
Fast Computation of Common Left Multiples
of Linear Ordinary Differential Operators∗

Alin Bostan, Frédéric Chyzak, Bruno Salvy
Algorithms Project, INRIA (France)

{alin.bostan,frederic.chyzak,bruno.salvy}@inria.fr

Ziming Li
KLMM and AMSS (China)

zmli@mmrc.iss.ac.cn

ABSTRACT
We study tight bounds and fast algorithms for LCLMs of
several linear differential operators with polynomial coef-
ficients. We analyse the arithmetic complexity of existing
algorithms for LCLMs, as well as the size of their outputs.
We propose a new algorithm that recasts the LCLM compu-
tation in a linear algebra problem on a polynomial matrix.
This algorithm yields sharp bounds on the coefficient degrees
of the LCLM, improving by one order of magnitude the best
bounds obtained using previous algorithms. The complexity
of the new algorithm is almost optimal, in the sense that it
nearly matches the arithmetic size of the output.

Categories and Subject Descriptors:
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulations — Algebraic Algorithms

General Terms: Algorithms, Theory.

Keywords: Algorithms, complexity, linear differential op-
erators, common left multiples.

1. INTRODUCTION
The complexity of operations in the polynomial ring K[x]

over a field K has been intensively studied in the computer
algebra literature. It is well established that polynomial
multiplication is a commutative complexity yardstick, in the
sense that the complexity of operations in K[x] can be ex-
pressed in terms of the cost of multiplication, and for most
of them, in a quasi-linear way.

Linear differential operators in the derivation ∂ = ∂
∂x

and
with coefficients in K(x) form a non-commutative ring, de-
noted K(x)〈∂〉, that shares many algebraic properties with
the commutative ring K[x]. The structural analogy between
polynomials and linear differential equations was discovered
long ago by Libri and Brassinne [26, 8, 14]. They introduced
the bases of a non-commutative elimination theory, by defin-
ing the notions of greatest common right divisor (GCRD)
and least common left multiple (LCLM) for differential op-
erators, and by designing a Euclidean-type algorithm for

∗We warmly thank the referees for their very helpful comments.
— This work was supported in part by the MSR–INRIA Joint
Centre, and by two NSFC grants (91118001 and 60821002/F02).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

GCRDs. This was formalised by Ore [27, 28], who set up a
common algebraic framework for polynomials and linear dif-
ferential operators (and other skew polynomials, including
difference and q-difference operators). Yet, the algorithmic
study of linear differential operators is currently much less
advanced than in the polynomial case. The cost of product
in K(x)〈∂〉 has been addressed only recently in [22, 6].

The general aim of this work is to take a step towards a
systematic study of the complexity of operations in K(x)〈∂〉.
We promote the idea that (polynomial) matrix multiplica-
tion may well become the common yardstick for measur-
ing complexities in this non-commutative setting. The spe-
cific goal of the present article is to illustrate this idea for
LCLMs. We focus on LCLMs since several higher level al-
gorithms rely crucially on the efficiency of this basic compu-
tational primitive. For instance, algorithms for manipulat-
ing D-finite functions represented by annihilating equations
use common left multiples for performing addition [34, 32].
LCLMs of several operators are also needed as a basic task
in various other higher-level algorithms [2, 24, 12]. Our ap-
proach is based on using complexity analysis as a tool for
algorithmic design, and on producing tight size bounds on
the various objects involved in the algorithms.

It is folklore that Ore’s non-commutative Euclidean al-
gorithm is computationally expensive; various other algo-
rithms for computing common left multiples of two opera-
tors have been proposed [21, 34, 32, 25, 5, 1, 23]. As opposed
to Ore’s algorithm, these alternatives have the common fea-
ture that they reduce the problem of computing LCLMs to
linear algebra. However, few complexity analyses [17, 18, 5,
23] and performance comparisons [25, 1] are available.

Main contributions. As a first contribution, we design a
new algorithm for computing the LCLM of several opera-
tors. It reduces the LCLM computation to a linear algebra
problem on a polynomial matrix. The new algorithm can be
viewed as an adaptation of Heffter’s algorithm [21] to several
operators. At the same time, we use modern linear-algebra
algorithms [35, 37] to achieve a low arithmetic complexity.
Our algorithm is similar in spirit to Grigoriev’s method [20,
§5] for computing GCRDs of several operators.

Before stating more precisely our main results, we need
the following conventions and notations, that will be used
throughout the paper. All algorithms take as input lin-
ear differential operators with polynomial coefficients, that
is, belonging to K[x]〈∂〉, instead of rational function coeffi-
cients. From the computational viewpoint, this is not too se-
vere a restriction, since the rational coefficients case is easily
reduced to that of polynomial coefficients, by normalisation.

Algorithm Heffter’s + DAC? Li’s + DAC? van der Hoeven’s + DAC van Hoeij’s New?

Complexity Õ
(
k5r4d

)
Õ
(
kθ+3rθ+2d

)
Õ
(
k5r4d

)
Õ
(
kθ+1rθ+1d

)
Õ
(
k2θrθd

)
Figure 1: Costs of various algorithms for the LCLM computation of k operators of bidegrees (d, r) in (x, ∂).
Algorithms marked by a star (?) also compute cofactors for the same complexity.

For L1, . . . , Lk in K[x]〈∂〉, we write LCLM(L1, . . . , Lk) for
the primitive LCLM of L1, . . . , Lk in K[x]〈∂〉. We say that
an operator L ∈ K[x]〈∂〉 has bidegree at most (d, r) in (x, ∂)
if it has order at most r and polynomial coefficients of degree
at most d. The cost of our algorithms is measured by the
number of arithmetic operations that they use in the base
field K. The constant θ ∈ [2, 3] stands for a feasible exponent
for matrix multiplication over K (see definition in Section 2),

and the soft-O notation Õ() indicates that polylogarithmic
factors are neglected. Our main result is the following.

Theorem 1 Let L1, . . . , Lk be operators in K[x]〈∂〉 of bide-
grees at most (d, r) in (x, ∂). Then LCLM(L1, . . . , Lk) has
order at most kr, degrees in x at most dk(rk− r+ 1), and it

can be computed in Õ(k2θrθd) arithmetic operations in K.

The upper bound dk(rk − r + 1) on coefficient degrees is
sharp, in the sense that it is reached on generic inputs. It im-
proves by one order of magnitude the best bound O(k2r2d)
obtained using previous algorithms. Moreover, for fixed k,
the cost of the new algorithm is almost optimal, in the sense
that it nearly matches the arithmetic size of the LCLM.

As a second contribution, we analyse the worst-case arith-
metic complexity of existing algorithms for LCLMs, as well
as the size of their outputs. For instance, we show that the
extension to several operators of the “folklore” algorithm

in [34, 32] has complexity Õ(kθ+1rθ+1d). We call this exten-
sion van Hoeij’s algorithm, after the name of the implemen-
tor in Maple’s package DEtools of one of its variants. These
estimates are in accordance with our experiments showing
that our new algorithm performs faster for large order r,
while van Hoeij’s algorithm is well suited for large k.

