
Low Complexity Algorithms for Linear Recurrences

[Extended Abstract]

A. Bostan, F. Chyzak, B. Salvy
Algorithms Project, Inria Rocquencourt

78153 Le Chesnay (France)

{Alin.Bostan,Frederic.Chyzak,Thomas.Cluzeau,Bruno.Salvy}@inria.fr

T. Cluzeau
Café Project, Inria Sophia Antipolis

06902 Sophia Antipolis (France)

ABSTRACT
We consider two kinds of problems: the computation of poly-
nomial and rational solutions of linear recurrences with coef-
ficients that are polynomials with integer coefficients; indef-
inite and definite summation of sequences that are hyperge-
ometric over the rational numbers. The algorithms for these
tasks all involve as an intermediate quantity an integer N
(dispersion or root of an indicial polynomial) that is poten-
tially exponential in the bit size of their input. Previous
algorithms have a bit complexity that is at least quadratic
in N . We revisit them and propose variants that exploit
the structure of solutions and avoid expanding polynomials
of degree N . We give two algorithms: a probabilistic one
that detects the existence or absence of nonzero polynomial
and rational solutions in O(

√
N log2 N) bit operations; a de-

terministic one that computes a compact representation of
the solution in O(N log3 N) bit operations. Similar speed-
ups are obtained in indefinite and definite hypergeometric
summation. We describe the results of an implementation.

Categories and Subject Descriptors: I.1.2 [Symbolic
and Algebraic Manipulation]: Algorithms

General Terms: Algorithms, Experimentation, Theory

Keywords: Computer algebra, polynomial and rational so-
lutions, linear recurrences, summation, creative telescoping,
complexity

1. INTRODUCTION
A central quantity for many algorithms operating on lin-

ear recurrences and their solutions is the dispersion.

Definition 1. The dispersion set of two polynomials P
and Q in Q[n] is the set of positive integer roots of the re-
sultant R(h) = Resn(P (n), Q(n + h)). When this set is not
empty, its maximal element is called the dispersion of P
and Q.

Thus, the dispersion is the largest integer difference between
roots of P and Q. As shown by the simple example (P, Q) =

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’06July 9–12, 2006, Genova, Italy.
Copyright 2006 ACM 1-59593-276-3/06/0007 ...$5.00.

(n, n−N) with N ∈ N, the dispersion can be exponentially
large in the bit size of the input polynomials. It cannot get
much worse: when the polynomials have integer coefficients
whose absolute value is bounded by B, their dispersion is
bounded by 4B [12, Fact 7.11]. This exponential size yields
the dominant term in the worst-case complexity of many
algorithms computing — or operating on — solutions of
linear recurrences.

For instance, the computation of a Gosper-Petkovšek form
produces a polynomial whose degree N can be linear in the
dispersion of its input and thus exponential in its bit size.
If this polynomial is expanded it has N +1 coefficients; over
the integers, its total bit size is O(N2 log N). This form is
used in the first step of Gosper’s summation algorithm and
of Abramov’s algorithm for computing rational solutions of
linear recurrences. Thus, it makes an important contribu-
tion to the complexity of these algorithms. Once this form is
computed, these algorithms search for polynomial solutions
of an associated linear recurrence. This is done by linear
algebra using a bound on the possible degree of solutions
which is at least as large as N , leading again to a more than
quadratic complexity, even when no nonzero solution ex-
ists. In turn, a parameterized variant of Gosper’s algorithm
forms the basis of Zeilberger’s definite summation algorithm
which inherits this costly behaviour. By contrast, we pro-
vide a probabilistic algorithm that detects that no nonzero
rational solution of a homogeneous linear recurrence exists
in O(

