EXERCISES SESSION — MPRI C-2-22

In what follows, \mathbb{K} denotes an effective field of characteristic zero.

1. Computation of symmetric polynomials

Let x_1, x_2, \ldots, x_n be elements of \mathbb{K} and, for $k \ge 1$, let

$$e_k = \sum_{1 \le i_1 < \dots < i_k \le n} x_{i_1} x_{i_2} \cdots x_{i_k} \quad \text{and} \quad p_k = \sum_{i=1}^n x_i^k$$

be the power sums and the elementary symmetric polynomials in these elements.

- (a) Give a first algorithm for the computation of $\mathbf{p} := (p_1, \ldots, p_n) \in \mathbb{K}^n$, relying on the definition of p_k , and estimate its arithmetic complexity.
- (b) Same question for the computation of $\mathbf{e} := (e_1, \ldots, e_n) \in \mathbb{K}^n$.
- (c) Design an algorithm that computes **e** in $O(\mathsf{M}(n)\log n)$ operations in K.
- (d) Same question for the computation of **p**. [Hint: introduce a suitable generating function.]

2. Composition with the exponential

Let $f(X) \in \mathbb{K}[[X]]$ and let $e(X) \in \mathbb{K}[[X]]$ be the power series $e(X) = \exp(X) - 1 = \sum_{k \ge 1} X^k / k!$. The aim of this exercise is to propose an efficient algorithm for computing the first $N \in \mathbb{N}$ coefficients of the composition h(X) := f(e(X)), starting from the first N terms of f(X).

(a) Design a direct algorithm for computing the first N coefficients of h(X), and analyze its arithmetic complexity.

Let A(X) be the polynomial of degree less than N such that $f(X) = A(X) + O(X^N)$.

- (b) Let B(X) = A(X 1) and define $\mathcal{L} : \mathbb{K}[[X]] \to \mathbb{K}[[X]]$ to be the K-linear map such that $\mathcal{L}(X^k) = k! X^k$ for all $k \in \mathbb{N}$. Prove that $\mathcal{L}(B(\exp(X)))$ is a rational power series, and express it in terms of the coefficients of B.
- (c) Design an algorithm for computing the first N coefficients of $B(\exp(X))$, starting from those of B(X), in $O(\mathsf{M}(N) \log N)$ operations in \mathbb{K} .
- (d) Propose finally an algorithm for computing the first N coefficients of h(X), starting from those of f(X), in $O(\mathsf{M}(N) \log N)$ operations in \mathbb{K} .

3. GRAEFFE POLYNOMIALS

Let $f \in \mathbb{K}[X]$ be monic of degree $d \geq 1$. For $N \geq 1$, we denote by $G_N(f)$ the unique monic polynomial of degree d in $\mathbb{K}[X]$, whose roots are the N-th powers of the roots (in $\overline{\mathbb{K}}$) of f.

- (a) Express $G_N(f)$ using a resultant of bivariate polynomials.
- (b) Justify why all the coefficients of $G_N(f)$ belong to \mathbb{K} .
- (c) Use (a) to design an algorithm that computes $G_N(f)$; estimate its arithmetic complexity in terms of N and d.
- (d) Show that $G_2(f)$ can be computed in $O(\mathsf{M}(d))$ operations in K.
- (e) If N is a power of 2, show that one can compute $G_N(f)$ in $O(\mathsf{M}(d)\log(N))$ operations in \mathbb{K} .

4. Inversion of polynomial matrices by Strassen's Algorithm

Let $M(X) \in \mathcal{M}_n(\mathbb{K}[[X]]_{\leq d})$ be an invertible polynomial matrix. Assume that one computes the inverse M^{-1} by using Strassen's inversion algorithm for dense (scalar) matrices.

Estimate the complexity of this computation, counting operations in \mathbb{K} , in terms of the two parameters n and d, under the assumption that all matrices encountered during the inversion algorithm are invertible.

5. On factoring polynomials over finite fields

Let p be an odd prime number, let $n \in \mathbb{N}$ and $q = p^n$. Let $f \in \mathbb{F}_q[X]$ be a non-constant squarefree polynomial. Set $V = \mathbb{F}_q[X]/(f)$ and let $Q : V \to V$ be the \mathbb{F}_q -linear map given by $\eta \mapsto \eta^q$.

- (1) Show that the number of irreducible factors of f is equal to the dimension of ker(Q id) over \mathbb{F}_q . [Hint: start with the case when f is irreducible.]
- (2) Let $\eta = v + (f) \in \ker(Q \mathrm{id})$. Prove that $f = \gcd(f, v) \gcd(f, v^{\frac{q-1}{2}} 1) \gcd(f, v^{\frac{q-1}{2}} + 1)$.
- (3) Assuming that f is not irreducible, show that the factorization above is non-trivial for at least half of the η 's in ker(Q id).
- (4) Using the previous questions, propose an algorithm that takes $f \in \mathbb{F}_q[X]$ as input and that either proves that f is irreducible, or returns a non-trivial factor of it. Analyze the arithmetic and the bit complexity of the proposed algorithm.