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Computer Algebra for Enume

Enumerative Combinatorics: the science of counting J

Area of mathematics primarily concerned with counting discrete objects.

> Main outcome: theorems

Computer Algebra: effective mathematics

Area of computer science primarily concerned with the algorithmic
manipulation of mathematical objects.

> Main outcome: algorithms

This lecture: Computer Algebra for Enumerative Combinatorics J

— Algorithms for proving Theorems on Lattice Paths Combinatorics.
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~ An nnocentloking) combinaorial quesion

Let ¥ = {1, +, \,}. An .-walk is a path in Z? using only steps from .7
Show that, for any integer 7, the following quantities are equal:

(i) number a, of .#-walks of length 1 confined to the upper half plane
Z x N that start and end at the origin (0,0) (excursions);

(ii) number by, of .#-walks of length n confined to the quarter plane IN? that
start at the origin (0,0) and finish on the diagonal of IN? (diagonal walks).
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Let ¥ = {1, +, \,}. An .-walk is a path in Z? using only steps from .7
Show that, for any integer 7, the following quantities are equal:

(i) number a, of .-walks of length n confined to the upper half plane
Z x N that start and end at the origin (0,0) (excursions);

(ii) number by, of .#-walks of length n confined to the quarter plane IN? that
start at the origin (0,0) and finish on the diagonal of IN? (diagonal walks).

For instance, for n = 3, this common value is a3 = b3 = 3:

(i)

(ii)
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Teaser 1: This problem can be solved using computer algebra!

Teaser 2: The answer has a beautiful formula!

(3n)!

m and a, =Dby,; =0 if mis not a multiple of 3.

a3y = bz, =

Teaser 3: A certain group attached to the step set {1, +, \} is finite!



Teaser 1: This problem can be solved using computer algebra!

Teaser 2: The answer has a beautiful formula!

(3n)!

m and ay, = by =0 if mis not a multiple of 3.

a3y = b3, =

Exercise 1

Teaser 3: A certain group attached to the step set {1, <, \} is finite!



Let . be a subset of Z4 (step set, or model) and pg € z¢ (starting point).

Example: . = {(1,0),(—1,0),(1,-1),(=1,1)}, po = (0,0)

%
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Let . be a subset of Z4 (step set, or model) and pg € z¢ (starting point).

A path (walk) of length n starting at pg is a sequence (po, p1,- .., pPn) of
elements in Z¢ such that p; 1 — p; € . for all i.

Example: . = {(1,0),(-1,0),(1,-1),(-1,1)}, po = (0,0)
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Let . be a subset of Z4 (step set, or model) and pg € z¢ (starting point).

A path (walk) of length n starting at pg is a sequence (po, p1,- .., pPn) of
elements in Z¢ such that p; 1 — p; € . for all i.

Let € be a cone of R? (if x € € and r > 0 then 7 - x € €).

Example: .7 = {(1,0),(—1,0),(1,—1),(=1,1)}, po = (0,0) and € =R%
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Combinatorial context: lattice pa

Let . be a subset of Z¢ (step set, or model) and pg € Z¢ (starting point).

A path (walk) of length 1 starting at pg is a sequence (pg, p1,.-.,Pn) of
elements in Z¢ such that p;,; — p; € .7 for all i.

Let € be a cone of R? (if x € € and r > 0 then 7 - x € €).

Example: .# = {(1,0),(—1,0),(1,—1),(=1,1)}, po = (0,0) and € =R%

Questions
o What is the number a;, of n-step walks contained in ¢?
o For i € ¢, what is the number 4,,,; of such walks that end at i?
o What about their GF's A(t) = ¥, a,t" and A(t;x) = ¥, ; ay,ix't"?
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Many objects from the real world can be encoded by walks:

e probability theory (voting, games of chance, branching processes, .. .)
o discrete mathematics (permutations, trees, words, urns, ...)

e statistical physics (Ising model, ...)

e operations research (queueing theory, ...)
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Why should we care about counting walks?

Many objects from the real world can be encoded by walks:

e probability theory (voting, games of chance, branching processes, .. .)
o discrete mathematics (permutations, trees, words, urns, ...)

e statistical physics (Ising model, ...)

e operations research (queueing theory, ...)

Journal of Staistical Planning and Inference 140 (2010) 2237-2254

7™ INTERNATIONAL CONFERENCE ON

Contents lists available at ScienceDirect

Journal of Statistical Planning and Inference

journal homepage: www.elsevier.com/locate/jspi

A history and a survey of lattice path enumeration

Katherine Humphreys

"Department of Mathematical Sciences, Florida Atlantic Universty, Boca Raton, FL 33431, USA

ARTICLE INFO ABSTRACT
TOPICS to be covered include (out are not imited fo) : Avalable online 21 January 2010 In celebration of the Sixth International Conference on Lattice Path Counting and
Lattice path enumeration Random waks P Applications, it is befitting to review the history of lattice path enumeration and to
Plane Partitions Non parametric statistical inference Lattice path survey how the topic has progressed thus far.
Discrete dstibufons and um modek etecio e We st ch istory i eal amesof hance spcical th i problen which
e e heor Method of images later appears as the ballot problem. We discuss André's Reflection Principle and its
D R e misnomer, it relation with the method of images and possible origins from physics and
‘Submission S 5 Brownian motion, and the earliest evidence of laice path techniques and solutions.
©Orthogonal polynomials Graph Theory and Appilications In the survey, we give representative articles on lattice path enumeration found in
Important dates Seff-dual codes and unimodiular atfices

the literature in the last 35 years by the lattice, step ser, boundary, characteristics
Paricipants Biections between paths and other counted, and solution method. Some of this work appears in the author's 2005

combinatoric sfructures dissertation.
General Information © 2010 Elsevier V. Al rights reserved.
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CALCUL DES PROBABILITES. — Solution d’un probléme;
par M. J. BEnTnANp.

~« On suppose que deux candidats A et B soient soumis 4 un scrutin de
ballottage. Le nombre des votants est p.. A obtient m suffrages et est élu,
B en obtient yn — m. On demande la probabilité potr que, pendant le dé-
pouillement du scrutin, le nombre des voix de A ne cesse pas une seule
fois de surpasser celles de son concurrent,

Lattice path reformulation: find the number of paths with a upsteps ,* and
b downsteps “\ that start at the origin and never touch the x-axis again

T(a+b,a—b)

(0,0
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Counting walks is

CALCUL DES PROBABILITES, — Solution d’un probléme;
par M. J. Berrraxp.

« On suppose que deux candidats A et B soient soumis 4 un scrutin de
ballottage Le nombre des votants est p.. A obtient m suffrages et est élu,
B en obtient y. — m. On demande la probabilité poir que, pendant le dé-
pouillement du scrutin, le nombre des voix de A ne cesse pas une seule
fois de surpasser celles de son concurrent,

Lattice path reformulation: find the number of paths with a upsteps ,* and
b downsteps *\ that start at the origin and never touch the x-axis again

T(a+b,a—b)

(0,0

Exercise 2: Prove that the coordinates of the endpoint are indeed (a + b,a — b)
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An old topic: Pélya’s “promenade au hasard” / “Irrfahrt”

Motro: Drunkard: “Will I ever, ever get home again?™
Polya (1921); *“You can't miss; just keep going and stay out
of 3D!™ {Adam and Delbruck, 1968)

[Pélya, 1921] Simple random walk {+1}4 on Z is recurrent in dimensions
d = 1,2 (“Alle Wege fithren nach Rom”), and transient in dimension d > 3

Uber eine Aufgabe der Walrscheinlichkeitsrechnung
betreffend die Irrfahrt im Stralennetz.

an
THE RANDOM WALKS

GEORGE POLYA




Lot of recent activity; many recent contributors:

Arques, Bacher, Banderier, Bernardi, Bostan, Bousquet-Mélou, Budd,
Chyzak, Cori, Courtiel, Denisov, Dreyfus, Du, Duchon, Dulucq, Duraj,
Fayolle, Fisher, Flajolet, Fusy, Garbit, Gessel, Gouyou-Beauchamps,
Guttmann, Guy, Hardouin, van Hoeij, Hou, Iasnogorodski, Johnson, Kauers,
Kenyon, Koutschan, Krattenthaler, Kreweras, Kurkova, Malyshev, Melczer,
Miller, Mishna, Niederhausen, Pech, Petkovsek, Prellberg, Raschel,
Rechnitzer, Roques, Sagan, Salvy, Sheffield, Singer, Viennot, Wachtel, Wang,
Wilf, D. Wilson, M. Wilson, Yatchak, Yeats, Zeilberger, ...

etc.

