
Polynomial evaluation and interpolation

on special sets of points

Alin Bostan and Éric Schost

Laboratoire STIX, École polytechnique, 91128 Palaiseau, France

Abstract

We give complexity estimates for the problems of evaluation and interpolation on
various polynomial bases. We focus on the particular cases when the sample points
form an arithmetic or a geometric sequence, and we discuss applications, respec-
tively to computations with linear differential operators and to polynomial matrix
multiplication.

1 Introduction

Let k be a field and let x = x0, . . . , xn−1 be n pairwise distinct points in k.
Given arbitrary values v = v0, . . . , vn−1 in k, there exists a unique polyno-
mial F in k[x] of degree less than n such that F (xi) = vi, for i = 0, . . . , n− 1.
Having fixed a basis of the vector space of polynomials of degree at most n−1,
interpolation and evaluation questions consist in computing the coefficients
of F on this basis from the values v, and conversely.

Well-known problems are that of interpolation and evaluation in the monomial

basis 1, x, . . . , xn−1:

• Given x0, . . . , xn−1 and v0, . . . , vn−1, monomial interpolation consists in de-
termining the unique coefficients f0, . . . , fn−1 such that the polynomial F =
f0 + f1x + · · ·+ fn−1x

n−1 satisfies F (xi) = vi, for i = 0, . . . , n− 1.
• Given x0, . . . , xn−1 and f0, . . . , fn−1, monomial evaluation consists in com-

puting the values v0 = F (x0), . . . , vn−1 = F (xn−1), where F is the polyno-
mial f0 + f1x + · · ·+ fn−1x

n−1.

Email addresses: Alin.Bostan@stix.polytechnique.fr (Alin Bostan),
Eric.Schost@stix.polytechnique.fr (Éric Schost).

Preprint submitted to Elsevier Science 27 January 2005

The Newton basis associated to the points x0, . . . , xn−1 provides with an al-
ternative basis of degree n− 1 polynomials, which is defined as

1, (x− x0), (x− x0)(x− x1), . . . , (x− x0) · · · (x− xn−2).

An important particular case is the falling factorial basis

1, x1 = x, x2 = x(x− 1), x3 = x(x− 1)(x− 2), . . . ,

which is used in many algorithms for symbolic summation, see for instance
(Abramov, 1989; Petkovšek, 1992; Paule, 1995). Accordingly, Newton inter-
polation and Newton evaluation are defined as the problems of interpolation
and evaluation with respect to the Newton basis:

• Given x0, . . . , xn−1 and v0, . . . , vn−1, Newton interpolation consists in deter-
mining the unique coefficients f0, . . . , fn−1 such that the polynomial

F = f0+f1(x−x0)+f2(x−x0)(x−x1)+· · ·+fn−1(x−x0) · · · (x−xn−2) (1)

satisfies F (xi) = vi, for i = 0, . . . , n− 1.
• Given x0, . . . , xn−1 and f0, . . . , fn−1, Newton evaluation consists in comput-

ing the values v0 = F (x0), . . . , vn−1 = F (xn−1), where F is the polynomial
given by Equation (1).

Fast algorithms for evaluation and interpolation in the monomial basis were
discovered in the seventies and have complexity in O(M(n) log(n)), where
M(n) denotes the cost of multiplying univariate polynomials of degree less
than n. Using FFT-based multiplication algorithms, M(n) can be taken in
O(n log(n) log(log(n))), so the complexity above is nearly optimal, up to log-
arithmic factors (note that naive algorithms have cost quadratic in n). These
fast algorithms are nowadays classical topics covered by most of the computer
algebra textbooks (Bini and Pan, 1994; Bürgisser et al., 1997; von zur Gathen
and Gerhard, 1999) and their practical relevance is recognized.

In contrast, fast algorithms for Newton evaluation and interpolation are quite
recent, despite a potentially vast field of applications. The standard algorithms
are based on divided differences and have complexity quadratic in n (Knuth,
1998). Yet, using a divide-and-conquer approach, the complexity of Newton
evaluation and interpolation becomes essentially linear in n: indeed, the al-
gorithms suggested in (Bini and Pan, 1994, Ex. 15, p. 67) have complexity
in O(M(n) log(n)).

Such fast algorithms for Newton evaluation and interpolation rely on two
additional tasks: the base change between the monomial basis and the Newton
basis, and conversely. Algorithms realizing these tasks are detailed for instance
in (Gerhard, 2000, Theorem 2.4 and Theorem 2.5); they also have complexity
in O(M(n) log(n)).

2

Remark that monomial as well as Newton evaluation and interpolation can
also be regarded as base change problems, between monomial or Newton bases
on the one hand and Lagrange basis

∏
j 6=0(x− xj)∏
j 6=0(x0 − xj)

,

∏
j 6=1(x− xj)∏
j 6=1(x1 − xj)

, . . . ,

∏
j 6=n−1(x− xj)∏

j 6=n−1(xn−1 − xj)

associated to the points x0, . . . , xn−1, on the other hand.

Our contribution. The core of this paper is the study of the three opera-
tions mentioned up to now:

(1) conversions between Newton and monomial bases,
(2) monomial evaluation and interpolation,
(3) Newton evaluation and interpolation.

Our first goal is to propose improved algorithms for some of these operations:
specifically, we describe a faster conversion algorithm, from which we deduce
an improved Newton interpolation algorithm. When the sample points bear no
special structure, our algorithms still have an asymptotic complexity belonging
to the class O(M(n) log(n)), but they are faster than the previous ones by a
constant factor. To establish comparisons, and for the sake of completeness, we
will detail the constants hidden behind the Big-Oh notation in the complexity
estimates, for our algorithms as well as for one of Gerhard (2000).

Our second objective is to obtain better algorithms for special cases of evalua-
tion points x. Indeed, it is well known that the divided difference formulas used
in Newton interpolation simplify when the points form an arithmetic or a geo-

metric progression; we will show how to obtain improved complexity estimates
based on such simplifications. We also discuss applications to computations
with linear differential operators and polynomial matrix multiplication.

Table 1 summarizes the best results known to us on the three questions men-
tioned above; we now review its columns in turn and detail our contributions.
In what follows, all results of type O(M(n) log(n)) are valid when n is a power
of 2. The results for the arithmetic progression case additionally require that
the base field has characteristic 0 or larger than n.

The general case. The first column gives estimates for arbitrary sample
points; we call this case the general case. In this situation, conversion algo-
rithms and monomial evaluation / interpolation algorithms are designed first,
and algorithms for Newton evaluation and interpolation are deduced by com-
position.

3

Question general case

Newton to monomial basis (NtoM) M(n) log(n) + O(M(n))

Monomial to Newton basis (MtoN) M(n) log(n) + O(M(n))

Monomial evaluation (MtoV) 3/2M(n) log(n) + O(M(n))

Monomial interpolation (VtoM) 5/2M(n) log(n) + O(M(n))

Newton evaluation (NtoV) 2M(n) log(n) + O(M(n))

Newton interpolation (VtoN) 3M(n) log(n) + O(M(n))

Question arithmetic case geometric case

NtoM M(n) log(n) + O(M(n)) M(n) + O(n)

MtoN M(n) log(n) + O(M(n)) M(n) + O(n)

MtoV M(n) log(n) + O(M(n)) 2M(n) + O(n)

VtoM M(n) log(n) + O(M(n)) 2M(n) + O(n)

NtoV M(n) + O(n) M(n) + O(n)

VtoN M(n) + O(n) M(n) + O(n)

Table 1
Complexity results on conversions between Newton and monomial bases, monomial
evaluation and interpolation, Newton evaluation and interpolation.

The conversion algorithm from the Newton to the monomial basis (first row
in the table) is from Gerhard (2000), who also gives its bit complexity when
the base field is Q. As to the conversion from the monomial to the Newton
basis (second row in the table), our algorithm is new, to the best of our
knowledge. It relies on the so-called transposition principle, which finds its
origins in Tellegen’s theorem on electrical networks (Tellegen, 1952; Bürgisser
et al., 1997; Kaltofen, 2000; Bostan et al., 2003). Gerhard (2000) also presents
an algorithm for this task, but its complexity is higher by a constant factor.

4

The results on monomial evaluation and interpolation (third and fourth rows)
appeared in (Bostan et al., 2003) and improve the classical results by (Moenck
and Borodin, 1972; Strassen, 1973; Borodin and Moenck, 1974) and Mont-
gomery (1992).

The last two operations (fifth and sixth rows of the upper table) are Newton
evaluation and interpolation; the algorithms for these tasks are easily deduced
from those mentioned before (rows 1–4), by composition. Note however that
the constants do not add up, due to some shared precomputations. Recall that
these complexity results were already known to lie in the class O(M(n) log(n)),
see for instance Bini and Pan (1994); the precise estimate in the fifth row is ob-
tained by combining algorithms of (Gerhard, 2000) and (Bostan et al., 2003),
whereas that in the last row relies on our improved conversion algorithm.

