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Part 2: Guess'n’Prove _
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Guess’n’Prove

—The easiest example—
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Question: Find B; ;, the number of {—, 1}-walks in Z? from (0,0) to (i, f)
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(o Thwalls with prescribed endpoint

Question: Find B; ;, the number of {—, 1}-walks in Z? from (0,0) to (i, )
> There are two ways to get to (i, ), either from (i —1,j), or from (i,j — 1):
Bij=Bj_1,;+ Bij-1.
> There is only one way to get to a point on an axis:
Big =By =1

> These two rules completely determine all the numbers B, ;
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Question: Find B; ;, the number of {—, 1}-walks in Z? from (0,0) to (i, )
> There are two ways to get to (i, ), either from (i —1,j), or from (i,j — 1):

Bij = Bi_1j+ Bjj1.

> There is only one way to get to a point on an axis:

Biy =By, =1

> These two rules completely determine all the numbers B, ;

28 84 210 462 924

21 56 126 252 462
15 35 70 126 210
10 20 35 56 84
6 10 15 21 28
3 4 5 6 7
1
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Question: Find B; ;, the number of {—, 1}-walks in Z? from (0,0) to (i, )
> There are two ways to get to (i, ), either from (i —1,j), or from (i,j — 1):

Bij = Bi_1j+ Bjj1.

> There is only one way to get to a point on an axis:

Biy =By, =1

> These two rules completely determine all the numbers B, ;
Pascal’s triangle

28 84 210 462 924

21 56 126 252 462
15 35 70 126 210
10 20 35 56 84
6 10 15 21 28
3 4 5 6 7
1
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Question: Find B; j, the number of {—, 1}-walks in Z? from (0,0) to (i,])

> There are two ways to get to (i, j), either from (i —1,j), or from (i,j — 1):
Bi,j = Bi—l,j + Bi,j—l-
> There is only one way to get to a point on an axis:
Bi,O = BO,j =1

> These two rules completely determine all the numbers B; ;

Pascal’s triangle

1 7 28 84 210 462 924 The a“cslvzer Caglbe
guesse rom the

1 6 21 56 126 252 462 triangle:

1 5 15 35 70 126 210 .

1 4 10 20 35 5 84 — Bi,]-:(zl,—:_j{)'

i !

1 3 10 15 21 28 — (FL(+2)

1 2 3 4 5 6 7 — i1

11 — 1
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Question: Find B; ;, the number of {—, 1}-walks in Z? from (0,0) to (i, )

> There are two ways to get to (i, ), either from (i —1,j), or from (i,j — 1):
Bij = Bi_1j+ Bjj1.
> There is only one way to get to a point on an axis:
By =B =1

> These two rules completely determine all the numbers B, ;
Pascal’s triangle

28 84 210 462 924

21 56 126 252 462

15 35 70 126 210 Bi,j:wz' (&’)

10 20 35 56 84 7 l
10 15 21 28

3 4 5 6 7

Answer: binomials

I = W = G S Gy S Sy
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Question: Find B; j, the number of {—, 1}-walks in Z? from (0,0) to (i,])

> There are two ways to get to (i, j), either from (i — 1, ), or from (i,j — 1):
Bij =Bj_1;+Bjj1.
> There is only one way to get to a point on an axis:
Biy =By =1

> These two rules completely determine all the numbers B, ;

Answer: binomials
Pascal’s triangle

Bij= y 'J.r'.j)!:: (iﬂ>
28 84 210 462 924 L 1
21 56 126 252 462
15 35 70 126 210

Proof: If C;; def (i+))!

T

L e WY S Gy
=N W ke U NN

10 20 35 56 84 G Gt _ i _

6 10 15 21 28 Cj Gy i) i
4 5 6 7 Cip=0Coj=1

11 1 1 1 - Thus B, — C,,
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Question: Find B , the number of {—, 1}-walks in Z? from (0,0) to (i, )

> There are two ways to get to (i, ), either from (i —1,j), or from (i,j — 1):
Bij = Bi_1j+ Bjj1.
> There is only one way to get to a point on an axis:
By =B =1

> These two rules completely determine all the numbers B, ;

Pascal’s triangle . .
& Answer: binomials

1 7 28 84 210 462 924 ) (i+j>
1 6 21 56 126 252 462 et
1 5 15 35 70 126 210

1 4 10 20 35 56 &4 This is a typical

1 3 10 15 21 28 guess-and-prove
1 2 3 4 5 6 7 proof!