10 / 58
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...butitis still a

Lot of recent activity; many recent contributors:

Arques, Bacher, Banderier, Bernardi, Bostan, Bousquet-Mélou, Budd,
Chyzak, Cori, Courtiel, Denisov, Dreyfus, Du, Duchon, Dulucq, Duraj,
Fayolle, Fisher, Flajolet, Fusy, Garbit, Gessel, Gouyou-Beauchamps,
Guttmann, Guy, Hardouin, van Hoeij, Hou, Iasnogorodski, Johnson, Kauers,
Kenyon, Koutschan, Krattenthaler, Kreweras, Kurkova, Malyshev, Melczer,
Miller, Mishna, Niederhausen, Pech, Petkovsek, Prellberg, Raschel,
Rechnitzer, Roques, Sagan, Salvy, Sheffield, Singer, Viennot, Wachtel, Wang,
Wilf, D. Wilson, M. Wilson, Yatchak, Yeats, Zeilberger, ...

etc.

—= Systematic approach

10/ 58
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.but it is still a very hot topi

HANDBOOK OF

ENUMERATIVE
COMBINATORICS

Ho

19
LH
2 ™ et
Edited by
Miklos Bona

CRC Press
Tt BFrnERGD

A CHAPMAN & HAL

Chapter 10

Lattice Path Enumeration

Christian Krattenthaler
Universitit Wien

CONTENTS

101 Introduction ...
10.2 Lamice paths without restrictions .
103 Linear boundaries of slope 1 ...
10.4  Simple paths with linear boundaries of rational slope, I .
10.5  Simple paths with linear boundaries with rational slope, 11
10.6  Simple paths with a piecewise linear boundary
10.7  Simple paths with general boundaries ......
10.8  Elementary results on Motzkin and Schriider paths
10.9 A comtinued fraction for the weighted counting of Motzkin paths
10.10 Lattice paths and orthogonal pelynomials
10.11 Motzkin paths in & strip .
10,12 Further results for lattice palhs inthe plane
10.13 Non-intersecting latice paths .
10.14  Lattice paths and their turns
10.15 Multidimensional lattice paths
10.16 Multidimensional lattice paths bounded by 2 hyperplane
10.17 Multidimensional paths with a general boundary
10.18 The reflection principle in full generality ...
10.19  g-Counting of lattice paths and Rogers-Ramanujan identit
10.20 Self- avmdmg walks .
References .....
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The number a,, of n-step .”-walks in the whole plane Z? is equal to

an=|y|n.

Proof: ay = || ay,_1 = |L* ayp=--- = |Z|" Loag = |7 O

> Remark: For . = {—,1}, the sequence 4y, is
1,2,4,8,16,32,64,128,256,512,1024, . ..

It satisfies the recurrence relation with constant coefficients ;.1 — 2a, = 0.

12/ 58



If ¥ C Z% is finite and ¢ = R, then
1
ap = |7|", ie. Alt)= ) apt" = ——+—.
" nzzo " 1— ||t
More generally:
; 1
Alx) =) apix't' = ————————.
(52 flEﬂ " 1—tYserx®
A
__________________ -
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The next case: wal

Recurrent sequences [Bousquet-Mélou, Petkovsek, 2000]

The sequence (a,) of n-step .#-walks confined to a half-space still satisfies a
recurrence relation (but not necessarily with constant coefficients).

> Example: For {—,1}-walks in the half-plane Z x IN, the sequence (a,) is

1,1,2,3,6,10,20,35,70,126,252,462,924,1716, . . .

It is not geometric, but satisfies (n + 3)a,o — 2a,.1 —4(n +1)a, = 0 for all n

Y tuter Algebra for Combinatorics



The next case:

Algebraic series [Bousquet-Mélou, Petkovsek, 2000]

If . C Z4 is finite and € is a rational half-space, then A(t; x) is algebraic,
given by an explicit system of polynomial equations.

— 1 -4t

Example: For Dyck paths (ballot problem), A(t;1) = Y Cyt" = 5

n>0

N ptter Algebra for Combinatorics



Back to the ballot proble

Suppose that candidates A and B are running in an election. If a votes are cast
for A and b votes are cast for B, where a > b, then the probability that A stays
ahead of B throughout the counting of the ballots is (@ — b)/(a + b).

Lattice path reformulation: find the number of paths with a upsteps * and
b downsteps *\ that start at the origin and never touch the x-axis again

Reflection principle [Aebly, 1923]: paths in IN? from (1,1) to T(a + b,a — b)
that do touch the x-axis are in bijection with paths in Z? from (1,—1) to T

Answer: (paths in Z? from (1,1) to T) — (paths in Z? from (1,—1) to T)
a+b—-1\ (a+b—-1\ a—-bla+b
a—1 b—1 ) a+b\ a
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Back to the ballot problem

Suppose that candidates A and B are running in an election. If @ votes are cast
for A and b votes are cast for B, where a > b, then the probability that A stays
ahead of B throughout the counting of the ballots is (a — b)/(a + b).

Lattice path reformulation: find the number of paths with a upsteps ,* and
b downsteps *\, that start at the origin and never touch the x-axis again

Reflection principle [Aebly, 1923]: paths in IN? from (1,1) to T(a + b,a — b)
that do touch the x-axis are in bijection with paths in Z? from (1,—1) to T

Answer: when a = n + 1 and b = n, this is the Catalan number
co_ L (mi1y_ 1 (o
"Toan4+1\n+1) n+1\n
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Entire books dedicated to walks in the quarter plane!

Probability Theory and Stochastic Modelling 40

Guy Fayolle Guy FaonIe /
Roudolf Tasnogorodski Roudolf lasnogorodski
Vadim Malyshev Vadim Malyshev

Random Walks

in thé Quarter-Plane Ra n d O m
Walks in the
Quarter Plane

© Springer @ Springer
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Our approach: Experimental Mathematics using Computer Algebra

David H. Bailey

Modern computer Algebra Second Edition

Joachim von zur Gathen and Jirgen Gerhard

Victor H. Moll

Experimental
Mathematics
in Action
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Our approach: Experimental Mathematics using Computer Algebra

David H. Bailey

Algorithmes Efficaces
en Calcul Formel

. Alin Bostan
E)‘perlmenta]. Frédéric Cryzak
Marc Grusti

Maﬂlema._tics Romain LEBRETON

Grégoire LECERF

mn Actlon ” Bruno SaLvy

Eric Scrost
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Example: From the SIAM

The SIAM 100-Digit

Problem 6

A flea starts at (0,0) on the infinite two-dimensional integer lattice and
executes a biased random walk: At each step it hops north or south with
probability 1/4, east with probability 1/4 + €, and west with probability
1/4 — €. The probability that the flea returns to (0,0) sometime during
its wanderings is 1/2. What is €?

Y ptter Algebra for Combinatorics



Example: From the SIAM 100-Di

The SIAM 100-Digit

Problem 6

A flea starts at (0,0) on the infinite two-dimensional integer lattice and
executes a biased random walk: At each step it hops north or south with
probability 1/4, east with probability 1/4 + €, and west with probability
1/4 — €. The probability that the flea returns to (0,0) sometime during
its wanderings is 1/2. What is €?

> Computer algebra conjectures and proves

-1
[A 11 124/1—16€2
ple) =1- 2~2P1< 2’12 V?) , with A =1+8€?++/1— 16€2.

/58
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Example: From the SIAM 100-Digit _

The SIAM 100-Digit

Problem 6

A flea starts at (0,0) on the infinite two-dimensional integer lattice and
executes a biased random walk: At each step it hops north or south with
probability 1/4, east with probability 1/4 + €, and west with probability
1/4 — €. The probability that the flea returns to (0,0) sometime during
its wanderings is 1/2. What is €?

> Computer algebra conjectures and proves

€ =~ 0.0619139544739909428481752164732121769996387749983
6207606146725885993101029759615845907105645752087861 . . .



