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ABSTRACT
The long-term goal initiated in this work is to obtain fast
algorithms and implementations for definite integration in
Almkvist and Zeilberger’s framework of (differential) cre-
ative telescoping. Our complexity-driven approach is to ob-
tain tight degree bounds on the various expressions involved
in the method. To make the problem more tractable, we
restrict to bivariate rational functions. By considering this
constrained class of inputs, we are able to blend the general
method of creative telescoping with the well-known Hermite
reduction. We then use our new method to compute diago-
nals of rational power series arising from combinatorics.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulations—Algebraic Algorithms

General Terms
Algorithms, Theory

Keywords
Hermite reduction, creative telescoping.

1. INTRODUCTION
The long-term goal of the research initiated in the present

work is to obtain fast algorithms and implementations for
the definite integration of general special functions, in a
complexity-driven perspective.

As most special-function integrals cannot be expressed in
closed form, their evaluation cannot be based on table look-
ups only, and even when closed forms are available, they
may prove to be intractable in further manipulations. In
both cases, the difficulty can be mitigated by representing
functions by annihilating differential operators. This moti-
vated Zeilberger to introduce a method now known as cre-
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ative telescoping [18], which applies to a large class of special
functions: the D-finite functions [14] defined by sets of lin-
ear differential equations of any order, with polynomial co-
efficients. Zeilberger’s method applies in general to multiple
integrals and sums.

A sketch of Zeilberger’s method is as follows. Given a D-
finite function f of the variables x and y, the definite inte-

gral F (x) =
R β

α
f(x, y) dy is D-finite, and a linear differential

equation satisfied by F can be constructed [18]. To explain
this, let k be a field of characteristic zero, Dx and Dy be
the usual derivations on the rational-function field k(x, y),
both restricting to zero on k, and let k(x, y)〈Dx, Dy〉 be the
ring of linear differential operators over k(x, y). The heart of
the method is to solve the differential telescoping equation
(1) below for L ∈ k[x]〈Dx〉 \ {0} and g = R(f) for some
R ∈ k(x, y)〈Dx, Dy〉. The operator L is called a telescoper
for f , and g a certificate of L for f . Under the assumption

lim
y→α

g(x, y) = lim
y→β

g(x, y) for x in some domain,

L(x, Dx) is then proved to be an annihilator of F .
The main emphasis in works since the 1990’s has been

on finding telescopers of order minimal over all telescopers
for f , which are called minimal telescopers. (Two minimal
telescopers differ by a multiplicative factor in k(x).) In view
of the computational difficulty of solving (1), there has been
special attention to subclasses of inputs. Of particular im-
portance is the case of hyperexponential functions, defined
by first-order differential equations, studied by Almkvist and
Zeilberger in [1]. Their method is a direct differential ana-
logue of Zeilberger’s algorithm for the recurrence case [19].

On the other hand, very little is known about the com-
plexity of creative telescoping: the only related result seems
to be an analysis in [9] of an algorithm for hyperexponential
indefinite integration. In order to get complexity estimates,
we simplify the problem by restricting to a smaller class of in-
puts, namely that of bivariate rational functions. Although
restricted, this class already has many applications, for in-
stance in combinatorics, where many nontrivial problems are
encoded as diagonals of rational formal power series, them-
selves expressible as integrals. Our goal thus reads as follows.

Problem Given f = P/Q ∈ k(x, y)\{0}, find a pair (L, g)
with L =

Pρ
i=0 ηi(x)Di

x in k[x]〈Dx〉 \ {0} and g in k(x, y)
such that

L(x, Dx)(f) = Dy(g). (1)

By considering this more constrained class of inputs, we
are indeed able to blend the general method of creative tele-
scoping with the well-known Hermite reduction [10].
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Method degDx
(L) degx(L) degx(g) degy(g) Complexity

Minimal Hermite reduction (new) ≤ dy O(dxd2
y) O(dxd2

y) O(d2
y) Õ(dxdω+3

y ) Las Vegas

Telescoper Almkvist and Zeilberger ≤ dy O(dxd2
y) O(dxd2

y) O(d2
y) Õ(dxd2ω+2

y ) Las Vegas

Nonminimal Lipshitz elimination ≤ 6(dx + 1)(dy + 1) O(dxdy) O(d2
xdy) O(dxd2

y) O(d3ω
x d3ω

y ) deterministic

Telescoper Cubic size ≤ 6dy O(dxdy) O(dxdy) O(d2
y) O(dω

xd3ω
y ) deterministic

Figure 1: Complexity of creative telescoping methods (under Hyp. (H’)), together with bounds on output

Essentially two algorithms for minimal telescopers can be
found in the literature: The classical way [1] is to apply a
differential analogue of Gosper’s indefinite summation algo-
rithm, which reduces the problem to solving an auxiliary
linear differential equation for polynomial solutions. An al-
gorithm developed later in [7] (see also [12]) performs Her-
mite reduction on f to get an additive decomposition of the
form f = Dy(a) +

Pm
i=1 ui/vi, where the ui and vi are in

k(x)[y] and the vi are squarefree. Then, the algorithm in [1]
is applied to each ui/vi to get a telescoper Li minimal for it.
The least common left multiple of the Li’s is then proved to
be a minimal telescoper for f . This algorithm performs well
only for specific inputs (both in practice and from the com-
plexity viewpoint), but it inspired our Lemma 22 via [12].

As a first contribution in this article, we present a new,
provably faster algorithm for computing minimal telescopers
for bivariate rational functions. Instead of a single use of
Hermite reduction as in [12], we apply Hermite reduction to
the Di

x(f)’s, iteratively for i = 0, 1, . . . , which yields

Di
x(f) = Dy(gi) +

wi

w
(2)

for some factor w of the squarefree part of the denominator
of f . If η0, . . . , ηρ ∈ k(x) are not all zero and such thatPρ

i=0 ηiwi = 0, then the operator
Pρ

i=0 ηiD
i
x is a telescoper

for f , and more specifically, the first nontrivial linear relation
obtained in this way yields a minimal telescoper for f .

As a second contribution, we give the first proof of a poly-
nomial complexity for creative telescoping on a specific class
of inputs, namely on bivariate rational functions. For min-
imal telescopers, only a polynomial bound on dx (but none
on dy) was given for special inputs in [7]; more specifically,
we derive complexity estimates for all mentioned methods
(see Fig. 1), showing that our approach is faster. Further-
more, we analyse the bidegrees of non minimal telescop-
ers generated by other approaches: Lipshitz’ work [13] can
be rephrased into an existence theorem for telescopers with
polynomial size; the approach followed in the recent work on
algebraic functions [3] leads to telescopers of smaller degree
sizes. These are new instances of the philosophy, promoted
in [3], that relaxing minimality can produce smaller outputs.