1 1
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Question: Find B , the number of {—, 1}-walks in Z? from (0,0) to (i, )

> There are two ways to get to (i, ), either from (i —1,j), or from (i,j — 1):
Bi,]' = Bi—l,j + Bi,j—l-
> There is only one way to get to a point on an axis:
Big=Bp; =1
> These two rules completely determine all the numbers B, ;

o Answer: binomials
Pascal’s triangle

i (i
1 7 28 84 210 462 924 KT T
1 6 21 56 126 252 462

Exercise 3
1 5 15 35 70 126 210
1 4 10 20 35 56 84 Byo+Bu_11+---+ By, =2"
1 3 10 15 21 28
1 2 3 4 5 6 7 B2o+B2 11+ -+Bj, =By
1 1
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{—,1}-walks with

Question: Find B , the number of {—, 1}-walks in Z? from (0,0) to (i, )

> There are two ways to get to (i, ), either from (i —1,j), or from (i,j — 1):
Bij = Bi_1j+ Bjj1.
> There is only one way to get to a point on an axis:
By =B =1

> These two rules completely determine all the numbers B, ;
Answer: binomials

Bij = M:; (l+]>

ilj! i

Pascal’s triangle

28 84 210 462 924
21 56 126 252 462
15 35 70 126 210

10 20 35 56 84 (’S)+(’11)+...+(">:2n
6 10 15 21 28

3 4 5 6 7 n\? [n\? n\? 2n
11 1 1 1 . <0>+(1>+'”+<n>_<n>
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quadrant models: 79

— T~

|G|<c0: 23 |G| = c0: 56

N |

nonzero orbit sum: 19  zero orbit sum: 4 asymptotics + GB

Kernel method + CT Guess'n’Prove non-D-finite

D-finite algebraic



Two important mo

S ={lL <} Fy(tx,y) = K(tx,y)

S ={ 1/, <, =} Fgtxy) =GEtxy)

D
SRS
A

Example: A Kreweras excursion.
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Gessel’s co

o Gessel walks: walks in IN? using only steps in . = { 7, //, -, —}
e ¢(n;1,j) = number of walks from (0,0) to (7,j) with n steps in ./

Question: Find the nature of the generating function

G(tx,y) = i g(n;i,j)xiyjt" € Q[[x,y,t]]

i,jn=0

Theorem (B.-Kauers, 2010) G(¢; x, y) is an algebraic function®.

— Effective, computer-driven discovery and proof

1t Minimal polynomial P(x,y,t, G(t; x,y)) = 0 has > 10 terms; ~ 30Gb (!)
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First guess, then prove [Pdlya, 1954]

wnires | GUESSinG and Proving

George Pélya

What is “scientific method”? Philosophers and non-philosophers have
discussed this question and have not yet finished discussing it. Yet as a first introduction
it can be described in three syllables:

Guess and test.

Mathematicians too follow this advice in their research although they sometimes refuse to
confess it. They have, however, something which the other scientists cannot really have.
For mathematicians the advice is

First guess, then prove.

Alin Bostan Computer Algebra for Combinatorics



Personal bias: Experimental Mathematics using Computer Algebra

David H. Bailey

Modern computer Algebra Second Edition

Joachim von zur Gathen and Jirgen Gerhard

Victor H. Moll

Experimental
Mathematics
in Action
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Guess’'n’Prove for

-PROVING ALGEBRAICITY-

10 /29
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Experimental mathematics -Guess'n’Prove— approach:

(S1) Generate data

(52) Conjecture

(S3) Prove

1/29



 Methodology for proving algebraicty

Experimental mathematics -Guess'n’Prove— approach:

(S1) Generate data
compute a high order expansion of the series Fo (t; x,v);

(52) Conjecture
guess a candidate for the minimal polynomial of F (¢; x, 1), using
Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.

12/29
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Meth

Experimental mathematics -Guess'n’Prove— approach:

(S1) Generate data
compute a high order expansion of the series Fo (t; x,v);

(52) Conjecture
guess candidates for minimal polynomials of F (t;x,0) and Fo (£0,y),
using Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.

12/29
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Meth

Experimental mathematics -Guess'n’Prove— approach:

(S1) Generate data
compute a high order expansion of the series Fo (t; x,v);

(52) Conjecture
guess candidates for minimal polynomials of F (t;x,0) and Fo (£0,y),
using Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.