> From now on: we focus on nearest-neighbor walks in the quarter plane,
i.e. walks in IN? starting at (0,0) and using steps in a fixed subset .7 of

{\// <_r \I T/ /‘/ _>/ \U \J/}

> Example with n = 45,i = 14, j = 2 for:
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> From now on: we focus on nearest-neighbor walks in the quarter plane,
i.e. walks in IN? starting at (0,0) and using steps in a fixed subset .7 of

{\// <_/ \I T/ /‘/ _>/ \U J/}

> Example with n = 45,i = 14, j = 2 for:

.

> Counting sequence: f,; ; = number of walks of length n ending at (i, /).
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Lattice walks with

> From now on: we focus on nearest-neighbor walks in the quarter plane,
i.e. walks in IN? starting at (0,0) and using steps in a fixed subset .7 of

{\// <_/ \I T/ /‘/ _>/ \U J/}

> Example with n = 45,i = 14, j = 2 for:

e

.

> Counting sequence: f,; ; = number of walks of length n ending at (i, /).

> Specializations:
o fu.0,0 = number of walks of length 7 returning to origin (“excursions”);
© fn = Lij>0 fu;ij = number of walks with prescribed length n.

N ptter Algebra for Combinatorics



> Complete generating function:

F(bx,y) = i(z fm]xy’>f" € Qlx,y][[A)

1,j=0

22/ 58



> Complete generating function:

F(bx,y) = i(z fm]xy’>f" € Qlx,y][[A)

1,j=0
> Specializations:
o GF of excursions: F(£0,0);
o GF of walks: F(t1,1) Z fut";
n>0
o GF of horizontal returns: F(t1,0);
o GF of diagonal returns: “F(t0,00) := [x°] F(t;x,1/x).

22 /58



Generating functions

> Complete generating function:

F(t;2,9) i():fm]xyf)t" € QL ][[1].

i,j=0

> Specializations:

o GF of excursions: F(£0,0);

o GF of walks: F(t;1,1) Z fut";
n>0

o GF of horizontal returns: F(t1,0);

o GF of diagonal returns: “F(t;0,00)" := [xo] EF(t;x,1/x).

Combinatorial questions:
Given ., what can be said about F(; x, ), resp. fn;,-,j, and their variants?
o Structure of F: algebraic? transcendental? solution of ODE?
o Explicit form: of F? of fy; ;?
o Asymptotics of f,.00? of f;;?

N ptter Algebra for Combinatorics



Generating functions and

> Complete generating function:

F(t;2,9) i(zfm]xyf)t" € QL ][[1].

i,j=0

> Specializations:

o GF of excursions: F(£0,0);

o GF of walks: F(t;1,1) Z fut";
n>0

o GF of horizontal returns: F(t1,0);

o GF of diagonal returns: “F(t;0,00)" := [xo] EF(t;x,1/x).

Combinatorial questions:
Given ., what can be said about F(; x, ), resp. fn;,-,j, and their variants?
o Structure of F: algebraic? transcendental? solution of ODE?
o Explicit form: of F? of fy; ;?
o Asymptotics of f,00? of fn?

Our goal: Use computer algebra to give computational answers.

e Clompter Algebra for Combinatorics




Among the 28 step sets . C {—1,0,1}2\ {(0,0)}, some are:
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Among the 28 step sets . C {—1,0,1}2\ {(0,0)}, some are:

trivial,
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Among the 28 step sets . C {—1,0,1}2\ {(0,0)}, some are:

trivial, simple,
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Among the 28 step sets . C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the

trivial, simple, half plane,

23 / 58



 Smallstep modelsof merest

Among the 28 step sets . C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the
half plane,

trivial, simple,

symmetrical.
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Among the 28 step sets . C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the
half plane,

trivial, simple,

symmetrical.

One is left with 79 interesting distinct models.
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Among the 28 step sets . C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the
half plane,

trivial, simple,

symmetrical.
One is left with 79 interesting distinct models.

Is any further classification possible?

N ptter Algebra for Combinatorics



The 79 models

HOIHOH
HIAOH
HOATK
HOHOK
HOAICHK
AT AIGH
PRGN
HOKHAHHOCH
A A

i%%%%%%
X

AORAKK



Task: classify their generating functions!

P i

FLATIAE

*Cartness marsiniquonsts’
Tavia, 134

Bolte 3 - Collection Colbrant
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Two important mo

S ={lL <} Fy(tx,y) = K(tx,y)

S ={ 1/, <, =} Fgtxy) =GEtxy)

D
SRS
A

Example: A Kreweras excursion.

Computer Algebra for Combinatorics



Dyck:; ;
Motzkin:; E

Poélya:

Kreweras: E * g
Gessel: E E
Gouyou-Beauchamps: ; E

King walks: %
Tandem walks: E £

26 / 58




Gessel’

S ={ =}

THE ON=LINE ENCYCLOPEDIA
OF INTEGER SEQUENCES®

founded in 1964 by N. . A. Sloane

[12.1185 | search | e

from The On-Line Ei lopedia of Integer 0]

Search: seq:1,2,11,85
Displaying 1-1 of 1 result found. page |
Sort: relevance | | number | modified | created  Format: long | short | data

A135404 Gessel sequence: the number of paths of length 2m in the plane, starting and ending at (0,1), with **
unit steps in the four directions (north, east, south, west) and staying in the region y>0, x>-y.
1, 2, 11, 85, 782, BOD4, 88044, 1020162, 12294260, 152787976, 1946310467, 25302036071,
334560525538, 448B007045900, 60955295750460, 836838395382645, 11597595644244186,
162074575606984788, 22B1B39419729917410, 32340239369121304038, 461109219391887625316,

6610306991283738684600 (list; graph; refs; listen; history; lex; internal format)

27 / 58
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Gessel’s conjectures (~ 2001)

Conjecture 1 The generating function of Gessel excursions is equal to
(576 1/2 1|,
G(t,0,0) = 3F2< 5/3 2 16t )
(o)
E (5/6)n(1/2)n (a8)2"
= (5/3)n(2)n

=142 +11#* + 85t + 78218 + . ..

Conjecture 2
The full generating function G(¢; x, y) is not D-finite.

Alin Bostan Computer Algebra for Combinatorics



Genesis of Gessel’s qu

The simple walk in the plane

[Polya, 1921]:

2 .
> Formula (2: )~ for 2n-excursions
> Rational generating function

The simple walk in the half-plane and in the quarter-plane

TTTTTTTTTTTTTTTITTT
2n+1
W)

ITTTTTTTTTT

> Formulas ( Cy, resp. C,Cj41, for 2n-excursions [Arques, 1986]
> Full generating functions: algebraic [Bousquet-Mélou, Petkovsek, 2000],
resp. D-finite [Bousquet-Mélou, 2002]

N ptter Algebra for Combinatorics



Genesis of Ges

The simple walk in the cone with angle 45°

> Formula C,,Cj 42 — Cﬁ 1 for 2n-excursions [Gouyou-Beauchamps, 1986]
> D-finite generating function [Gessel, Zeilberger, 1992]

What about the simple walk in the cone with angle 135°?

30/ 58
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Algebrai

o N n
Generating function: G(£x,y) = Y Y Y g X Yt e Qlx, ][]
n=0i=0j=0

“Kernel equation”:

1 1
G(tx,y) =1+t (xy+x+ W i ;)G(t,x,y)

1 11 1
—t (; + 5?) G(50.y) =t (G(t%,0) = G(t0,0))

/|
© ©

31/ 58
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Algebraic ref

0 n n
Generating function: G(t;x,y) = 2 Z Egm]x Yt € Q[x, yl[[]]
n=0i=0j=0

“Kernel equation”:
Gtxy) =1+t (xy+x+ =+ 1)G(Exy)
;X Y) = xy+x w ' x ;XY
1 11 1
—t (— aF ;y) G(t,O,y) — tx—y (G(t, x,O) — G(t,0,0))

X

/|
© ©

Task: Solve this functional equation!

N ptter Algebra for Combinatorics
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Algebraic refor

0 n n
Generating function: G(t;x,y) = 2 Z Egm]x Yt € Q[x, yl[[]]
n=0i=0j=0

“Kernel equation”:
Gy =1+t (xyt+x+ —+ )G Eay)
X Y) = Xy Xx xy ' x XY
1 11 1
—t (_ + ;y) G(:09) =t (G(6%,0) = G(5:0,0)

X

/|
© ©

Task: For the other models — solve 78 similar equations!

