
Fast Algorithms for Differential Equations
in Positive Characteristic

Alin Bostan
Algorithms Project

INRIA Paris-Rocquencourt
France

Alin.Bostan@inria.fr

Éric Schost
ORCCA and Computer Science Department

The University of Western Ontario
London, ON, Canada

eschost@uwo.ca

ABSTRACT
We address complexity issues for linear differential equa-
tions in characteristic p > 0: resolution and computation of
the p-curvature. For these tasks, our main focus is on al-
gorithms whose complexity behaves well with respect to p.
We prove bounds linear in p on the degree of polynomial
solutions and propose algorithms for testing the existence of
polynomial solutions in sublinear time Õ(p1/2), and for de-
termining a whole basis of the solution space in quasi-linear
time Õ(p); the Õ notation indicates that we hide logarithmic
factors. We show that for equations of arbitrary order, the
p-curvature can be computed in subquadratic time Õ(p1.79),
and that this can be improved to O(log(p)) for first order

equations and to Õ(p) for classes of second order equations.

Categories and Subject Descriptors:
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation – Algebraic Algorithms

General Terms: Algorithms, Theory

Keywords: Algorithms, complexity, differential equations,
polynomial solutions, p-curvature.

1. INTRODUCTION
We study algorithmic questions related to linear differen-
tial equations in characteristic p, where p is a prime num-
ber: resolution of such equations and computation of their
p-curvature. Our emphasis is on the complexity viewpoint.

Let thus Fp be the finite field with p elements, and let
Fp(x)〈∂〉 be the algebra of differential operators with coeffi-
cients in Fp(x), with the commutation relation ∂x = x∂+ 1.
One of the important objects associated to a differential op-
erator L of order r in Fp(x)〈∂〉 is its p-curvature, hereafter
denoted Ap. By definition, this is the (r × r) matrix with
coefficients in Fp(x), whose (i+ 1, j + 1)-entry is the coeffi-
cient of ∂i in the remainder of the Euclidean (right) division
of ∂p+j by L, for 0 ≤ i, j < r.

The concept of p-curvature originates in Grothendieck’s
work in the late 1960s, in connection to one of his famous

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’09, July 28–31, 2009, Seoul, Republic of Korea.
Copyright 2009 ACM 978-1-60558-609-0/09/07 ...$10.00.

(still open) conjectures. In its simplest form, this conjec-
ture is an arithmetic criterion of algebraicity, which states
that a linear differential equation with coefficients in Q(x)
has a basis of algebraic solutions over Q(x) if and only if
its reductions modulo p have zero p-curvature, for almost
all primes p. The search of a proof of this criterion moti-
vated the development of a theory of differential equations
in characteristic p by Katz [20], Dwork [14], Honda [19], etc.

There are two basic differences between differential equa-
tions in characteristic zero and p: one concerns the dimen-
sion of the solution space, the other the form of the solutions.
While in characteristic zero, a linear differential equation of
order r admits exactly r linearly independent solutions, this
is no longer true in positive characteristic: for L ∈ Fp(x)〈∂〉,
the dimension of the solution space of the equation Ly = 0
over the field of constants Fp(xp) is generally less than the
order r. Moreover, by a theorem of Cartier and Katz (see
Lemma 2 below), the dimension is exactly r if and only if
the p-curvature matrix Ap is zero. Thus, the p-curvature
measures to what extent the solution space of a differential
equation modulo p has dimension close to its order.

On the other hand, the form of the solutions is simpler
in characteristic p than in characteristic zero. Precisely, the
existence of polynomial solutions is equivalent to the exis-
tence of solutions which are either algebraic over Fp(x), or
power series in Fp[[x]], or rational functions in Fp(x) [19].
Therefore, in what follows, by solving Ly = 0 we simply
understand finding its polynomial solutions.

In computer algebra, the p-curvature was publicised by
van der Put [24, 25], who used it to design algorithms to
factor differential operators in Fp(x)〈∂〉. His algorithms were
analyzed from the complexity perspective and implemented
by Cluzeau [11], who extended them to the case of systems.

Improving the complexity of the p-curvature computation
is an interesting problem in its own right. Our main moti-
vation for studying this question comes, however, from con-
crete applications. First, in a combinatorial context, the use
of the p-curvature served in the automatic classification of
restricted lattice walks [8] and notably provided crucial help
in the treatment of the notoriously difficult case of Gessel’s
walks [7]. Also, intensive p-curvature computations were
needed in [4], where the question is to decide whether var-
ious differential operators arising in statistical physics have
nilpotent, or zero, p-curvature.

In the latter questions, the prime p was “large”, typically
of the order of 104. This remark motivates our choice of con-
sidering p as the most important parameter: our objective
is complexity estimates with a low exponent in p.

Previous work. The non-commutativity of Fp(x)〈∂〉 pre-
vents one from straightforwardly using binary powering tech-
niques for the computation of Ap via that of ∂p mod L.
Thus, the complexity of all currently known algorithms for
computing the p-curvature is quadratic in p.

Katz [21] gave the first algorithm, based on the following
matrix recurrence: define

A1 = A, Ak+1 = A′k + AAk, (1)

where A ∈Mr(Fp(x)) is the companion matrix associated to
L; then, Ap is the p-curvature matrix (hence our notation).

It was observed in [26, §13.2.2] that it is slightly more ef-
ficient to replace (1) by the recurrence vk+1 = v′k + Avk
which computes the first column vk of Ak, by taking for v1

the first column of A. Then vp, . . . ,vp+r−1 are the columns
of Ap. This alternative requires only matrix-vector prod-
ucts, and thus saves a factor of r, but still remains quadratic
in p. Cluzeau proposed in [11, Prop. 3.2] a fraction-free ver-
sion of (1) of essentially the same complexity, but incorrectly
stated that the method in [26] works in linear time in p.

Concerning polynomial and rational solutions of differen-
tial equations modulo p, very few algorithms can be found in
the literature. Cluzeau proposes in [11, §2] an algorithm of
cubic complexity in p and, in the special case when Ap = 0,
a different algorithm of quadratic complexity in p, based on
a formula due to Katz which is the nub of Lemma 2 below.

Our contribution. We prove in Section 3 a linear bound
in p on the degree for a basis of the space of polynomial
solutions of Ly = 0. Then, we adapt the algorithm in [1] and
its improvements [6] to the case of positive characteristic;
we show how to test the existence of polynomial solutions
in time nearly proportional to p1/2, and how to determine a
full basis of the solution space in time quasi-linear in p.

Regarding the p-curvature, we first focus on two particular
cases: first order operators, where the cost is polynomial
in log(p) (Section 4), and second order ones, for which we
obtain a cost quasi-linear in p in some cases (Section 5).