+ Efficient Computer Algebra

12/29
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f.(n;i,]) satisfies the recurrence with constant coefficients

fon+Lij)= Y, fomi-uj—v) for nij>0
(up)es

+ initial conditions f. (0;7,j) = 0y, and f.or (n; —1,j) = for(n;i,—1) = 0.
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f.(n;i,]) satisfies the recurrence with constant coefficients

fon+Lij)= Y, fomi-uj—v) for nij>0
(up)es

+ initial conditions f. (0;7,j) = 0y, and f.or (n; —1,j) = for(n;i,—1) = 0.

Example: for the Kreweras walks,

k(n+1;i,j) =k(n;i+1,j)

+k(n;i,j+1) *

+k(ni—1,j—-1)
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Step (S1):

f.(n;i,]) satisfies the recurrence with constant coefficients

fon+Lij)= Y, fomi-uj—v) for nij>0
(up)es

+ initial conditions f. (0;7,j) = 0y, and f.or (n; —1,j) = for(n;i,—1) = 0.

Example: for the Kreweras walks,

k(n+1;i,j) =k(n;i+1,j)

+k(n;i,j+1) *

+k(mi—1,j—1)

> Recurrence is used to compute Fy (t;x,y) mod N for large N.

K(t;x,y) = 1+ xyt + (22 +y + )2 + (3 + 2xy% + 222y + 2)1°
+ (4 3x2y% + 3232 4+ 292 + by + 22) 4
+ (Y +4x3y* + axty® + 5xyP + 1227 + 523y + 8y + 8x) 0 + - -

13 /29
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Step (S

In terms of generating functions, the recurrence on k(n;1,j) reads

(xy — (x +y+ 22y*))K(5x,y)
=xy —xtK(t;x,0) —yt K(£;0,v) (KerEq)

> A similar kernel equation holds for F (t; x,y), for any .7-walk.

Corollary. Fo (t; x,y) is algebraic (resp. D-finite) if and only if F (£ x,0)
and F(t;0,y) are both algebraic (resp. D-finite).

> Crucial simplification: equations for G(t; x, y) are huge (=~ 30 Gb)

14/29
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Task 1: Given the first N terms of S = Fo (t;x,0) € Q[x][[¢]], search for a
differential equation satisfied by S at precision N:

7

'S aS
cr(x,t) - W+~~~+c1(x,t) g +co(x,t) - S = 0 mod V.
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Task 1: Given the first N terms of S = Fo (t;x,0) € Q[x][[¢]], search for a
differential equation satisfied by S at precision N:

7

'S aS
cr(x,t) - W+~~~+c1(x,t) g +co(x,t) - S = 0 mod V.

Task 2: Search for an algebraic equation Py ((S) =0 mod V.
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Step (52): gues

Task 1: Given the first N terms of S = F»(t;x,0) € Q[x][[t]], search for a
differential equation satisfied by S at precision N:

T

cr(x,t) S+~~~+cl(x,t)~E§+c0(x,t)~5=0m0dtN.

ot

Task 2: Search for an algebraic equation Py ((S) =0 mod V.

o Both tasks amount to linear algebra in size N over Q(x).

o In practice, we use modular Hermite-Padé approximation
(Beckermann-Labahn algorithm) combined with (rational)
evaluation-interpolation and rational number reconstruction.

o Fast (FFT-based) arithmetic in Fp[t] and F[t] ().

N ptter Algebra for Combinatorics



 Stap (52 guesing equatons for K(:3.0)

Using N = 80 terms of K(f;x,0), one can guess

> a linear differential equation of order 4, degrees (14,11) in (t, x), such that
£ (3t —1)- (92 43t +1) - (3> + 24£2x> — 3xt — 2x2)-
- (1662x° + 4xt — 72t4%3 — 18x3t 4+ 51242 + 18xt3 — 9t4)-

_ 9*K(t;x,0)

- (4253 — 12 4 2xt — x?
(4t°x + 2xt — x%) pye!