N ptter Algebra for Combinatorics
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S(t) = Dgsat" € QU] is

> algebraic if P(t,5(t)) = 0 for some P(x,y) € Z[x,y] \ {0};
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S(t) = Dgsat" € QU] is

> algebraic if P(t,5(t)) = 0 for some P(x,y) € Z[x,y] \ {0};

& D-finite if ¢, (£)SU) (£) + - - -+ co(£)S(t) = 0 for some ¢; € Z[t], not all zero;
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S(t) = Dgsat" € QU] is

> algebraic if P(t,5(t)) = 0 for some P(x,y) € Z[x,y] \ {0};
& D-finite if ¢, (£)SU) (£) + - - -+ co(£)S(t) = 0 for some ¢; € Z[t], not all zero;

> hypergeometric if *t1 € Q(n).
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S(t) = Lpgsat" € Q[[H]] is

> algebraic if P(t,5(t)) = 0 for some P(x,y) € Z[x,y] \ {0};
& D-finite if ¢, (£)SU) (£) + - - -+ co(£)S(t) = 0 for some ¢; € Z[t], not all zero;

> hypergeometric if *t*t € Q(n). E.g.,

m1—p; 2SnOVD G e q

Vi
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S(t) = Lalosnt" € Q[[]] is

> algebraic if P(t,5(t)) = 0 for some P(x,y) € Z[x,y] \ {0};
& D-finite if ¢, (£)SU) (£) + - - -+ co(£)S(t) = 0 for some ¢; € Z[t], not all zero;

> hypergeometric if *1 € Q(n). E.g.,

b
2F (uc

t) =y @n®n @) (@ 1).

n=0 (C)” nt’
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S(1) = £ sut” € Q] is

> algebraic if P(t,5(t)) = 0 for some P(x,y) € Z[x,y] \ {0};

& D-finite if ¢, (£)SU) (1) + - - -+ co(£)S(t) = 0 for some ¢; € Z[t], not all zero;

> hypergeometric if *1 € Q(n). E.g.,
11 1
2F (2 2 t) = E/ i .
1 TJo /(11— x2)(1— tx2)
32/58




S(t) = T osat" € Q[[t]] is

> algebraic if P(t,5(t)) = 0 for some P(x,y) € Z[x,y] \ {0};
& D-finite if ¢, (£)SU) (£) + - - -+ co(£)S(t) = 0 for some ¢; € Z[t], not all zero;

> hypergeometric if *1 € Q(n).

b
A (u c

) f ”"( o B (@ =aat1) (a1



S(t) = Epgsat" € Q[[t]] is
> algebraic if P(t,5(t)) = 0 for some P(x,y) € Z[x,y] \ {0};

& D-finite if ¢, (£)S") (£) + - - -+ co(£)S(t) = 0 for some ¢; € Z[t], not all zero;

> hypergeometric if s’;—zl € Q(n).

Characterization of { hypergeometric } N { algebraic }.
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> S € Q[[x,y,t]] is algebraic if it is the root of a polynomial P € Q[x,y, t, T];
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> S € Q[[x,y,t]] is algebraic if it is the root of a polynomial P € Q[x,y, t, T];

> S € Q[[x,y,t]] is D-finite if it satisfies a system of linear partial differential
equations with polynomial coefficients

Zaltx, 8 Zb t,x,y)

815
ch txy)atl =0.
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Main

Theorem [Kreweras, 1965; 100 pages long combinatorial proof!]

1/3 2/3 1 3> 4G
K(t;0,0) = 3F 27 | = .
(£:0,0) 32( 3/2 2 ‘ ngo(n+1)(2n+1)
Theorem [Kauers, Koutschan, Zeilberger, 2009: former Gessel’s conj. 1]

5/6 1/2 1|, » > (5/6)n(1/2)n 10
G(t;0,0) = 3F. < 16t ) =) ey (AT
320 573 2 n;) (5/3)1(2)n

Question: What about the structure of K(t;x,y) and G(¢;x,y)?

34 /58
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Theorem [Kreweras, 1965; 100 pages long combinatorial proof!]

00 b (1323 18\ s 4G
K(t/OIO)—SPZ( 3/2 2 \27“)—th '

n=0

Theorem [Kauers, Koutschan, Zeilberger, 2009: former Gessel’s conj. 1]

5/6 1/2 1 2 o (5/6)n(1/2)n ,, \on
G(t;0,0) = 3F. < 16t > = Y L (4)2,
320 573 2 n;) (5/3)1(2)n

Question: What about the structure of K(; x,y) and G(; x,y)?

Theorem [Gessel, 1986; Bousquet-Mélou, 2005] K(t; x, ) is algebraic.

Theorem [B., Kauers, 2010: former Gessel’s conj. 2] G(t; x,y) is algebraic.

34 /58
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Main results (I): algebr

Theorem [Kreweras, 1965; 100 pages long combinatorial proof!]

e 13231, S ),
K(t,OIO)—BB( 3/2 2 ‘27t>_n§)(n+1)(2n+1)t ’

Theorem [Kauers, Koutschan, Zeilberger, 2009: former Gessel’s conj. 1]

5/6 1/2 1 2> o (5/6)n(1/2)n ,, \2n
G(£0,0) = 3F 162 ) = Y A2L2A LS gy
(£0,0) 32( 5/3 2 L 63, W

Question: What about the structure of K(£; x,y) and G(¢; x,y)?
Theorem [Gessel, 1986; Bousquet-Mélou, 2005] K(t; x, ) is algebraic.
Theorem [B., Kauers, 2010: former Gessel’s conj. 2] G(t; x,y) is algebraic.

> Computer-driven discovery and proof.
> Guess'n’Prove method, using Hermite-Padé approximants® — Part 2

t Minimal polynomial P(x,v,t, G(t;x,y)) = 0 has > 10! terms; ~ 30Gb (!)

34 /58
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Main results (I): algebraici

Theorem [Kreweras, 1965; 100 pages long combinatorial proof!]

' _ 1/3 2/3 1 3\ ad 4”(377) 3n
K(tIOIO)—st( 3/2 2 ‘27t>_n;m1)(m+1)t '

Theorem [Kauers, Koutschan, Zeilberger, 2009: former Gessel’s conj. 1]

5/6 1/2 1|. o > (5/6)n(1/2)n 10
G(t0,0) = 3F < 16t ) = Y TS (4)2n,
372\ 5/3 2 EO (5/3)n(2)n

Question: What about the structure of K(; x,y) and G(t; x,y)?

Theorem [Gessel, 1986; Bousquet-Mélou, 2005] K(t; x, ) is algebraic.
Theorem [B., Kauers, 2010: former Gessel’s conj. 2] G(t; x,y) is algebraic.

> Computer-driven discovery and proof.
> Guess'n'Prove method, using Hermite-Padé approximants? — Part 2

> Recent (human) proofs [B., Kurkova, Raschel, 2013; Bousquet-Mélou, 2015]

t Minimal polynomial P(x,y,t, G(tx,y)) = 0 has > 10'! terms; ~ 30Gb (!)
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 Main resls (1) Expliitform for Gxy)

Theorem [B., Kauers, van Hoeij, 2010]
Let V =1+ 4% 4 36t* +396t° + - - - be a root of

(V—-1)(1+3/V)% = (16t)?,
let U =1+ 22 4 16t* + 2xt° +2(x*> 4+ 83)t° + - - - be a root of
x(V—1)(V+1)U° — 2V (3x + 5xV — 8V)U?
—xV(V? =24V —9)U +2V?(xV — 9x — 8Vt) = 0,
let W = t2 + (y + 8)t* +2(y* + 8y + 41)t° + - - - be a root of
y1=VIW? +y(V4+3)W2 — (V4+3)W+V —1=0.

Then G(t; x,y) is equal to

6A(U(V+1)—2V)V¥2  y(W-1)*(1-Wy) V32
x(P-V(UE-8U+9-V))? — Hy+)(I-W)(Wxy+1)2 1
14y + x2y + x2y2)t — xy tx(y+1)

> Computer-driven discovery and proof.
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Main r

Theorem [B., Kauers, van Hoeij, 2010]
Let V = 1+ 4> + 36t* + 396t° + - - - be a root of

(V-1)(1+3/V)% = (16t)%,
let U =1+ 22 4 16t* + 2xt° +2(x*> 4+ 83)t° + - - - be a root of
x(V—1)(V+1)U° — 2V (3x + 5xV — 8V)U?
—xV(V? =24V —9)U +2V?(xV — 9x — 8Vt) = 0,
let W = t2 + (y + 8)t* +2(y* + 8y + 41)t° + - - - be a root of
y1=VIW? +y(V4+3)W2 — (V4+3)W+V —1=0.