Using our tight degree bounds, we also show that any
algorithm that computes the LCLM of two operators of bi-

degree (d, r) in (x, ∂) in complexity Õ(rαdβ) can be used as
the building block of a divide-and-conquer (DAC) algorithm
that computes the LCLM of k operators of bidegree (d, r)

in complexity Õ(kα+2βrα+βdβ). The costs of several algo-
rithms are summarised in Figure 1, where notation A +
DAC indicates that algorithm A is used in a DAC scheme.

As a third contribution, we prove an upper bound B ≈
2k(d + r) on the total degree in (x, ∂) of nonzero common
left multiples (not necessarily of minimal order). This is a
new instance of the philosophy, initiated in [7], of relaxing
order minimality for linear differential operators, in order to
achieve better arithmetic size. While, by Theorem 1, the
total arithmetic size of the LCLM is typically k3r2d, there
exist common left multiples of total size 4k2(d+ r)2 only.

A fourth contribution is a fast Magma implementation
that outperforms Magma’s LCLM routine. Experimental
results confirm that the practical complexity of the new al-
gorithm behaves as predicted by our theoretical results.

Last, but not least, we have undertaken an extensive bib-
liographic search, which we now proceed to describe.

Previous work. Libri [26] and Brassinne [8] (see also [14])
defined the notions of GCRD and LCLM of linear differ-

ential operators, and sketched a Euclidean-type algorithm
for GCRDs. Von Escherich [15] defined the related notion
of differential resultant of two linear differential operators.
Articles [8, 15] contain the embryo of an algorithm for the
LCLM based on linear algebra; that algorithm was explic-
itly stated by Heffter [21], and later rediscovered by Poole
in his classical book [31]. The roots of a subresultant the-
ory for differential operators are in Pierce’s articles [29, 30].
Blumberg [3] gave one of the first systematic accounts of the
algebraic properties of linear differential operators. Building
on predecessors’ works, Ore [27, 28] extended the Euclidean-
type theory to the more general framework of skew polyno-
mials. He showed [28, Theorem 8, §3] that, while the LCLM
is not related to the GCRD by a simple formula as in the
commutative case, there nevertheless exists a formula ex-
pressing the LCLM in terms of the successive remainders
in the Euclidean scheme. Almost simultaneously, Wedder-
burn [40, §7-8] showed that the LCLM can also be computed
by an extended version of the Euclidean-Ore algorithm, that
computes Bézout cofactors along the way.

In the computer algebra literature, algorithmic issues for
skew polynomials emerged in the 1990s, and were popu-
larised by Bronstein and Petkovšek [9, 10]. Grigoriev [20,
§6] designed a fast algorithm for computing the GCRD of
a family of linear differential operators; to do so, he proved
tight bounds on the degree of the GCRD, by extending von
Escherich’s construction of the Sylvester matrix for two dif-
ferential operators to an arbitrary number of operators. The
bound is linear in the number of operators, in their maxi-
mal order and in their maximal degree [20, Lemma 5.1].
Giesbrecht analysed the complexity of the LCLM compu-
tation for two operators, but only in terms of their or-
der [17, 18]. (Strictly speaking, his method was proposed
for a different Ore ring, but it extends to more general set-
tings, including the differential case.) For two operators
L1, L2 ∈ K(x)〈∂〉 of orders at most r, the first (Heffter-style)
algorithm [17, Lemma 5] computes LCLM(L1, L2) in O(rθ)
operations in K(x), while the second one [18, Lemma 2.1]

(based on the extended Euclidean-Ore scheme) uses Õ(r2)
operations in K(x). To our knowledge, no algorithm cur-
rently exists similar to the Lehmer-Knuth-Schönhage half-
gcd algorithm [16, Chapter 11], using a number of oper-
ations in K(x) that is quasi-linear in r. Li [25] pointed
out that algorithms for the LCLM computation that have
good complexity with respect to the order, such as the naive
Euclidean-Ore algorithm, do not necessarily behave well be-
cause of coefficient growth. He developed a generalisation
of the classical subresultant theory to Ore polynomials, that
provides determinantal formulas and degree bounds for the
GCRD and the LCLM [25]. He also compared the practical
efficiency of Maple implementations of several algorithms.

Giesbrecht and Zhang [19, Theorem 2.1] mention a com-
plexity bound of O(r5d2) for the LCLM computation of two
operators of bidegree (d, r) in (x, ∂), based on an unpub-
lished 2002 note of Li. Over fields of characteristic zero,
Bostan [5, Chapter 10] sketched a general strategy for com-

puting several constructions on differential operators (in-
cluding LCLMs), based on an evaluation-interpolation ap-
proach on power series solutions. He stated, without proofs,
several degree bounds and complexity results. For two oper-
ators L1, L2 of bidegree (n, n) in (x, ∂), he announced that
using fast Hermite-Padé approximation for the interpola-
tion step yields an algorithm that computes LCLM(L1, L2)
in O(nθ+2) operations. The approach was enhanced by van
der Hoeven [23], who showed that the costs of the basic op-
erations on differential operators can be expressed in terms
of the cost of multiplication in K[x]〈∂〉, and proved the com-
plexity bound O(nθ+2) stated without proof in [5, §10.5].

2. PRELIMINARIES
Let (K, δ) be a differential field, that is, a field K equipped

with an additive map δ : K → K satisfying the Leibniz rule
δ(xy) = xδ(y)+δ(x)y for all x, y ∈ K. We denote by K[∂; δ]
the ring of linear differential operators over the differential
field (K, δ). A nonzero element L in K[∂; δ] is of the form

L = ar∂
r + ar−1∂

r−1 + · · ·+ a0,

where ar, ar−1, . . . , a0 ∈ K with ar 6= 0. We call r the
order of L, and denote it by ord(L). The noncommutative
ring K[∂; δ] is a left (and right) principal ideal domain, for
which a Euclidean algorithm exists [27, 28].

Let L,L1, . . . , Lk be nonzero elements in K[∂; δ]. Then L
is called a common left multiple (CLM) of L1, . . . , Lk if L =
Q1L1 = · · · = QkLk for some Q1, . . . , Qk ∈ K[∂; δ]. A com-
mon left multiple of the least order is called a least common
left multiple (LCLM). Two LCLMs of L1, . . . , Lk are K-
linearly dependent.

Our main focus is on the particular case K = K(x), the
field of rational functions with coefficients in K, and δ = d

dx
,

the usual derivation with respect to x. In this case, we use
the notation K(x)〈∂〉 for K[∂; δ], and LCLM(L1, . . . , Lk) for
the primitive LCLM of L1, . . . , Lk in K[x]〈∂〉, that is the
LCLM of L1, . . . , Lk computed in K(x)〈∂〉 and normalised
in K[x]〈∂〉 with trivial content. However, in order to keep the
mathematical exposition as independent as possible of any
particular case, we stick to the more general setting K[∂; δ]
whenever we discuss mathematical properties and bird’s-eye
view descriptions of algorithms.