A third contribution is a fast Maple implementation [20],
incorporating a careful implementation of the original Her-
mite reduction algorithm, making use of the special form
of wi/w in (2) and of usual modular techniques (probabilis-
tic rank estimate) to determine when to invoke the solver
for linear algebraic equations. Experimental results indicate
that our implementation outperforms Maple’s core routine.

Note that for the fastest method we propose, denoted
by H1 in Tables 1–3, we chose to output the certificate as
a mere sum of (small) rational functions, without any form
of normalisation. This choice seems to be uncommon for
creative-telescoping algorithms, but a motivation is how the
certificate is used in practice: Very often, like for applications
to diagonals in § 5, the certificate is actually not needed. In

other applications, the next step of the method of creative
telescoping is to integrate (1) between α and β, leading to
L(F )(x) = g(x, α) − g(x, β). Therefore, only evaluations of
the certificate are really needed, and normalisation can be
postponed to after specialising at α and β.

The end of this section, § 1.1, provides classical complexity
results, notation, and hypotheses that will be used through-
out. We then study Hermite reduction over k(x) in § 2, prov-
ing output degree bounds and a low-complexity algorithm.
This is then applied in § 3 to derive our new algorithm for
creative telescoping, and to compare its complexity with that
of Almkvist and Zeilberger’s approach. For nonminimal tele-
scopers, we show the existence of some of lower arithmetic
size in § 4: cubic for nonminimal order instead of quartic
for minimal order. See the summary in Figure 1, where the
low complexity of algorithms for minimal telescopers relies
on Storjohann and Villard’s algorithms [17], thus inducing
a certified probabilistic feature. We apply our results to the
calculation of diagonals in § 5, and describe our implemen-
tation and comment on execution timings in § 5.

1.1 Background on complexity — Notation
We recall basic notation and complexity facts for later use.

Let k be again a field of characteristic zero. Unless other-
wise specified, all complexity estimates are given in terms of
arithmetical operations in k, which we denote by “ops”. Let
k[x]m×n

≤d be the set of m×n matrices with coefficients in k[x]

of degree at most d. Let ω ∈ [2, 3] be a feasible exponent of
matrix multiplication, so that two matrices from kn×n can
be multiplied using O(nω) ops. Facts 1 and 2 below show the
complexity of multipoint evaluation, rational interpolation,
and algebraic operations on polynomial matrices using fast
arithmetic, where the notation Õ(·) indicates cost estimates
with hidden logarithmic factors [6, Def. 25.8].

Fact 1 For p ∈ k[x] of degree less than n, pairwise distinct
u0, . . . , un−1 in k, and v0, . . . , vn−1 ∈ k, we have:

(i) Evaluating p at the ui’s takes Õ(n) ops.

(ii) For m ∈ {1, . . . , n}, constructing f = s/t ∈ k(x) with
degx(s) < m and degx(t) ≤ n−m such that t(ui) 6= 0

and f(ui) = vi for 0 ≤ i ≤ n− 1 takes Õ(n) ops.

Fact 2 For M in k[x]m×n
≤d , d > 0, we have:

(i) If M =
`
M1 M2

´
is an invertible n × n matrix with

Mi ∈ k[x]n×ni
≤di

, where i = 1, 2 and n1 + n2 = n, then

the degree of det(M) is at most n1d1 + n2d2.

(ii) If M =
`
M1 M2

´
is not of full rank and with Mi ∈

k[x]m×ni
≤di

, where i = 1, 2 and n1 + n2 = n, then there

exists a nonzero u ∈ k[x]n with coefficients of degree at
most n1d1 + n2d2 such that Mu = 0.

(iii) The rank r and a basis of the null space of M can be

computed using Õ(nmrω−2d) ops.
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(For proofs, see [6, Cor. 10.8, 5.18, 11.6] and [17, Th. 7.3].)

We call squarefree factorisation of Q ∈ k[x, y]\k[x] w.r.t. y
the unique product qQ1Q

2
2 · · ·Qm

m equal to Q for q ∈ k[x]
and Qi ∈ k[x, y] satisfying degy(Qm) > 0 and such that
the Qi’s are primitive, squarefree, and pairwise coprime. The
squarefree part Q∗ of Q w.r.t. y is the product Q1Q2 · · ·Qm.
Let Q− denote the polynomial Q/Q∗, and lcy(Q) the leading
coefficient of Q w.r.t. y. The following two formulas about
Q, Q∗, and Q− can be proved by mere calculations.

Fact 3 Let Q̂i denote Q∗/Qi. Then we have

(i) Q∗Dy(Q−)/Q− =
Pm

i=1(i− 1)Q̂iDy(Qi) ∈ k[x, y];

(ii) Dy(Q)/Q− =
Pm

i=1 iQ̂iDy(Qi) ∈ k[x, y].

Let f = P/Q be a nonzero element in k(x, y), where P, Q
are two coprime polynomials in k[x, y]. The degree of f
in x is defined to be max{degx(P ), degx(Q)}, and denoted
by degx(f). The degree of f in y is defined similarly. The
bidegree of f is the pair (degx(f), degy(f)), which is denoted
by bideg(f). The bidegree of f is said to be bounded (above)
by (α, β), written bideg(f) ≤ (α, β), when degx(f) ≤ α
and degy(f) ≤ β.

We say that f = P/Q is proper if the degree of P in y
is less than that of Q. For creative telescoping, we may
always assume w.l.o.g. that f = P/Q is proper. If not,
rewrite f = Dy(p) + f̄ with p ∈ k(x)[y] and f̄ proper. A
telescoper L for f̄ with certificate ḡ is a telescoper for f with
certificate L(p) + ḡ.

Hypothesis (H) From now on, P and Q are assumed to be
nonzero polynomials in k[x, y] such that degy(P ) < degy(Q),
gcd(P, Q) = 1, and Q is primitive w.r.t. y.

Notation From now on, we write (dx, dy), (d∗x, d∗y), and
(d−x , d−y ) for the bidegrees of Q, Q∗, and Q−, respectively.

The following hypothesis makes our estimates concise.

Hypothesis (H’) Occasionally, we shall require the extend-
ed hypothesis: Hypothesis (H) and degx(P ) ≤ dx.

2. HERMITE REDUCTION
Let K be a field of characteristic zero, either k or k(x) in

what follows. Let K(y) be the field of rational functions in y
over K, and Dy be the usual derivation on it. For a rational
function f ∈ K(y), Hermite reduction [10] computes rational
functions g and r = a/b in K(y) satisfying

f = Dy(g) + r, degy(a) < degy(b), b is squarefree. (3)

Horowitz and Ostrogradsky’s method [15, 11] computes the
same decomposition as in (3) by solving a linear system. For
the details of those methods, see [4, Chapter 2].