Then G(t; x,y) is equal to

6A(U(V+1)—2V)V¥2  y(W-1)*(1-Wy) V32
x(P-V(UE-8U+9-V))? — Hy+)(I-W)(Wxy+1)2 1
14y + x2y + x2y2)t — xy tx(y+1)

> Computer-driven discovery and proof.
> Proof uses guessed minimal polynomials for G(t;x,0) and G(;0,v).
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Theorem [B., Kauers, van Hoeij, 2010]
Let V = 1+ 4> + 36t* + 396t° + - - - be a root of

(V-1)(1+3/V)% = (16t)%,
let U =1+ 22 4 16t* + 2xt° +2(x*> 4+ 83)t° + - - - be a root of
x(V—1)(V+1)U° — 2V (3x + 5xV — 8V)U?
—xV(V? =24V —9)U +2V?(xV — 9x — 8Vt) = 0,
let W = t2 + (y + 8)t* +2(y* + 8y + 41)t° + - - - be a root of
y1=VIW? +y(V4+3)W2 — (V4+3)W+V —1=0.

Then G(t; x,y) is equal to

64(U(VH)—2V)V32  y(W—1)*(1-Wy) V372
x(UP-V(WP-8U+9-V))Z  Hy+1)(I-W)(W2y+1)2 1
14y + x2y + x2y2)t — xy tx(y+1)

> Computer-driven discovery and proof.
> Proof uses guessed minimal polynomials for G(t;x,0) and G(;0,v).
> Recent (human) proofs [B., Kurkova, Raschel, 2013; Bousquet-Mélou, 2015]
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Main results (III): Models with D-Finite F(#;1,1)

OEIS .7 Pol size LDE size Rec size OEIS .¥ Pol size LDE size Rec size
1]a005566 & — (3,4 (22 [13lasizrs X —  (5,24) (9, 18)
21A018224 X — (3,5 (2,3) ||14|A151314 @&  —  (5,24) (9,18)
3|a151312 (K — (3,8 (4,5) [15|a151255 Ny —  (4,16) (6, 98)
4|A151331 3B —  (3,6) (34 ||16/A151287 R —  (5,19) (7,11)
5|A151266 YT —  (5,16) (7,10) |17]A001006 &; 2,2) 2,3 @1
6|A151307 F —  (5,20) (8 15) [18la120400 TR 2,20 (23 (@1
7(a151291 ° — (5,15 (6,10) [|19/A005558 Y —  (3,5) (2,3)
8la151326 ¥ —  (5,18) (7,14)
9]a151302 K,  —  (5,24) (9,18) [20|A151265 < (6,8) (4,9) (6 4)
10/A151329 38 —  (5,24) (9,18) |21|A151278 > (6,8) (4,12) (7, 4)
11|A151261 &y  —  (4,15) (5,8) |22/A151323 & (4,4 (2,3 (1)
12|A151297 R —  (5,18) (7,11) ||23|A060900 5 (8,9) (3,5 (2 3)

Equation sizes = (order, degree)

> Computerized discovery: enumeration + guessing [B., Kauers, 2009]

> 1-22: Confirmed by human proofs in [Bousquet-Mélou, Mishna, 2010]

> 23: Confirmed by a human proof in [B., Kurkova, Raschel, 2013]

Alin Bostan
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http://oeis.org/A005566
http://oeis.org/A151275
http://oeis.org/A018224
http://oeis.org/A151314
http://oeis.org/A151312
http://oeis.org/A151255
http://oeis.org/A151331
http://oeis.org/A151287
http://oeis.org/A151266
http://oeis.org/A001006
http://oeis.org/A151307
http://oeis.org/A129400
http://oeis.org/A151291
http://oeis.org/A005558
http://oeis.org/A151326
http://oeis.org/A151302
http://oeis.org/A151265
http://oeis.org/A151329
http://oeis.org/A151278
http://oeis.org/A151261
http://oeis.org/A151323
http://oeis.org/A151297
http://oeis.org/A060900

Main results (III): Models with D-Finite F(#;1,1)

OEIS .7 algebraic? asymptotics OEIS .% algebraic? asymptotics
1|A005566 <> N au lyglarsio7s % N 12030 2V0)
2|A018224 X N 28 ligla51314 BE N YouC COF
3|A151312 K N vee'  |115A151255 N N 24f <2f b
4|A151331 38 N L8 llp|A151287 R N 22 22472 (2;\)
5(a151266 Y N 5 /3.3 l7/ac01006 Y 322
6|Aa151307 3 N 1/2 5 |lisla2o400 B Y \f i
7|a151291 Y N o= ||19/A005558 R N 84
slatsiz2e ¥ N 2o¢)
9la151302 K N 1/ 22 |20A1s1265 0 Y e
10/a151320 & N 1/ 7, |21ja1s1278 S Y ﬁ%ﬁ/ S
11|A151261 3 N 123231 Iniats1303 e
12|A151297 g N B3F2EB" a3lA060000 #5 Y o

A=14V3 B=14v3, C=1+v6 A =743V j— /251

> Computerized discovery: conv. acc. + LLL/PSLQ [B., Kauers, 2009]
> Confirmed by human proofs using ACSV in [Melczer, Wilson, 2015]

Alin Bostan

Computer Algebra for Combinatorics



http://oeis.org/A005566
http://oeis.org/A151275
http://oeis.org/A018224
http://oeis.org/A151314
http://oeis.org/A151312
http://oeis.org/A151255
http://oeis.org/A151331
http://oeis.org/A151287
http://oeis.org/A151266
http://oeis.org/A001006
http://oeis.org/A151307
http://oeis.org/A129400
http://oeis.org/A151291
http://oeis.org/A005558
http://oeis.org/A151326
http://oeis.org/A151302
http://oeis.org/A151265
http://oeis.org/A151329
http://oeis.org/A151278
http://oeis.org/A151261
http://oeis.org/A151323
http://oeis.org/A151297
http://oeis.org/A060900
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The characteristic polynomial x .o := x + o +y+
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1 1
The characteristic polynomial x .o := x + o +y+ v is left invariant under

p(x,y) = <x§> P(x,y) = (%y)
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CONTEMPORARY
MATHEMATICS
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Algorithmic Probability and
Combinatorics

£
:
2
2
i
i
g

|
%

1 1
The characteristic polynomial x .o := x + p +y+ v is left invariant under

p(x,y) = <x$> P(x,y) = (%y)

and thus under any element of the group
1 11 1
w)={e (v3)- (3) ()}
38 /58
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Applications of Mathemati
Stochastic Modelling and Applied Probal

. . 1 . 1 .
The generating polynomial xg := Y, x'y/ =) Bi(y)x'=) A;(x)y
= .

(ij)es i=— j=-1
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£
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§

. . 1 . l .
The generating polynomial xg := Y, x'y/ =) Bi(y)x'=) A;(x)y
(ij)es i=—1 =1
is left invariant under the birational involutions

(Al _(Baw1
v = (v e - (5l )

|
%
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T S
i MATHEMATICS
= |
3 Algorithmic Probaibility and
3 R d ds Combinatorics
]
B B
Es
£
. . l .
The generating polynomial g := ) x'y/= Z Bi(y)x' =Y Aj(x)y
(ij)e.s i=—1 j=—1

is left invariant under the birational involutions

o= (v 5ce) 20 = (5354)

and thus under any element of the (dihedral) group
G = (P, ¢)-

Y tter Algebra for Combinatoris
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Order 4,
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Order 4, order 6,
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Order 4, order 6, order 8§,
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Ex

Order 4, order 6, order 8§, order oco.