The arithmetic progression case. In the arithmetic progression case, a
sharp complexity statement was given in (Gerhard, 2000, Theorem 3.2 and
Theorem 3.4), which proves that Newton evaluation and interpolation at an
arithmetic progression can be done within M(n)+O(n) operations. That article
also analyzes the bit complexity when the base field is Q.

In the arithmetic progression case, the basis conversion algorithms developed
in the general case remain unchanged. Using Gerhard’s result and these con-
version algorithms, we then deduce new, faster algorithms for monomial eval-
uation and interpolation on an arithmetic progression.

We apply these algorithms to conversions between the monomial and the
falling factorial bases. This yields fast algorithms for computing Stirling num-
bers, which in turn are the basis for fast computation with linear differential
operators. Also, we discuss the transpose of the algorithm of Gerhard (2000),
which is shown to be closely related to an algorithm of Aho et al. (1975) for
polynomial shift.

The geometric case. In the geometric progression case, we show that the
complexities of Newton evaluation and interpolation drop to M(n) + O(n) as
well. The improvements are obtained by (mainly) translating into equalities
of generating series the formulas for divided q-differences, similarly to what is
done by Gerhard (2000) for the arithmetic case. By considering the transposed
problems, we deduce that the conversions between the Newton and the mono-
mial bases can be done with the same asymptotic complexity of M(n) + O(n)
operations in the base field.

These results have consequences for evaluation and interpolation in the mono-
mial basis. It is known (Rabiner et al., 1969; Bluestein, 1970; Aho et al., 1975)

5

that evaluating a polynomial of degree less than n on n points in a geometric
progression has cost 2 M(n) + O(n) (the algorithm given by Aho et al. (1975)
actually has complexity more than 2 M(n)+O(n), but using the middle prod-
uct operation of Hanrot et al. (2004) yields the announced complexity bound).
A similar result for the inverse problem – that is, interpolation on the mono-
mial basis at points in a geometric progression – was previously not known.
Using the Newton basis for intermediate computations, we show that this can
also be done using 2 M(n) + O(n) operations.

Thus, this allows to exhibit special sequences of points, lying in the base field,
for which both evaluation and interpolation are cheaper by a logarithmic factor
than in the general case. Many algorithms using evaluation and interpolation
for intermediate computations can benefit from this. We exemplify this by
improving the known complexity results for polynomial matrix multiplication.

Organization of the paper. In Section 2 we recall basic tools for our sub-
sequent algorithms, the construction of the subproduct tree associated to the
sample points and the notion of transposed algorithms, and notably trans-
posed multiplication.

In Section 3 we recall or improve known algorithms for the three operations
mentioned up to now, evaluation and interpolation in the monomial and New-
ton bases, as well as base change algorithms, in the general case of arbitrary
sample points.

In Section 4, we focus on the case when the sample points form an arithmetic
sequence, and present an application to computations with linear differential
operators. Section 5 is devoted to the special case of evaluation points in a ge-
ometric progression; we conclude this section by an application to polynomial
matrix multiplication.

Technical assumptions. We suppose that the multiplication time func-
tion M fulfills the inequality M(d1) + M(d2) ≤ M(d1 + d2) for all positive
integers d1 and d2; in particular, the inequality M(d/2) ≤ 1/2 M(d) holds
for all d ≥ 1. We also make the hypothesis that M(cd) is in O(M(d)), for
all c > 0. The basic examples we have in mind are classical multiplication,
for which M(n) ∈ O(n2), Karatsuba’s multiplication (Karatsuba and Ofman,
1963) with M(n) ∈ O(n1.59) and the FFT-based multiplication (Schönhage
and Strassen, 1971; Schönhage, 1977; Cantor and Kaltofen, 1991), which have
M(n) ∈ O(n log(n) log(log(n))). Our references for matters related to polyno-
mial arithmetic are the books (Bini and Pan, 1994; Bürgisser et al., 1997; von
zur Gathen and Gerhard, 1999).

6

When designing transposed algorithms, we will impose additional assumptions
on the polynomial multiplication algorithm; these assumptions are described
in Subsection 2.2.

2 Preliminaries

In this section, we introduce two basic tools: the subproduct tree T associated
to the points x0, . . . , xn−1 and the notion of transposed algorithm.

2.1 The subproduct tree

In what follows, we suppose that n is a power of 2. The subproduct tree T
associated to x = x0, . . . , xn−1 is then a complete binary tree, all whose nodes
contain polynomials in k[x]. Let n = 2m; then T is defined as follows:

• If m = 0, then T reduces to a single node, containing the polynomial x−x0.
• If m > 0, let T0 and T1 be the trees associated to x0, . . . , x2m−1−1 and

x2m−1 , . . . , x2m−1 respectively. Let M0 and M1 be the polynomials at the
roots of T0 and T1. Then T is the tree whose root contains the product
M0M1 and whose children are T0 and T1.

Alternately, one can represent the subproduct tree T as a 2-dimensional ar-
ray Ti,j, with 0 ≤ i ≤ m, 0 ≤ j ≤ 2m−i − 1. Then

Ti,j =
2i(j+1)−1∏

ℓ=2ij

(x− xℓ).

For instance, if m = 2 (and thus n = 4), the tree associated to x0, x1, x2, x3 is
given by

T0,0 = x− x0, T0,1 = x− x1, T0,2 = x− x2, T0,3 = x− x3,

T1,0 = (x− x0)(x− x1), T1,1 = (x− x2)(x− x3),

T2,0 = (x− x0)(x− x1)(x− x2)(x− x3).

The following result was first pointed out by Horowitz (1972), see also (von
zur Gathen and Gerhard, 1999).

Proposition 1 The subproduct tree associated to x0, . . . , xn−1 can be com-

puted within 1/2 M(n) log(n) + O(n log(n)) base field operations.

7

Since in what follows a particular attention is payed to special sets of points x,
one may wonder whether the construction of the subproduct tree can be
speeded up in such structured situations. If the points x form a geometric
sequence, we show that an acceleration (by a logarithmic factor) can indeed
be obtained. This result is stated for completeness in Lemma 1 below; however,
we will not make use of it in the sequel, since our fast algorithms in Section 5
for evaluation and interpolation on geometric sequences do not rely on the use
of subproduct trees. In contrast, in the case of points in an arithmetic pro-
gression, we are not able to obtain a similar improvement upon Proposition 1.
Note that a gain in the arithmetic case would be of real interest, as some of
our algorithms in Section 4 share the construction of T as a precomputation.

Lemma 1 Let k be a field and let n be a power of 2. Let xi = qi, i = 0, . . . , n−1
be a geometric progression in k. Then, the nodes of the subproduct tree T

associated to x = x0, . . . , xn−1 can be computed within M(n) + O(n log(n))
operations in k.

Proof. The fact that the points x form a geometric progression implies that,
at every level i, the nodes Ti,j can be deduced from one another by performing
a homothety. Thus, our strategy is to determine the left-side nodes Ti,0 first,
then to obtain all the other nodes by polynomial homotheties.

The left-side nodes Ti,0, for 0 ≤ i ≤ m, have degree 2i and can be determined
(together with the nodes Ti,1) by a procedure based on the equalities

Ti,1(x) = Ti,0(x/q2i

) · q4i

, Ti+1,0(x) = Ti,0(x) · Ti,1(x), 0 ≤ i ≤ m− 1

within
∑m−1

i=0

(
M(2i) + O(2i)

)
= M(n) + O(n) operations in k. Then, starting

from Ti,0, the remaining desired nodes can be determined using the equality

Ti,j(x) = Ti,0

(
x/q2ij

)
q4ij, for 1 ≤ i ≤ m− 2, 2 ≤ j ≤ 2m−i − 1,

for a total cost of at most
∑m−2

i=1 2m−i O(2i) = O(n log(n)) operations in k.
This finishes the proof of the lemma. �

Remarks. In may happen that one is only interested in the top polynomial

Tm,0 = (x − x0)(x − x1) · · · (x − xn−1) (or, equivalently, all the elementary
symmetric functions of x0, . . . , xn−1). Using Proposition 1, it can be computed
in 1/2 M(n) log(n) + O(n log(n)) base field operations.

However, the proof of Lemma 1 shows that better can be done when the
points x form a geometric progression, since in this case the construction of
the whole tree can be avoided and one can decrease the cost of computing Tm,0

to M(n) + O(n). Similarly, if the points x form an arithmetic progression, the
polynomial Tm,0 can be computed within 2 M(n)+O(n) base field operations,

8

provided k has characteristic zero or larger than n. Indeed, under this hypoth-
esis, the node Ti+1,0 can be deduced from Ti,0 by a polynomial shift using the
fast algorithm of Aho et al. (1975) (which we recall in Section 4).