Polynomial and matrix arithmetic. The cost of our al-
gorithms will be measured by the number of field operations
in K they use. To simplify the presentation, we assume that
polynomials in K[x]<n (i.e., of degree less than n in x) can be

multiplied within O(n log(n) log log(n)) = Õ(n) operations
in K, using the FFT-based algorithms in [33, 11]. Most ba-
sic polynomial operations in K[x]<n (division, extended gcd,

interpolation, etc.) have cost Õ(n) [16]. We suppose that θ
is a feasible exponent for matrix multiplication over K, that
is, a real constant 2 ≤ θ ≤ 3, such that two n × n matrices
with coefficients in K can be multiplied in time O(nθ). The
current tightest upper bound is θ < 2.3727 [39], following
work of Coppersmith and Winograd [13], and Stothers [38].

The following result, due to Storjohann and Villard [35,
37], will be helpful to estimate complexities for solving lin-
ear systems arising from LCLM computations. Note that
this is currently the best complexity result on polynomial
linear algebra. The probabilistic aspects of the algorithms
described in this article are entirely inherited from it.

Theorem 2 [35, 37] Let M be an m × n matrix with en-
tries in K[x]<d. The rank ρ of M can be computed together
with m− ρ linearly independent polynomial elements in the

left kernel of M within Õ(mnρθ−2 d) operations in K by a
(certified) randomised Las Vegas algorithm.

Moreover, if m = n, then the determinant of M can be

computed using Õ(nθ d) operations in K.

3. LINEAR FORMULATION FOR
COMMON LEFT MULTIPLES

In order to connect the computation of common left mul-
tiples with linear algebra, we introduce some more notation.
For a nonnegative integer n, we denote by K[∂; δ]≤n the K-
linear subspace of K[∂; δ] consisting of all linear differential
operators whose orders are at most n. Moreover, we define
a K-linear bijection

φn : K[∂; δ]≤n −→ Kn+1

∑n
i=0 ai∂

i 7→ (an, an−1, . . . , a0).

For a nonzero element P ∈ K[∂; δ] of order m, and for an
integer n with n ≥ m, we define the Sylvester-type matrix

Sn(P) :=

φn
(
∂n−mP

)
φn
(
∂n−1−mP

)
...

φn(P)

 .

The matrix Sn(P) has n −m + 1 rows and n + 1 columns.
In particular, Sn(1) is the identity matrix of size n+1. This
matrix enables one to express multiplication by P in K[∂; δ]
as a vector-matrix product. Precisely, for Q ∈ K[∂; δ]≤n−m,

φn(QP) = φn−m(Q)Sn(P). (1)

Let L1, . . . , Lk be nonzero elements in K[∂; δ]. For n ≥
max1≤i≤k ord(Li), the matrix

Mn :=

Sn(L1)

Sn(L2)
. . .

Sn(Lk)
Sn(−1) Sn(−1) · · · Sn(−1)

 (2)

has (k+1)(n+1)−
∑k
i=1 ord(Li) rows and k(n+1) columns.

The following theorem is the main result of this section.

Theorem 3 Let L1, . . . , Lk be elements in K[∂; δ] \ {0} of
orders r1, . . . , rk, and let n ≥ ord(LCLM(L1, . . . , Lk)).

(i) If L is a common left multiple of L1, . . . , Lk such that
ord(L) ≤ n and L = Q1L1 = · · · = QkLk, then the vec-
tor (φn−r1(Q1), . . . , φn−rk (Qk), φn(L)) belongs to the
left kernel of the matrix Mn defined in (2).

(ii) If the vector (u1, . . . ,uk,u) is a nonzero vector in the
left kernel of Mn, where ui ∈ Kn+1−ri for i = 1, . . . , k
and u ∈ Kn+1, then u is nonzero, and φ−1

n (u) is a
common left multiple of L1, . . . , Lk with respective
left cofactors φ−1

n−r1(u1), . . . , φ−1
n−rk (uk).

(iii) If ρ is the rank of Mn, then

ord (LCLM(L1, . . . , Lk)) = ρ+
∑k
i=1 ri − k(n+ 1).

Proof. Suppose that L = QiLi for 1 ≤ i ≤ k. By (1),

φn−ri(Qi)Sn(Li) = φn(L),

which is equivalent to φn−ri(Qi)Sn(Li)+φn(L)Sn(−1) = 0.
Therefore the vector (φn−r1(Q1), . . . , φn−rk (Qk), φn(L)) be-
longs to the left kernel of Mn. The first assertion is proved.

Conversely, suppose that (u1, . . . ,uk,u) is a nonzero vec-
tor in the left kernel of Mn. Then uiSn (Li) + uSn(−1) = 0
for all i with 1 ≤ i ≤ k. It follows from (1) that

φ−1
n−ri(ui)Li = φ−1

n (u).

Thus, u is nonzero, for otherwise, since φn is an isomor-
phism, all the ui would be equal to zero. The second asser-
tion follows.

To prove the last assertion, we set L = LCLM(L1, . . . , Lk)
and ` = ord(L). Assume further that L = QiLi for all i
with 1 ≤ i ≤ k. Then L, ∂L, . . . , ∂n−`L are common left
multiples of L1, . . . , Lk of orders at most n, and such that

∂jL =
(
∂jQi

)
Li for all 1 ≤ i ≤ k and 0 ≤ j ≤ n− `.

By the first assertion, for 0 ≤ j ≤ n− `, the vector

vj =
(
φn−r1

(
∂jQ1

)
, . . . , φn−rk

(
∂jQk

)
, φn

(
∂jL

))
belongs to the left kernel of Mn. These vectors are K-
linearly independent because L, ∂L, . . . , ∂n−`L are. On
the other hand, if (u1, . . . ,uk,u) is a nonzero vector in the
left kernel of Mn, where u1 ∈ Kn−r1+1, . . . ,uk ∈ Kn−rk+1,
and u ∈ Kn+1, then φ−1

n (u) is a common left multiple of L1,
. . . , Lk with order no greater than n by the second asser-
tion. Hence, φ−1

n (u) is a K-linear combination of ∂n−`L,
∂n−`−1L, . . . , L, because it is a left multiple of L. Hence,
there exist cn−`, cn−`−1, . . . , c0 in K such that

φ−1
n (u) = cn−`∂

n−`L+ cn−`−1∂
n−`−1L+ · · ·+ c0L,

which implies that the last n + 1 coordinates of the vec-
tor (u1, . . . ,uk,u)−

∑n−`
j=0 cjvj are all equal to zero. Since

this vector belongs to the left kernel of Mn, all its coordi-
nates are zero by the second assertion. We conclude that
{v0, . . . ,vn−`} is a K-basis of the left kernel of Mn, and
thus n − ` + 1 is its dimension. Then (iii) follows from the

rank-nullity theorem, becauseMn has (k+1)(n+1)−
∑k
i=1 ri

rows. �

Since the rank of Mn is at most k(n + 1), a direct con-
sequence of Theorem 3 (iii) is the following classical result.