Lemma 4 If f is proper, a pair (g, r) satisfying (3) for
proper g, r is unique.

Proof. This is a consequence of [11, Theorem 2.10] after
writing r as a sum

Pm
i=1 αi/(x− bi) and integrating.

Lemma 5 Let f be a nonzero rational function in K(y) of
degree at most n in y, then Hermite reduction on f can be
performed using Õ(n) operations in K.

Proof. See [6, Theorem 22.7].

In contrast, the method of Horowitz and Ostrogradsky takes
O(nω) operations in K [6, § 22.2]. Thus, Hermite’s method
is quasi-optimal and asymptotically faster than the former.

From now on, we fix K = k(x) and analyse the complexity
of Hermite reduction over k(x) in terms of operations in k.
To this end, we use an evaluation-interpolation approach.

2.1 Output size estimates
We derive an upper bound on the bidegrees of g and r

satisfying (3) by studying the linear system in [11].
Analysing Hermite reduction (under (H)) shows the exis-

tence of A, a ∈ k(x)[y] with degy(A) < d−y , degy(a) < d∗y and

P

Q
= Dy

„
A

Q−

«
+

a

Q∗
. (4)

In order to bound the bidegrees of A and a, we reformu-
late (4) into the equivalent form

P = Q∗Dy(A)−
„

Q∗Dy(Q−)

Q−

«
A + Q−a, (5)

where Q∗Dy(Q−)/Q− is a polynomial in k[x, y] of bidegree
at most (d∗x, d∗y − 1) by Fact 3. Viewing A and a as polyno-
mials in k(x)[y] with undetermined coefficients, we form the
following linear system, equivalent to (5),`

H1 H2

´ „
Â
â

«
= P̂ , (6)

where H1 ∈ k[x]
dy×d−y
≤d∗x

, H2 ∈ k[x]
dy×d∗y

≤d−x
, and Â, â, and P̂

are the coefficient vectors of A, a, and P with sizes d−y , d∗y,
and dy, respectively. Under the constraint of properness of
A/Q− and a/Q∗, (A, a) is unique by Lemma 4. Then (6)
has a unique solution, which leads to the following lemma.

Lemma 6 The matrix
`
H1 H2

´
is invertible over k(x).

As the matrix
`
H1 H2

´
is uniquely defined by Q, we call

it the matrix associated with Q, denoted by H(Q). Let δ
be its determinant, so that degx(δ) ≤ µ := d∗xd−y + d−x d∗y by
Fact 2(i). For later use, we also define δ′ as the determinant
of H(Q∗2), so that degx(δ′) ≤ µ′ := 2d∗xd∗y by Fact 2(i) and

since (Q∗2)− = Q∗.

Lemma 7 There exist B, b ∈ k[x, y] with degy(B) < d−y
and degy(b) < d∗y, and such that:

(i) P
Q

= Dy

“
B

δQ−

”
+ b

δQ∗ ;

(ii) degx(B) ≤ µ− d∗x + degx(P ) and degx(b) ≤ µ− d−x +
degx(P ).

Proof. Applying Cramer’s rule to (6) leads to (i). As-
sertion (ii) next follows by determinant expansions.

In what follows, we shall encounter proper rational func-
tions with denominator Q satisfying Q = Q∗2. The following
lemma is an easy corollary of Lemma 7 for such functions.

Corollary 8 Assuming Q = Q∗2 in addition to Hypothe-
sis (H), there exist B, b ∈ k[x, y] with degy(B) and degy(b)
less than d∗y, and such that

(i) P
Q∗2 = Dy

“
B

δ′Q∗

”
+ b

δ′Q∗ ;

(ii) degx(B) and degx(b) are bounded by µ′−d∗x +degx(P ).
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2.2 Algorithm by evaluation and
interpolation

We observe that an asymptotically optimal complexity can
be achieved by evaluation and interpolation at each step of
Hermite reduction over k(x). This inspires us to adapt Ger-
hard’s modular method [8, 9] to k(x, y). Recall that, by
Hyp. (H), Q ∈ k[x, y] is nonzero and primitive over k[x].

Definition An element x0 ∈ k is lucky if lcy(Q)(x0) 6= 0
and degy(gcd(Q(x0, y), Dy(Q(x0, y)))) = d−y .

Lemma 9 There are at most dx(2d∗y − 1) unlucky points.

Proof. Let σ ∈ k[x] be the d−y th subresultant w.r.t. y
of Q and Dy(Q). By [9, Corollary 5.5], all unlucky points
are in the set U = {x0 ∈ k | σ(x0) = 0 }. By [9, Corollary
3.2(ii)], degx(σ) ≤ dx(2d∗y − 1).

Lemma 10 Let B, b, and δ be the same as in Lemma 7, and
let x0 ∈ k be lucky. Then δ(x0) 6= 0 and (B(x0, y), b(x0, y))
is the unique pair such that

P (x0, y)

Q(x0, y)
= Dy

„
B(x0, y)

δ(x0)Q−(x0, y)

«
+

b(x0, y)

δ(x0)Q∗(x0, y)
. (7)

Proof. By the luckiness of x0, degy(Q(x0, y)) = dy and

Q(x0, y)− = Q−(x0, y), so Q(x0, y)∗ = Q∗(x0, y). This im-
plies H(Q)(x0, y) = H(Q(x0, y)), which, by Lemma 6, is
invertible over k(x). Hence δ(x0) 6= 0, and the evaluation
at x = x0 of the equality in Lemma 7(i) is well-defined.
Thus, (B(x0, y), b(x0, y)) is a solution of (7). Uniqueness
follows from Lemma 4.

Theorem 11 Algorithm HermiteEvalInterp in Figure 2 is
correct and takes Õ(dxd2

y + degx(P )dy) ops.