As a final remark, note that, for some algorithms presented later, only the
even nodes Ti,2j from the subproduct tree are necessary. If this is the case,
one is led to the natural question: can these polynomials be computed faster
than all the subproduct tree? For the moment, we are unable to answer this
question satisfactorily, even in the arithmetic and the geometric case.

2.2 Transposed algorithms

Introduced under this name by Kaltofen and Shoup, the transposition principle

is an algorithmic theorem, with the following content: given an algorithm that
performs an (r + n)× n matrix-vector product, one can deduce an algorithm
with the same complexity, up to O(r), and which performs the transposed
matrix-vector product. See for instance Bürgisser et al. (1997) for a precise
statement and Kaltofen (2000) for historical notes and further comments on
this question.

For this result to apply, some restrictions must be imposed on the compu-
tational model; for our purposes, it will suffice to impose a condition on the
univariate polynomial multiplication algorithm. Namely, we require that to
compute the product of a polynomial a by a polynomial b, only linear oper-
ations in the coefficients of b are done. This is no strong restriction, since all
classical multiplication algorithms mentioned in the introduction satisfy this
assumption.

We can then introduce our basic transposed operation. Let us denote by k[x]i
the vector space of polynomials of degree at most i; then given a ∈ k[x] of
degree r, we denote by mult(n, a, .) : k[x]r+n → k[x]n the transpose of the
(k-linear) multiplication-by-a map k[x]n → k[x]r+n.

Various algorithms for computing the transposed multiplication are detailed
in Hanrot et al. (2004) and Bostan et al. (2003). The transposition principle
implies that under the assumption above, whatever the algorithm used for
polynomial multiplication, the cost of the direct and of the transposed mul-
tiplication are equal, up to O(r) operations in k; for instance, if n < r, the
complexity of mult(n, a, .) is M(r) + O(r).

All algorithms to be transposed later rely mainly on polynomial multiplication,
as well as other basic operations such as multiplication of vectors by diagonal
matrices, or additions. We now know how to perform transposed polynomial
multiplications, and all other basic operations are easily transposed; follow-

9

ing Bostan et al. (2003), a basic set of mechanical transformations will then
easily yield all required transposed algorithms.

3 Algorithms for arbitrary sample points

In this section, we treat the questions of evaluation and interpolation in the
monomial and Newton bases, and base change algorithms, for an arbitrary
choice of points x = x0, . . . , xn−1. Recall that n is supposed to be a power
of 2.

3.1 Conversions between Newton basis and monomial basis

We first estimate the complexity for the conversions between monomial and
Newton bases. The results are summarized in the theorem below.

Theorem 1 Let k be a field, let x = x0, . . . , xn−1 be n elements of k and let

F ∈ k[x] of degree less than n. Suppose that n is a power of 2 and that the

subproduct tree associated to the points x has been precomputed. Then:

• given the coefficients of F in the Newton basis, one can recover the coeffi-

cients of F in the monomial basis using 1/2 M(n) log(n) + O(M(n)) opera-

tions in k.

• given the coefficients of F in the monomial basis, one can recover the coeffi-

cients of F in the Newton basis using 1/2 M(n) log(n)+O(M(n)) operations

in k.

Taking into account the complexity of computing the subproduct tree stated
in Proposition 1, we obtain the estimates given in the first column, first two
rows, in Table 1.

From Newton basis to monomial basis. Let F be a polynomial of degree
less than n = 2m and f = f0, . . . , fn−1 its coefficients in the Newton basis.
Given f , we want to recover the coefficients of F in the monomial basis. To
this effect, we write the equality

F = F0 + (x− x0) · · · (x− xn/2−1)F1, with

F0 = f0 + f1(x− x0) + · · ·+ fn/2−1(x− x0) · · · (x− xn/2−2),

F1 = fn/2 + fn/2+1(x− xn/2) + · · ·+ fn−1(x− xn/2) · · · (x− xn−2).

10

Using this decomposition, the following conversion algorithm can be deduced.
On input the coefficients f = f0, . . . , fn−1 and the subproduct tree T associ-
ated to the points x0, . . . , xn−1, it outputs the expansion of F on the monomial
basis. The following algorithm works “in place”, since the input list f is mod-
ified at each iteration (for type consistency we might see the input constants
as polynomials of degree zero).

NewtonToMonomial(T , f)
for i ← 0 to m− 1 do

for j ← 0 to 2m−i−1 − 1 do

fj ← f2j + Ti,2jf2j+1;
return f0;

Let us assume that the even nodes Ti,2j of the subproduct tree associated to the
points x0, . . . , xn−1 have been precomputed. Then, the number of operations
in k used by algorithm NewtonToMonomial is upper bounded by

m−1∑

i=0

2m−i−1−1∑

j=0

(
M(2i) + O(2i)

)

 = 1/2 M(n) log(n) + O(n log(n)).

This proves the first part of Theorem 1. This algorithm was already presented
in (Gerhard, 2000, Theorem 2.5), but the more precise complexity estimate
given here is needed in the following.

Transposed conversion algorithm. The conversion algorithm described
above computes a base change map, which is linear in F . In what follows, we
are interested in computing the inverse of this map, that is, the converse base
change. As a first step, we now discuss the transposed map.

Constructing the subproduct tree associated to the points x is a precompu-
tation, which does not depend on the polynomial F , and is not transposed.
As to the two nested loops, we use the transposed multiplication introduced
previously. With this operation, we obtain by a mechanical transformation
the following transposed conversion algorithm: increasing loop indices become
decreasing indices, polynomial multiplications become transposed multiplica-
tions, and additions become duplications.

The direct version takes the subproduct tree and a list of coefficients as input
and gives its output in the form of a polynomial; the transposed algorithm
takes the subproduct tree and a polynomial as input and outputs a list of
constant polynomials, that is, of constants.

11

TNewtonToMonomial(T , F)
c0 ← F ;
for i ← m− 1 downto 0 do

for j ← 2m−i−1 − 1 downto 0 do

c2j+1 ← mult(2i − 1, Ti,2j, cj);

c2j ← cj mod x2i

;
return c0, . . . , c2m−1;

It follows from either a direct analysis or the transposition principle that, if
the subproduct tree is already known, the complexity of this algorithm is the
same as that of the direct one, that is, 1/2 M(n) log(n)+O(n log(n)) base field
operations.

From monomial basis to Newton basis. We can now resume our study
of conversion algorithms. Let F be a polynomial of degree less than n, whose
coefficients on the monomial basis are known; we want to recover the coeffi-
cients of F on the Newton basis 1, x− x0, . . . , (x− x0) · · · (x− xn−2).

A natural way to do that is based on the next remark: if we write F as

F = F0 + (x− x0) · · · (x− xn/2−1)F1,

then it is enough to recover the coefficients of F0 and F1 on the Newton bases
1, x−x0, . . . , (x−x0) · · · (x−xn/2−2) and 1, x−xn/2, . . . , (x−xn/2) · · · (x−xn−2)
respectively.

Using this remark, one can deduce a conversion algorithm based on (recursive)
division with quotient and remainder by the even nodes Ti,2j, see (Gerhard,
2000, Theorem 2.4) for details. Using the idea in (Montgomery, 1992, p. 22–
24) to save constant factors in the division by the tree nodes, the cost of the
resulting algorithm (without counting the precomputation of the subproduct
tree) is upper bounded by 2 M(n) log(n) + O(n log(n)).

In what follows, we obtain an algorithm of better complexity by studying the
transpose of this conversion algorithm. Indeed, we will show that this trans-
posed map mainly amounts to a conversion from Newton basis to monomial
basis on a modified set of points; transposing backwards will yield the desired
result. Let us notice that the same approach – that is, looking at the dual
problem – was already successfully applied by Bostan et al. (2003) to speed
up algorithms for multipoint evaluation in the monomial basis.

Our starting point is the following result (where we take the usual convention
that the empty sum is zero).

12

Lemma 2 Let A be the matrix of change of base from the monomial basis to

the Newton basis associated to x0, . . . , xn−1. Then, for 1 ≤ i, j ≤ n, the (i, j)th
entry of A equals

Ai,j(x0, . . . , xi−1) =
∑

α0+···+αi−1=j−i

xα0
0 xα1

1 · · ·x
αi−1

i−1 .

Proof. The proof is an induction on i = 1, . . . , n, with j fixed. For i = 1, A1,j

is the constant coefficient of xj in the Newton basis, that is, xj
0, so our claim

holds. For i > 1, Ai+1,j is obtained by computing the ith divided difference of
Ai,j, that is,

Ai,j(x0, . . . , xi−2, xi−1)− Ai,j(x0, . . . , xi−2, xi)

xi−1 − xi
, if xi−1 6= xi

and
∂Ai,j

∂xi
, if xi−1 = xi,

see for instance (Knuth, 1998). The conclusion follows by an easy computation.
�

In this matricial formulation, our primary goal is thus to study the map of mul-
tiplication by A. As announced above, we start by considering the transposed
map, of multiplication by At.