Corollary 4 For L1, . . . , Lk ∈ K[∂; δ] \ {0},

ord (LCLM(L1, . . . , Lk)) ≤ ord(L1) + · · ·+ ord(Lk).

4. COMPUTING LCLMS
In this section, we review a few known methods for com-

puting LCLMs and present a new one based on Theorem 3.

4.1 Computing an LCLM of two operators
Given two nonzero elements L1 and L2 of respective or-

ders r1 and r2, we consider various methods for computing
their LCLMs. The first methods compute left cofactor(s) of
the given operator(s) first, and find an LCLM by multipli-
cation in K[∂; δ]. The last method is specific to K = K(x).

4.1.1 Heffter’s algorithm
The first method can be traced back to Brassinne [8], von

Escherich [15] and Heffter [21]. The sequence:

∂r2L1, . . . , ∂L1, L1, ∂
r1L2, . . . , ∂L2, L2

has r1+r2+2 elements, each of which is of order at most r1+
r2. Thus, these elements are K-linearly dependent. To
compute LCLM(L1, L2), the strategy is to find the maxi-
mal integer m and corresponding elements a1,0, . . . , a1,r2−m,
a2,0, . . . , a2,r1−m ∈ K with a1,r2−ma2,r1−m 6= 0 such that

r2∑
i=m

a1,r2−i∂
r2−iL1 +

r1∑
j=m

a2,r1−j∂
r1−jL2 = 0.

Set A1 =
∑r2
i=m a1,r2−i∂

r2−i andA2 =
∑r1
j=m a2,r1−j∂

r1−j .
Then A1L1 +A2L2 = 0. Therefore, the product A1L1 is an
LCLM of L1 and L2 due to the maximality of m.

This method can be reformulated using the notation in-
troduced in Section 3. For a vector v 6= 0 represented by

(0, . . . , 0︸ ︷︷ ︸
k

, vk+1, . . .), where vk+1 6= 0,

in a finite-dimensional K-vector space equipped with the
standard basis (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1),
we define N (v) to be k. For n ≥ max(r1, r2), define

Un =

(
Sn(L1)
Sn(L2)

)
. (3)

Then, Heffter’s method consists in computing a vector v 6= 0
in the left kernel of Ur1+r2 such that N (v) is maximal.

The next lemma connects the order of L = LCLM(L1, L2)
with the rank of Ur1+r2 . It easily follows from the observa-
tion that a maximal subset of K-linearly independent ele-
ments in {∂r2L1, . . . , L1, ∂

r1L2, . . . , L2} consists of ∂r2L1,
. . . , L1 and ∂`−r2−1L2, . . . , L2, where ` = ord(L).

Lemma 5 Let L1, L2 be two nonzero elements in K[∂; δ] of
orders r1, r2. Then ord (LCLM(L1, L2)) = rank(Ur1+r2)−1.

4.1.2 Euclidean algorithms
The second family of methods is based on the Euclidean-

Ore algorithm for differential operators [28].

Ore’s algorithm. Assume that r1 ≥ r2. Setting R1 = L1,
R2 = L2, one can compute the Euclidean (right) divisions

Ri = Ri−2 −QiRi−1,

for quotients Qi ∈ K[∂; δ], and remainders Ri 6= 0 satisfying
ord(Ri) < ord(Ri−1) for i = 3, . . . ,m, and Rm+1 = 0. Then,
as in the commutative case, Rm is shown to be the GCRD
of L1 and L2. Ore [28, §2] proved that the following product

Rm−1R
−1
m Rm−2R

−1
m−1 · · ·R3R

−1
4 R2R

−1
3 R1 (4)

is an LCLM of L1 and L2. (Here AB−1 denotes the exact
left quotient of A and B, that is Q such that A = QB.)

Extended Euclidean-Ore algorithm. Wedderburn [40,
§7-8] observed (see also [9]) that the computation of (4) can
be avoided, if one replaces the Euclidean algorithm by its
extended version. Precisely, letting C1 = 1, C2 = 0, and

Ci = Ci−2 −QiCi−1, for i = 3, . . . ,m,

the product (Cm−1−Qm−1Cm)R1 is an LCLM of L1 and L2.

Li’s determinantal expression. As in the commutative
case, a more efficient version of the extended Euclidean-Ore
algorithm is based on subresultants [25, §5]. To avoid tech-
nicalities, we present an alternative, efficient, variant of the
subresultant algorithm, based on a determinantal formula-
tion [25, Proposition 6.1]. This method assumes that the or-
der g of the GCRD of L1 and L2 is already known. Then, one
constructs a square matrix L of size r1+r2−2g+2 whose first
r1 +r2−2g+1 columns are the first r1 +r2−2g+1 columns

of the matrix

(
Sr1+r2−g(L1)
Sr1+r2−g(L2)

)
, and whose last column is

the transpose of the vector (∂r2−g, . . . , ∂, 1, 0, 0, . . . , 0︸ ︷︷ ︸
r1−g+1

).

If det(L) is denoted U , then UL1 is an LCLM of L1 and L2.

4.1.3 Van der Hoeven’s algorithm
The algorithm that we very briefly mention now is specific

to the case K = K(x), where the base field K has character-
istic zero. It works by evaluation-interpolation. The idea,
originating from [5], is to perform operations on differen-
tial operators by working on their fundamental systems of
solutions. Due to space limitations, and in view of its com-
plexity analysis, we do not give more details here, and refer
the reader to the article [23].

4.2 Computing an LCLM of several operators
Given several nonzero operators L1, L2, . . . , Lk ∈ K[∂; δ]

we describe various ways to compute LCLM(L1, . . . , Lk).

4.2.1 Iterative LCLMs
An obvious method is to compute an LCLM of k operators

iteratively, that is,

L = LCLM (L1,LCLM(L2, . . . ,LCLM(Lk−1, Lk)) . (5)

A computationally more efficient (though mathematically
equivalent) method is by a divide-and-conquer algorithm,
based on the repeated use of the formula

L = LCLM
(
LCLM(L1, . . . , Lbk/2c),

LCLM(Lbk/2c+1, . . . , Lk)
)
.

(6)

Of course, the efficiency of an iterative algorithm depends
on that of the algorithm used for the LCLM of two operators.
This is quantified precisely in Section 5.

4.2.2 Van Hoeij’s algorithm
Another algorithm for computing the LCLM of k lin-

ear differential operators was implemented by van Hoeij as
Maple’s DEtools[LCLM] command; it seemingly was never
published. For k = 2, the method is folklore; it is implicit,
for instance, in the proof of [34, Theorem 2.3]. A variant of
it is also implemented by the ‘diffeq+diffeq‘ command in
Salvy and Zimmermann’s gfun package for Maple [32].