Proof. Set ν to dx(2d∗y − 1). Lemma 9 implies that the
λ + 1 lucky points found in Step 3 are all less than λ +
ν + 1. By Lemmas 4 and 7(i), A = B/δ and a = b/δ. By
Lemma 10, A0 = B(x0, y)/δ(x0) and a0 = b(x0, y)/δ(x0).
By Lemma 7(ii) and since degx(δ) ≤ µ, it suffices to ratio-
nally interpolate A and a from values at λ + 1 lucky points.
This shows the correctness. The dominant computation in
Step 1 is the gcd, which takes Õ(dxdy) ops by [6, Cor. 11.9].
For each integer i ≤ λ+ν, testing luckiness amounts to eval-
uations at x0 and computing gcd(Q(x0, y), Dy(Q(x0, y))),

which takes Õ(dy) ops by Fact 1(i) and [6, Cor. 11.6]. Then,

generating S in Step 3 costs Õ((λ + ν + 1)dy) ops. By

Fact 1(i), evaluations in Step 4 take Õ((λ + 1)dy) ops. For
each x0 ∈ S, the cost of the Hermite reduction in Step 4 is
Õ(dy) ops by Lemma 5. Thus, the total cost of Step 4 is

Õ((λ + 1)dy) ops. By Fact 1(ii), Step 5 takes Õ((λ + 1)dy)
ops. Since λ ≤ 2dxdy + degx(P ) and ν ≤ 2dxdy, the total
cost is as announced.

As the generic output size of Hermite reduction is propor-
tional to λdy, which is O((dxdy + degx(P ))dy), Algorithm
HermiteEvalInterp has quasi-optimal complexity.

3. MINIMAL TELESCOPERS
We analyse two algorithms for constructing minimal tele-

scopers for bivariate rational functions and their certificates.

Algorithm HermiteEvalInterp(P, Q)

Input: P, Q ∈ k[x, y] satisfying Hypothesis (H).
Output: (A, a) ∈ k(x)[y]2 solving (4).

1. Compute Q− := gcd(Q, Dy(Q)) and Q∗ := Q/Q−;

2. Set λ := 2(d∗xd−y + d∗yd−x ) + degx(P )−min{d−x , d∗x};

3. Set S to the set of λ+1 smallest nonnegative integers
that are lucky for Q;

4. For each x0 ∈ S, compute (A0, a0) ∈ k[y]2 such that

P (x0, y)

Q(x0, y)
= Dy

„
A0

Q−(x0, y)

«
+

a0

Q∗(x0, y)

using Hermite reduction over k;

5. Compute (A, a) ∈ k(x)[y] by rational interpolation
and return this pair.

Figure 2: Hermite reduction over k(x) via evaluation
and interpolation.

3.1 Hermite reduction approach
We design a new algorithm, presented in Figure 3, to com-

pute minimal telescopers for rational functions by basing on
Hermite reduction. For f = P/Q ∈ k(x, y) and i ∈ N, Her-
mite reduction decomposes Di

x(f) into

Di
x(f) = Dy(gi) + ri, (8)

where gi, ri ∈ k(x, y) are proper. Since the squarefree part
of the denominator of Di

x(f) divides Q∗, so does the de-
nominator of ri. The following lemma shows that (8) re-
combines into telescopers and certificates; next, Lemma 13
implies that the first pair obtained in this way by Algorithm
HermiteTelescoping in Figure 3 yields a minimal telescoper.

Lemma 12 The rational functions r0, . . . , rd∗y are linearly

dependent over k(x).

Proof. The constraints on ri imply degy(riQ
∗) < d∗y for

all i ∈ N, from which follows the existence of a nontrivial
linear dependence among the ri’s over k(x).

Lemma 13 An integer ρ is minimal such that
Pρ

i=0 ηiri =

0 for η0, . . . , ηρ ∈ k(x) not all zero if and only if
Pρ

i=0 ηiD
i
x

is a minimal telescoper for f with certificate
Pρ

i=0 ηigi.

Proof. Multiplying (8) by ηi before summing yields

L(f) = Dy

„ ρX
i=0

ηigi

«
+

ρX
i=0

ηiri for L :=

ρX
i=0

ηiD
i
x,

where the first two sums are proper. Thus, by Lemma 4, L is
a telescoper of order ρ for f with certificate

Pρ
i=0 ηigi if and

only if
Pρ

i=0 ηiri = 0 with ηρ 6= 0. The lemma follows.

3.1.1 Order bounds for minimal telescopers
Lemmas 12 and 13 combine into an upper bound on the

order of minimal telescopers for f .

Corollary 14 Minimal telescopers have order at most d∗y.

The bound 6dy is shown in [3] for rational functions of the
form yDy(Q)/Q with Q ∈ k[x, y]. Apagodu and Zeilberger [2]
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obtain a similar bound for a class of nonrational hyperexpo-
nential functions, but their proof does not seem to apply to
rational functions, as it heavily relies on the presence of a
nontrivial exponential part.

We also derive a lower bound on the order of the minimal
telescoper, to be used as an optimisation at the end of § 3.1.3:
choosing a lucky x0 ∈ k, next applying Hermite reduction
in k(y) to Di

x(f)(x0, y), yields

Di
x(f)(x0, y) = Dy(g0,i) + r0,i, (9)

where g0,i, r0,i ∈ k(y) are proper and the denominator of r0,i

divides Q∗(x0, y). Let ρ0 be the smallest integer such that
r0,0, . . . , r0,ρ0 are linearly dependent over k.

Lemma 15 A minimal telescoper has order at least ρ0.

Proof. We first claim that r0,i = ri(x0, y), for ri as
in (8). Note that the squarefree part w.r.t. y of the denomi-
nator of Di

x(f) divides Q∗ for all i ∈ N. By [9, Cor. 5.5], x0 is
lucky for the denominator of Di

x(f) for all i ∈ N. Then, the
claim on r0,i follows from Lemma 10 applied to Di

x(f). Let ρ
be the minimal order of a telescoper, then r0, . . . , rρ are lin-
early dependent over k(x) by Lemma 13. Thus r0,0, . . . , r0,ρ

are linearly dependent over k, which implies ρ0 ≤ ρ.

3.1.2 Degree bounds for minimal telescopers
To derive degree bounds for gi and ri in (8), let δ, δ′, µ,

and µ′ be defined as before Lemma 7, and set µ′′ = µ+µ′−1.

Lemma 16 Let W be in k[x, y] with degy(W ) < d∗y. Then,
for all i ∈ N, there exist B, b ∈ k[x, y] with both bideg(B)
and bideg(b) bounded by (degx(W ) + µ′′, d∗y − 1), such that

Dx

„
W

δi+1δ′iQ∗

«
= Dy

„
B

δi+2δ′i+1Q∗

«
+

b

δi+2δ′i+1Q∗
.

Proof. A straightforward calculation leads to

Dx

„
W

δi+1δ′iQ∗

«
=

W̃

δi+2δ′i+1Q∗
− 1

δi+1δ′i
WDx(Q∗)

Q∗2
,

where bideg(W̃ ) ≤ (degx(W ) + µ′′, d∗y − 1). By Corollary 8,

there exist B̃, b̃ ∈ k[x, y] such that

1

δi+1δ′i
WDx(Q∗)

Q∗2
=

1

δi+2δ′i+1

„
Dy

„
δB̃

Q∗

«
+

δb̃

Q∗

«
,

with bideg(B̃) and bideg(b̃) bounded by (degx(W ) + µ′ − 1,

d∗y − 1). Setting (B, b) = (−δB̃, W̃ − δb̃) ends the proof.