From Lemma 2, we see that modulo xn, the generating series of the columns
of At are all rational and respectively equal

1

1− xx0

,
x

(1− xx0)(1− xx1)
,

x2

(1− xx0)(1− xx1)(1− xx2)
, . . .

Let then f0, . . . , fn−1 be in k and f = f0, . . . , fn−1. A direct computation shows
that the entries of the product between At and the vector [f0, . . . , fn−1]

t are
the coefficients of 1, x, . . . , xn−1 in the Taylor expansion of

G(x) =
n−1∑

j=0

fjx
j

∏j
ℓ=0(1− xℓx)

=
rev(n− 1, Q(x))

rev(n, Tm,0)
,

where

Q(x) = fn−1 + fn−2(x− xn−1) + · · ·+ f0(x− xn−1) · · · (x− x1)

and where rev(ℓ, P (x)) = xℓP (1/x) for any P ∈ k[x] and for all ℓ ≥ deg(P).

The polynomial Q can be obtained by applying the algorithm Newton-

ToMonomial to the input values f̃ = fn−1, . . . , f0 and x̃ = xn−1, . . . , x0.

13

Computing the Taylor expansion of S to recover G requires one additional
power series inversion and one power series multiplication.

Let us denote by T̃ the subproduct tree associated to x̃. Then the algorithm
above is summarized as follows.

TMonomialToNewton(T̃ , f)
I ← 1/rev(n, Tm,0) mod xn;

Q ← NewtonToMonomial(T̃ , f̃);

Q̃ ← rev(n− 1, Q);

G ← IQ̃ mod xn;
return G;

By transposition, we deduce the following algorithm for computing the matrix-
vector product by A. All operations that depend linearly in f are transposed,
and their order is reversed; thus, we now use as a subroutine the algorithm
TNewtonToMonomial presented in the previous paragraphs. Note that the
computation of I is not transposed, since it does not depend on f . The resulting
algorithm takes as input a polynomial F and returns its coefficients in the
Newton basis.

MonomialToNewton(T̃ , F)
I ← 1/rev(n, Tm,0) mod xn;

Q̃ ← mult(n− 1, I, F);

Q ← rev(n− 1, Q̃);

fn−1, . . . , f0 ← TNewtonToMonomial(T̃ , Q);
return f0, . . . , fn−1;

This algorithm uses the subproduct tree T̃ . However, this is not a strong
limitation: if the subproduct tree T associated to the points x0, . . . , xn−1 is
already known, then T̃ is obtained by reversing the order of the siblings of
each node in T .

To conclude, using the first part of Theorem 1 and either the transposi-
tion principle or a direct analysis, we deduce that both algorithms require
1/2 M(n) log(n) + O(M(n)) operations in k, since the additional power series
operations have cost in O(M(n)). This is to be compared with the previous
estimate of 2 M(n) log(n) + O(n log(n)) for the algorithm based on Euclidean
division. This estimate proves the second assertion in Theorem 1.

14

3.2 Completing the table

We conclude this section by filling the last entries of the first column in Ta-
ble 1. Using the results above and the algorithms of Bostan et al. (2003),
this is an immediate task. The constants do not add up, due to the shared
precomputation of the subproduct tree.

Evaluation and interpolation on the monomial basis. Let F ∈ k[x]
be a polynomial of degree less than n, let x0, . . . , xn−1 be n pairwise distinct
points in k and denote vi = F (xi). The questions of multipoint evaluation and
interpolation in the monomial basis consist in computing the coefficients of F
in the monomial representation from the values v0, . . . , vn−1, and conversely.

Fast algorithms for these tasks were given by (Moenck and Borodin, 1972;
Borodin and Moenck, 1974), then successively improved by (Strassen, 1973)
and (Montgomery, 1992). All these algorithms are based on (recursive) poly-
nomial remaindering and have complexity O(M(n) log(n)). Recently, different
algorithms, based on the use of transposed operations, have been designed
in (Bostan et al., 2003, Section 6) and led to improved complexity bounds, by
constant factors. For the sake of completeness, we summarize the correspond-
ing results of Bostan et al. (2003) in the theorem below:

Theorem 2 Let k be a field, let x = x0, . . . , xn−1 be pairwise distinct elements

of k and let F ∈ k[x] of degree less than n. Suppose that n is a power of 2
and that the subproduct tree associated to the points x has been precomputed.

Then:

• the evaluation of F at the points x can be done using M(n) log(n)+O(M(n))
operations in k.

• the interpolation of F at the points x can be done using 2 M(n) log(n) +
O(M(n)) operations in k.

Taking into account the complexity of computing the subproduct tree, which
is within 1/2 M(n) log(n)+O(M(n)) operations, we obtain the estimates given
in the first column, middle rows, in Table 1.

We conclude by a remark. Interpolation requires to evaluate the derivative of∏n−1
i=0 (x− xi) on all points x, which contributes for M(n) log(n) + O(M(n)) in

the estimate above. In the case of an arithmetic or a geometric progression,
these values can be computed in linear time: we refer the reader to (Bostan
et al., 2004) for the arithmetic case and leave her the geometric case as an
exercise. Thus the complexity of interpolation drops to

(1/2 + 1) M(n) log(n) + O(M(n)) = 3/2 M(n) log(n) + O(M(n))

15

in these cases. However, in Sections 4 and 5 we show that one can actually do
better in these two special cases.

Newton evaluation and interpolation. Combining the results of Subsec-
tions 3.1 and 3.2, we deduce the following result concerning the complexities of
Newton evaluation and interpolation on an arbitrary set of evaluation points.

Theorem 3 Let k be a field, let x = x0, . . . , xn−1 be pairwise distinct elements

of k and let F ∈ k[x] of degree less than n. Suppose that n is a power of 2
and that the subproduct tree associated to the points xi has been precomputed.

Then:

• Newton evaluation of F at the points x can be done in 3/2 M(n) log(n) +
O(M(n)) operations in k.

• Newton interpolation of F at the points x can be done in 5/2 M(n) log(n) +
O(M(n)) operations in k.

Taking into account the complexity of computing the subproduct tree, this
completes the entries of the first column of Table 1.

4 Special case of an arithmetic progression

In this section we focus on the special case of evaluation points in arithmetic
progression, and show that many of the complexity estimates above can be
improved in this case.

We begin by recalling a result taken from (Gerhard, 2000, Section 3), which
shows that the complexities of Newton evaluation and interpolation drop to
M(n) + O(n) in this special case, and we point out the link between these
algorithms and the algorithm for shift of polynomials of Aho et al. (1975).
Next, using the transposed algorithm of Section 3.1, we show how to improve
(by constant factors) the complexities of evaluation and interpolation in the
monomial basis on an arithmetic progression. We conclude by an application
to computations with linear differential operators.

Newton interpolation and evaluation. We first recall the algorithm
of (Gerhard, 2000, Section 3): this gives the last two entries of the second
column, in Table 1. For further discussion, we detail the proof.

Proposition 2 Suppose that k is a field of characteristic 0 or larger than n.

Let h be a non-zero element in k. Then, Newton interpolation and evaluation

16

of a polynomial of degree n on the arithmetic sequence xi = x0 + ih, for

i = 0, . . . , n− 1 can be done using M(n) + O(n) operations in k.

Proof. Let F be a polynomial of degree less than n, v = v0, . . . , vn−1 the values
F (xi) and f = f0, . . . , fn−1 the coefficients of F on the Newton basis associated
to the points x = x0, . . . , xn−1. Evaluating Formula (1) at x, we deduce the
following equalities relating the values v and the coefficients f :

v0 = f0

v1 = f0 + hf1

v2 = f0 + 2hf1 + (2h · h)f2

v3 = f0 + 3hf1 + (3h · 2h)f2 + (3h · 2h · h)f3 . . .

They suggests to introduce the auxiliary sequence w = w0, . . . , wn−1 defined
by

wi =
vi

i!hi
, i = 0, . . . , n− 1.

Note that the sequences v and w can be deduced from one another for O(n)
base field operations. Using the sequence w, the relations above become

wi =
∑

j+k=i

1

hkk!
fj .

Introducing the generating series

W =
n−1∑

i=0

wix
i, F =

n−1∑

i=0

fix
i, S =

n−1∑

i=0

1

i!hi
xi,

all relations above are summarized in the equation W = FS modulo xn.
Since S is the truncation of exp(x/h), its inverse S−1 is the truncation of
exp(−x/h), so multiplying or dividing by S modulo xn can be done in M(n)+
O(n) base field operations. We deduce that W and F can be computed from
one another using M(n) + O(n) base field operations. This proves the propo-
sition. �

Let us make a few comments regarding the previous algorithm. The problem
of Newton evaluation on the arithmetic sequence xi = x0 + ih is closely re-
lated to that of Taylor shift by 1/h. More precisely, the matrix Newtonh of
Newton evaluation is equal, up to multiplication by diagonal matrices, to the
transpose of the matrix Shift1/h representing the map F (x) 7→ F (x + 1/h) in
the monomial basis. Indeed, the following matrix equality is easy to infer:

Newtonh = Diag
(
1, h, h2, . . . , hn−1

)
· Shiftt

1/h · Diag
(
0!, 1!, . . . , (n−1)!