Informally speaking, the method consists in considering
a generic solution hj of Lj for 1 ≤ j ≤ k, then in find-
ing the first linear dependency between the row vectors
∂i(h1, . . . , hk) = (∂i · h1, . . . , ∂

i · hk). In order to per-
form actual computations, these vectors are represented by
the canonical forms

(
rem(∂i, L1), . . . , rem(∂i, Lk)

)
, for i =

0, 1, . . . , where rem(A,B) denotes the remainder of the right
Euclidean division of A by B. Let

L = an∂
n + an−1∂

n−1 + · · ·+ a0,

where a0, a1, . . . , an are undetermined coefficients in K. For
all i with 1 ≤ i ≤ k, let Ri be the right remainder of L
in the division by Li. Then L ≡ Ri mod Li. Since L has
generic coefficients, ord(Ri) is equal to ri − 1, e.g., by [25,
Lemma 2.3]. Note that a0, a1, . . . , an depend linearly on the
coefficients of the Ri’s. There are s = r1+· · ·+rk coefficients
in R1, . . . , Rk. Equating Ri = 0, for i = 1, . . . , k, we obtain
a linear system

(an, an−1, . . . , a0)Hn = (0, 0, . . . , 0),

where Hn is an (n + 1) × s matrix over K. Thus, comput-
ing LCLM(L1, . . . , Lk) amounts to computing a nontrivial
vector v in the left kernel of Hs with N (v) being maximal.
The rank of Hs is equal to the order of LCLM(L1, . . . , Lk),
e.g., by [1, Proposition 4.3]. Note that the original version of
van Hoeij’s algorithm does not make use of this last fact, and
potentially needs to solve more linear systems, thus being
less efficient when the LCLM is not of maximal order.

4.2.3 The new algorithm
As a straightforward consequence of Theorem 3, the

LCLM(L1, . . . , Lk) can be computed by determining a non-
trivial vector v in the left kernel of Ms given in equation (2),
with N (v) being maximal. This method computes not only
the LCLM, but also its left cofactors Q1, Q2, . . . , Qk, while
van Hoeij’s algorithm does not compute any cofactor.

5. ALGORITHMS, BOUNDS, COMPLEXITY
In this section, we let K = K(x) be the field of rational

functions with coefficients in a field K, and δ = d
dx

be the
usual derivation with respect to x. Recall that in this case we
use the notation K(x)〈∂〉 for K[∂; δ], and LCLM(L1, . . . , Lk)
for the primitive LCLM of L1, . . . , Lk in K[x]〈∂〉.

All algorithms analysed below are specialisations of the
algorithms reviewed in the previous section to K = K(x).
Moreover, we make the non-restrictive assumption that all
algorithms take as input linear differential operators with
polynomial coefficients, that is, belonging to K[x]〈∂〉.

The degree of a nonzero operator L ∈ K[x]〈∂〉, denoted
degx(L), is defined as the maximal degree of its coefficients.
As in the case of usual commutative polynomials,

degx(AB) = degx(A)+degx(B) for all A,B ∈ K[x]〈∂〉 \ {0}.

5.1 Tight degree bounds for the LCLM
First, we give a sharp degree bound for LCLMs. As we

show later, this bound improves upon the bound that can
be derived from van Hoeij’s algorithm.

Theorem 6 Let L1,. . .,Lk be operators in K[x]〈∂〉\{0}. Let
s = ord(L1) + · · · + ord(Lk), and d = maxki=1 degx(Li).
If L = LCLM(L1, . . . , Lk), then degx(L) ≤ d(k(s+ 1)− s).

Proof. By Corollary 4, ord(L) ≤ s. It follows from The-
orem 3 and Cramer’s rule that every nonzero coefficient
of L is a quotient of two minors of Ms. Note that every
square submatrix of Ms has size at most k(s+ 1), since Ms

has k(s + 1) + 1 rows and k(s + 1) columns. Thus, the
degree of the determinant of such a submatrix is bounded
by d(k(s+ 1)− s), because every entry of Ms is of degree at
most d, and the last s+ 1 rows of Ms are free of x. �

As a consequence of Corollary 4 and Theorem 6, the first
part of Theorem 1 is easily deduced.

Heffter’s algorithm

1. Compute the matrix Ur1+r2 de-
fined in (3).

2. Determine its rank ρ; set ` :=
ρ− 1.

3. Extract submatrix U` of Ur1+r2 .

4. Find the 1-dim kernel K of U`.

5. Construct Q1 from the first `−
ord(L1) + 1 coordinates of K.

6. Compute and return Q1L1.

van Hoeij’s algorithm

1. For all 0 ≤ i ≤ s and 1 ≤ j ≤ k,
compute

c−1
i hi,j = rem(∂i, Lj), where

ci ∈ K[x] and hi,j ∈ K[x]〈∂〉.

2. View the hi,j as rows in K[x]rj ;
compute rank ρ of Hs := (hi,j).

3. Extract submatrix Hρ of Hs.

4. Find the 1-dim kernel K of Hρ.

5. Construct the LCLM from K.

Our new algorithm

1. Compute Ms defined in (2).

2. Determine its rank ρ ; set ` :=
ρ+ s− k(s+ 1).

3. Extract submatrix M` of Ms.

4. Find the 1-dim kernel K of M`.

5. Construct the LCLM from the
last `+ 1 coordinates of K.

6. Return the LCLM.

Figure 2: Pseudo-code for Heffter’s algorithm, van Hoeij’s algorithm and our new algorithm.

5.2 LCLMs of two operators
The following result encapsulates complexity analyses of

LCLM algorithms for two operators. Heffter’s, van Hoeij’s
and our new algorithm are summarised in Figure 2.

Theorem 7 Let L1, L2 ∈ K[x]〈∂〉 be operators of bidegrees
at most (d, r) in (x, ∂). Then it is possible to compute the
LCLM of L1 and L2 in complexity

(a) Õ(min(rθ d2, r3 d)) by Heffter’s and van der Hoeven’s
algorithms,

(b) Õ(rθ+1 d) by Li’s and by van Hoeij’s algorithms,

(c) Õ(rθ d) by the new algorithm.