40 /58
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Exa

Order 4, order 6, order 8§, order co.
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When G & is finite, the orbit sum of . is the polynomial in Q[x,x~1,y,y~!]:

0Sy:= Y, (=1)%0(xy)
0eG.s

> For 4 models, the orbit sum is zero:

A

E.g., for the Kreweras model:

O =x- _l +ix_ x4+ i_xl =0
%—yxyyxy yxry oy W

Computer Algebra for Combinatorics
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79 models
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23 admit a finite group
[Mishna’07]

79 models

56 have an infinite group
[Bousquet-Mélou, Mishna’10]
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all F(t; x,y) D-finite

19 transcendental

(0S #0)
23 admit a finite group [Gessel, Zeilberger'92]
[Mishna’07] [Bousquet-Mélou’02]

4 algebraic (OS = 0)
79 models (3 Kreweras-type + Gessel)
[BMM’10] + [B., Kauers'10]

56 have an infinite group
[Bousquet-Mélou, Mishna’10]

42/58




all F(t; x,y) D-finite

19 transcendental

(0S #0)
23 admit a finite group [Gessel, Zeilberger'92]
[Mishna’07] [Bousquet-Mélou’02]

4 algebraic (OS = 0)
79 models (3 Kreweras-type + Gessel)
[BMM’10] + [B., Kauers'10]

56 have an infinite group — all non-D-finite
[Bousquet-Mélou, Mishna’10] o [Mishna, Rechnitzer’07] and
[Melczer, Mishna’13] for 5 singular models
e [Kurkova, Raschel’13] and
[B., Raschel, Salvy’13] for all others
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The kernel | =1 _t'):(i,j)eyxiyj =1 —t(x+ % +y+ %) is
invariant under the change of (x,y) into, respectively:

(0) (3 3) (5 5)-

43 /58



The kernel | = 1—t-)::(ilj)eyxiy7 :1—t<x+%+y+ %) is
invariant under the change of (x,y) into, respectively:

(0) (3 3) (5 5)-

Kernel equation:

J(tx,y)xyF(t;x,y) = xy — txF(;x,0) — tyF(t;0,y)

43 /58



The kernel ] =1 _t'):(i,j)eyxiyj =1 —t(x—i— % +y+ %) is
invariant under the change of (x,y) into, respectively:

() (3 y) (5 g)-

Kernel equation:

J(t;x,y)xyF(t;x,y) = xy — txF(t;x,0) — tyF(£0,y)
—J(Gx,y) RyF(E 3y) = — 3y +1F(6 5,0) + tyF(£0,y)

43 /58
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D-Fi

The kernel ] =1 _t'):(i,j)eyxiyj =1 —t(x—i— % +y+ %) is
invariant under the change of (x,y) into, respectively:

(v) (5 5) (0 g)-

Kernel equation:
J(t;x,y)xyF(t;x,y) = xy — txF(t;x,0) — tyF(£0,y)
— J(t2%,y)3YE(5 5, y) = — 3y + 13 F (5 5,0) + tyF(£0,y)
J(xy) LI L 1) = 11— LE(5 1,0) — (50, )

43 /58
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The kernel ] =1 —t-):;(ilj)eyxiyf =1 —t(x—i— % +y+ %) is
invariant under the change of (x,y) into, respectively:

Gv) (3g) (0 g).

Kernel equation:
J(t;x,y)xyF(t;x,y) = xy — txF(t;x,0) — tyF(£0,y)
—Ly+tIF(tL1,0) + tyF(0,y)

1_ 10)y—tifp(t:0 1

L tLF(t1,0) — t1F(50,])

—xi . Ir(t.0 1
xy—l—th(t,x,O)—i—tyF(t,O,y)

) =
_](t;x' )xyF(t’x’ )
J(t2,y) 3 yE (5, y) =
—I(txy)x F(tix, 1) =

1
x

43 /58
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The kernel ] =1 —t-):(ilj)eyxiyf =1 —t(x—i— % +y+ %) is
invariant under the change of (x,y) into, respectively:

(0) (3 3) (5 5)-

Kernel equation:
J(tx,y)xyF(t;x,y) = xy — txF(x,0) — tyF(t;0,y)
—Ly+tlF(51,0) + tyF(0,y)

1_ 10)—tlp(t.0 1

y tl +F(t; +,0) tyP(t,O, )
—x1 . 1pt.0 1
xy—i—th(t,x,O)—i—tyF(t,O,y)

) =
_](t;x' )xyF(t’x’ )
J(Ex )y E( 3 5) =
—](txy)x F(tx, )

1
x

Summing up yields the orbit equation:
yy_ly 1141
Y (-1)%0(xy F(tx,y)) = A Y
e J(tx,y)

Y ptter Algebra for Combinatoris



The kernel ] =1 —t-):(ilj)eyxiyf =1 —t(x—i— % +y+ %) is
invariant under the change of (x,y) into, respectively:

(0) (3 3) (5 5)-

Kernel equation:
J(tx,y)xyF(t;x,y) = xy — txF(x,0) — tyF(t;0,y)
—J(&x,y) 3yF(t 1, y) = — 1y + EF(E 3,0) + tyF(£0,y)
J(Exy) 3 (6 3 3) = 1y — t7F(t,0) = t5F(50, §
—J(t xy)x F(t;x, ) —xy+th(t;x,0)+t;7F(t;0,%)

1
x

Taking positive parts yields:

[y Y (—1)%0(xy F(t;x,y)) = [x”y”]
0eg

k:\'—‘

Y- Yty X
J(t;x,y)

43 /58
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The kernel ] =1 —t-):(ilj)eyxiyf =1 —t(x—i— % +y+ %) is
invariant under the change of (x,y) into, respectively:

(0) (3 3) (5 5)-

Kernel equation:
J(tx,y)xyF(t;x,y) = xy — txF(x,0) — tyF(t;0,y)
—J(&x,y) 3yF(t 1, y) = — 1y + EF(E 3,0) + tyF(£0,y)
J(Exy) 3 (6 3 3) = 1y — t7F(t,0) = t5F(50, §
—J(t xy)x F(t;x, ) —xy+th(t;x,0)+t;7F(t;0,%)

1
x

Summing up and taking positive parts yields:

kf\'—‘

XY= y+yy X
(5,

xyF(txy) =[xy ] m

43 /58
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The kernel | = 1—t~):(1~,j)€yxiyj :1—t(x+%+y+ %) is
invariant under the change of (x,y) into, respectively:

Gv) (Gry) (0 g)-

Kernel equation:
J(t;x,y)xyF(t;x,y) = xy — txF(t;x,0) — tyF(t;0,y)
S CEAE: yP(t,x,y) T+ EE( 3, 0) + tyF(£0,y)
CEANETACEA) %—-(/X,O)—fF(tofl)
—J(tx, )x F(t; x,y) —xy L txF(t; x,O)—i—tyF(t,O,}—/)

1
x

GF = PosPart S
kernel

43 /58

N ptter Algebra for Combinatorics



The kernel | = 1—t~):(1~,j)€yxiyj :1—t(x+%+y+ %) is
invariant under the change of (x,y) into, respectively:

Gv) (Gry) (0 g)-

Kernel equation:
J(t;x,y)xyF(t;x,y) = xy — txF(t;x,0) — tyF(t;0,y)
S CEAE: yP(t,x,y) T+ EE( 3, 0) + tyF(£0,y)
CEANETACEA) %—-(/X,O)—fF(tofl)
—J(tx, )x F(t; x,y) —xy L txF(t; x,O)—i—tyF(t,O,}—/)

1
x

GF = PosPart (%) is D-finite [Lipshitz, 1988]
er
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D-Finiteness via th
iyl 1 11 s

The kernel ] =1—t-Y;hec o x'y/ =1 —t(x-l- Liy+ y)
invariant under the change of (x,y) into, respectively:

Gv) (Gry) (0 g)-

Kernel equation:
J(t; x,y)xyF(t; x,

—J(txy) tyF(t Ly

y) = xy — txF(£;x,0) — tyF(£0,y)
) =
¢ 1 1)
)=

— 3+ 13 F(53,0) + tyF(£0,y)
j— txF(55,0) = (50, )

J(&xy) 5y F(t 5
1
—Xy +th(t,x,0) +tyF(t,0,y)

—J(tx, )x F(t; x,

GF = PosPart (%) is D-finite [Lipshitz, 1988]

> Argument works if OS # 0: algebraic version of the reflection principle

Y ,1ttcr Algebra for Combinatoris

43 /58



D-Finiteness via th
iyl 1 11 s

The kernel ] =1—t-Y;hec o x'y/ =1 —t(x-l- Liy+ y)
invariant under the change of (x,y) into, respectively:

Gv) (Gry) (0 g)-

Kernel equation:
J(t; x,y)xyF(t; x,

—J(txy) tyF(t Ly

y) = xy — txF(£;x,0) — tyF(£0,y)
) =
¢ 1 1)
)=

— 3+ 13 F(53,0) + tyF(£0,y)
j— txF(55,0) = (50, )