)
. (2)

In the same vein, one can also interpret Newton interpolation as the transpose
of Taylor shift by −1/h (up to diagonal matrices). A simple way to see this

17

is to take the inverse of Equation (2) and to use the equality between Shift−1
1/h

and Shift−1/h.

Now, over fields of characteristic zero or larger than n, a classical algorithm
of Aho et al. (1975) solves the Taylor shift problem within M(n) + O(n) op-
erations. Given a degree n − 1 polynomial F (x) =

∑n−1
i=0 fix

i, the algorithm
in Aho et al. (1975) computes the coefficients of Shift1/h(F) = F (x + 1/h) by
exploiting Taylor’s formula

Shift1/h(F) =
n−1∑

j=0

F (j)(1/h)
xj

j!

and the fact that F (j)(1/h) is the coefficient of xn−j−1 in the product

(
n−1∑

i=0

i! fix
n−i−1

)
·

(
n−1∑

i=0

xi

i! hi

)
.

In view of Equation (2), it is immediate to show that the algorithm for New-
ton evaluation on an arithmetic progression presented in Proposition 2 can
be interpreted as the transposition of the algorithm in Aho et al. (1975) (up
to diagonal matrix multiplications) and thus could have been deduced auto-
matically from that algorithm using the effective transposition tools in Bostan
et al. (2003).

Conversion between monomial and Newton bases. To fill the second
column of Table 1, our next step is to consider the base change algorithms,
which occupy the first and second rows. To perform these conversions, we use
the same algorithms as in the case of arbitrary sample points; the complexity
results are thus those given in the previous section.

Evaluation and interpolation on the monomial basis. We conclude
this systematic exploration by studying evaluation and interpolation on the
monomial basis, for points in an arithmetic progression. A surprising con-
sequence of Proposition 2 is the following corollary: one can speed up both
monomial evaluation and interpolation using the Newton basis for interme-
diate computations. This gives the middle entries of the second column in
Table 1.

Corollary 1 Let n be a power of 2 and let k be a field of characteristic 0 or

larger than n. Let F ∈ k[x] of degree less than n and let x0, . . . , xn−1 be an

arithmetic progression in k. Then:

• Given the coefficients of F on the monomial basis, F (x0), . . . , F (xn−1) can

be computed in M(n) log(n) + O(M(n)) base field operations.

18

• Given the values F (x0), . . . , F (xn−1), all coefficients of F on the monomial

basis can be computed in M(n) log(n) + O(M(n)) base field operations.

The proof comes easily by combining the results of Proposition 1, Theorem 1
and Proposition 2.

Applications. Our initial interest in improving evaluation and interpola-
tion on the points of an arithmetic progression was motivated by the study
of linear recurrences with polynomial coefficients presented in (Chudnovsky
and Chudnovsky, 1988; Bostan et al., 2004): the algorithms therein can ben-
efit from any improvement on evaluation and interpolation on an arithmetic
progression. The cryptographic-sized record obtained by Bostan et al. (2004)
requires to work in degree several tens of thousands, and gaining even a con-
stant factor is interesting in such sizes.

We conclude this section by describing another application which comes from
the domain of exact computations with linear differential operators. While
computing with such operators, it is sometimes easier to work with the Euler

derivation δ = x ∂
∂x

instead of the usual derivation D = ∂
∂x

(see below for an
application example). We now estimate the complexity of performing this base
change.

Corollary 2 Let n be a power of 2 and k a field of characteristic zero or

larger than n.

Let L =
∑n−1

i=0 pi(x)δi be a linear differential operator with polynomial coeffi-

cients of degree at most d, and let q0, . . . , qn−1 be the unique polynomials such

that L =
∑n−1

i=0 qi(x)Di. Then all qi can be computed in

d M(n) log(n) + O(d M(n))

operations in k.

Let L =
∑n−1

i=0 qi(x)Di be a linear differential operator with polynomial coeffi-

cients of degree at most d and let p0, . . . , pn−1 be the unique Laurent polyno-

mials in k[x, x−1] such that L =
∑n−1

i=0 pi(x)δi. Then all pi can be computed in

(n + d) M(n) log(n) + O((n + d) M(n))

operations in k.

Proof. Converting from the representation in δ to that in D, or backwards,
amounts to compute several matrix-vector products Sv or S−1v, where S is

19

the n× n matrix

S =

1 1 1 1 . . . S1,n

0 1 3 7 . . . S2,n

0 0 1 6 . . . S3,n

0 0 0 1 . . . S4,n
...

...
...

...
. . .

...
0 0 0 0 . . . Sn,n

.

Indeed, one has the equalities, seemingly known by (Stirling, 1730), see
also Roman (1984):

δ1 = xD,
δ2 = xD + x2D2,
δ3 = xD + 3 x2D2 + x3D3,
δ4 = xD + 7 x2D2 + 6 x3D3 + x4D4,
δ5 = xD + 15 x2D2 + 25 x3D3 + 10 x4D4 + x5D5, . . .

Let thus L =
∑n−1

i=0 pi(x)δi, with pi(x) =
∑d

j=0 pi,jx
j . Then in matrix form, L

writes as the product

[
1 x . . . xd

]
·

p0,0 p1,0 . . . pn−1,0
...

...
...

...
p0,d p1,d . . . pn−1,d

 ·

1
δ
...

δn−1

.

Thus, the previous equalities show that rewriting L in D amounts to perform d
matrix-vector products by the Stirling matrix S, followed by the addition of d
polynomials, each of which having at most n non-zero coefficients.

Conversely, let L =
∑n−1

i=0 qi(x)Di be written as an operator of order n − 1
in D, with coefficients qi(x) =

∑d
j=0 qi,jx

j that are polynomials of degree at
most d. Expressing L in the matricial form:

L =
[
x−(n−1) x−(n−2) . . . xd

]
·

0 0 . . . qn−1,0
...

...
...

...
0 q1,0 . . . qn−1,d

q0,0 q1,1 . . .
...

...

...
q1,d

...
q0,d 0 . . . 0

·

1
xD
...

xn−1Dn−1

shows that the problem of computing L as an operator in δ with Laurent
polynomial coefficients is reduced to n + d matrix-vector multiplications by
the inverse of the Stirling matrix.

20

Thus, it suffices to estimate the cost of performing a matrix-vector product
by S or its inverse. The entries (Si,j) of the matrix S are the Stirling numbers

of the second kind; they satisfy the recurrence Si,j+1 = Si−1,j + iSi,j (while the
entries of S−1 are, up to sign, the Stirling numbers of the first kind). These
numbers also represent the coordinates of ordinary powers 1, x, . . . , xn−1 in
the falling factorial basis 1, x1 = x, . . . , xn−1 = x(x − 1) · · · (x − n + 2). For
instance, for j = 1, . . . , 5 these relations write

x1 = x1,
x2 = x1 + x2,
x3 = x1 + 3 x2 + x3,
x4 = x1 + 7 x2 + 6 x3 + x4,
x5 = x1 + 15 x2 + 25 x3 + 10 x4 + x5, . . .

Hence, the entries of the vector Sv represent the coefficients of the polynomial∑n−1
i=0 vix

i in the Newton basis 1, x1, x2, . . . Similarly, computing S−1v amounts
to converting a polynomial from its Newton representation (in the falling
factorial basis) to the monomial one. Using the conversion algorithms above,
both conversions can be done in complexity M(n) log(n) + O(M(n)), which
concludes the proof. �

As an application, recall that the coefficients of a power series
∑

i≥0 six
i which

is a solution of a linear differential operator L satisfy a linear recurrence, whose
coefficients can be read off the coefficients of L when it is written in δ. More
precisely, if L =

∑n−1
i=0 pi(x)δi has coefficients pi(x) =

∑d
j=0 pi,jx

j , then letting

p̃j(x) =
∑n−1

i=0 pi,jx
i for 0 ≤ j ≤ d, the recurrence satisfied by the si writes

p̃d(i)si + · · ·+ p̃0(i + d)si+d = 0, for all i ≥ 0.