Proof. By [23, Theorems 5, 8 & 23], and using bounds from
Theorem 6, the complexity of van der Hoeven’s algorithm is

Õ(min((rd)2 rθ−2, r3d)). The most costly parts of Heffter’s
algorithm are Steps 2, 4 and 6. Since the matrix Ur1+r2 has
size O(r) and polynomial coefficients of degree at most d,
the rank and kernel computations involved in Steps 2 and 4

can be performed using Õ(rθd) operations, by Theorem 2.
Step 6 consists in multiplying two operators in K[x]〈∂〉 of
bidegrees at most ((r− 1)d, r) and (d, r) in (x, ∂). This can

be done using Õ(min((rd)2 rθ−2, r3d)). This proves (a).
The dominant parts of Li’s algorithm are the computa-

tion of g = ord(GCRD(L1, L2)), and the expansion of O(r)
minors of a polynomial matrix of size O(r) and degree at
most d. By using [20, Lemma 5.1] and Theorem 2, g can

be computed using Õ(rθd) operations in K, and the minors

can be expanded in Õ(rθ+1d). The dominant parts of van
Hoeij’s algorithm are Steps 2 and 4. Since k = 2, matrix Hs
has size O(r). By an easy induction, its (r + j)th row has
polynomial coefficients of degrees at most 2jd, thus Hs has
degree O(dr). By Theorem 2, the rank and kernel compu-

tations have complexity Õ(rθ+1d). This proves (b).
The dominant parts of the new algorithm are Steps 2

and 4. Since k = 2, the polynomial matrix Ms has size
O(r) and degree at most d. By Theorem 2 again, the rank

and kernel computations have cost Õ(rθd). This completes
the proof. �

Quite surprisingly, the costs of Heffter’s and of van der
Hoeven’s algorithms are penalised by the complexity of mul-
tiplication of operators, which is not well-understood yet for

general bidegrees. Precisely, it is an open problem whether
two operators of bidegree (d, r) in (x, ∂) can be multiplied

in nearly optimal time Õ(rθ−1d). If such an algorithm were
discovered, then the costs of both algorithms would become

Õ(rθ d), improving the corresponding entries in Figure 1.

5.3 LCLMs of several operators
We analyse three algorithms for LCLMs of several opera-

tors: DAC, van Hoeij’s and our new algorithm.

5.3.1 LCLMs by divide-and-conquer

Theorem 8 Suppose that we are given an algorithm com-
puting the LCLM of two differential operators which, on in-
put L1, L2 ∈ K[x]〈∂〉 of bidegree at most (D,R) in (x, ∂),

computes LCLM(L1, L2) in complexity Õ(RαDβ) for some
constants α ≥ 2 and β ≥ 1 independent of D and R.

There exists an algorithm which, on input L1, . . . , Lk ∈
K[x]〈∂〉 of bidegrees at most (d, r) in (x, ∂), computes L =

LCLM(L1, . . . , Lk) using Õ(kα+2βrα+βdβ) operations in K.

Proof. Suppose without loss of generality that k = 2` is a
power of 2. To compute L, we use a strategy based on (6),
similar to that of the subproduct tree [16, §10.1]: we parti-
tion the family (L1, . . . , Lk) into pairs, compute the LCLM
of each pair using algorithm A available for two operators,
remove the polynomial content, then compute LCLMs of
pairs, and so on. Let L[a:b] denote the LCLM of La, . . . , Lb
with the content removed. At level 1, the algorithm com-
putes the k/2 operators L[1:2], . . . , L[k−1:k], at level 2 the
k/4 operators L[1:4], . . . , L[k−3:k], and so on, the last compu-
tation at level ` being that of L as the LCLM of L[1:k/2] and

L[k/2+1:k]. Let C(R,D) = Õ(RαDβ) denote the complexity
of algorithm A on inputs of bidegrees at most (D,R). By
Theorem 6, the operators computed at level 1 ≤ j ≤ ` have
bidegree at most (2jr, 2jd((2j − 1)r + 1)). Thus, the total
cost of the DAC algorithm on k inputs of bidegree at most
(d, r) is bounded by

∑`−1
j=0

k
2j+1 ·C

(
2jr, 2jd((2j − 1)r + 1)

)
,

plus the cost of the content removal, which is negligible.
Up to polylogarithmic factors, the cost is bounded by
`−1∑
j=0

k

2j+1
· (2jr)α · (4jdr)β =

k

2
· rα+β · dβ ·

`−1∑
j=0

(2j)α+2β−1,

which is O(kα+2βrα+βdβ). This concludes the proof. �

The cost of the algorithm is essentially that of its last step;
this is a typical feature of DAC algorithms. A similar anal-
ysis shows that the iterative algorithm based on formula (5)

is less efficient, and has complexity Õ(kα+2β+1rα+βdβ).

As a corollary of Theorems 7 and 8, we get a proof of the
complexity estimates in the first three entries of Figure 1.

5.3.2 Van Hoeij’s and the new algorithm
Theorem 9 Let L1, . . . , Lk ∈ K[x]〈∂〉 have bidegrees at
most (d, r) in (x, ∂). One can compute LCLM(L1, . . . , Lk)

(a) in Õ(kθ+1rθ+1 d) operations by van Hoeij’s algorithm,

(b) in Õ(k2θrθ d) operations by the new algorithm.

Proof. The proof is similar to that of Theorem 7(b) and (c).
The most costly parts of van Hoeij’s algorithm are Steps 2
and 4. Matrix Hs has size O(kr) and polynomial coefficients
of degree O(krd). By Theorem 2, the rank and kernel com-

putations have complexity Õ((kr)θ krd) = Õ(kθ+1rθ+1d).
This proves (a). The dominant parts of the new algorithm
are Steps 2 and 4. The polynomial matrix Ms has size
O(k2r) and degree at most d. By Theorem 2, the rank and

kernel computations have cost Õ((k2r)θd) = Õ(k2θrθd). �

As a corollary of Theorem 9, we get a proof of the com-
plexity estimates in the last two entries of Figure 1. Note
that Cramer’s rule applied to the matrix Hs analysed in the
previous proof yields the bound O(k2r2d) on the coefficient
degrees of the LCLM. This bound is improved by Theorem 1.

6. SMALLER COMMON LEFT MULTIPLES
Our approach to computing more common left multiples

(CLMs), that are generally not of minimal order, but smaller
in total arithmetic size than the LCLM, is similar to the
linear-algebraic approach used in Section 3. However, in-
stead of considering a matrix encoding the ∂iLj , with poly-
nomial coefficients, we turn our attention to a matrix en-
coding the xi1∂i2Lj , with constant coefficients.

Existence of smaller CLMs. The new building block to
consider is, for an operator P in K[x]〈∂〉 of total degree ∆
in x and ∂, and an integer N ≥ ∆, the

(
N−∆+2

2

)
×
(
N+2

2

)
matrix CN (P) with scalar coefficients whose rows represent
the operators of the form xi1∂i2P for 0 ≤ i1 + i2 ≤ N ,
in any fixed order, and whose columns are indexed by the
monomials of total degree at most N , in any fixed order.

Let L1, . . . , Lk be elements of K[x]〈∂〉, with respective
total degrees ∆1, . . . , ∆k. For N ≥ max{∆1, . . . ,∆k}, let
M ′N (L1, . . . , Lk) be the matrix

M ′N = M ′N (L1, . . . , Lk) =

CN (L1)

. . .

CN (Lk)
−I(N+2

2) . . . −I(N+2
2)

 .

This matrix has m(N) rows and n(N) columns, where

m(N)=

(
N + 2

2

)
+

k∑
j=1

(
N −∆j + 2

2

)
, n(N)=k

(
N + 2

2

)
.