=0 mod %

> a polynomial of tridegree (6,10, 6) in (T, t, x)
Pro = xHOTO — 3248 (x —26)T5+

+ x40 (12t2 +3#2x% — 12xt + ;xz) T 4 ...

such that P, o(K(t;x,0),t,x) = 0 mod 180,

16 /29
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 Stap (52 guesing equations for Gt2,0) and G(E0Y)

Using N = 1200 terms of G(; x,y), our guesser found candidates

o Pypin Z[T,t, x] of degree (24,43,32), coefficients of 21 digits
o Po,y in Z[T,t,y] of degree (24,44,40), coefficients of 23 digits

such that

Pro(G(t;x,0),t,x) = 0mod #1200, Po,y(G(t;0,y),t,y) = 0 mod #1200,

N ptter Algebra for Combinatorics



Step (S2): g

Using N = 1200 terms of G(t;x,y), our guesser found candidates

o Pypin Z[T,t, x| of degree (24,43,32), coefficients of 21 digits
o Po, in Z|T,t,y] of degree (24,44, 40), coefficients of 23 digits

such that

Pro(G(t;x,0),t,x) = 0mod 20, Py, (G(0,y),t,y) = 0 mod t'2%.

> Guessing Py o by undetermined coefficients would have required to solve
a dense linear system of size ~ 100000, and ~ 1000 digits entries!

N ptter Algebra for Combinatorics



Step (S2): guessing equations for G(t;x,0) and G(£;0,y)

Using N = 1200 terms of G(t; x,y), our guesser found candidates
0 Pyo in Z[T, t, x] of degree (24,43,32), coefficients of 21 digits
o Pyy in Z[T,t,y] of degree (24, 44,40), coefficients of 23 digits
such that

Pro(G(t;x,0),t,x) = 0mod #1290, Poy(G(£0,y),t,y) = 0mod $1200,

> Guessing Py o by undetermined coefficients would have required to solve
a dense linear system of size ~ 100000, and ~ 1000 digits entries!

> [B., Kauers '09] actually first guessed differential equations+, then
computed their p-curvatures to empirically certify them. This led them
suspect the algebraicity of G(t;x,0) and G(+,0,y), using a conjecture of
Grothendieck’s (on differential equations modulo p) as an oracle.

1 of order 11, and bidegree (96,78) for G(t;x,0), and (68,28) for G(t;0,y)

Alin Bostan Computer Algebra for Combinatorics



~ Guessing is good, proving is better [_

How to Solve It

A New Aspect of

e Guessing and Proving

George Pélya

Guessing is good, proving is better.



g(t) :== G(V£0,0) Z (5/6)u(1/2)u (16t)" is algebraic.

(5/3)n (2




=i - B0

(16t)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y.5" gnt" as a root.
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=, (5/6)0(1/2)n

g(t) == G(V£0,0) = )

n=0

5/3)(2), (161" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y.5" gnt" as a root.

@ Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.
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=, (5/6)0(1/2)n

g(t) == G(V£0,0) = )

n=0

5/3)(2), (161" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y.5" gnt" as a root.

@ Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.

@ Implicit function theorem: 3! root r(t) € Q[[t]] of P.

19/29



Step (S3): war

Theorem

= G(V$0,0) = 3 —(5/6)"(1/2)" " is algebraic.
g(t) (vt;0,0) nZ:O /32 (16t)" is algebraic

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y.5" gnt" as a root.

@ Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.

@ Implicit function theorem: 3! root r(t) € Q[[t]] of P.

@ r(t)=Y ;o rat" being algebraic, it is D-finite, and so is (r4):
(n+2)(3n+5)r,.1 —4(6n+5)2n+1)r, =0, ro=1

= solution r, = (75%%16" = gn, thus g(t) = r(t) is algebraic.

19 /29
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. __\/ﬁ .
® Setting yp = S VT IEIET 4 1p L BB Ly e

kernel equation

(xy — (x +y + 2y )DK (£ x,y) = xy — xtK(t; x,0) — ytK(£0,y)

!
=0
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—t— 2_2t +t2(1 4x 2 341,3 .
@ Settingyg = YV =t+ 12+ 2P 4. inthe
kernel equation (diagonal symmetry lmphes K(ty,x) = (t,' X, Y))
(xy — (x +y + 2y )DK (£ x,y) = xy — xtK(t; x,0) — ytK(t;y,0)

!
=0

20 /29



. —t—/xE 20+ 2 (1—4x3) .
® Setting yo = VI OIIIA) 4 124 28 4 inthe

kernel equation

(xy — (x +y + 2y )DK(t %, y) = xy — xtK(t; x,0) — ytK(£;y,0)