This remark yields a fast algorithm to convert a linear differential equation
of order n − 1 in D with polynomial coefficients of degree at most d to the
recurrence satisfied by a power series solution. By the previous considerations,
its complexity is asymptotic to (n + d) M(n) log(n), up to lower order terms.
In comparison, the classical method uses the recurrence

n−1∑

j=0

d∑

k=0

pk,j(i− k + 1)(i− k + 2) · · · (i− k + j)sn+j−k−1 = 0

and amounts to compute the d(n−1) polynomials (x−k+1)(x−k+2) · · · (x−
k + j), which can be done in complexity of O(dn M(n)). If d and n are of the
same order, our method saves a factor of about n.

21

5 The geometric progression case

Simplifications in Newton evaluation and interpolation formulas also arise
when the sample points form a geometric progression; this was already pointed
out in Schoenberg (1981) and references therein, but that article makes no
mention of asymptotically fast algorithms.

In this section we show that the complexities of Newton evaluation and in-
terpolation on a geometric progression of size n drop to M(n) + O(n). By
transposition, we deduce that the conversions between monomial and New-
ton bases have the same asymptotic cost. Last, as in the previous section, we
obtain as corollaries fast algorithms for evaluation and interpolation on the
monomial basis: the complexities of both tasks is shown to be in O(M(n)), i.e.

better by a logarithmic factor than in the case of arbitrary samples points.

Thus, geometric progressions should be considered as interesting choices for
algorithms relying on evaluation and interpolation techniques. We illustrate
this in the case of polynomial matrix multiplication algorithms.

In all what follows, we actually assume for simplicity that the geometric pro-
gression we consider has the form xi = qi, i = 0, . . . , n−1. Treating the general
case xi = x0q

i, with arbitrary x0, does not alter the asymptotic estimates, and
only burdens the notation. Finally, we mention that many formulas presented
below can be thought as q-analogues of those presented in the previous section.

Newton interpolation and evaluation. Our first question is that of New-
ton interpolation and evaluation: the following proposition proves the esti-
mates of the last entry in the third column of Table 1.

Proposition 3 Let k be a field and let q ∈ k such that the elements xi = qi are

pairwise distinct, for i = 0, . . . n−1. Then Newton interpolation and evaluation

on the geometric sequence 1, q, . . . , qn−1 can be done using M(n) + O(n) base

field operations.

Proof. Let F be a polynomial of degree less than n, let v = v0, . . . , vn−1 be the
values F (xi) and f = f0, . . . , fn−1 the coefficients of F on the Newton basis
associated to the points x. As in the previous section, we evaluate Formula (1)
on the points x, yielding

v0 = f0

v1 = f0 + (q − 1)f1

v2 = f0 + (q2 − 1)f1 + (q2 − 1)(q2 − q)f2

v3 = f0 + (q3 − 1)f1 + (q3 − 1)(q3 − q)f2 + (q3 − 1)(q3 − q)(q3 − q2)f3 . . .

22

Let us introduce the triangular numbers ti = 1+2+ · · ·+(i− 1) = i(i− 1)/2,
for i ≥ 0 and the modified sequence gi = qtifi, for i = 0, . . . , n − 1. Note
that all coefficients qti can be computed in O(n) base field operations, since
qti+1 = qiqti . Thus, g = g0, . . . , gn−1 and f = f0, . . . , fn−1 can be computed
from one another for O(n) base field operations. With this data, the relations
above become

v0 = g0

v1 = g0 + (q − 1)g1

v2 = g0 + (q2 − 1)g1 + (q2 − 1)(q − 1)g2

v3 = g0 + (q3 − 1)g1 + (q3 − 1)(q2 − 1)g2 + (q3 − 1)(q2 − 1)(q − 1)g3 . . .

Next, we introduce the numbers wi defined by

w0 = v0, wi =
vi

(q − 1) · · · (qi − 1)
, i = 1, . . . , n− 1. (3)

As above, w and v can be computed from one another for O(n) base field
operations. Using the modified values wi, the relations above become

wi = gi +
i−1∑

j=0

1

(q − 1) · · · (qi−j − 1)
gj.

We conclude as in the arithmetic case. We introduce the generating series

W =
n−1∑

i=0

wix
i, G =

n−1∑

i=0

gix
i, T = 1 +

n−1∑

i=1

1

(q − 1) · · · (qi − 1)
xi, (4)

so that the relations above become W = GT modulo xn. All coefficients of
the power series T can be obtained in O(n) base field relations. By a classical
identity (see for instance Goldman and Rota (1970) and the references therein)
the inverse of T modulo xn equals

1 +
n−1∑

i=1

q
i(i−1)

2 (−1)i

(q − 1) · · · (qi − 1)
xi,

thus its coefficients can also be obtained in O(n) operations. The conclusion
follows. �

For the sake of completeness, we summarize below the algorithm for Newton
evaluation on the geometric sequence 1, q, . . . , qn−1. For a polynomial P , we
denote by Coeff(P, i) the coefficient of xi in P . For simplicity, we take as
input all powers of q; of course, given q only, they can be computed for n− 2
additional multiplications.

23

NewtonEvalGeom(1, q, . . . , qn−1, f0, . . . , fn−1)
q0 ← 1; u0 ← 1; g0 ← f0;
for i ← 1 to n− 1 do

qi ← qi−1 · q
i−1;

ui ← ui−1 · (q
i − 1);

gi ← qifi;
W ← (

∑n−1
i=0 gix

i) · (
∑n−1

i=0 u−1
i xi);

return u0 Coeff(W, 0), . . . , un−1 Coeff(W, n− 1);

The algorithm for Newton interpolation follow in an analogous manner from
the proof of the proposition above. We give it for completeness.

NewtonInterpGeom(1, q, . . . , qn−1, v0, . . . , vn−1)
q0 ← 1; u0 ← 1; w0 ← v0;
for i ← 1 to n− 1 do

qi ← qi−1 · q
i−1;

ui ← ui−1 · (q
i − 1);

wi ← vi/ui;
G ← (

∑n−1
i=0 wix

i) · (
∑n−1

i=0 (−x)iqi/ui);
return Coeff(G, 0)/q0, . . . , Coeff(G, n− 1)/qn−1;

Conversions between monomial and Newton bases. Our next step is
to study the complexity of conversion between monomial and Newton bases.
We prove the following result, which completes the first two entries in the last
column of Table 1.

Proposition 4 Let k be a field and let q ∈ k such that the elements xi = qi

are pairwise distinct, for i = 0, . . . n − 1. Then the conversion between the

Newton basis associated to 1, q, . . . , qn−1 and the monomial basis can be done

using M(n) + O(n) base field operations.

The proof comes from considering the transposed of the Newton evaluation
and interpolation. Indeed, the following lemma relates these questions to those
of conversions between monomial and Newton bases.

Lemma 3 Let k be a field, q ∈ k∗ and r = 1/q. Suppose that 1, q, . . . , qn−1

are pairwise distinct and define the following matrices:

• Let A be the matrix of base change from the Newton basis associated to

1, q, . . . , qn−1 to the monomial basis.

• Let B be the matrix of Newton evaluation at 1, r, . . . , rn−1.

24

• Let D1 and D2 be the n× n diagonal matrices

D1 = Diag

[
qi(i−1)/2

∏i−1
k=1(q

k − 1)

]n

i=1

and D2 = Diag
[
(−1)j−1q

(j−1)(j−2)
2

]n

j=1
,

where we take the usual convention that the empty product is one.

Then the matrix equality A = D1 Bt D2 holds.

Proof. Given two integers n and k, the q-binomial coefficient (Rothe, 1793;
Heine, 1847; Gauss, 1863) is defined as

[
n
k

]

q

=

{
1−qn

1−q
· 1−qn−1

1−q2 · · ·
1−qn−k+1

1−qk , for n ≥ k ≥ 1,

0, for n < k or k = 0.

The following generalization of the usual binomial formula holds:

n∏

k=1

(
1 + qk−1x

)
=

n∑

k=0

[
n
k

]

q

q
k(k−1)

2 xk. (5)

From Equation (5), it is then easy to deduce that the entries of the matrix A
are

Ai,j = (−1)j−i

[
j − 1
i− 1

]

q

q(j−i)(j−i−1)/2.

On the other hand, the (i, j) entry of the matrix representing Newton evalua-

tion with respect to x0, . . . , xn−1 is zero if j < i and equals
∏j−1

k=1

(
xi−1−xk−1

)

for all j ≥ i ≥ 1. Applying this to xi = 1/qi, we get

Bi,j = (−1)j−1 ·
j−1∏

k=1

qi−k − 1

qi−1
, for all j ≥ i ≥ 1.

Having the explicit expressions of the entries of A and B allows to write the
equality

Bt
i,j

Ai,j
= (−1)j−1 q

i(i−1)
2

+
(j−1)(j−2)

2

(q − 1) · · · (qi−1 − 1)
,

from which the lemma follows. �

Thus, up to multiplications by diagonal matrices, the conversion maps between
monomial and Newton bases are the transposes of those of Newton evaluation
and interpolation, at the cost of replacing q by 1/q. The proof of Proposition 4
is now immediate, since the two diagonal matrices involved can be computed
in time O(n).