√
N log2 N) bit operations and a deterministic algo-

rithm that gives a compact representation of all solutions
in O(N log3 N) bit operations. All the algorithms in the
present work eventually rely on the computation of polyno-
mial solutions of linear recurrences. In a previous work [7],
we dealt with the analogous problem in the linear differ-
ential case, by exploiting the linear recurrence satisfied by
the coefficients of power series solutions and reducing the
computation to that of matrix factorials. For the latter op-
eration, there exist fast probabilistic and deterministic al-
gorithms (see [8, 10] and the references in [7]). In the case
of linear recurrences, it is not true that the coefficients of
polynomial solutions satisfy a linear recurrence in general;
however, it becomes true if the polynomials are expanded
in a binomial basis [5, Ch. XIII, art. 5]. This is the basis
of a simple quadratic algorithm [3] to compute polynomial
solutions. In Section 2, we show how this conversion is per-
formed, we recall the basic results on matrix factorials and
apply them to get the announced complexities.

From there, in Section 3, we proceed in three steps: (i) we
slightly modify the computation of the Gosper-Petkovšek

31

form so that it does not expand the potentially large poly-
nomial but instead computes a first-order, moderately-sized
recurrence for it; (ii) we show that this first-order recurrence
can be used to compute a linear recurrence satisfied by the
numerators of rational solutions, in a complexity that is only
logarithmic in N , both in the homogeneous and nonhomoge-
neous cases; (iii) we then compute the numerators as poly-
nomial solutions via matrix factorials. The close relation
between Abramov’s and Gosper’s algorithm makes it possi-
ble to transfer these results to Gosper’s algorithm. Then in
Section 4, we show how this machinery can be adapted to
the parameterized variant needed in Zeilberger’s algorithm.
Finally, we describe experimental results in Section 5.

Notations and complexity measures. All along this
text, R denotes a linear difference operator with coefficients
in Z[n]. We view it as a polynomial in the non-commutative
ring Q〈n, Sn〉, where Sn is the shift operator Snu(n) = u(n+
1). Similarly, Sx, Sk, and Sm denote the shifts with respect
to x, k, and m. To any difference operator R is attached a
homogeneous linear recurrence equation Ru = 0. We view
the solution u either as a sequence (un) (also denoted un),
or as a function u(n) (the cases of particular interest being
polynomial and rational functions).

For our complexity analyses, the measure we use is the bit
(or boolean) complexity. For this purpose, our complexity
model is the multi-tape Turing machine, see for instance [18].
We use the number of bit operations to express time com-
plexities in this model. We call bit size (or simply size) of an
integer a 6= 0 the number λ(a) := blog |a|c+1 (log x denotes
the logarithm of x in base 2). By convention, we assume
that λ(0) = 1. The bit size of a matrix or vector is the sum
of the bit sizes of its entries. Polynomials given as input to
our algorithms are stored in a dense representation; a mea-
sure of their bit size is given by the sum of the bit sizes of
their coefficients, including the zero coefficients. Similarly,
the bit size of a linear recurrence equation (LRE) is the sum
of the bit sizes of its polynomial coefficients.

To simplify complexity estimates, we assume that the
product of two integers of bit size d can be computed within
I(d) = O(d log d log log d) bit operations using Fast Fourier
Transform [19]. To keep the notation compact, we some-

times write I(d) = Õ(d); the tilde indicates that the factors
polynomial in log d or smaller have been omitted.

For any prime number p, the bit complexities of the op-
erations (+,−,×,÷) in the finite field Fp := Z/pZ are in
O(I(log p) log log p). We assume that over the rings we use,
the product of two polynomials of degree at most d can be
computed within O(M(d)) base ring operations (each ring
operation being counted at unit cost) and that M(d) =

Õ(d) [9, ch. 2]. For computations in Fp[x], the bit complex-
ity is bounded by multiplying the arithmetic cost estimates
by the bit complexity of the basic operations in Fp.

In all our algorithms we are interested in reducing the
complexity with respect to a potentially exponential param-
eter x (related to a dispersion or to a root of an indicial
polynomial). Thus we consider as having cost O(1) any op-
eration whose complexity is polynomial in the bit size of the
input recurrence or polynomials, and concentrate on the de-
pendency of the complexity in x. In order to provide the
code with an actual bound on the size of primes that need
to be used so that the bound on probability of error is guar-
anteed, we have to perform a much more precise complexity

analysis taking into account all parameters (order, degree of
coefficients) (as in the proof of [7, Thm. 3]). Such a detailed
analysis will appear in [6].