In general, a useful way to see (1) is to note that the p-
curvature is obtained by applying the operator (∂ + A)p−1

to A. In Section 6 we exploit this observation. As a side
result, we give a baby steps / giant steps algorithm for com-
puting the image Lu of an operator L applied to a polyno-
mial u; this is inspired by Brent-Kung’s algorithm for power
series composition [9].

Complexity measures. Time complexities are measured
in terms of arithmetic operations in Fp. We let M : N → N
be such that polynomials of degree at most n in Fp[x] can
be multiplied in time M(n). Furthermore, we assume that
M(n) satisfies the usual assumptions of [18, §8.3]; using Fast
Fourier Transform, M(n) can be taken in O(n logn log log n)
[22, 10]. We suppose that 2 ≤ ω ≤ 3 is a constant such that
two matrices in Mn(Fp) can be multiplied in time O(nω).
The current tightest upper bound is ω < 2.376 [13].

The precise complexity estimates of our algorithms are
sometimes quite complex; to highlight their main features,
we rather give simplified estimates. Thus, we use the nota-
tion f ∈ Õ(g) for f, g : N → N if f is in O(g log(g)m) for

some m ≥ 1. For instance, M(n) is in Õ(n).

2. PRELIMINARIES
Basic properties of the p-curvature. We first give de-

gree bounds on the p-curvature of an operator. Consider

L = `0(x) + `1(x)∂ + · · ·+ `r(x)∂r, (2)

with all `i in Fp[x] of degrees at most d and `r 6= 0. As
in (1), we define A1 = A and Ak+1 = A′k + AAk for k ≥ 1,
where A is the companion matrix associated to L.

Lemma 1. For k ≥ 0, let Bk = `krAk. Then Bk is in
Mr(Fp[x]), with entries of degree at most dk.

In particular, the p-curvature Ap has the form Bp/`
p
r , with

Bp a polynomial matrix of degree at most dp.

Proof. Explicitly, we have

A =

266664
− `0
`r

1 − `1
`r

. . .
...

1 − `r−1
`r

377775 .
From this, we see that the sequence Bk satisfies the equation

Bk+1 = `rB
′
k + (B1 − k`′rIr)Bk,

where Ir is the r × r identity matrix. The claim follows. �

A second useful result is the following lemma, attributed
to Katz. It relates the solution space of Ly = 0 to the p-
curvature and generalizes a theorem of Cartier. A proof can
be found in [11, Th. 3.8].

Lemma 2. The dimension over Fp(xp) of the vector space
of polynomial solutions of L is equal to the dimension over
Fp(x) of the kernel of Ap. In particular, L has a basis of
polynomial solutions if and only if its p-curvature is zero.

Operator algebras. In what follows, we mainly consider
operators with coefficients in Fp(x), but also sometimes more
generally in the (n × n) matrix algebra Mn(Fp(x)); as has
been done up to now, we will write matrices in bold face. If
L is in Mn(Fp(x))〈∂〉 of the form

L = `0(x) + `1(x)∂ + · · ·+ `r(x)∂r,

with coefficient matrices `i in Mn(Fp[x]) of maximal degree
d, we say that L has bidegree (d, r).

Regularization. For most of our algorithms, we must as-
sume that the origin x = 0 does not cancel the leading term
`r ∈ Fp[x] of the operator L. If we can find x′ ∈ Fp such
that `r(x

′) 6= 0, we can ensure this property by translating
the origin to x′. To ensure that we can find x′, we must
make the following hypothesis, written H: `r does not van-
ish identically on Fp.

Lemma 3. Given L of bidegree (d, r), testing whether H

holds can be done in time O(M(d)) ⊂ Õ(d). If so, one can
find x′ such that `r(x

′) 6= 0 and translate the coordinates’

origin to x′ in time O(rM(d) log(d)) ⊂ Õ(rd).

Proof. Testing H amounts to verify whether xp−x divides
`r. If deg(`r) < p, H obviously holds. Else, we have p ≤ d;
then, it is enough to reduce `r modulo xp − x, which takes
time O(M(d)).

If H holds, we know that we can find x′ ∈ {0, . . . , deg(`r)}
such that `r(x

′) 6= 0; so it is enough to evaluate `r at this
set of points, which by [18, §10.1] takes time O(M(d) log(d)).

Once x′ is known, we shift all coefficients of L by x′. Us-
ing fast algorithms for polynomial shift [17], the time is
O(M(d) log(d)) per coefficient; the conclusion follows. �

As a consequence, in all the following algorithms, we will
assume that H holds.

3. POLYNOMIAL SOLUTIONS
We start by studying polynomial solutions of a linear dif-
ferential equation; aside from its own interest, this question
will arise in the algorithms of Section 5.

Theorem 1. Let L be as in (2), with r ≤ d and r <
p, and such that H holds. Then, one can test whether the
equation Lu = 0 has non-zero solutions in Fp(x) in time

Õ(dωr1/2p1/2 + dω+1rω−1).

If so, one can determine a basis of the solution set consisting
of polynomials of degree at most dp− 1 in extra time

Õ(dω+1rp+ d2rω+3p).

The main point here is that for fixed d and r, testing the
existence of solutions takes time Õ(p1/2), whereas finding a

basis of the solution space takes time Õ(p).
In all this section, L is fixed, and the assumptions of The-

orem 1 are satisfied. The assumptions on the relative order
of magnitude of p, d, r simplify cost estimates and rule out
some overlaps in indices modulo p. The assumption r ≤ d
is here for convenience; the assumption r < p is necessary.

3.1 Degree bounds
Let F be the Fp(xp)-vector space of polynomial solutions
of the equation Lu = 0. The following proposition proves
a bound linear in p on the degree of a basis of F . To our
knowledge, such linear bounds were previously available only
in two particular cases: (a) when the equation has a basis
of polynomial solutions and under the additional hypotheses
0 ≤ deg(`0) − r ≤ p − 1 and p ≥ r [19, Th. 7]; (b) when
r = 2 and the equation has exactly one nonzero polynomial
solution [14, Lemma 10.1]. These bounds are respectively
(p−r)d+

`
r
2

´
for (a) and 1

2
(p−1)(d−1) for (b). In the general

case, the analysis in [11, 12] suggests a bound quadratic in p
of type p(p+ d). Our result refines this approach.

Proposition 1. If Lu = 0 has at least one nonzero solu-
tion in Fp(x), then F admits a basis consisting of polynomial
solutions of degree at most pd− 1 each.