Lemma 17 For i ∈ N, there exist Bi, bi ∈ k[x, y] such that

Di
x(f) = Dy

„
Bi

δi+1δ′iQ∗iQ−

«
+

bi

δi+1δ′iQ∗
. (10)

Moreover, bideg(Bi) ≤ (degx(P )+µ+ iµ′′+(i− 1)d∗x, id∗y +
d−y − 1) and bideg(bi) ≤ (degx(P ) + µ + iµ′′ − d−x , d∗y − 1).

Proof. We proceed by induction on i. For i = 0, the
claim follows from Lemma 7. Assume that i > 0 and that
the claim holds for the values less than i. For brevity, we
set γ = degx(P ) + µ, Fi−1 = Bi−1/(δiδ′

i−1
Q∗i−1Q−), and

Gi−1 = bi−1/(δiδ′
i−1

Q∗). The induction hypothesis implies

Di
x(f) = DyDx(Fi−1) + Dx(Gi−1),

with bidegree bounds on Bi−1 and bi−1. Fact 3(i) implies

that Q̃ := Q∗Dx(Q−)/Q− is in k[x, y], with bideg(Q̃) ≤

Algorithm HermiteTelescoping(f)

Input: f = P/Q ∈ k(x, y) satisfying Hypothesis (H).
Output: A minimal telescoper L ∈ k[x]〈Dx〉 with cer-

tificate g ∈ k(x, y).

1. Apply HermiteEvalInterp to f to get (g0, a0) such
that f = Dy(g0) + a0/Q∗. If a0 = 0, return (1, g0).

2. For i from 1 to degy(Q∗) do

(a) Apply HermiteEvalInterp to −ai−1Dx(Q∗)/Q∗2

to express it as Dy(g̃i) + ãi/Q∗.

(b) Set gi = Dx(gi−1)+ g̃i and ai = Dx(ai−1)+ ãi.

(c) Solve
Pi

j=0 ηjaj = 0 for ηj ∈ k(x) using [17].
If there exists a nontrivial solution, then set
(L, g) :=

`Pi
j=0 ηjD

j
x,

Pi
j=0 ηjgj

´
, and break.

3. Compute the content c of L and return (c−1L, c−1g).

Figure 3: Creative telescoping by Hermite reduction

(d∗x − 1, d∗y). Hence Dx(1/Q−) = −Q̃/Q. This observation
and an easy calculation imply that

Dx(Fi−1) =
B̃i−1

δi+1δ′iQ∗iQ−
,

where B̃i−1 ∈ k[x, y] and degx(B̃i−1) ≤ degx(Bi−1)+µ′′+d∗x.
Furthermore, by Lemma 16 there are B̄i, b̄i ∈ k[x, y] with
bidegrees at most (degx(bi−1) + µ′′, d∗y − 1), such that

Dx(Gi−1) = Dy

„
B̄i

δi+1δ′iQ∗

«
+

b̄i

δi+1δ′iQ∗
.

Setting Bi = B̃i−1 + B̄iQ
∗i−1Q− and bi = b̄i, we arrive

at (10). It remains to verify the degree bounds. The induc-
tion hypothesis implies that both degx(B̄i) and degx(bi) are
bounded by γ + iµ′′− d−x . It follows that degx(B̄iQ

∗i−1Q−)

is bounded by γ + iµ′′ + (i− 1)d∗x. Similarly, degx(B̃i−1) is
bounded by γ + iµ′′ + (i − 1)d∗x, and so is degx(Bi). The
bounds on degrees in y are obvious.

We next derive degree bounds for the minimal telescop-
ers obtained at an intermediate stage of HermiteTelescoping;
refined bounds on the output will be given by Theorem 25.

Lemma 18 Under (H’), Step 2(c) of Algorithm Hermite-
Telescoping computes a minimal telescoper L ∈ k[x]〈Dx〉
with order ρ and a certificate g ∈ k(x, y) for P/Q with
degx(L) ∈ O(dxdyρ2) and bideg(g) ∈ O(dxdyρ2)×O(dyρ).

Proof. By Lemma 13, we exhibit a minimal telescoper
by considering the first nontrivial linear dependence among
the ai’s in (10). Let M be the coefficient matrix of the
system in (ηi) obtained from

Pρ
i=0 ηiai = 0. By Lemma 17,

M is of size at most (ρ + 1) × d∗y and with coefficients of
degree at most σ := dx + µ + ρµ′′ − d−x in x. Hence, there
exists a solution (η0, . . . , ηρ) ∈ k[x]ρ+1 of degree at most σρ
in x by Fact 2(ii). Since µ, µ′′ ∈ O(dxdy) and d∗y ≤ dy, the
degree estimates of L and g are as announced.

3.1.3 Complexity estimates
We proceed to analyse the complexity of the algorithm in

Figure 3 and of an optimisation.
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Theorem 19 Under Hyp. (H’), Algorithm HermiteTelescop-

ing in Figure 3 is correct and takes Õ(ρω+1dxd2
y) ops, where

ρ is the order of the minimal telescoper.

Proof. The formulas in Step 2(a) create the loop invari-
ant Di

x(f) = Dy(gi) + ai/Q∗. Correctness then follows from

Lemmas 12 and 20. Step 1 takes Õ(dxd2
y) ops by Theo-

rem 11 under (H’). By Lemma 17, degx(−ai−1Dx(Q∗)) ∈
O(idxdy). So the cost for performing Hermite reduction on

−ai−1Dx(Q∗)/Q∗2 in Step 2(a) is Õ(idxd2
y) ops by Theo-

rem 11. The bidegrees of gi and ai in Step 2(b) are in
O(idxdy) × O(idy) by Lemma 17. Since adding and differ-

entiating have linear complexity, Step 2(b) takes Õ(i2dxd2
y)

ops. For each i, the coefficient matrix of
Pi

j=0 ηjaj = 0

in Step 2(c) is of size at most (i + 1) × d∗y and with coef-
ficients of degree at most degx(ai) ∈ O(idxdy). Moreover,
the rank of this matrix is either i or i + 1. Then, Step 2(c)

takes Õ(iωdxd2
y) ops by Fact 2(iii). Computing the content

and divisions in Step 3 has complexity Õ(dxdyρ3). If the
algorithm returns when i = ρ, then the total cost is in

ρX
i=0

Õ(i2dxd2
y) +

ρX
i=1

Õ(iωdxd2
y) ⊂ Õ(ρω+1dxd2

y) ops, (11)

which is as announced.