2. POLYNOMIAL SOLUTIONS
In symbolic summation and in the resolution of linear re-

currences, all the known algorithms ultimately require poly-
nomial solutions of linear recurrence equations.

In this section, we give algorithms for computing descrip-
tions of the Q-vector space of solutions of a linear recurrence
operator R with coefficients in Z[n]:

Ru = ar(n)u(n + r) + · · ·+ a0(n)u(n) = 0, n ≥ 0. (1)

We focus on two types of solutions of such recurrences: so-
lutions with finite support and polynomial solutions.

In what follows, we make the hypothesis that 0 is an or-
dinary point of the recurrence. This means that the lead-
ing coefficient ar(n) does not vanish at any of the integers
0, 1, 2, . . .; in other words, when unwinding the recurrence,
no division by zero is encountered. This condition is ensured
after a generic translation n 7→ n+α. Under our complexity
assumptions, a proper α and the corresponding translation
can be computed in a polynomial number of bit operations,
so that there is no loss of generality for the problems we
consider. The general case (when 0 is not ordinary) is tech-
nically more demanding but does not change the complexity
estimates we give here. It will be presented in [6].

Let Sol(R) denote the vector space of solutions (u0, u1, . . .)
of (1). In the case of an arbitrary R, the dimension of
Sol(R) as a Q-vector space may be different from r (both
larger or smaller). However, when 0 is an ordinary point
of R, Sol(R) has dimension exactly r and a basis is given by

the sequences u(j), j = 0, . . . , r− 1, satisfying R and having

initial conditions u
(j)
i = (δj,i)i, for 0 ≤ i ≤ r−1, where δm,n

is Kronecker’s δ symbol (δm,m = 1, δm,n = 0 if m 6= n).
In §2.1, we describe the compact representation that forms

the basic data structure of our algorithms. Then, in §2.2
we recall classical results that allow for the efficient com-
putation of the Nth element of a solution of R. In §2.3
we describe the reduction from the problem of searching for
polynomial solutions to that of finding solutions with finite
support. Next, we give in §2.4 algorithms to compute finitely
supported and polynomial solutions of recurrences. We con-
clude this section by showing in §2.5 how the evaluation of
a polynomial and its finite differences can be performed ef-
ficiently in the compact representation.

2.1 Compact Representation
Classically, a polynomial solution u(n) of (1) is repre-

sented by its coefficients in the monomial basis {nk}. We use
an alternative data structure for u(n), which is motivated
by the observation that its coefficients ck in the binomial
basis {

`
n
k

´
} obey a recurrence with polynomial coefficients.

Example 1. The recurrence (n + 1)u(n + 1)− (n + N +
1)u(n) = 0 has a unique nontrivial monic polynomial solu-
tion u(n) = (n+1) · · · (n+N). To write down its coefficients
in the monomial basis at least 1

2
N2 log N bits are needed. In

contrast, u(n) can be represented by the recurrence

(k + 1)ck+1 − (N − k)ck = 0, c0 = N !

on the coefficients ck of u(n) in the binomial basis {
`

n
k

´
}; the

32

bit size of this new representation is only linear in N log N ,
most of the size being in the initial condition c0 = N !.

Definition 2. The compact representation of a polyno-
mial solution of (1) is the data of a linear recurrence and
initial conditions for its coefficients in the binomial basis,
together with an upper bound on its degree.

Our aim in this article is to demonstrate that this represen-
tation of polynomial solutions of recurrences can be carried
through different algorithms from indefinite and definite hy-
pergeometric summation and that it is beneficial from the
complexity point of view. The reason why this representa-
tion deserves the name “compact” appears in §2.4 below.