Proof. The map ϕL : Fp(x) → Fp(x) defined by y 7→ L(y)
is Fp(xp)-linear. Let M ∈Mp(Fp(xp)) be the matrix of this
map with respect to the basis (1, x, . . . , xp−1). Write M =
(mi,j)0≤i,j≤p−1 for some mi,j in Fp[xp]. Then, u ∈ Fp[x] is
in F if and only if M× [u0, · · · , up−1]t = 0, with ui in Fp[xp]
such that u = u0 + u1x+ · · ·+ up−1x

p−1.
Since L(xi) =

P
0≤j≤p−1mi,jx

j is a sum of p polynomials

of pairwise distinct degrees deg(mi,j) + j, we deduce that
for all i, j, deg(mi,j) + j ≤ deg(L(xi)).

Since Lu = 0 has a non-zero solution in Fp(x), it has
also a non-zero solution in Fp[x], by clearing denominators.
Let thus v be in Fp[x] \ {0} such that Lv = 0, or equiva-

lently `0v = −
P

1≤j≤r `jv
(j). Since all terms on the right-

hand side have degree at most d + deg(v) − 1, we deduce
that deg(`0) ≤ d − 1. This implies that L(xi) = `0x

i +P
1≤j≤r i · · · (i− j + 1)`jx

i−j has degree at most d+ i− 1.

To summarize, for all 0 ≤ i, j ≤ p − 1, we obtain the
inequality deg(mi,j) ≤ (d − 1) + (i − j). This implies that
for any permutation σ of {0, . . . , p− 1},

deg(
Q

0≤i≤p−1mi,σ(i)) =
P

0≤i≤p−1 deg(mi,σ(i)) ≤ p(d− 1),

since the sum of the terms i−σ(i) is zero. This implies that
all minors of M have degree at most p(d−1), since any term
appearing in the expansion of such minors can be completed
to form one of the form

Q
0≤i≤p−1mi,σ(i).

The nullspace of M admits a basis [v1, . . . ,vk], all of
whose entries are minors of M. By what was said above,
they all have degree at most p(d − 1). A basis of F is
easily deduced: to vi = [vi,0 · · · vi,p−1]t corresponds the
polynomial vi = vi,0 + · · · + vi,p−1x

p−1. We deduce that
deg(vi) ≤ p− 1 + p(d− 1) = pd− 1, as claimed. �

3.2 Solutions of bounded degree
Let G ⊂ Fp[x] be the Fp-vector space of polynomial solutions
of Lu = 0 of degree at most pd − 1. We are interested in
computing either the dimension of G, or an Fp-basis of it. In
view of the former proposition, this will be sufficient to prove
Theorem 1. Proposition 2 gives cost estimates for these
tasks, adapting the algorithm in [1] and its improvements [6].

Proposition 2. Under the assumptions of Theorem 1,
one can compute dimFp(G) in time

Õ(dωr1/2p1/2 + dω+1rω−1).

One can deduce a basis of G in extra time Õ(dω+1rp).

Proof. Let u0, . . . , upd−1 be unknowns and let u be the
polynomial u =

P
0≤n<pd unx

n; for n < 0 or n ≥ pd, we

let un = 0. There exist c0, . . . , cd+r in Fp[n], of degree at
most r, such that for n ≥ 0, the coefficient of xn of

`0(x)u+ · · ·+ `r(x)u(r) (3)

is Cn = c0(n)un−d + · · ·+ cd+r(n)un+r; note also that

Cn−r = c0(n− r)un−r−d + · · ·+ cd+r(n− r)un. (4)

The polynomial u is in G if and only if Cn = 0 for 0 ≤ n ≤
(p+ 1)d− 1. Shifting indices, we obtain the system of linear
equations Cn−r = 0, with r ≤ n ≤ (p + 1)d + r − 1, in the
unknowns u0, . . . , upd−1.

The matrix of this system is band-diagonal, with a band of
width d+r+1. In characteristic zero or large enough, one can
eliminate each unknown un, with n ≥ r, using Cn−r. Here,
some equations Cn−r become deficient, in the sense that the
coefficient of un vanishes; this induces a few complications.

Outline of the computation. Since λ = `r(0) is not
zero, cd+r(n) is the non-zero polynomial λ(n + 1) · · · (n +
r), and cd+r(n − r) = λ(n − (r − 1)) · · ·n. Let then R =
[0, . . . , r − 1] be the set of roots of the latter polynomial.
For r ≤ n ≤ pd− 1, if (n mod p) is not in R, then un is the
highest-index unknown appearing with a non-zero coefficient
in Cn−r; we can then eliminate it, by expressing it in terms
of the previous um’s. The unknowns we cannot eliminate
this way are un, with n in

A = [n | 0 ≤ n ≤ pd− 1, (n mod p) ∈ R];

the remaining equations are Cn−r, for n in B1 ∪B2, with

B1 = [n | r ≤ n ≤ pd− 1 and (n mod p) ∈ R],
B2 = [n | pd ≤ n ≤ (p+ 1)d+ r − 1];

the latter are those last equations for which un = 0 (as
opposed to an actual variable). To determine the dimension
of G, and later on find a basis of it, we rewrite the remaining
equations using the remaining unknowns.

For n = ip + j in B1, the unknowns present in Cn−r are
uip+j−r−d, . . . , uip+j . Of those, only uip+j−r−d, . . . , uip−1

need to be rewritten in terms of [un | n ∈ A]; the others
already belong to this set. Thus, it is enough to express all
uip−r−d, . . . , uip−1 in terms of [un | n ∈ A], for 1 ≤ i < d.

For n in B2, the unknowns in Cn−r are un−r−d, . . . , upd−1

(the higher index ones are zero). So, it is enough to compute
upd−r−d, . . . , upd−1 in terms of [un | n ∈ A]. This is thus the
same problem as above, for index i = d.

Expressing all needed unknowns using A. Let A′ =
[0, . . . , pd− 1] \A. For n in A′, one can rewrite the equation
Cn−r = 0 as the first order (matrix) recurrence264un−r−d+1

...
un

375 = A(n)

264un−d−r...
un−1

375 (5)

with

A(n) =

266664
0 1 . . . 0

0 0
. . . 0

0 0 . . . 1

− c0(n−r)
cd+r(n−r) − cd+r−1(n−r)

cd+r(n−r)

377775 ;

note that A(n + p) = A(n). Let next B be the matrix
factorial A(p− 1) · · ·A(r). Then we have, for 1 ≤ i ≤ d:264uip−r−d...

uip−1

375 = B

264 u(i−1)p−d
...

u(i−1)p+r−1

375 .
Note that |A| = dr; we let u be the dr × 1 column-vector
consisting of all un, for n in A. Let further C0 be the (d+
r) × dr zero matrix. For 1 ≤ i ≤ d, suppose that we have
determined (d+r)×dr matrices C1, . . . ,Ci−1 such that, for
1 ≤ j < i, we have264ujp−r−d...

ujp−1

375 = Cju and

264ujp−r−d...
ujp+r−1

375 = Dju, (6)

with

Dj =

»
Cj

0r×sj Ir 0r×s′j

–
, sj = jr and s′j = (d− j − 1)r.