An optimisation, based on Lemma 15, consists in guessing
the order ρ so as to perform Step 2(c) a few times only: As
a preprocessing step, choose x0 ∈ k lucky for Q, then detect
linear dependence of {r0,0, . . . , r0,j} in (9). The minimal j
for dependence is a lower bound ρ0 on ρ. So Step 2(c) is then
performed only when i ≥ ρ0. In practice, the lower bound ρ0

computed in this way almost always coincides with the actual
order ρ. So normalising the gi’s becomes the dominant step,
as observed in experiments. We analyse this optimisation by
first estimating the cost for computing ρ0.

Lemma 20 Under Hypothesis (H’), computing a lower or-

der bound ρ0 for minimal telescopers takes Õ(dxdyρ3
0) ops.

Proof. Since differentiating has linear complexity, the
derivative Di

x(f) takes Õ(i2dxdy) ops. By Fact 1(i), the
evaluation Di

x(f)(x0, y) takes as much. The cost of Hermite

reduction on Di
x(f)(x0, y) is Õ(idy) ops by Lemma 5. By

Fact 2(iii) with d = 1, computing the rank of the coefficient

matrix of
Pi

j=0 ηjr0,j , with r0,j as in (9), takes Õ(dyiω−1)
ops. Thus, the total cost for computing a lower bound on ρ0

is
Pρ0

i=0 Õ(i2dxdy) ∈ Õ(dxdyρ3
0) ops.

Corollary 21 For runs such that ρ0 = ρ−O(1), the previ-

ous optimisation of HermiteTelescoping takes Õ(ρ3dxd2
y) ops.

Proof. In view of Lemma 20, the estimate (11) becomes

Õ(dxdyρ3
0) +

Pρ
i=0 Õ(i2dxd2

y) +
Pρ

i=ρ0
Õ(iωdxd2

y), which is

Õ(ρ3dxd2
y) + Õ((ρ− ρ0)ρ

ωdxd2
y) ops, whence the result.

3.2 Almkvist and Zeilberger’s approach
We analyse the complexity of Almkvist and Zeilberger’s

algorithm [1] when restricted to bivariate rational functions.
In order to get a telescoper whose order ρ is minimal, the
resulting algorithm, denoted RatAZ, solves (1) for increasing,
prescribed values of ρ until it gets a solution (η0, . . . , ηρ, g) ∈
k(x)ρ+1×k(x, y) with the ηi’s not all zero. For the analysis,
we start by studying the parameterisation of the differential
Gosper algorithm of [1] under the same restriction to k(x, y).

Definition ([9]) Let K be a field and a, b ∈ K[y] be non-
zero polynomials. A triple (p, q, r) ∈ K[y]3 is said to be a
differential Gosper form of the rational function a/b if

a

b
=

Dy(p)

p
+

q

r
and gcd(r, q − τDy(r)) = 1 for all τ ∈ N.

For hyperexponential f , a key step in [1] is to compute a
differential Gosper form of the logarithmic derivative of F =Pρ

i=0 ηiD
i
x(f), where the ηi’s are undetermined from k(x).

In the analogue RatAZ, this form is predicted by Lemma 22
below, which is a technical generalisation of a result by
Le [12] on F when f has a squarefree denominator.

Write Q = t(y)T (x, y), splitting content and primitive
part w.r.t. x. By an easy induction, Di

x(f) = Ni/(QT ∗i)
for Ni ∈ k[x, y]. For this section, set F =

Pρ
i=0 ηiD

i
x(f),

N =
Pρ

i=0 ηiNiT
∗ρ−i, and H = −Dy(Q)/Q− − ρt∗Dy(T ∗).

Lemma 22 If F is nonzero, the triple (N, H, Q∗) is a dif-
ferential Gosper form of Dy(F )/F .

Proof. First, observe F = N/(QT ∗ρ) and Q∗ = t∗T ∗.
Next, Dy(F )/F = Dy(N)/N − Dy(Q)/Q − ρDy(T ∗)/T ∗ is
Dy(N)/N + H/Q∗. There remains to prove gcd(Q∗, H −
τDy(Q∗)) = 1, for any τ ∈ N. Recall that the squarefree

part Q∗ of Q is the product Q1Q2 · · ·Qm and that Q̂i de-
notes Q∗/Qi. By Fact 3(ii),

Z := H − τDy(Q∗) = −ρt∗Dy(T ∗)−
mX

i=1

(i + τ)Q̂iDy(Qi).

If Qj divides t∗, Z reduces to −(j+τ)Q̂jDy(Qj) modulo Qj .

If not, it reduces to −(j+τ)Q̂jDy(Qj)−ρt∗(Dy(Qj)T
∗/Qj),

which rewrites to −(j+τ +ρ)Q̂jDy(Qj) modulo Qj . In both
cases, Z is coprime with Q∗, as j > 0, τ ≥ 0, and ρ ≥ 0.

By another induction, we observe bideg(Ni) ≤ (degx(P )+
i degx(T ∗) − i, dy + i degy(T ∗) − 1), so that bideg(N) ≤
(degx(P ) + ρ degx(T ∗)− ρ, dy + ρ degy(T ∗)− 1).

The next step in RatAZ is, for fixed ρ, to reduce (1) by
the change of unknown g = z/(Q−T ∗ρ), so as to determine
all (ηi) ∈ k(x)ρ+1 for which the differential equation in z

ρX
i=0

ηiNiT
∗ρ−i

= Q∗Dy(z) + (Dy(Q∗) + H) z (12)

has a polynomial solution in k(x)[y]. For later use, we recall
the following consequence of [9, Corollary 9.6].

Lemma 23 Let a, b ∈ K[y] be such that β = − lcy(b)/ lcy(a)
is a nonnegative integer and degy(b) = degy(a) − 1. Let
c ∈ K[y] be such that β ≥ degy(c) − degy(a) + 1. If u is a
polynomial solution of aDy(z) + bz = c, then degy(u) ≤ β.

The following lemma generalises [12, Lemma 2] to present a
degree bound for z.

Lemma 24 If u ∈ k(x)[y] is a solution of (12) for (ηi) ∈
k(x)ρ+1, then degy(u) is bounded by β = d−y + ρ degy(T ∗).