2.2 High-Order Terms of Sequences
Let (un) be a sequence satisfying (1). The recurrence R

can be rewritten as a first-order matrix recurrence Un+1 =
C(n + 1)Un, where Un is the vector (un, un−1, . . . , un−r+1)

t

and C is an r × r matrix with rational function entries.
The problem of computing a selected term uN reduces to
that of computing Ur−1 and the matrix factorial F(N) :=
C(N) · · · C(r). This makes sense since under our hypothesis
the leading term of the initial recurrence does not vanish
at 1, 2, . . . , N . The numerator and denominator of the ma-
trix factorial can be computed efficiently, either in Z using a
binary splitting algorithm, or modulo a prime p using a baby-
step/giant-step algorithm. These algorithms are described
in [7, §2.1, §3.1], see the references therein. For further use,
we extract from [7] the following result.

Theorem 1 ([7]). Let (Ui) be a sequence of vectors of
rational numbers that satisfies a recurrence Ui+1 = C(i +
1)Ui, with C(x) an r×r matrix with rational function entries
in Q(x). Let p be a prime number such that the denominator
of C does not vanish mod p at 1, 2, . . . , N . Then, as N →∞:

(a) F(N) = C(N) · · ·C(r) and UN have bit size O(N log N);
their values can be computed using O

`
I(N log N) log N

´
bit operations.

(b) F(N) mod p and UN mod p can be computed using

O
“
M(

√
N)I(log p)

”
bit operations.

(c) The rank of F(N) can be computed in Õ(
√

N) bit op-
erations using a probabilistic Monte Carlo algorithm.

2.3 Expansion in the Binomial Basis
For completeness, we recall here an algorithm from [4]

that we call RecToRec to perform the conversion from a re-
currence with polynomial coefficients to the recurrence sat-
isfied by the coefficients of series solutions in the binomial
basis. Earlier (and slightly more complicated) algorithms
have been given in [5, Chapter XIII] and [3, Section 4.2].
The starting point are the following two identities:

n + 1

k

!
=

n

k

!
+

n

k − 1

!
, n

n

k

!
= k

n

k

!
+(k+1)

n

k + 1

!
.

If u(n) =
P∞

k=0 ck

`
n
k

´
, then applying these identities to

rewrite u(n+1) and nu(n) and extracting coefficients of
`

n
k

´
shows that the ring morphism φ : Q[n, Sn] → Q[k, Sk, S−1

k]
defined by φ(Sn) = 1 + Sk and φ(n) = k(1 + S−1

k) sends a

homogeneous LRE satisfied by u(n) to another one satisfied
by ck. The image of (1) is a LRE of the form

(ar(k)Sr
k + br−1(k)Sr−1

k + · · ·+ b−s(k)S−s
k)ck = 0, k ≥ 0,

where the leading term is exactly that of (1) and the trailing
term may involve a negative shift (by convention, ck = 0
when k < 0). In particular, if 0 is an ordinary point for R,
so is it for φ(R). The resulting algorithm is as follows. Its
complexity is clearly polynomial in the bit size of R.

Algorithm RecToRec

Input: a recurrence Ru = 0, where u(n) =
P

k ck

`
n
k

´
.

Output: a recurrence S satisfied by the sequence (ck),
plus a set E of linear equations on its initial conditions.

1. Compute T = φ(R);

2. Let −s = valSk (T) be its valuation w.r.t. Sk;

3. If s < 0 return S := T and E := ∅,

4. Otherwise return S := Ss
kT and the equations E :=

{ ((Si
kT)c)

˛̨
k=0

= 0, i = 0, . . . , s− 1}.

2.4 Finite Support and Polynomial Solutions
We consider here the problem of computing a basis of

solutions with finite support, that is, whose terms beyond a
certain index are all zero. The degree of a solution with finite
support u is, by definition, the unique integer n such that
un 6= 0 and un+i = 0, for all i ≥ 1. A universal bound N on
the degrees of all solutions with finite support of the input
recurrence Ru = 0 is given by the largest positive integer
root of the trailing coefficient a0(n) of R. Note that N is
generally not bounded polynomially in the bit size of R.