Let C′i−1 be the matrix made of the last d rows of Ci−1 and

Ci = B

»
C′i−1

0r×si−1 Ir 0r×s′i−1

–
;

then, (6) is satisfied at index i as well.

Rewriting all remaining equations using A. Combin-
ing all previous information, we obtain a matrix equality of
the form u′ = Du, where u′ is the column vector with en-
tries uip−r−d, . . . , uip+r−1, for 1 ≤ i ≤ d, and where D is
the matrix obtained by stacking up D1, . . . ,Dd.

We saw that all indeterminates appearing in the remaining
equations Cn−r, with r in B = B1 ∪ B2, are actually in u′.
By evaluating the coefficients c0, . . . , cd+r at n − r, for n
in B, we obtain the matrix D′ of the remaining equations,

expressed in terms of the unknowns in u′. Hence, the matrix
E = D′D expresses the remaining equations in terms of un,
for n in A.

By construction, the dimension of G equals the dimension
of the nullspace of E. From a basis of the nullspace of E, we
deduce a basis of G, using (5) to compute un for n in A′.

Cost analysis. By [6, Lemma 7], one can compute B in

time T1 =O(dωM(r1/2p1/2) log(rp)), which is Õ(dωr1/2p1/2).
Computing a matrix Ci requires one matrix multiplication
of size (d + r, d) × (d, dr). Using block matrix multiplica-
tion, this can be done in time O(dωr). Thus, computing all
matrices Ci takes time T2 = O(dω+1r).

The matrix D has size d(d+ 2r)× dr; no more computa-
tions are needed to fill its entries. The matrix D′ has size
d(r + 1)× d(d + 2r). Its entries are obtained by evaluating
c0, . . . , cr+d at all n in B. Since deg(ci) ≤ r and |B| = d(r+
1), this takes time O(M(dr) log(dr)) per polynomial. Since

r ≤ d, the total time is T3 = O(dM(dr) log(dr)) ∈ Õ(d2r).
The matrix E = D′D has size d(r + 1) × dr; using block

matrix multiplication with blocks of size dr, it can be com-
puted in time T4 = O(dω+1rω−1). A basis of its nullspace

can be computed in time T5 = Õ(dωrω).
Given a vector [un | n ∈ A] in the nullspace of E, one

can reconstruct [un | 0 ≤ n < pd] using (5) repeatedly.
This first requires evaluating all coefficients of all equations
Cn−r, for n in A′ = [0, . . . , pd − 1] \ A, which takes time
T6 = O(dM(s) log(s)), with s = max(r, pd).

Then, for a given [un | n ∈ A] in the nullspace of E, de-
ducing [un | 0 ≤ n < pd] requires |A′| < pd matrix-vector
products in size d + r. The dimension of the nullspace is
O(dr); we process all vectors in the nullspace basis simulta-
neously, so that we are left to do pd matrix products in size
(d+ r)× (d+ r) by (d+ r)× dr. The cost of each product
is O(dωr), so the total cost is T7 = O(dω+1rp).

Summing T1, . . . , T5 proves the first part of the proposi-
tion. Adding to this T6 and T7 gives the second claim. �

3.3 Proof of Theorem 1
Let F and G be as above. By Proposition 1, dimFp(G) = 0
if and only if dimFp(xp)(F) = 0. Hence, the first estimate of
Proposition 2 proves our first claim.

Suppose that dimFp(G) 6= 0, and let u1, . . . , uk be an Fp-
basis of G. Proposition 1 implies that u1, . . . , uk generates
F over Fp(xp). We deduce an Fp(xp)-basis B of F in a
naive way: starting from B = [u1], we successively try to
add u2, . . . to B. Independence tests are performed at each
step, using the following lemma.

Lemma 4. Given u1, . . . , us in Fp[x] of degree less than
pd, one can determine whether they are linearly independent
over Fp(xp) in time Õ(sω+2dp).

Proof. It suffices to compute their Wronskian determinant.
The determinant of a matrix of size s can be computed using
O(sω+1) sums and products [2]; since here all products can
be truncated in degree sdp, the cost is O(sω+1M(sdp)). �

At all times, there are at most r elements in B, so we always
have s ≤ r + 1. Since we also have k ≤ dr, the overall time
is Õ(d2rω+3p), as claimed.

4. P-CURVATURE: FIRST ORDER
For first order operators, there is a closed form formula for
the p-curvature. Let L = ∂−u, with u in Fp(x); then, by [24,

Lemma 1.4.2], the p-curvature of L is the 1× 1 matrix with

entry u(p−1) + up, where the first term is the derivative of
order p− 1 of u. In this case, we do not distinguish between
the p-curvature and its unique entry.

The case of first order operators stands out as the only
one where a cost polynomial in log(p) can be reached; this is
possible since in this case, we only compute O(d) non-zero
coefficients. Following our convention, in the next state-
ment, we take L not necessarily monic, but with polynomial
coefficients.

Theorem 2. Given L = a∂ − b in Fp[x]〈∂〉 of bidegree
(d, 1) that satisfies H, one can compute its p-curvature in

time O(dM(d) log(p)) ⊂ Õ(d2 log(p)).

Proof. Since the p-curvature belongs to Fp(xp), it suffices
to compute its pth root. Computing the p-curvature itself
requires no extra arithmetic operation, since taking p-powers
is free over Fp, as far as arithmetic operations are concerned.
Hence, we claim that the rational function„“ b

a

”(p−1)

+
“ b
a

”p« 1
p

=

„“ b
a

”(p−1)
« 1

p

+
b

a

can be computed in time O(dM(d) log(p)). Of course, the

only non-trivial point is to compute s = (u(p−1))1/p, with
u = b/a.

Observe that apu(p−1) is a polynomial of degree less than
dp, so as is a polynomial of degree less than d. Hence, it
is enough to compute the power series expansion s mod xd.
From this, we deduce the polynomial as by a power series
multiplication in degree d, and finally s by division by a.

Let us write the power series expansion u =
P
i≥0 uix

i.

Then, the series s equals −
P
i≥1 uip−1x

i−1, so it is enough

to compute the coefficients (uip−1)1≤i≤d.
We start by computing the first coefficients u0, . . . , ud−1

by power series division, in time O(M(d)). From these ini-
tial conditions, the coefficients up−1, . . . , up+d−2 can be de-
duced for O(M(d) log(p)) operations using binary powering
techniques, see [16] or [3, Sect. 3.3.3]. Iterating this process
d times, we obtain the values uip−1, . . . , uip+d−2, for i ≤ d,
in time O(dM(d) log(p)). �

5. P-CURVATURE: SECOND ORDER
For second order operators, it is possible to exploit a certain
linear differential system satisfied by the entries of the p-
curvature matrix: already in [15, 25], one finds a third order
linear differential equation satisfied by an anti-diagonal en-
try of the p-curvature, for the case of operators of the form
∂2 + s, or more generally ∂2 + r∂ + s, when r(p−1) + rp = 0.