Proof. Let a = Q∗ and b = Dy(Q∗) + H. By the def-
inition of H, b = −Q∗Dy(Q−)/Q− − ρt∗Dy(T ∗). Fact 3(i)
implies that lcy(b) = −(d−y + ρ degy(T ∗)) lcy(a). Therefore,

β = − lcy(b)/ lcy(a) = d−y + ρ degy(T ∗). As degy(N) <

dy + ρ degy(T ∗) and dy = d∗y + d−y , β ≥ degy(N) − d∗y + 1.
The lemma holds by Lemma 23.
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Algorithm RatAZ(f)

Input: f = P/Q ∈ k(x, y) satisfying Hypothesis (H).
Output: A minimal telescoper L ∈ k[x]〈Dx〉 with cer-

tificate g ∈ k(x, y).

1. Compute Q− = gcd(Q, Dy(Q)), Q∗ = Q/Q−, and
T , T ∗ primitive parts of Q, Q∗ w.r.t. x, respectively;

2. Set (Ñ , N, β, H) to (P, P, d−y ,−Q∗Dy(Q)/Q);

3. For ` = 0, 1, . . . do

(a) Set z to
Pβ

j=0 zjy
j , extract the linear system

M
`
ηi zj

´T
= 0 from (12) (for ρ = `) and com-

pute a basis S of the null space of M by [17].

(b) If S contains a solution (η0, . . . , η`, s) such that
η0, . . . , η` are not all nonzero, then set (L, g) :=`P`

i=0 ηiD
i
x, s/(Q−T ∗`)

´
, and go to Step 4;

(c) Update Ñ := Dx(Ñ)T ∗ − Ñ
`
T ∗Dx(T )/T +

iDx(T ∗)
´
, N := NT ∗ + η`+1Ñ , β := β +

degy(T ∗), and H := H − t∗Dy(T ∗).

4. Compute the content c of L and return (c−1L, c−1g).

Figure 4: Improved Almkvist–Zeilberger algorithm

We end the present section using the approach of Almkvist
and Zeilberger to provide tight degree bounds on the outputs
from Algorithms HermiteTelescoping and RatAZ.

Theorem 25 Under Hypothesis (H’), there exists a mini-
mal telescoper L ∈ k[x]〈Dx〉 with certificate g ∈ k(x, y) with
degx(L) ∈ O(dxdyd∗y) and bideg(g) ∈ O(dxdyd∗y)×O(dyd∗y).

Proof. By Corollary 14, there exists a smallest ρ ∈ N
at most d∗y, for which (1) has a solution with the ηi’s not
all zero. For this ρ, we estimate the size of the polynomial
matrix M derived from (12) by undetermined coefficients.
By the remark on N after Lemma 22, we have bideg(N) ≤
(nx, ny) where nx := dx+ρ degx(T ∗)−ρ ∈ O(ρdx) and ny :=
dy + ρ degy(T ∗)− 1 ∈ O(ρdy). The matrix M contains two

blocks M1 ∈ k[x]
(ny+1)×(ρ+1)

≤nx
and M2 ∈ k[x]

(ny+1)×(β+1)

≤dx
,

where β ∈ O(ρdy) is the same as in Lemma 24. By the
minimality of ρ, the dimension of the null space of M is 1.
So there exists u ∈ k[x]ny+1 with coefficients of degree at
most nx(ρ + 1) + dx(β + 1) ∈ O(dxdyd∗y) in x such that

M
`
η z

´T
= 0, which implies degree bounds in x for L and g.

The degree bound in y for g is obvious.

We now analyse the complexity of the algorithm in Fig. 4.

Theorem 26 Under Hypothesis (H’), Algorithm RatAZ in

Figure 4 is correct and takes Õ(dxdω
y ρω+2) ops, where ρ is

the order of the minimal telescoper.

Proof. By the existence of a telescoper, Corollary 14,
and Lemma 24, the algorithm always terminates and returns
a minimal telescoper L, of order ρ at most d∗y. Gcd computa-

tions dominate the cost of Steps 1 and 2, which take Õ(dxd2
y)

ops. For each ` ∈ N, the dominating cost in Step 3 is com-
puting the null space of M. Let ny = dy + ` degy(T ∗)− 1 ∈
O(`dy) and nx = dx +` degx(T ∗) ∈ O(`dx). By the same ar-
gument as in the proof of Theorem 25, the matrixM is of size
at most (ny +1)×(`+β+2) and with coefficients of degree at

most nx. Let r be the rank of M, which is either `+β +2 or
`+β+1 by construction. Thus, a basis of the null space of M
can be computed within Õ(nx(ny +1)(`+β+2)rω−2) ops by

Fact 2(iii). Since β ∈ O(`dy), Õ(nx(ny+1)(`+β+2)rω−2) is

included in Õ(dxdω
y `ω+1). Since Step 3 terminates at ` = ρ,

the total cost of the algorithm is
Pρ

`=0 dxdω
y `ω+1 ops. This

is within the announced complexity, Õ(dxdω
y ρω+2) ops.

Corollary 27 Algorithms HermiteTelescoping and RatAZ in
Fig. 3 and 4 both output the primitive minimal telescoper L
together with its certificate g, which satisfy degDx

(L) ≤ d∗y,
degx(L), degx(g) ∈ O(dxdyd∗y), and degy(g) ∈ O(dyd∗y).

Proof. Both algorithms output the primitive minimal
telescoper, as they compute a minimal telescoper at an inter-
mediate step, and owing to their last step of content removal.
Bounds follow from Corollary 14 and Theorem 25.

4. NONMINIMAL TELESCOPERS
Here, we discard Hypothesis (H) and trade the minimality

of telescopers for smaller total output sizes. To this end, we
adapt and slightly extend the arguments in [13] and [3, § 3].

Given f = P/Q ∈ k(x, y) of bidegree (dx, dy), our goal
is to find a (possibly nonminimal) telescoper for f . It is
sufficient to find a nonzero differential operator A(x, Dx, Dy)
that annihilates f . Indeed, any A ∈ k[x]〈Dx, Dy〉 \ {0} such
that A(f) = 0 can be written A = Dr

y(L + DyR), where L
is nonzero in k[x]〈Dx〉 and R ∈ k[x]〈Dx, Dy〉. If r = 0, then
clearly L is a telescoper for f ; otherwise, A(f) = 0 yields
L(f) = Dy(−R(f) −

Pr−1
i=0

ai
i+1

yi+1) for some ai ∈ k(x),
which implies that L is again a telescoper for f . Moreover, in
both cases, degx(L) ≤ degx(A) and degDx

(L) ≤ degDx
(A).

Furthermore, for any (i, j, `) ∈ N3, a direct calculation yields

xiDj
xD`

y(f) =
Hi,j,`

Qj+`+1
, (13)

where Hi,j,` ∈ k[x, y] and degx(Hi,j,`) ≤ (j + `+1)dx + i− j
and degy(Hi,j,`) ≤ (j + ` + 1)dy − `. From these inequali-
ties, we derive the size and complexity estimates in Figure 1
(bottom half), using two different filtrations of k[x]〈Dx, Dy〉.