For the sake of completeness, we give below the algorithm for the conversion
from Newton to monomial basis on the geometric sequence 1, q, . . . , qn−1. We

25

obtain it using Lemma 3 above and by transposing the algorithm for Newton
evaluation on a geometric sequence, as described in the proof of Proposition 3.

NewtonToMonomialGeom(1, . . . , qn−1, f0, . . . , fn−1)
q0 ← 1; v0 ← f0; u0 ← 1; w0 ← f0; z0 ← 1;
for i ← 1 to n− 1 do

qi ← qi−1 · q
i−1;

vi ← (−1)ifiqi;
ui ← ui−1q

i/(1− qi);
wi ← vi/ui;
zi ← (−1)iui/qi;

G ← mult(n− 1,
∑n−1

i=0 uix
i,
∑n−1

i=0 wix
i);

return z0 Coeff(G, 0), . . . , zn−1 Coeff(G, n− 1);

Similarly, the algorithm for the conversion from monomial to Newton basis on
a geometric sequence can be deduced using again Lemma 3 and the transposi-
tion of the algorithm for Newton interpolation on a geometric sequence given
in the proof of Proposition 3. We state it below.

MonomialToNewtonGeom(1, . . . , qn−1, v0, . . . , vn−1)
q0 ← 1; u0 ← 1; w0 ← v0; z0 ← 1; f0 ← v0;
for i ← 1 to n− 1 do

qi ← qi−1 · q
i−1;

ui ← ui−1q
i/(1− qi);

wi ← vi/ui;
zi ← (−1)iui/qi;
fi ← (−1)iwiqi;

G ← mult(n− 1,
∑n−1

i=0 zix
i,
∑n−1

i=0 fix
i);

return z0 Coeff(G, 0), . . . , zn−1 Coeff(G, n− 1);

Evaluation and interpolation on the monomial basis. We now treat
the question of fast monomial evaluation and interpolation on a geometric
progression. As before, we take xi = qi, i = 0, . . . , n− 1, where q ∈ k is such
that the elements 1, q, . . . , qn−1 be pairwise distinct.

It is known that evaluating a polynomial of degree less than n on the geometric
progression 1, q, . . . , qn−1 can be done using O(M(n)) operations. This opera-
tion, generalizing the discrete Fourier transform, is called the chirp transform

and has been independently studied by Rabiner et al. (1969) and by Bluestein
(1970), see also Aho et al. (1975). In contrast, to the best of our knowledge, no
algorithm for the inverse operation – interpolation at a geometric progression
– has been given yet. Our aim is now to show that the inverse chirp trans-

26

form can be performed in a similar asymptotic complexity. These results are
gathered in the following proposition, which completes the entries of Table 1.

Proposition 5 Let k be a field, let n ≥ 0 and let q ∈ k such that the elements

xi = qi, for i = 0, . . . n − 1, are pairwise distinct. If F ∈ k[x] has degree less

than n then:

• Given the coefficients of F on the monomial basis, then all the values F (xi),
for 0 ≤ i ≤ n− 1, can be computed in 2M(n) + O(n) base field operations.

• Given the values F (x0), . . . , F (xn−1), all coefficients of F on the monomial

basis can be computed in 2M(n) + O(n) base field operations.

Proof. The direct chirp transform can be done using the idea introduced in (Ra-
biner et al., 1969; Bluestein, 1970) which basically reduces it to a polynomial
multiplication. We briefly recall how the algorithm works, following the pre-
sentation of (Crandall and Pomerance, 2001, Chapter 9).

Write F = f0 +f1x+ · · ·+fn−1x
n−1. For i = 0, . . . , 2n−2, let us introduce the

triangular numbers ti = i(i−1)/2 and the sequence bi = qti ; for i = 0, . . . , n−1
we consider the sequence ci = fi/bi. Note that all the elements qti , ci and bi

can be computed in O(n) base field operations, since qti+1 = qiqti . Then, the
algorithm is based on the formula F (qi) =

∑n−1
j=0 fjq

ij = b−1
i ·

∑n−1
j=0 cjbi+j ,

which shows that the values F (qi) are, up to constant factors b−1
i , given by

the coefficients of the transposed multiplication of
∑n−1

i=0 cix
i and

∑2n−2
i=0 bix

i.

Let us now focus on the computation of the inverse chirp transform. The
idea is to use the Newton basis for intermediate computations: first perform
a Newton interpolation, then perform a conversion from the Newton basis to
the monomial basis. Both steps have complexities M(n) + O(n), which gives
the estimate of 2M(n) + O(n). �

Application to polynomial matrix multiplication. We finally apply
the results above to improve the complexity of polynomial matrix multiplica-
tion. This problem is important, since polynomial matrix multiplication is a
primitive of linear algebra algorithms dealing with polynomial matrices (de-
terminant, inversion, system solving, column reduction, integrality certifica-
tion, normal forms), see for instance (Villard, 1996; Storjohann, 2002; Giorgi
et al., 2003). It also occurs during computations of matrix Padé-type approxi-
mants (Beckermann and Labahn, 1992, 1994; Thomé, 2001, 2002; Giorgi et al.,
2003), recurrences with polynomial coefficients (Chudnovsky and Chudnovsky,
1988; Bostan et al., 2004) and linear differential operators.

Let MM(n, d) represent the number of base field operations required to mul-
tiply two n × n matrices with polynomial entries of degree less than d. For

27

simplicity, the cost MM(n, 1) of scalar n× n matrix multiplication will be de-
noted MM(n). This function is frequently written as MM(n) = O(nω), where
2 ≤ ω < 3 is the so-called exponent of the matrix multiplication, see for in-
stance Bürgisser et al. (1997) or von zur Gathen and Gerhard (1999).

Cantor and Kaltofen (1991) described an algorithm for multiplying polyno-
mials of degree less than d, with coefficients from an arbitrary (possibly non
commutative) algebra using O(M(d)) algebra operations. Viewing polynomial
matrices as polynomials with scalar matrix coefficients, the result in Cantor
and Kaltofen (1991) implies that MM(n, d) = O (M(d) MM(n)) . Over base
fields of cardinality larger than 2d−2, the use of an evaluation / interpolation
scheme allows to uncouple polynomial and matrix products and yields the
better bound

MM(n, d) = O
(
MM(n) d + n2

M(d) log(d)
)
. (6)

An important remark (Thomé, 2001, 2002) (see also Beckermann and Labahn
(1994)) is that if the base field supports FFT, then choosing the roots of unity
as sample evaluation points improves the previous estimate to

MM(n, d) = O
(
MM(n) d + n2 d log(d)

)
. (7)

However, the algorithm in (Thomé, 2001, 2002) is dependent on the specific
use of FFT, which might not be pertinent for polynomials of moderate degrees.

In contrast, using evaluation and interpolation at a geometric progression
enables us to obtain the following result.

Theorem 4 Let n, d ≥ 1 and let k be a field of characteristic 0, or a finite

field of cardinality at least 2d. Then we have the estimate

MM(n, d) = (2d− 1) MM(n) + 6 n2
M(2d) + O(n2d).

Proof. In both cases, we use evaluation and interpolation on a geometric pro-
gression 1, q, . . . , q2d−2 of size 2d− 1. In characteristic 0, we can take q = 2. If
k is finite, we take for q a generator of the multiplicative group k∗ (for prac-
tical purposes, we might as well choose q at random, if k has a large enough
cardinality). �

Theorem 4 may be seen as an improvement by a log factor of the bound (6),
generalizing the bound (7) to an arbitrary multiplication time M function that
satisfies our hypotheses. Still, for polynomial matrices of high degrees, the
method in (Thomé, 2001, 2002) is better by a constant factor than ours, since
the polynomial multiplication uses FFT, and thus itself requires evaluating
and interpolating at the roots of unity.

28

To conclude this paper, Figures 1 and 2 display the speed-up obtained using
our polynomial matrix multiplication algorithm, versus a naive product (thus,
a larger number means a more significant improvement). The matrix sizes vary
from 1 to 120, the polynomial degrees vary from 0 to 200, and the base field
is Z/pZ, where p is a 32 bit prime. The time ratios are given in the table of
Figure 1 and displayed graphically in Figure 2.

The implementation is made using Shoup’s NTL C++ library (Shoup, 1996–
2004); we used a naive matrix multiplication of cubic complexity, and NTL’s
built-in polynomial arithmetic (for polynomials in the range 0–200, naive,
Karatsuba and FFT multiplication algorithms are successively used). The tim-
ings are obtained on an Intel Pentium 4 CPU at 2GHz.