In this section, we let L have the form v∂2 + w∂ + u,
with u, v, w in Fp[x] of degree at most d. We assume that
d ≥ 2 and p > 2, and that H holds (we do not repeat these
assumptions in the theorems); we let A be the companion
matrix of L and let Ap be its p-curvature.

We give partial results regarding the computation of Ap:
we give algorithms of cost Õ(p1/2) or Õ(p) to test proper-
ties of Ap, or compute it in some cases, up to maybe some
indeterminacy. Though these algorithms do not solve all
problems, they are still substantially faster than the ones
for the general case in the next section.

The trace of the p-curvature. We start by an easy but
useful consequence of the result of the previous section: the
trace of Ap can be computed fast.

Theorem 3. One can compute the trace τ of Ap in time
O(dM(d) log(p)).

Proof. The trace of Ap is equal to the p-curvature of v∂ +
w [21, 27]. By Theorem 2, it can be computed in time
O(dM(d) log(p)). �

Testing nilpotence. As a consequence of the previous
theorems, we obtain a decision procedure for nilpotence.

Corollary 1. One can decide whether Ap is nilpotent
in time Õ(dωp1/2 + dω+1).

Proof. The p-curvature Ap is nilpotent if and only if its
trace and determinant are both zero. By Theorem 3, the
condition on the trace can be checked in time logarithmic
in p. By Lemma 2, the second condition det(Ap) = 0 is
equivalent to the fact that Lu = 0 has a non-zero solution,
which can be tested in the requested time by Theorem 1. �

The eigenring. To state our further results, we need an
extra object: the eigenring E(L) of L. This is the set of
matrices B in M2(Fp(x)) that satisfy the matrix differential
equation

B′ = BA−AB (7)

(our definition differs slightly from the usual one in the sign
convention). By [11, §3.2], the eigenring E(L) is an Fp(xp)-
vector space of dimension at most 4, which contains the p-
curvature Ap. Then, we let γ be its dimension over Fp(xp);
we will prove later that γ is in {2, 4}.

Let further F be the set of solutions of Ly = 0 in Fp(x)
and let β be its dimension over Fp(xp). Then, our main
results are the following.

Theorem 4. One can compute in time Õ(dω+1p) :

1. the dimensions γ∈{2, 4} of E(L) and β∈{0, 1, 2} of F .

2. Ap, if γ = 4 or β = 2.

3. Ap, up to a multiplicative constant in Fp[xp] of degree
at most pd, if γ = 2 and if the trace τ equals 0.

4. a list of two candidates for Ap, if γ = 2 and β = 1.

The rest of this section is devoted to prove this theorem.

The dimension of the eigenring. The following lemmas
restrict the possible dimension γ of E(L).

Lemma 5. If Ap has the form λI2, then γ = 4.

Proof. By [11, Th. 3.14], the dimension of E(L) over Fp(xp)
is equal to the dimension of the Fp(x)-vector space consisting
of all matrices in M2(Fp(x)) which commute with Ap. �

Lemma 6. Either γ = 2, or γ = 4. In the second case,
Ap is equal to τ

2
I2, where τ is the trace of Ap.

Proof. Corollary 3.15 in [11] shows that if the minimal
and characteristic polynomials of Ap coincide, then E(L)
equals Fp(xp)[Ap]. In this case, Fp(xp)[Ap] has dimension 2
over Fp(xp). Else, the minimal polynomial of Ap must have
degree 1, so Ap is necessarily equal to τ

2
I2, and we are under

the assumptions of the previous lemma. �

Computing γ and β. The equality (7) gives a system of
four linear differential equations of order one for the entries

b1,1, . . . , b2,2 of B. An easy computation shows that (7) is
equivalent to the system

v3b′′′2,1 +Ab′2,1 +Bb2,1 = 0, (8)

v2b1,2 +Rb′′2,1 + Sb′2,1 + Tb2,1 = 0, (9)

v(b1,1 − b2,2) + vb′2,1 − wb2,1 = 0, (10)

b′1,1 + b′2,2 = 0, (11)

where A,B,R, S, T belong to Fp[x], and are given by

A = v(−2w′v + 2wv′ + 4uv − w2),

B = vw(v′′−w′)+v′w(w−2v′)+2u′v2−2vuv′−w′′v2+2v′w′v

R = v2/2, S = −vw/2, T = v′w/2− vw′/2 + uv.

Since (11) is equivalent to b1,1 + b2,2 ∈ Fp(xp), we readily
deduce that the dimension γ of E(L) equals γ′ + 1, where
γ′ is the dimension of the set of polynomial solutions of (8).
Thus, computing both γ and β can be done using Theorem 1,
with respectively r = 3 or r = 2, and in degree respectively
at most 3d or d. This proves point 1 of Theorem 4.

If γ = 4, we are in the second case of Lemma 6. Since the
trace can be computed in time Õ(d2 log(p)) by Theorem 3,
point 2 of Theorem 4 is established in this case. If β = 2,
then Ap is zero by Lemma 2, proving point 2 of Theorem 4.

Eigenrings of dimension 2. The rest of this section is
devoted to analyze what happens if E(L) has dimension
γ = 2 over Fp(xp), so that the dimension γ′ of the solution-
space of (8) is 1. In this case, the information provided by
the eigenring is not sufficient to completely determine the
p-curvature. However, it is still possible to recover some
useful partial information. To fix notation, we write the
p-curvature as

Ap =

»
f1,1 f1,2
f2,1 f2,2

–
.

Lemma 7. If γ = 2, then F = vpf2,1 is a nonzero poly-
nomial solution of degree at most pd of Equation (8).

Proof. Since Ap belongs to the eigenring, its entries sat-
isfy (8) to (11). Lemma 1 shows that F = vpf2,1 is a poly-
nomial solution of degree at most pd of Equation (8). F
cannot be 0, since otherwise Equations (9) to (11) would
imply that Ap has the form λI2 for some λ in Fp(xp). By
Lemma 5, this would contradict the assumption γ = 2 . �

Lemma 8. Suppose that γ = 2 and let u ∈ Fp[x] be the
nontrivial polynomial solution of minimal degree of Equa-
tion (8). There exists a nonzero polynomial c in Fp[xp] of
degree at most pd, such that the entries of Ap are given by

f1,1 =
1

2

“
τ +

c

vp

“w
v
u− u′

””
,

f1,2 = − c

vp+2

`
Ru′′ + Su′ + Tu

´
,

f2,1 =
c

vp
u,

f2,2 =
1

2

“
τ − c

vp

“w
v
u− u′

””
.