!
=0
shows that U = K(t; x,0) satisfies the reduced kernel equation

| O=x-yo—x-t-U(t,x)—yo-t-U(tyo) | (RKerEq)

20 /29



. —t—/xE 20+ 2 (1—4x3) .
® Setting yo = VI OIIIA) 4 124 28 4 inthe

kernel equation

(xy — (x +y + 2y )DK(t %, y) = xy — xtK(t; x,0) — ytK(£;y,0)

!
=0
shows that U = K(t; x,0) satisfies the reduced kernel equation

| O=x-yo—x-t-U(t,x)—yo-t-U(tyo) | (RKerEq)

@ (RKerEq) admits a unique solution in Q[[x, t]], namely U = K(¢; x,0).
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. —t—/xE 20+ 2 (1—4x3) .
® Setting yo = VI OIIIA) 4 124 28 4 inthe

kernel equation

(xy — (x +y + 2y )DK(t %, y) = xy — xtK(t; x,0) — ytK(£;y,0)

!
=0
shows that U = K(t; x,0) satisfies the reduced kernel equation

| O=x-yo—x-t-U(t,x)—yo-t-U(tyo) | (RKerEq)

@ (RKerEq) admits a unique solution in Q[[x, t]], namely U = K(¢; x,0).
@ The guessed candidate P, (T, t, x) has a root H(t,x) in Q[[x, t]].
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. __\/ﬁ .
® Setting yp = S VT IEIET 4 1p L BB Ly e

kernel equation

(xy — (x +y + 2y )DK(t %, y) = xy — xtK(t; x,0) — ytK(£;y,0)

!
=0
shows that U = K(t; x,0) satisfies the reduced kernel equation

| O=x-yo—x-t-U(t,x)—yo-t-U(tyo) | (RKerEq)

@ (RKerEq) admits a unique solution in Q[[x, t]], namely U = K(¢; x,0).
@ The guessed candidate P, (T, t, x) has a root H(t,x) in Q[[x, t]].

@ U = H(t,x) also satisfies (RKerEq) Resultant computations!
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_

' P P(E0) ]
@ Setting yo = * VI 2OEEITAD _y 4 124 PB4 in the

kernel equation

(xy — (x +y + 2y )DK(t %, y) = xy — xtK(t; x,0) — ytK(£;y,0)

!
=0
shows that U = K(t; x,0) satisfies the reduced kernel equation

| O=x-yo—x-t-U(t,x)—yo-t-U(tyo) | (RKerEq)

@ (RKerEq) admits a unique solution in Q[[x, t]], namely U = K(¢; x,0).
@ The guessed candidate P, (T, t, x) has a root H(t,x) in Q[[x, t]].
@ U = H(t,x) also satisfies (RKerEq) Resultant computations!

® Uniqueness = H(t,x) = K(t;x,0) = K(t;x,0) is algebraic!

20 /29
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Algebraicity of Kreweras walks: a computer proof in a nutshell

# HIGH ORDER EXPANSION (S1)
> st,bu:=time() ,kernelopts(bytesused):
> f:=proc(n,i,j) option remember;
if i<0 or j<O or n<O then 0
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else f(n-1,i-1,j-1)+f(n-1,1i,j+1)+f(n-1,i+1,j) fi
end:
> S:=series(add(add(f(k,i,0)*x"i,i=0..k)*t"k,k=0..80),t,80):

# GUESSING (S2)
libname:=".",libname:gfun:-version();
3.76
> P:=subs(Fx0(t)=T,gfun:-seriestoalgeq(S,Fx0(t)) [1]):

Vv

RIGOROUS PROOF (S3)
ker := (T,t,x) —-> (x+T+x"2*xT"2)*t-x*T:
pol := unapply(P,T,t,x):
pl := resultant(pol(z-T,t,x),ker(t*z,t,x),z):
p2 := subs(T=x*T,resultant (numer(pol(T/z,t,z)) ,ker(z,t,x),z)):
normal (primpart (pl,T) /primpart (p2,T));
1

V VV VYV H®H

# time (in sec) and memory consumption (in Mb)
> trunc(time()-st) ,trunc((kernelopts(bytesused)-bu)/100072) ;
8, 785

Alin Bostan Computer Algebra for Combinatorics



Step (S3):

Same strategy, but several complications:
o stepset diagonal symmetry is lost: G(t;x,y) # G(ty, x);
o G(+0,0) occurs in (KerEq) (because of the step /);
o equations are ~ 5000 times bigger.

