éléments. Soient $A \in \mathcal{M}_3(\mathbb{K})$ et $b \in \mathbb{K}^3$ définis par

$$A = \begin{pmatrix} 1 & 4 & 4 \\ 4 & 0 & 3 \\ 1 & 2 & 4 \end{pmatrix}, \qquad b = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}.$$

Supposons qu'on veuille déterminer par l'algorithme de Wiedemann un $v \in \mathbb{K}^3$ tel que Av = b.

- 1. Pour le choix $u = {}^t(1,0,0)$, montrer que l'algorithme calcule la suite $(3,0,4,2,3,0,\ldots)$, puis son polynôme minimal $x^2 + 2x + 2$, et qu'il rejète ce choix de u.
- 2. Dérouler l'algorithme pour le choix $u={}^t(1,2,0)$, et déduire que le polynôme minimal de $(A^ib)_{i\geq 0}$ vaut x^3+3x+1 .
- 3. Déterminer la solution v en utilisant ce polynôme minimal.

Exercice 3. Soit $(a_n)_{n>0}$ la suite définie par les conditions initiales $a_0=a_1=1$ et par la récurrence

$$(n+3)a_{n+1} = (2n+3)a_n + 3na_{n-1}$$
, pour tout $n \ge 1$.

Montrer que a_n est un entier pour tout n, en suivant la démarche ci-dessous :

- 1. Calculer les 5 premiers termes de la suite, a_0, \ldots, a_4 ;
- 2. Déterminer un approximants de Padé-Hermite de type (0,1,2) pour $(1,f,f^2)$, où $f=\sum_n a_n x^n$;
- 3. En déduire que $P(x,y) := 1 + (x-1)y + x^2y^2$ a la propriété que $P(x,f(x)) = 0 \mod x^5$;
- 4. Montrer que l'équation P(x, y) = 0 admet une racine $g \in \mathbb{Q}[[x]]$ dont les coefficients vérifient la même récurrence que (a_n) ;
- 5. En déduire que $a_{n+2} = a_{n+1} + \sum_{k=0}^{n} a_k \cdot a_{n-k}$ pour tout n, et conclure.