Proof. By Lemma 7, F and u both satisfy Equation (8);
thus, they differ by an element c in Fp(xp). Moreover, the
minimality of the degree of u implies that c = F/u actually
belongs to Fp[xp] and has degree at most deg(F) ≤ pd. The
rest of the assertion follows from the relations F = vpf2,1,
τ = f1,1 + f2,2 and the equalities (9) and (10). �

Conclusion. To conclude, we consider two special cases.
If τ = 0, as in [25], the previous lemma shows that Ap is
known up to a multiplicative constant in Fp[xp], as soon as
the polynomial u has been computed. In this case, Theo-
rem 1 shows that one can compute a non-zero solution u0

of (8) in the required time. The minimal degree solution u is
obtained by clearing out the factor in Fp[xp] in u0 using [18,

Ex. 14.27], in negligible time O(M(dp) log(dp)) ⊂ Õ(dp); the

substitution in the former formulas takes time Õ(dp) as well.
If β = 1, then L has a non-trivial polynomial solution, so

by Lemma 2 the determinant of Ap is zero; the additional
equation f1,1f2,2 = f1,2f2,1, in conjunction with the formu-
las in Lemma 8, uniquely determines the polynomial c2 and
thus leaves us with only two possible candidates for Ap.

6. P-CURVATURE: HIGHER ORDER
In this final section, we study operators of higher order,
and we prove that the p-curvature can be computed in time
subquadratic in p.

Theorem 5. Given L in Fp[x]〈∂〉 of bidegree (d, r), one
can compute its p-curvature in time

Õ(rωd2p2ω/3 + rωdp1+ω/3).

Hence, the exponent in p is 1 + ω/3 < 1.79 < 2; in the best
possible case ω = 2, we would obtain an exponent 5/3 in p,
which is unfortunately still far from the optimal exponent 1.
We also give an algorithm for computing the image of a ma-
trix of rational functions by a differential operator, similar
to Brent and Kung’s algorithm for modular composition [9];
no prior non-trivial algorithm existed for this task.

6.1 Preliminaries
Euler’s operator. Besides operators in the usual vari-
ables x, ∂, it will also be convenient to consider operators in
Fp(x)〈θ〉 or Mn(Fp(x))〈θ〉, where θ is Euler’s operator x∂,
which satisfies the commutation rule θx = xθ+ x. To avoid
confusion, we may say that L has bidegree (d, r) in ∂ or in
θ, if L is written respectively on the bases (x, ∂) or (x, θ).

Conversion. Given an operator L in Mn(Fp[x])〈∂〉 of bide-
gree (d, r), L′ = xrL can be rewritten as an operator in θ
with polynomial coefficients. The operator L′ has bidegree
(d+r, r) in θ. By [5, Section 3.3], computing the coefficients
of L′ takes time O(n2(d+r)M(r) log(r)). Since representing
all coefficients of L′ requires O(n2(d+ r)r) elements, this is
quasi-linear, up to logarithmic factors.

Multiplication. Next, we give a complexity result for the
multiplication of operators with rational function coefficients
of a special type. The proof (omitted for space limitation)
is inspired by that of Algorithm MulWeyl in [5, §4.2] (which
handles only polynomial coefficients). It relies on an evalu-
ation / interpolation idea originally due to [23], and intro-
duces fast matrix multiplication to solve the problem.

Lemma 9. Let b ∈ Fp[x] be of degree at most d, with
b(0) 6= 0 and let γ, µ be in Fp(x)〈∂〉, with

γ =
P

0≤j≤h
gj

bh−j ∂
j , µ =

P
0≤j≤h

mj

bh−j ∂
j .

where gj and mj ∈ Fp[x] have degrees at most d(h − j). If
2h ≤ p− 1, then one can compute η = γµ in time O(hωd2).

Left and right forms. Let L ∈Mn(Fp[x])〈θ〉 be

L = `0(x) + `1(x)θ + · · ·+ `r(x)θr,

with `i ∈Mn(Fp[x]) and deg(`i) ≤ d. It can be rewritten

L = `?0(x) + θ`?1(x) + · · ·+ θr`?r(x),

with `?i in Mn(Fp[x]) of degrees at most d as well. The
former expression will be called the right-form of L; the
latter is its left-form. The next lemma shows that switching
from one form to another can be done in quasi-linear time.

Lemma 10. Let L have bidegree (d, r) in Mn(Fp[x])〈θ〉,
given in its right-form (resp. in its left-form). Then it is
possible to compute its left-form (resp. right-form) in time

O(n2dM(r) log(r)) ⊂ Õ(n2dr).

Proof. Given the right-form of L, one rewrites (for free)
L =

P
0≤j≤d x

jLj , where Lj has constant coefficients and

order at most r. Since xjLi(θ) = Li(θ − j)xj , the result
follows by using algorithms for polynomial shift by j [17]. �

6.2 Evaluation
For L in Mr(Fp[x])〈∂〉 or Mr(Fp[x])〈θ〉 and A in Mr(Fp(x)),
LA denotes the matrix in Mr(Fp(x)) obtained by applying
L to A. In this subsection, we give cost estimates on the
computation of LA.

The polynomial case. We start with the case of an opera-
tor with polynomial coefficients, which we apply to a matrix
with polynomial entries. We use an operator in θ, since this
makes operations slightly more convenient than in ∂. As in
Section 3, we make assumptions on the relative sizes of the
input parameters (here δ, ρ, ε), for simplicity’s sake.

Lemma 11. Given L ∈ Mr(Fp[x])〈θ〉 of bidegree (δ, ρ)
and E ∈Mr(Fp[x]) of degree ε, one can compute LE in time

Õ(rωρεω−2δ3−ω), assuming δ ∈ O(ε) and ε ∈ O(ρ1/2δ).

The cost can be rewritten as Õ(rωρ ε (δ/ε)3−ω). Since ω ≤ 3

and δ ∈ O(ε), this is always better than Õ(rωρε): the cost

ranges from Õ(rωρδ) for a hypothetical ω = 2 to Õ(rωρε)
for ω = 3. As a matter of comparison, let us write

L =
P

0≤i≤ρ `iθ
i, `i ∈Mr(Fp[x]).

Computing LE naively amounts to computing θiE for i ≤ ρ,
multiplying them by the coefficients `i and summing the
results; the cost is in Õ(rωρε), so our estimate is better.