— replace equation (RKerEq) by a system of 2 reduced kernel equations.

— fast algorithms needed (e.g., [B., Flajolet, Salvy, Schost, 2006] for
computations with algebraic series).

Available onli directcom

.B.....,.@......:r- Journal of
Symbolic
e Computation
ELSEVIER Journal of Symbolic Computation 41 (2006) 1-29

www.elsevier.com/locate/js

Fast computation of special resultants

Alin Bostan®*, Philippe Flajolet?, Bruno Salvy?, Eric Schost®

® Algorithms Project, Inria Rocquencourt, 78153 Le Chesnay, France
Y LIX, Ecole polytechnique, 91128 Palaiseau, France

Received 3 September 2003; accepted 9 July 2005
Available online 25 October 2005
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BACK TO THE EXERCISE
—A hint-
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Let G = {1, +, \,}. A G-walk is a path in Z? using only steps from &.
Show that, for any integer 7, the following quantities are equal:

(i) the number a, of &-walks of length 1 confined to the upper half plane
Z x N that start and end at the origin (0,0);

(ii) the number b, of G-walks of length 1 confined to the quarter plane IN?
that start at the origin (0,0) and finish on the diagonal x = y.

24 /29



_

Let G = {1, +, \,}. A G-walk is a path in Z? using only steps from &.
Show that, for any integer 7, the following quantities are equal:

(i) the number a, of &-walks of length 1 confined to the upper half plane
Z x N that start and end at the origin (0,0);

(ii) the number b, of G-walks of length 1 confined to the quarter plane IN?
that start at the origin (0,0) and finish on the diagonal x = y.

For instance, for n = 3, this common value is a3 = b3 = 3:

va::: i\'::
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A recurrence relation for {f,

h(n;i,j) =nb. of {1, -, \y}-walks in Z x N of length n from (0,0) to (i, )
The numbers h(n;i,j) satisfy

0 ifj<0orn <0,
- T ifn=20
h 1, = i=j=0 . . . '
(n3i, ]) t h(n—1;i—i,j—j) otherwise.
(ij)es

> h:=proc(n,i,j)
option remember;
if j<O0 or n<0 then O
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else h(n-1,i,j-1) + h(n-1,i+1,j) + h(n-1,i-1,j+1) fi
end:

> A:=series(add(h(n,0,0)*t"n, n=0..12), t,12);

A =143 430t° + 420t° + O(t12)
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A recurrence relation for {

q(n;i,j) = nb. of {1, +-, \,}-walks in IN? of length 1 from (0,0) to (i, )
The numbers q(n; i, j) satisfy

0 ifi<Oorj<Oorn<0,
o) Timj=o ifn=0,
a0nii,f) = t qgin—1i—i,j—j) otherwise.
(@jes

> q:=proc(n,i,j)
option remember;
if i<0 or j<O or n<0 then O
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else q(n-1,i,j-1) + q(n-1,i+1,j) + q(n-1,i-1,j+1) fi
end:

> B:=series(add(add(q(n,k,k), k=0..n)*t"n, n=0..12), t,12);

B =1+ 3t +30t° + 420t + O(t1?)
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Guessing the answ

> seriestorec(A, u(n))[1];
2 2
{(-27 n -81n-54) u(n) + (@ +9n + 18) u(a + 3),

u(0) =1, u(1) = 0, u(2) = 0}
> rsolve(%, u(n)):
> A:=sum(subs(n=3*n, op(2,%))*t~(3*n), n=0..infinity);

3
A := hypergeom([1/3, 2/3], [2], 27 t )

> Thus, differential guessing predicts

- - 1/3 2/3|...3) < (3n)! £7
A(t)_B(t)_2F1< ) ‘27t>—n§ B a1
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Guessing the ans

> seriestorec(A, u(n))[1];
2 2
{(-27 n -81n-54) u(m) + (@ + 9 n + 18) u(n + 3),

u(0) =1, u(l) =0, u(2) = 0}
> rsolve(%, u(n)):
> A:=sum(subs(n=3*n, op(2,%))*t~(3*n), n=0..infinity);

3
A := hypergeom([1/3, 2/3], [2], 27 t )

> This can be algorithmically proved using creative telescoping
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