Assuming all ∆i equal to a same value ∆, the matrix M ′N
certainly has a nontrivial left kernel when m(N) > n(N),
that is when k

(
N−∆+2

2

)
> (k−1)

(
N+2

2

)
, which happens when

N ≥ B for B =

⌈
k∆ +

√
4k(k − 1)∆2 + 1− 3

2

⌉
≤ 2k∆,

where the approximation holds for large values of k or ∆.

Using ∆ ≤ d+ r yields the main result of this section.

Theorem 10 Let L1, . . . , Lk be elements in K[x]〈∂〉\{0} of
orders at most r, and with coefficients of degrees at most d.
There exist nonzero common left multiples of total degree ≤
2k(d+ r) in (x, ∂), and total arithmetic size O

(
k2(d+ r)2

)
.

Algorithms for CLMs. A simple algorithm for comput-
ing common left multiples of total degree B ≈ 2k(d + r)
in (x, ∂) is based on the left kernel computation of the
scalar matrix M ′B(L1, . . . , Lk). This matrix has sizes of or-
der kB2/2 ≈ 2k3(d + r)2. The cost of the procedure is
O(k3θ(d+ r)2θ); it is dominated by the kernel computation.

To simplify the discussion, we assume in the remain-
ing of the section that L1, . . . , Lk have bidegrees at most
(d, r) = (n, n). Then, Theorem 10 implies that, while the
LCLM has order at most kn and degrees at most k2n2, there
exist common left multiples of order and degree at most 4kn.
However, computing such a small multiple by the previous
algorithm of complexity O(k3θn2θ) is more costly than com-
puting the LCLM by the last two algorithms in Figure 1.

Here we briefly sketch a faster algorithm for computing a
common left multiple of order and degree at most 4kn, based
on Hermite-Padé approximation [5, Chapter 10]. One de-
termines series solutions of the Li at order O(k2n2), takes a
random linear combination f of them, computes its first 4kn
derivatives, and outputs a Hermite-Padé approximant of
f, f ′, . . . , f (4kn) of type (4kn, . . . , 4kn). The dominant com-

plexity is that of the Hermite-Padé step, Õ(kθ+1nθ+1) [36].

A Fast LCLM Heuristic. As an interesting consequence
of this fast CLM computation, we deduce a very efficient
heuristic for LCLMs, asymptotically faster than all algo-
rithms in Figure 1. It proceeds in 3 steps: (i) compute O(1)
CLMs of order and degree at most 4kn; (ii) take two random
linear combinations with coefficients in K[x]; (iii) return
their GCRD. The dominating steps are (i) and (iii). By us-
ing Hermite-Padé approximants for step (i) and Grigoriev’s
algorithm [20] combined with Theorem 2 for step (iii), the

total complexity is Õ(kθ+1nθ+1). This is nearly optimal, in
view of the LCLM size k3n3. However, we are not yet able
to turn this heuristic into a fully proved algorithm.

7. EXPERIMENTS
We implemented1 two variants of our new algorithm in

Magma V2.16-7 [4] and compared them with Magma’s built-
in LCLM routine (command LeastCommonLeftMultiple).

Some experimental results are summarised in Table 1. We
take as input k = 2 random operators in Fp[x]〈∂〉, each of
bidegree (d, r) = (n, n) in (x, ∂), where p is a medium-sized

prime and n is of the form d2j/2e, for 2 ≤ j ≤ 11. Column
New gives timings for the first variant of the new algorithm,
that uses Magma’s built-in polynomial linear algebra solver
(the Kernel routine), while column New+S gives timings for
the second variant, based on our own high-level implemen-
tation of Storjohann’s high-order lifting algorithm [35]. Col-
umn (N,D) displays the sizeN and the degreeD of the poly-
nomial matrix dealt with by algorithms New and New+S.
The dominating part of these algorithms is the left kernel
computation for a polynomial matrix of size (N+1)×N and

1All computer calculations were performed on a Quad-Core
Intel Xeon X5160 processor at 3GHz, with 8GB of RAM.

n Magma’s LCLM New New+S (N,D) MM(N,D) output size
2 0.01 0.00 0.01 (2,10) 0.01 65
3 0.01 0.01 0.03 (3,14) 0.01 175
4 0.02 0.01 0.07 (4,18) 0.03 369
6 0.10 0.06 0.17 (6,26) 0.06 1105
8 0.49 0.19 0.54 (8,34) 0.15 2465

12 6.84 0.91 1.37 (12,50) 0.41 7825
16 49.24 3.48 4.93 (16,66) 0.91 17985
23 718.02 20.51 11.09 (23,94) 2.60 51935
32 9355.47 115.53 40.83 (32,130) 6.73 137345
46 168434.66 791.01 130.40 (46,186) 21.51 402225

Table 1: Timings (in sec.) for LCLMs of k = 2 ran-
dom operators in Fp[x]〈∂〉 of bidegrees (n, n) in (x, ∂).

degree D. The most time consuming part of New+S con-
sists in O(logN) polynomial matrix multiplications of sizeN
and degree D. To facilitate comparisons, column MM(N,D)
shows the total time taken by 10 products of random poly-
nomial matrices of size N and degree D over Fp. Finally,
column output size displays the total arithmetic size of the
computed LCLM, that is, its number of coefficients in Fp.

Several conclusions can be drawn from Table 1. First,
Magma’s LCLM tool exhibits an exponential arithmetic
complexity behaviour (when passing from bidegree (n, n) to
(n+1, n+1), timings are multiplied by a factor close to 1.5),
but it is relatively efficient for small input sizes. Both vari-
ants of the new algorithm are faster for n ≥ 10, and New+S
gains a factor 65 for n = 23, and almost 1300 for n = 46.

Second, timings in column New exhibit a practical com-
plexity proportional to n5, which is inherited from Magma’s
linear algebra solver on polynomial matrices. In contrast,
New+S has a practical complexity proportional to n3.5 (but
with a higher proportionality factor). This good behaviour,

closer to the theoretical complexity Õ(nθ+1) predicted by
Theorem 1, is inherited from Magma’s very efficient polyno-
mial matrix multiplication, through Storjohann’s algorithm.

Finally, timings in column New+S grow nearly linearly in
the corresponding output sizes given in the last column, and
these sizes match exactly the sharp bounds in Theorem 1.
This experimentally confirms that size bounds and worst-
case complexity analyses predicted by our theoretical results
are reached in generic cases.

8. REFERENCES
[1] S. Abramov, H. Le, and Z. Li. Univariate Ore polynomial rings

in Computer Algebra. J. Math. Sci., 131(5):5885–5903, 2005.

[2] M. Barkatou, F. Chyzak, and M. Loday-Richaud. Remarques
algorithmiques liées au rang d’un opérateur différentiel linéaire.
In From combinatorics to dynamical systems, volume 3 of
IRMA Lect. Math. Theor. Phys., pages 87–129. Berlin, 2003.