Proof. Our result is achieved using a baby steps / giant
steps strategy inspired by Brent-Kung’s algorithm for power
series composition [9]. Let k = bρ1/2c and h = dρ/ke. First,
we rewrite L in left-form, as

L =
P

0≤i≤ρ θ
i`?i (x);

by Lemma 10, the cost is T1 =O(r2δM(ρ) log(ρ)) ⊂ Õ(r2δρ).
Next, L is cut into h slices of the form

L0 + θkL1 + · · ·+ θ(h−1)kLh−1, i.e. L =
P

0≤j<h θ
jkLj .

Each Lj has order less than k and can be written as

Lj =
P

0≤i<k θ
i`?jk+i(x),

where for jk + i > ρ, `?jk+i is zero. Finally, we rewrite each
Lj in right-form:

Lj =
P

0≤i<k `
†
j,i(x)θi, (12)

where all `†j,i have degree at most δ. By Lemma 10, the cost

is T2 = O(hr2δM(k) log(k)), which is in Õ(r2δρ) as before.
To apply L to E, we first compute the baby steps

E0 = E, E1 = θE, . . . , Ek−1 = θk−1E;

then, we deduce LjE, for j < h and we do the giant steps

LE =
P

0≤j<h θ
jkLjE.

All Ei can be computed in time T3 = O(r2ρ1/2ε), by suc-
cessive applications of θ. The cost T4 of deducing the poly-
nomials LjE is detailed below. Finally, one recovers LE
by first computing all θjkLjE, for j < h, and then sum-
ming them. Since θi(xj) = jixj , θjk can be applied to LjE
in time O(r2ε log(ρ)), so the total cost of this final step is

T5 = O(r2εh log(ρ)) ⊂ Õ(r2ρ1/2ε).
It remains to compute all LjE, given all Ei; we compute

them all at once. In view of Equation (12), we have

LjE =
P

0≤i<k `
†
j,iEi,

where the Ei are known. We cut Ei into slices of length δ:

Ei =
P

0≤u<sEi,ux
δu,

where Ei,u has degree less than δ and s = dε/δe ≤ 2ε/δ.
This gives LjE in the formP

0≤i<k `
†
j,i

P
0≤u<sEi,ux

δu=
P

0≤u<s x
δuP

0≤i<k `
†
j,iEi,u.

We will compute at once all inner sumsP
0≤i<k `

†
j,iEi,u,

for j < h and u < s, and recover all LjE, in time O(r2ερ1/2).
The computation of these sums amounts to perform a

(h×k)× (k× s) matrix multiplication, with entries that are
polynomial matrices of size r and degree at most δ. Since
ε ∈ O(ρ1/2δ), we have s ∈ O(ρ1/2). Hence, we divide the
previous matrices into blocks of size s and we are left to do
a (O(ρ1/2/s)×O(ρ1/2/s))× (O(ρ1/2/s)×O(1)) product of

such blocks, where ρ1/2/s is lower-bounded by a constant.
Multiplying a single block takes time O(rωsωM(δ)), so the

total time T4 is O(rωρsω−2M(δ)), which is Õ(rωρεω−2δ3−ω).
The conclusion of Lemma 11 comes after a few simplifica-

tion; the dominant cost is T4. �

The rational function case. Next, we study the applica-
tion of an operator to a matrix of rational functions A (we
make some simplifying assumptions on the denominators
in A, which will be satisfied in the cases in §6.3 where we ap-
ply this result). Besides, our operator is now in Mr(Fp[x])〈∂〉
rather than in Mr(Fp[x])〈θ〉.

Lemma 12. Let L ∈ Mr(Fp[x])〈∂〉 be of bidegree (δ, ρ).
Let A ∈ Mr(Fp(x)) be of the form B/bκ, with b ∈ Fp[x] of
degree at most d and B ∈ Mr(Fp[x]) of degree at most κd.
Define δ′ = δ+ρ and ε = (κ+ρ)d+δ′+1. If b(0) 6= 0 and ε ∈
O(ρ1/2δ′), one can compute LA in time Õ(rωρεω−2δ′

3−ω
).

Proof. Let L′ = xρL. Given L as an operator in ∂, we can
write L′ as an operator in θ, of bidegree (δ′, ρ); the coeffi-
cients of L′ in θ are computed in time O(r2δM(ρ) log(ρ)) ⊂
Õ(r2δρ). To conclude, it is enough to compute L′A, since
then LA is deduced by a division by xρ, which is for free.

For any i ≥ 0, θiA has the form Bi/b
κ+i, with Bi in

Mr(Fp[x]) of degree at most (κ + i)d. Thus, L′A has the

form B?/bκ+ρ, with B? ∈ Mr(Fp[x]) of degree less than ε,
with ε = (κ + ρ)d + δ′ + 1. Knowing L′A mod xε, one can
recover the numerator matrix B? through multiplication by
bκ+ρ; a gcd computation finally gives L′A in normal form.
These latter steps take time O(r2M(ε) log(ε)) ⊂ Õ(r2ε).

Since b(0) 6= 0, the matrix E = A mod xε is well-defined;

it can be computed in time O(r2M(ε)) ⊂ Õ(r2ε) by power
series division. Lemma 11 gives cost estimates for computing
L′E mod xε. Since this matrix coincides with L′A modulo
xε, this concludes the proof of the lemma, as all previous
costs are negligible compared to the one of Lemma 11. �

6.3 Computing the p-curvature
Let L be in Fp[x]〈∂〉 of bidegree (d, r) and let A be its com-
panion matrix. We define the operator Λ ∈ Mr(Fp(x))〈∂〉
as Λ = ∂ + A; thus, as pointed out in the introduction, the
p-curvature of L is obtained by applying Λp−1 to A.

To obtain a cost better than O(p2), we first compute a
high enough power Λ′ = Λk of Λ; then, we apply Λ′ to A
k′ times, with k′ ' (p − 1)/k. Since p − 1 may not factor
exactly as kk′, a few iterations of this process are needed.

Computing Λk. Let ` = `r ∈ Fp[x] be the leading co-
efficient of L. Then, Λ has the form ∂ + λ/`, with λ in
Mr(Fp[x]) and ` ∈ Fp[x] of degree at most d and `(0) 6= 0.
More generally, for k ≥ 0, we can write Λk as

Λk =
P

0≤j≤k λk,j∂
j , with λk,j =

`k,j
bk−j

and `k,j in Mr(Fp[x]) of degree at most d(k − j).

Lemma 13. If k ≤ p − 1, one can compute Λk in time
O(rωkωd2).