15 35 55 75 95 115 135 155 175 195
20 0.6 0.8 1.4 1.4 1.6 1.6 2.2 2.1 1.7 1.7
30 1.1 1.2 2.0 2.0 2.4 2.3 3.3 3.2 2.5 2.5
40 1.2 1.6 2.6 2.7 3.2 3.0 4.3 4.1 3.3 3.2
50 1.4 2.0 3.2 3.3 3.9 3.6 5.3 5.1 4.1 4.0
60 1.7 2.3 3.8 3.9 4.6 4.4 6.3 6.1 4.8 4.7
70 1.9 2.6 4.3 4.5 5.3 5.0 7.2 6.9 5.6 5.4
80 2.1 2.9 4.8 4.9 6.0 5.6 8.1 7.7 6.2 5.9
90 2.3 3.3 5.5 5.7 6.6 6.2 9.0 8.6 6.9 6.7
100 2.5 3.5 6.0 6.2 7.3 6.8 9.8 9.3 7.5 7.3
110 2.6 3.9 6.3 6.6 7.8 7.3 10.6 10.1 8.1 7.9

Fig. 1. Time ratios between classical and improved polynomial matrix multiplication
algorithms. Rows are indexed by the matrix size (20—110); columns are indexed by
the matrix degree (15–195).

Acknowledgments. We wish to thank Pierrick Gaudry, Bruno Salvy and
Gilles Villard for useful comments on a first version of this article. Our thanks
also go to the referees of this paper for their useful remarks.

References

Abramov, S. A., 1989. Rational solutions of linear differential and difference
equations with polynomial coefficients. Zh. Vychisl. Mat. i Mat. Fiz. 29 (11),
1611–1620, 1757, english translation in U.S.S.R. Comp. Maths. Math. Phys.,
7–12.

Aho, A. V., Steiglitz, K., Ullman, J. D., 1975. Evaluating polynomials at fixed
sets of points. SIAM J. Comput. 4 (4), 533–539.

Beckermann, B., Labahn, G., 1992. A uniform approach for Hermite Padé
and simultaneous Padé approximants and their matrix-type generalizations.
Numer. Algorithms 3 (1-4), 45–54.

29

"chirp.dat"

0
20

40
60

80
100

120
matrix size 0

20
40

60
80

100
120

140
160

180
200

matrix degree

0

2

4

6

8

10

12

time ratio

Fig. 2. Speed-up between classical and improved polynomial matrix multiplication.

Beckermann, B., Labahn, G., 1994. A uniform approach for the fast compu-
tation of matrix-type Padé approximants. SIAM J. Matrix Analysis and
Applic. 15 (3), 804–823.

Bini, D., Pan, V. Y., 1994. Polynomial and matrix computations. Vol. 1.
Birkhäuser Boston Inc., Boston, MA.

Bluestein, L. I., 1970. A linear filtering approach to the computation of the
discrete Fourier transform. IEEE Trans. Electroacoustics AU-18, 451–455.

Borodin, A., Moenck, R. T., 1974. Fast modular transforms. J. Comput. Syst.
Sci. 8 (3), 366–386.

Bostan, A., Gaudry, P., Schost, É., 2004. Linear recurrences with polynomial
coefficients and computation of the Cartier-Manin operator on hyperellip-
tic curves. In: International Conference on Finite Fields and Applications
(Toulouse, 2003). Vol. 2948 of Lecture Notes in Computer Science. Springer–
Verlag, pp. 40–58.

Bostan, A., Lecerf, G., Schost, É., 2003. Tellegen’s principle into practice. In:
ISSAC’03. ACM Press, pp. 37–44.

Bürgisser, P., Clausen, M., Shokrollahi, M. A., 1997. Algebraic complexity
theory. Vol. 315 of Grundlehren Math. Wiss. Springer–Verlag.

Cantor, D. G., Kaltofen, E., 1991. On fast multiplication of polynomials over
arbitrary algebras. Acta Inform. 28 (7), 693–701.

Chudnovsky, D. V., Chudnovsky, G. V., 1988. Approximations and complex
multiplication according to Ramanujan. In: Ramanujan revisited (Urbana-
Champaign, Ill., 1987). Academic Press, Boston, MA, pp. 375–472.

Crandall, R., Pomerance, C., 2001. Prime numbers. Springer-Verlag, New
York, a computational perspective.

30

von zur Gathen, J., Gerhard, J., 1999. Modern computer algebra. Cambridge
University Press.

Gauss, C. F., 1863. Summatio quarundam serierum singularium. Opera, Vol. 2,
Göttingen: Gess. d. Wiss., 9–45.

Gerhard, J., 2000. Modular algorithms for polynomial basis conversion and
greatest factorial factorization. In: RWCA’00. pp. 125–141.

Giorgi, P., Jeannerod, C.-P., Villard, G., 2003. On the complexity of polyno-
mial matrix computations. In: ISSAC’03. ACM Press, pp. 135–142.

Goldman, J., Rota, G.-C., 1970. On the foundations of combinatorial theory.
IV. Finite vector spaces and Eulerian generating functions. Studies in Appl.
Math. 49, 239–258.

Hanrot, G., Quercia, M., Zimmermann, P., 2004. The Middle Product Algo-
rithm, I. Appl. Algebra Engrg. Comm. Comput. 14 (6), 415–438.

Heine, E., 1847. Untersuchungen über die Reihe 1 + (1−qα)(1−qβ)
(1−q)(1−qγ)

· x +
(1−qα)(1−qα+1)(1−qβ)(1−qβ+1)

(1−q)(1−q2)(1−qγ)(1−qγ+1)
· x2 + J. reine angew. Math. 34, 285–328.

Horowitz, E., 1972. A fast method for interpolation using preconditioning. Inf.
Proc. Letters 1 (4), 157–163.

Kaltofen, E., 2000. Challenges of symbolic computation: my favorite open
problems. With an additional open problem by Robert M. Corless and David
J. Jeffrey. J. Symb. Comp. 29 (6), 891–919.

Karatsuba, A., Ofman, Y., 1963. Multiplication of multidigit numbers on au-
tomata. Soviet Math. Dokl. 7, 595–596.

Knuth, D. E., 1998. The Art of Computer Programming, vol. 2, Seminumerical
Algorithms, 3rd Edition. Addison-Wesley, Reading MA.

Moenck, R. T., Borodin, A., 1972. Fast modular transforms via division. 13th
Annual IEEE Symposium on Switching and Automata Theory, 90–96.

Montgomery, P. L., 1992. An FFT extension of the elliptic curve method of
factorization. Ph.D. thesis, University of California, Los Angeles CA.

Paule, P., 1995. Greatest factorial factorization and symbolic summation. J.
Symb. Comp. 20 (3), 235–268.

Petkovšek, M., 1992. Hypergeometric solutions of linear recurrences with poly-
nomial coefficients. J. Symb. Comp. 14 (2-3), 243–264.

Rabiner, L. R., Schafer, R. W., Rader, C. M., 1969. The chirp z-transform
algorithm and its application. Bell System Tech. J. 48, 1249–1292.

Roman, S., 1984. The umbral calculus. Vol. 111 of Pure and Applied Mathe-
matics. Academic Press Inc., New York.

Rothe, H. A., 1793. Formulae de serierum reversione demonstratio universalis
signis localibus combinatorico-analyticorum vicariis exhibita. Leipzig.

Schoenberg, I. J., 1981. On polynomial interpolation at the points of a geo-
metric progression. Proc. Roy. Soc. Edinburgh Sect. A 90 (3-4), 195–207.

Schönhage, A., 1977. Schnelle Multiplikation von Polynomen über Körpern
der Charakteristik 2. Acta Inform. 7, 395–398.

Schönhage, A., Strassen, V., 1971. Schnelle Multiplikation großer Zahlen.
Computing 7, 281–292.

31

Shoup, V., 1996–2004. NTL: A library for doing number theory.
http://www.shoup.net.

Stirling, J., 1730. Methodus Differentialis: sive Tractatus de Summatione et
Interpolatione Serierum Infinitarum. Gul. Bowyer, London, english transla-
tion by Holliday, J. The Differential Method: A Treatise of the Summation
and Interpolation of Infinite Series. 1749.

Storjohann, A., 2002. High-order lifting. In: ISSAC’02. ACM Press, pp. 246–
254.

Strassen, V., 1973. Die Berechnungskomplexität von elementarsymmetrischen
Funktionen und von Interpolationskoeffizienten. Numer. Math. 20, 238–251.

Tellegen, B., 1952. A general network theorem, with applications. Tech. Rep. 7,
Philips Research, pp. 259–269.

Thomé, É., 2001. Fast computation of linear generators for matrix sequences
and application to the block Wiedemann algorithm. In: ISSAC’01. ACM
Press, pp. 323–331.

Thomé, É., 2002. Subquadratic computation of vector generating polynomi-
als and improvement of the block Wiedemann algorithm. J. Symb. Comp.
33 (5), 757–775.

Villard, G., 1996. Computing Popov and Hermite forms of polynomial matri-
ces. In: ISSAC’96. ACM Press, pp. 251–258.

32