J(&xy) 5y F(t 5
1
—Xy +th(t,x,0) +tyF(t,0,y)

—J(tx, )x F(t; x,

GF = PosPart (%) is D-finite [Lipshitz, 1988]

> Creative Telescoping finds a differential equation for PosPart(OS/ker)
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Main r

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Let . be one of the 19 models with finite group G &, and orbit sum OS# 0.
Then

o F is expressible using iterated integrals of ,F; expressions.
o Among the 19 x 4 specializations of F (t;x,y) at (x,y) € {0,1}2, only 4
are algebraic: for .7 = & at (1,1), and .%¥ —% t(1,0),(0,1),(1,1)
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Main results (IV): explicit ex

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Let . be one of the 19 models with finite group G &, and orbit sum OS# 0.
Then

o F is expressible using iterated integrals of ,F; expressions.

o Among the 19 x 4 specializations of Fo (;x,y) at (x,y) € {0,1}?, only 4
are algebraic: for .7 = & at (1,1),and &7 = % t(1,0),(0,1),(1,1)

Example (King walks in the quarter plane, A025595)

3 31 16x(1+x)
2 2
F%(tll t/ 1+4x)3 2F1( 2 >d

(14 4x)?
=1+ 3t + 1812 + 105¢> + 684+* + 4550¢° + 31340£° + 219555¢7 + - - -

44 /58

Y ptter Algebra for Combinatorics



Main results (IV): explicit expressio:_

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Let . be one of the 19 models with finite group G &, and orbit sum OS# 0.
Then

o F is expressible using iterated integrals of ,F; expressions.

o Among the 19 x 4 specializations of Fo (;x,y) at (x,y) € {0,1}?, only 4
are algebraic: for .7 = ‘& at (1,1),and .%¥ = B& t(1,0),(0,1),(1,1)

Example (King walks in the quarter plane, A025595)

3 31 16x(1+x)
2 2
F%(tll t/ 1—|—4x)3 2F1( 2 >d

(14 4x)?
=1+ 3t + 1812 + 105¢> + 684+* + 4550¢° + 31340£° + 219555¢7 + - - -

> Computer-driven discovery and proof; no human proof yet.
> Proof uses creative telescoping, ODE factorization, ODE solving.
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Bonus: hypergeometric functi

5 occurring » F; w 4 occurring » F; w

1 4 zpl(%l% w) 162 1A 2F1<%1% w) s

2 X zpl(%l% w) 1612 12 zFl(%ﬁ w) e
3 X 21:1(%1% w) % 13 X ZFl(%I% w) %
CH () w8l e
5 Y 21:1(%1% w) 64t 15N zFl(%ﬁ w) 6att

o B oan(Hie) SR e foan(Rile) o
7 Y zpl(%l% w) e 17 & 21—“1(%1% w) 2783

g ¥ zpl(ilg w) % 18 R 21—"1(%1% w) 27122t + 1)
s X ZH(};I% w) % v N zpl(%l% w) 1612
0 B oan(hie) g

> All related to the complete elliptic integrals fON/ 2(1 — k? sin? G)i% de B
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Theorem [B., Raschel, Salvy, 2014]

Let . be one of the 51 non-singular models with infinite group G .
Then F(t;0,0), and in particular F (t; x,y), are non-D-finite.
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Main resul

Theorem [B., Raschel, Salvy, 2014]

Let . be one of the 51 non-singular models with infinite group G .
Then F(t;0,0), and in particular F (t; x,y), are non-D-finite.

> Algorithmic proof. Uses Grobner basis computations, polynomial
factorization, cyclotomy testing.
> Based on two ingredients: asymptotics + irrationality.

> [Kurkova, Raschel, 2013] Human proof that F (¢; x,y) is non-D-finite.
> No human proof yet for F (t;0,0) non-D-finite.
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Main results (V): non-D-

Theorem [B., Raschel, Salvy, 2014]

Let . be one of the 51 non-singular models with infinite group G .
Then F(t;0,0), and in particular F (t; x,y), are non-D-finite.

> Algorithmic proof. Uses Grobner basis computations, polynomial
factorization, cyclotomy testing.
> Based on two ingredients: asymptotics + irrationality.

> [Kurkova, Raschel, 2013] Human proof that F (¢; x,y) is non-D-finite.
> No human proof yet for F (t;0,0) non-D-finite.

> [Bernardi, Bousquet-Mélou, Raschel, 2016] For 9 of these 51 models,
Fo (t; x,y) is nevertheless D-algebraic!

> [Dreyfus, Hardouin, Roques, Singer, 2017]: hypertranscendence of the
remaining 42 models.
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The 56 models with infinite group

ACHRR AR ACK AR K
KKK A A
AR ORI K
AR RO XA AK
KR AR HOK
RORKKK

In blue, non-singular models, solved by [B., Raschel, Salvy, 2014]
In red, singular models, solved by [Melczer, Mishna, 2013]

Alin Bostan Computer Algebra for Combinatorics



 Bxample with infinite group:the searecrows

[B., Raschel, Salvy, 2014]: F (t;0,0) is not D-finite for the models

> For the 1st and the 3rd, the excursions sequence [t""] Fo(;0,0)

1,0,0,2,4,8,28,108,372,...

is~ K-5"-n% witha =1+ 7t/ arccos(1/4) = 3.38339%...
[Denisov, Wachtel, 2015]

> The irrationality of « prevents Fo (£;0,0) from being D-finite.
[Katz, 1970; Chudnovsky, 1985; André, 1989]

48 /58

N ptter Algebra for Combinatorics



Main classification result

Theorem

Let .7 be one of the 74 non-singular models of small-step walks in IN2.
The following assertions are equivalent:

(1) the full generating function F (£; x,y) is D-finite

(2) the excursions generating function F(#;0,0) is D-finite

(3) the excursions sequence [t"] Fo(t;0,0) is ~ K- p" - n®, with « € Q

(4) the group G & is finite (and |G »| = 2 - min{¢ € IN* | % €Z})

(5) I € Q(x,t),] € Qy, t) s.t. I(x) = J(y) on the curve x & (x,y) = %

(6) the step set .# has either an axial symmetry, or zero drift and .| # 5.




Main classification result

Theorem
Let .7 be one of the 74 non-singular models of small-step walks in IN2.

The following assertions are equivalent:

(1) the full generating function F (£; x,y) is D-finite

(2) the excursions generating function F(#;0,0) is D-finite

(3) the excursions sequence [t"] Fo(;0,0) is ~ K- p" - n%, with « € Q

(4) the group G is finite (and |G »| = 2 - min{¢ € IN*| é €Z})

(5) 31 € Q(x,t),] € Q(y,t) s.t. I(x) = J(y) on the curve x.»(x,y) = 1.

(6) the step set .# has either an axial symmetry, or zero drift and .| # 5.

Moreover, under (1)~(6): Fo(t;x,y) is algebraic <= OSy =0 <
U € Q(x,t),V € Q(y,t) s.t. U(x) + V(y) = xy on the curve x »(x,y) = %
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Main classification result

Theorem
Let .7 be one of the 74 non-singular models of small-step walks in IN2.

The following assertions are equivalent:

(1) the full generating function F (£; x,y) is D-finite

(2) the excursions generating function F(#;0,0) is D-finite

(3) the excursions sequence [t"] Fo(;0,0) is ~ K- p" - n%, with « € Q

(4) the group G is finite (and |G »| = 2 - min{¢ € IN*| é eZ})

(5) 31 € Q(x,t),] € Q(y,t) s.t. I(x) = J(y) on the curve x.»(x,y) = 1.

(6) the step set .# has either an axial symmetry, or zero drift and .| # 5.
Moreover, under (1)~(6): Fo(t;x,y) is algebraic <= OSy =0 <
U € Q(x,t),V € Q(y,t) s.t. U(x) + V(y) = xy on the curve x.o(x,y) = 1.

In this case, F (t; x,1) is expressible using nested radicals.
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Main classification result

Theorem
Let .7 be one of the 74 non-singular models of small-step walks in IN2.

The following assertions are equivalent:

(1) the full generating function F (£; x,y) is D-finite

(2) the excursions generating function F(#;0,0) is D-finite

(3) the excursions sequence [t"] Fo(;0,0) is ~ K- p" - n%, with « € Q

(4) the group G is finite (and |G »| = 2 - min{¢ € IN*| é eZ})

(5) 31 € Q(x,t),] € Q(y,t) s.t. I(x) = J(y) on the curve x.»(x,y) = 1.