Proof. We use a divide-and-conquer scheme. Let h =
bk/2c; we assume for simplicity that k = 2h; if k is odd, an
extra (cheaper) multiplication by Λ is needed. We assume
that Λh is known, and we view it as an r × r matrix with
entries that are scalar operators; hence, to compute Λk, we
do O(rω) products of such scalar operators. All these prod-
ucts have the form η = γµ of the form seen in Lemma 9, so
each of their costs is O(hωd2) = O(kωd2). �

Computing Λkk
′
A. We fix k ≤ p, and we compute the

operators Γ = Λk and Γ′ = dkΓ. Writing k′ = b(p − 1)/kc,
we compute the sequence

A(1) = A, A(i) = ΓA(i−1), i = 2, . . . , k′,

so that A(k′) = Λkk
′
A. Thus, we have A(k′) = Akk′ , where

the latter matrix is defined in Equation (1). Using the pre-
vious algorithm, a quick analysis shows that the optimal
choice is k = b(p − 1)2/3c. Then, computing Γ takes time

O(rωkωd2) = O(rωp2ω/3d2) by Lemma 13.
By Lemma 1, each matrix A(i) has the form B(i)/b

ik,
with B(i) ∈ Mr(Fp[x]) of degree at most dki. Given A(i),
we compute A(i+1) by first applying Γ′ to A(i) and dividing

the result by dk.
The first step, applying Γ′, is the more costly. We obtain

its cost by applying Lemma 12, with (δ, ρ) = (dk, k) and κ =
ik. Then, we have δ′ ∈ O(dk) and ε ∈ O(idk). For all i ≤ k′,
we are under the assumptions of that lemma; after a few
simplifications, the cost becomes Õ(rωiω−2dk2). Summing

over all i ≤ k′, we obtain an overall cost of Õ(rωk′
ω−1

dk2).

Taking into account that k ∈ O(p2/3) and k′ ∈ O(p1/3), this

finally gives a cost of Õ(rωdp1+ω/3) for computing Λkk
′
A.

Computing the p-curvature. The definitions of k, k′ im-
ply p− (p− 1)2/3 ≤ kk′ ≤ p− 1. To obtain the p-curvature
Λp−1A, we iterate this process, replacing the number of
steps p − 1 by p − 1 − kk′, until it becomes O(1). Since

p − 1 − kk′ ≤ (p − 1)2/3, it takes O(log log p) iterations;

hence, the overall time is still in Õ(rωdp1+ω/3).

Acknowledgments. This work has been supported by the
Microsoft Research-INRIA Joint Centre, NSERC and the
Canada Research Chair program. We thank the anonymous
referees for their useful comments.

7. REFERENCES
[1] S. A. Abramov, M. Bronstein, and M. Petkovšek. On

polynomial solutions of linear operator equations. In ISSAC’95,
pages 290–296. ACM Press, 1995.

[2] S. J. Berkowitz. On computing the determinant in small
parallel time using a small number of processors. Inform.
Process. Lett., 18(3):147–150, 1984.

[3] A. Bostan. Algorithmique efficace pour des opérations de base

en calcul formel. PhD thesis, École polytechnique, 2003.

[4] A. Bostan, S. Boukraa, S. Hassani, J. M. Maillard, J. A. Weil,
and N. Zenine. Globally nilpotent differential operators and the
square Ising model. J. Phys. A: Math. Theor., 42(12), 2009.

[5] A. Bostan, F. Chyzak, and N. Le Roux. Products of ordinary
differential operators by evaluation and interpolation. In
ISSAC’08, pages 23–30. ACM, 2008.

[6] A. Bostan, T. Cluzeau, and B. Salvy. Fast algorithms for
polynomial solutions of linear differential equations. In
ISSAC’05, pages 45–52. ACM Press, 2005.

[7] A. Bostan and M. Kauers. The complete generating function
for Gessel walks is algebraic. In preparation.

[8] A. Bostan and M. Kauers. Automatic classification of restricted
lattice walks. In FPSAC’09, to appear.

[9] R. P. Brent and H. T. Kung. Fast algorithms for manipulating
formal power series. J. ACM, 25(4):581–595, 1978.

[10] D. G. Cantor and E. Kaltofen. On fast multiplication of
polynomials over arbitrary algebras. Acta Inform.,
28(7):693–701, 1991.

[11] T. Cluzeau. Factorization of differential systems in
characteristic p. In ISSAC’03, pages 58–65. ACM Press, 2003.

[12] T. Cluzeau. Algorithmique modulaire des équations
différentielles linéaires. PhD thesis, Univ. Limoges, 2004.

[13] D. Coppersmith and S. Winograd. Matrix multiplication via
arithmetic progressions. J. Symb. Comp., 9(3):251–280, 1990.

[14] B. Dwork. Lectures on p-adic differential equations, volume
253 of Grundlehren der mathematischen Wissenschaften.
Springer–Verlag, New York, Heidelberg, Berlin, 1982.

[15] B. Dwork. Differential operators with nilpotent p-curvature.
Amer. J. Math., 112(5):749–786, 1990.

[16] C. M. Fiduccia. An efficient formula for linear recurrences.
SIAM Journal on Computing, 14(1):106–112, 1985.

[17] J. von zur Gathen and J. Gerhard. Fast algorithms for Taylor
shifts and certain difference equations. In ISSAC’97, pages
40–47. ACM, 1997.

[18] J. von zur Gathen and J. Gerhard. Modern computer algebra.
Cambridge University Press, 1999.

[19] T. Honda. Algebraic differential equations. In Symposia
Mathematica, Vol. XXIV, pp. 169–204. Academic Press, 1981.

[20] N. M. Katz. Nilpotent connections and the monodromy
theorem: Applications of a result of Turrittin. Publ. Math.
Inst. Hautes Études Sci., (39):175–232, 1970.

[21] N. M. Katz. A conjecture in the arithmetic theory of differential
equations. Bull. Soc. Math. France, (110):203–239, 1982.

[22] A. Schönhage and V. Strassen. Schnelle Multiplikation großer
Zahlen. Computing, 7:281–292, 1971.

[23] J. van der Hoeven. FFT-like multiplication of linear differential
operators. J. Symb. Comp., 33(1):123–127, 2002.

[24] M. van der Put. Differential equations in characteristic p.
Compositio Mathematica, 97:227–251, 1995.

[25] M. van der Put. Reduction modulo p of differential equations.
Indag. Mathem., 7(3):367–387, 1996.

[26] M. van der Put and M. Singer. Galois theory of linear
differential equations. Springer, 2003.

[27] J. F. Voloch. A note on the arithmetic of differential equations.
Indag. Mathem., 11(44):617–621, 2000.

	Introduction
	Preliminaries
	Polynomial solutions
	Degree bounds
	Solutions of bounded degree
	Proof of Theorem 1

	p-curvature: first order
	p-curvature: second order
	p-curvature: higher order
	Preliminaries
	Evaluation
	Computing the p-curvature

	References

