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The long-term goal initiated in this work is to obtain fast algorithms and
implementations for definite integration in the framework of (differential) cre-
ative telescoping introduced in [1]. Our approach bases on complexity analysis,
by obtaining tight degree bounds on the various differential operators and poly-
nomials involved in the method and its variants. To make the problem more
tractable, we restrict in this work to the integration of rational functions. In-
deed, by considering a more constrained class of inputs, we are able to blend
the general method of creative telescoping with the well-known Hermite re-
duction [3]. The rational class already has many applications, for instance in
combinatorics, where many non-trivial problems are encoded as diagonals of
rational formal power series, themselves expressible as integrals.

Given a rational function f ∈ K(x, y) (in characteristic zero), the core of
(differential) creative telescoping consists in obtaining a linear differential opera-
tor L in K(x)〈Dx〉 and a rational function g ∈ K(x, y) satisfying L(f) = Dy(g).
The operator L is then called a telescoper for f and g a certificate. A telescoper
for f is said to be minimal if it is of minimal order over all telescopers for f .

The classical way to compute minimal telescopers [1] is to apply a differ-
ential analogue of Gosper’s indefinite summation algorithm, which reduces the
problem to solving an auxiliary linear differential equation for rational-function
solutions; a nice feature of the algorithm is a direct calculation of the denomina-
tor of the solutions and of a factor of their numerators, leading to better speed.
An algorithm later developed by Geddes and Le [4] performs Hermite reduction
on f to get an additive decomposition of the form

f = Dy(a) +
m∑

i=1

ui

vi
, where ui, vi ∈ K(x)[y] and vi is squarefree.

Then the algorithm in [1] is applied to each ui/vi to get a minimal telescoper Li.
The least common left multiple of L1, . . . , Lm is then proved to be the minimal
telescoper for f .

As a first contribution in this poster, we present a new, provably faster
algorithm for computing minimal telescopers for rational functions. Instead of
a single use of Hermite reduction, we obtain a normal form of each Di

x(f) by
an application of Hermite reduction:

Di
x(f) = Dy(gi) +

wi

w
, (1)
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where w divides the squarefree part of the denominator of f . If e0, . . . , eρ ∈ K(x)
are not all zero and such that

∑ρ
j=0 ejwj = 0, then the operator

∑ρ
j=0 ejD

j
x

is a telescoper for f . The first nontrivial linear relation obtained in this way
yields a minimal telescoper for f . For i ≥ 1, (1) is obtained by applying Hermite
reduction to the derivative of wi−1/w with respect to x, which amounts to only
one-step reduction.

As a second contribution, we derive complexity estimates for these methods
(see table below), showing that our approach is faster, although it can pro-
duce an output of degree in x larger than with the classical [1]. This is a new
instance of the philosophy, promoted in [2], of relaxing minimality to achieve
better complexity. In the same vein, we analysed the bidegrees of outputs gen-
erated by other promising approaches, although at this point the correctness
of the expected algorithms is not proven: Lipshitz’ work on diagonals [5] can
be rephrased into an existence theorem for telescopers, with quantifiably small
size; the approach followed in the recent work on algebraic functions [2] leads
to even smaller sizes.

A third contribution is a fast Maple implementation, which uses a carefully-
coded original Hermite reduction algorithm, the special form of wi/w in (1),
and usual modular techniques (probabilistic rank estimate) to determine when
to invoke the solver for linear algebraic equations. First experimental results
indicate that our implementation can outperform Maple’s library routine.

Method Bidegree in (x, Dx) of L Complexity

Minimal Hermite reduction (new) (O(dxd3
y),O(dy)) Õ(dxd6

y)

Telescoper Almkvist and Zeilberger (O(dxd2
y),O(dy)) Õ(dxd2ω+2

y )

Geddes and Le (O(mdxd4
y),O(dy)) Õ(dxd2ω+3)

Non-minimal Lipshitz elimination (O(d2
x + d2

y),O(d2
x + d2

y)) no algo (yet)
Telescoper Cubic-Size [2] (O(dxdy),O(dy)) no algo (yet)

(dx, dy) is the bidegree of the input f ; the softO notation Õ( ) indicates that
polylogarithmic factors are neglected; ω is the exponent of matrix multiplication.

Bounds on the bidegrees are also available for the certificates g.
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tions for algebraic functions. In C. W. Brown, editor, ISSAC’07: Proceedings
of the 2007 International Symposium on Symbolic and Algebraic Computa-
tion, pages 25–32. ACM Press, 2007.

[3] M. Bronstein. Symbolic integration I Transcendental functions. Springer-
Verlag, Berlin, second edition, 2005.

[4] K. O. Geddes and H. Q. Le. An algorithm to compute the minimal tele-
scopers for rational functions (differential-integral case). In Mathematical
software (Beijing, 2002), pages 453–463. World Sci. Publ., 2002.

[5] L. Lipshitz. The diagonal of a D-finite power series is D-finite. J. Algebra,
113(2):373–378, 1988.

2