(6) the step set .# has either an axial symmetry, or zero drift and .| # 5.
Moreover, under (1)~(6): Fo(t;x,y) is algebraic <= OSy =0 <
U € Q(x,t),V € Q(y,t) s.t. U(x) + V(y) = xy on the curve x.o(x,y) = 1.

In this case, F (t; x,1) is expressible using nested radicals.

If not, F& (t; x,y) is expressible using iterated integrals of »F; expressions.

v
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Main classification result

Theorem
Let .# be one of the 74 non-singular models of small-step walks in IN.
The following assertions are equivalent:
(1) the full generating function F & (t; x,y) is D-finite
(2) the excursions generating function F« (;0,0) is D-finite
(3) the excursions sequence ["'| F(£;0,0) is ~ K- p" - n%, with « € Q

(4) the group G is finite (and |G »| = 2 - min{f € N* aiil eZ})
() A €Q(x,1),] € Qy,t) s.t. I(x) = J(y) on the curve xo (x,y) = L.

(6) the step set . has either an axial symmetry, or zero drift and |.7| # 5.

Moreover, under (1)—(6): F«( x,y) is algebraic <= O0Sy =0 <~
U € Q(x,t),V € Q(y,t) s.t. U(x) + V(y) = xy on the curve x o (x,y) = 1.

In this case, F(t; x, ) is expressible using nested radicals.

If not, Fo (t; x,y) is expressible using iterated integrals of ,F; expressions.

> Many contributors (2010-2018): Bernardi, B., Bousquet-Mélou, Chyzak,
Denisov, van Hoeij, Kauers, Kurkova, Mishna, Pech, Raschel, Salvy, Wachtel
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Main classification result

Theorem
Let .# be one of the 74 non-singular models of small-step walks in IN.
The following assertions are equivalent:
(1) the full generating function F & (t; x,y) is D-finite
(2) the excursions generating function F« (;0,0) is D-finite
(3) the excursions sequence ["'| F(£;0,0) is ~ K- p" - n%, with « € Q

(4) the group G is finite (and |G »| = 2 - min{f € N* a%;l eZ})
() A €Q(x,1),] € Qy,t) s.t. I(x) = J(y) on the curve xo (x,y) = L.

(6) the step set . has either an axial symmetry, or zero drift and |.7| # 5.

Moreover, under (1)—(6): F«( x,y) is algebraic <= O0Sy =0 <~
U € Q(x,t),V € Q(y,t) s.t. U(x) + V(y) = xy on the curve x o (x,y) = 1.

In this case, F(t; x, ) is expressible using nested radicals.

If not, Fo (t; x,y) is expressible using iterated integrals of ,F; expressions.

> Proof uses various tools: algebra, complex analysis, probability theory,
computer algebra, etc.

Alin Bostan Computer Algebra for Combinatorics



quadrant models .7: 79

— T~

|G| <o0: 23 |G| = o0: 56

N |

orbit sum # 0: 19 orbit sum = 0: 4 asymptotics + GB

kernel method + CT  Guess-and-Prove non-D-finite

D-finite algebraic

Theorem: differential finiteness <= finiteness of the group !
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2D quadrant models: 527

— T~

|G| < oc0: 118 |G| = o0: 409
orbit sum # 0: 95 orbit sum = 0: 23  non-D-finite?
kernel method: 94 CA: 22: reducible to A
| Kreweras/Gessel ’
D-finite I | |
D-finite D-finite algebraic

[B., Bousquet-Mélou, Kauers, Melczer, 2016] + [Du, Hou, Wang, 2017]
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Extensions:

2D quadrant models: 527

— T~

|G| < oc0: 118 |G| = co: 409
orbit sum # 0: 95 orbit sum = 0: 23  non-D-finite?
kernel method: 94 CA: 22: reducible to A
| Kreweras/Gessel ’
D-finite I | |
D-finite D-finite algebraic

[B., Bousquet-Mélou, Kauers, Melczer, 2016] + [Du, Hou, Wang, 2017]

Question: differential finiteness <= finiteness of the group?

Answer: probably yes

51/ 58
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Extensio

23°~1 ~ 67 million models, of which ~ 11 million inherently 3D
3D octant models . with < 6 steps: 20804

— T~

|G| < o00: 170 |G| = o0: 20634
orbit sum # 0: 108 orbit sum = 0: 62 non-D-finite?

| /

kernel method 2D-reducible: 43 not 2D-reducible: 19

D-finite D-finite non-D-finite?

[B., Bousquet-Mélou, Kauers, Melczer, 2016] + [Du, Hou, Wang, 2017];
completed by [Bacher, Kauers, Yatchak, 2016]
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Extensions: wal

23°~1 ~ 67 million models, of which ~ 11 million inherently 3D
3D octant models . with < 6 steps: 20804

— T~

|G| < o00: 170 |G| = o0: 20634
orbit sum # 0: 108 orbit sum = 0: 62 non-D-finite?

| /

kernel method 2D-reducible: 43 not 2D-reducible: 19

D-finite D-finite non-D-finite?

[B., Bousquet-Mélou, Kauers, Melczer, 2016] + [Du, Hou, Wang, 2017];
completed by [Bacher, Kauers, Yatchak, 2016]

Question: differential finiteness <= finiteness of the group?

Answer: probably no
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19 mysterious
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Two different computations suggest:
Ky, 7o C - 256 / 3325757004174

so excursions are very probably transcendental
(and even non-D-finite)
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Ext

quadrant models with steps in {—2, —1,0, 1}2: 13110

|
\ \

|orbit| < oco: 240 lorbit| = oco: 12 870
\ | |
OS # 0: 431 0OS=0:9 « rational: 16 « irrational: 12 854
D-finite D-finite? non-D-finite? non-D-finite

[B., Bousquet-Mélou, Melczer, 2018]

e Example: For the model A

>0,,>0

xyF(tx,y) =[x y~7] (x —2x*2)(y —(x— xfz)y,l)

1—txy14+y+x2y-1)

Computer Algebra for Combinatorics



Ext

quadrant models with steps in {—2, —1,0, 1}2: 13110

| orbit| < co: 240 lorbit| = oo: 12 870
[ | |
OS # 0: 431 0OS=0:9 « rational: 16 « irrational: 12 854
D-finite D-finite? non-D-finite? non-D-finite

[B., Bousquet-Mélou, Melczer, 2018]

Question: differential finiteness < finiteness of the orbit?

Answer: ?

N ptter Algebra for Combinatorics



Two challenging models with large steps

Conjecture 1 [B., Bousquet-Mélou, Melczer, 2018]
For the model %’ the excursions generating function F(t'/2;0,0) equals

_ 1 2 2
1 1/ 1-12 LR (53 108t (1 + 4t) N
3t 6t \ (1+36t)1/3 1 (1+36t)2
— 1 21108t(1 + 4t)2
V1—12t-oF( 6 3| ——=— ).
“( 1| (1-1202 >)

Conjecture 2 [B., Bousquet-Mélou, Melczer, 2018]
For the model X the excursions generating function F(t;0,0) equals

(1—24U+120U% — 144 U3) (1 —4U)
(1-3U)(1—-2U)3/2(1—-6U)%/2

7

where U = t* + 5318 + 436312 + - . - is the unique series in Q[[t]] satisfying

U(l-2u)P®(1-3uP(1-6U)’ =t(1-4U)*

Alin Bostan Computer Algebra for Combinatorics



@ Computer algebra may solve difficult combinatorial problems
© Classification of F(t;x,y) fully completed for 2D small step walks

@ Robust algorithmic methods, based on efficient algorithms:
e Guess'n’Prove
e Creative Telescoping

© Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G(t; x,y) ~ 30Gb.



Conclusion

Computer algebra may solve difficult combinatorial problems

Classification of F(t;x,y) fully completed for 2D small step walks

Robust algorithmic methods, based on efficient algorithms:
e Guess'n’Prove
e Creative Telescoping

© OO

Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G(; x,y) = 30Gb.

Lack of “purely human” proofs for some results.

Open: is F(#;1,1) non-D-finite for all 56 models with infinite group?

Many beautiful open questions for 2D models with repeated or large
steps, and in dimension > 2.

N ptter Algebra for Combinatorics
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