[3] H. Blumberg. Über algebraische Eigenschaften von linearen
homogenen Differentialausdrücken. PhD thesis, Universität
Göttingen, 1912.

[4] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra
system. I. The user language. J. Symbolic Comput.,
24(3-4):235–265, 1997.

[5] A. Bostan. Algorithmique efficace pour des opérations de base

en Calcul formel. PhD thesis, École polytechnique, 2003.

[6] A. Bostan, F. Chyzak, and N. Le Roux. Products of ordinary
differential operators by evaluation and interpolation. In
ISSAC’08, pages 23–30. ACM Press, New York, 2008.

[7] A. Bostan, F. Chyzak, G. Lecerf, B. Salvy, and É. Schost.
Differential equations for algebraic functions. In ISSAC’07,
pages 25–32. ACM Press, New York, 2007.

[8] E. Brassinne. Analogie des équations différentielles linéaires à
coefficients variables, avec les équations algébriques. In Note
III du Tome 2 du Cours d’analyse de Ch. Sturm, École
polytechnique, 2ème édition, pages 331–347, 1864.

[9] M. Bronshtĕın and M. Petkovshek. Ore rings, linear operators
and factorization. Programmirovanie, (1):27–44, 1994.

[10] M. Bronstein and M. Petkovšek. An introduction to pseudo-
linear algebra. Theoret. Comput. Sci., 157(1):3–33, 1996.

[11] D. G. Cantor and E. Kaltofen. On fast multiplication of
polynomials over arbitrary algebras. Acta Inform.,
28(7):693–701, 1991.

[12] T. Cluzeau and M. van Hoeij. A modular algorithm for
computing the exponential solutions of a linear differential
operator. J. Symbolic Comput., 38(3):1043–1076, 2004.

[13] D. Coppersmith and S. Winograd. Matrix multiplication via
arithmetic progressions. J. Symb. Comput., 9(3):251–280, 1990.

[14] S. S. Demidov. On the history of the theory of linear differential
equations. Arch. Hist. Exact Sci., 28(4):369–387, 1983.

[15] G. von Escherich. Über die Gemeinsamkeit particulärer
Integrale bei zwei linearen Differentialgleichungen.
Österreichische Akademie der Wissenschaften.
Mathematisch-Naturwissenschaftliche Klasse, 46:61–82, 1883.

[16] J. von zur Gathen and J. Gerhard. Modern Computer Algebra.
Cambridge University Press, Cambridge, second edition, 2003.

[17] M. Giesbrecht. Factoring in skew-polynomial rings. In LATIN
’92, volume 583 of LNCS, pages 191–203. 1992.

[18] M. Giesbrecht. Factoring in skew-polynomial rings over finite
fields. J. Symbolic Comput., 26(4):463–486, 1998.

[19] M. Giesbrecht and Y. Zhang. Factoring and decomposing Ore
polynomials over Fq(t). In ISSAC’03, pages 127–134, 2003.

[20] D. Y. Grigor’ev. Complexity of factoring and calculating the
GCD of linear ordinary differential operators. J. Symbolic
Comput., 10(1):7–37, 1990.

[21] L. Heffter. Ueber gemeinsame Vielfache linearer
Differentialausdrücke und lineare Differentialgleichungen
derselben Klasse. J. Reine Angew. Math., 116:157–166, 1896.

[22] J. van der Hoeven. FFT-like multiplication of linear differential
operators. J. Symbolic Comput., 33(1):123–127, 2002.

[23] J. van der Hoeven. On the complexity of skew arithmetic, 2011.
Technical Report, HAL 00557750, v1.

[24] H. Q. Le. A direct algorithm to construct the minimal Z-pairs
for rational functions. Adv. Appl. Math., 30(1-2):137–159, 2003.

[25] Z. Li. A subresultant theory for Ore polynomials with
applications. In ISSAC’98, pages 132–139. ACM Press, 1998.

[26] G. Libri. Mémoire sur la résolution des équations algébriques
dont les racines ont entre elles un rapport donné, et sur
l’intégration des équations différentielles linéaires dont les
intégrales particulières peuvent s’exprimer les unes par les
autres. J. Reine Angew. Math., 10:167–194, 1833.

[27] O. Ore. Formale Theorie der linearen Differentialgleichungen.
J. Reine Angew. Math., 167:221–234, 1932.

[28] O. Ore. Theory of non-commutative polynomials. Ann. of
Math., 34(3):480–508, 1933.

[29] A. B. Pierce. Sufficient Condition that two Linear
Homogeneous Differential Equations shall have Common
Integrals. Amer. Math. Monthly, 10(3):65–68, 1903.

[30] A. B. Pierce. The necessary and sufficient conditions under
which two linear homogeneous differential equations have
integrals in common. Ann. of Math. (2), 6(1):17–29, 1904.

[31] E. G. C. Poole. Introduction to the theory of linear
differential equations. Oxford Univ. Press, London, 1936.

[32] B. Salvy and P. Zimmermann. Gfun: a Maple package for the
manipulation of generating and holonomic functions in one
variable. ACM Trans. Math. Software, 20(2):163–177, 1994.

[33] A. Schönhage and V. Strassen. Schnelle Multiplikation großer
Zahlen. Computing, 7:281–292, 1971.

[34] R. P. Stanley. Differentiably finite power series. European J.
Combin., 1(2):175–188, 1980.

[35] A. Storjohann. High-order lifting and integrality certification.
J. Symbolic Comput., 36(3-4):613–648, 2003.

[36] A. Storjohann. Notes on computing minimal approximant
bases. In Challenges in Symbolic Computation Software,
number 06271 in Dagstuhl Seminar Proceedings, 2006.

[37] A. Storjohann and G. Villard. Computing the rank and a small
nullspace basis of a polynomial matrix. In ISSAC’05, pages
309–316. ACM Press, New York, 2005.

[38] A. Stothers. On the Complexity of Matrix Multiplication. PhD
thesis, University of Edinburgh, 2010.

[39] V. Vassilevska Williams. Breaking the Coppersmith-Winograd
barrier, 2011. http://cs.berkeley.edu/~virgi/matrixmult.pdf.

[40] J. H. M. Wedderburn. Non-commutative domains of integrity.
J. Reine Angew. Math., 167:129–141, 1932.

http://cs.berkeley.edu/~virgi/matrixmult.pdf

	Introduction
	Preliminaries
	Linear formulation for common left multiples
	Computing LCLMs
	Computing an LCLM of two operators
	Heffter's algorithm
	Euclidean algorithms
	Van der Hoeven's algorithm

	Computing an LCLM of several operators
	Iterative LCLMs
	Van Hoeij's algorithm
	The new algorithm

	 Algorithms, bounds, complexity
	Tight degree bounds for the LCLM
	LCLMs of two operators
	LCLMs of several operators
	LCLMs by divide-and-conquer
	Van Hoeij's and the new algorithm

	 Smaller common left multiples
	Experiments
	REFERENCES -9pt