Lipshitz’s filtration ([13]). Let Fν be the k-vector space
of dimension fν :=

`
ν+3
3

´
spanned by {xiDj

xD`
y | i + j + ` ≤

ν }. By (13), Fν(f) is contained in the vector space of di-
mension gν := ((ν + 1)dx + ν + 1) ((ν + 1)dy + 1) spanned

by
˘

xiyj

Qν+1 | i ≤ (ν + 1)dx + ν, j ≤ (ν + 1)dy

¯
. Choos-

ing ν = 6(dx + 1)(dy + 1) yields fν > gν ; therefore, there
exists A in k〈x, Dx, Dy〉 \ {0} with total degree at most
6(dx +1)(dy +1) in x, Dx, and Dy that annihilates f . More-
over, A is found by linear algebra in dimension O((dxdy)3).

A better filtration ([3]). Instead of taking total de-
gree, set Fκ,ν to the k-vector space of dimension fκ,ν :=
(κ + 1)

`
ν+2
2

´
generated by {xiDj

xD`
y | i ≤ κ, j + ` ≤ ν }.

By (13), Fκ,ν(f) is contained in the vector space of dimen-
sion gκ,ν := ((ν + 1)dx + κ + 1)((ν + 1)dy + 1) spanned by˘

xiyj

Qν+1 | i ≤ (ν + 1)dx + κ, j ≤ (ν + 1)dy

¯
. Choosing

κ = 3dxdy and ν = 6dy results in fκ,ν > gκ,ν . This implies
the existence of A in k〈x, Dx, Dy〉 \ {0} with total degree at
most 6dy in Dx and Dy and degree at most 3dxdy in x that
annihilates f . Again, A is found by linear algebra over k,
but in smaller dimension O(dxd3

y).
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No. AZ Abr RAZ H1 H2 HO EI MG

29 44 72 32 28 36 20 608 528
43 52 76 36 20 24 32 652 584
46 4268 1436 784 492 1288 752 343413 18945
49 474269 34694 20977 10336 36254 22417 ∞ 652968

Table 1: Creative telescoping on random instances
Timings in ms for algorithms in Table 3 (stopped after 30 min).

5. IMPLEMENTATION AND TIMINGS
We implemented in Maple 13 all the algorithms described;

as we used Maple’s generic solver SolveTools:-Linear, all
of our implementations are deterministic.

The evaluation-interpolation algorithm HermiteEvalInterp
for Hermite reduction (Fig. 2) does not perform well, mainly
because Maple’s rational interpolation routines are far too
slow. We thus implemented Algorithm HermiteReduce (orig-
inal version) in [4, § 2.2] (carefully avoiding redundant ex-
tended gcd calculations), and noted that it performs better.

We then implemented a variant of Algorithm HermiteTe-
lescoping in Figure 3, using HermiteReduce in place of Her-
miteEvalInterp, and including the optimisation at the end of
§ 3.1.3, refined by additional modular calculations.

For a rational function, Algorithm HermiteTelescoping re-
turns the minimal telescoper L and the certificate g. The
algorithm separates the computation for L from that for g.
Indeed, g is formed by the coefficients of L, g0, the g̃i and
their derivatives given in Figure 3. This feature enables us
to either return the certificate g as a sum of unnormalised
rational functions, or a normalised rational function.

A selection of timings by this implementation and oth-
ers are given in Table 1; our code, the full table, as well as
the random inputs are given in [20]. For our experiments,
we exhaustively considered all 49 bidegree patterns in fac-
torisations of denominators Q1 · · ·Qm

m (m ≤ 5) that add up
to bidegree (5,5), and generated corresponding random de-
nominators, imposing the integers of the expanded forms to
have around 26 digits. Numerators were generated as ran-
dom bidegree-(5,5) polynomials with coefficients of 26 digits.

Application to diagonals. The diagonal of a formal power
series f =

P
i,j≥0 fi,jx

iyj in k[[x, y]] is defined to be the

power series ∆(f) :=
P∞

i=0 fi,ix
i. For a D-finite power se-

ries f , it is known to be D-finite [13], and it is even algebraic
for a bivariate rational function f ∈ k(x, y) ∩ k[[x, y]] [16,
§ 6.3]. A linear differential operator L ∈ k(x)〈Dx〉 that an-
nihilates ∆(f) can then be computed via rational-function
telescoping, owing to the following classical lemma from [13].

Lemma 28 Any telescoper for f(y, x
y
)/y annihilates ∆(f).

By this lemma, it suffices to compute a telescoper without its
certificate to get an annihilator. Algorithm HermiteTelescop-
ing is suitable for this task, since it separates computation of
telescopers and certificates. Alternatively, for f = P/Q, we
can compute an annihilator of ∆(f) either as the differen-
tial resolvent of the resultant Resy(Q, P − τDyQ), or simply
guess it from the first terms of the series expansion of ∆(f).

We compare the various algorithms on an example bor-
rowed from [5] (timings of execution are given in Table 2):

f =
1

1− x− y − xy(1− xd)
, where d ∈ N. (14)

All computer calculations have been performed on a Quad-
Core Intel Xeon X5482 processor at 3.20GHz, with 3GB of
RAM, using up to 6.5GB of memory allocated by Maple.

d AZ Abr RAZ H1 H2 HO RR GHP

4 176 136 100 116 208 108 220 956
8 3032 4244 4380 1976 5344 4396 10336 154409

10 11740 12816 7108 7448 24565 7076 46882 1118313
4 184 168 120 120 220 116 224 1340
8 3540 3704 2540 2092 6976 2516 10348 271480

10 16817 17013 9200 8068 32218 9092 46750 ∞

Table 2: Computation of the diagonals of (14)
Timings in ms by creative telescoping of f(y, x/y)/y (upper half)

or f(y/x, x)/x (second half). Algorithms listed in Table 3.

AZ DETools[Zeilberger]

Abr AZ with Abramov’s denominator bound by option gosper_free

RAZ Algorithm RatAZ of Fig. 4, with lower-bound prediction
H1 our Hermite-based approach, without certificate normalisation
H2 H1, but with normalised certificate
HO RAZ, solving (1) by Horowitz–Ostrogradsky
EI H1 with evaluation and interpolation for calculations over k(x)
MG Mgfun’s creative telescoping for general D-finite functions
RR telescoper computation by resultant and differential resolvent
GHP telescoper guessing by diagonal expansion and Hermite–Padé

Table 3: List of the algorithms for the experiments
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[10] C. Hermite. Sur l’intégration des fractions rationnelles. Ann.
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