Recall that Sol(R) has dimension r, with a basis B formed

by the sequences u(j), with 0 ≤ j ≤ r − 1, given by the ini-

tial conditions u
(j)
i = δj,i, for 0 ≤ i ≤ r − 1. Thus, a

finitely supported solution u is (an unknown) linear com-

bination
Pr−1

j=0 λju
(j) such that the elements in the slice

uN+1, . . . , uN+r all vanish. This yields linear constraints
on the initial conditions λj .

To determine these constraints, it is sufficient to compute
the values at indices N + 1, . . . , N + r of all the elements
in B using Thm. 1. The rank of the resulting r × r matrix
gives the dimension of the vector space of solutions with
finite support. Since the entries of this matrix have bit size
O(N log N), the desired λj ’s, which are determined by a
kernel computation, also have bit size O(N log N). Putting
together these considerations, we get the following result.

Theorem 2. There exists a basis (u(1), . . . , u(d)) (d ≤
r) of solutions of recurrence (1) with finite support, where

each u(i) is uniquely specified by the data of initial condi-
tions of bit size O(N log N), with N a bound on the inte-
ger roots of a0. The dimension d as well as the degrees of
the u(i)’s can be computed by a probabilistic algorithm using
Õ(M(

√
N)I(log N)) bit operations. The initial conditions of

the u(i)’s and their maximal degree D ≤ N can be computed
deterministically in O(I(D log D) log D) bit operations.

Thm. 2 is the basis for using the name “compact representa-
tion”: it shows that the compact representation has a size of
the same order as the initial conditions, while the expanded

33

polynomials have size O(N2 log N). In general, this latter
bound is reached.

Using the results in §2.3, Thm. 2 carries over literally to
the compact representation of a basis of polynomial solu-
tions of the recurrence Ru = 0. The corresponding state-
ment requires a bound on the degree of polynomial solutions
that is given by the roots of the indicial polynomial.

Definition 3. The indicial polynomial of R at infinity
is the trailing coefficient of RecToRec(R).

Corollary 1. The statement of Thm. 2 holds for poly-
nomial solutions of Ru = 0, with N the largest integer root
of the indicial polynomial of R at infinity.

Nonhomogeneous Equations. We now consider the equa-
tion Ru(n) = f(n), with coefficients in Z[n] and right-hand
side of degree m. Applying RecToRec and expanding f(n)
in the binomial basis, the initial problem boils down to
the search of finitely supported solutions of a nonhomoge-
neous equation Sc(k) = g(k), where g is a sequence with
finite support, g(i) = 0 for i > m. In matrix notation,
we have Uk+1 = C(k + 1)Uk + vk+1, where Uk is the vector
(uk, . . . , uk−r+1)

t and vk is the vector (g(k), 0, . . . , 0)t. Then
the vector of initial conditions Ur−1 satisfies the affine con-
straint A(BUr−1 + wm) = 0, where A := C(N + r)C(N +
r − 1) · · ·C(m + 1), B := C(m)C(m − 1) · · ·C(r), wi :=
vi + C(i)wi−1, for r + 1 ≤ i ≤ m + 1 and wr = vr.

For large N , using Thm. 1, the matrices A and B can be
computed efficiently. The bit size and the computational
cost of wm+1 is O(1). Thus, solving the affine system of

size Õ(N) yields the finitely supported solutions of Sc = g
and the polynomial solutions of Ru = f and we get the
following.

Corollary 2. Let f be a polynomial. Then the state-
ment of Thm. 2 holds for polynomial solutions of nonho-
mogeneous equations Ru(n) = f(n) as the largest integer
root N of the indicial polynomial of R at infinity becomes
large.

2.5 Evaluation in Compact Representation
The compact representation is not only a data structure

for intermediate computations. It can actually be exploited
further. In particular, we now detail the evaluation at an
algebraic number α of a polynomial u(x) and an iterated
difference ∆H(u) (where ∆ = Sx − 1 and H is potentially
large). The polynomial u is given by its degree N and the
recurrence

rX
i=0

ai(k)c(k + i) = 0 for all k ≥ 0

satisfied by its coefficients ck in the binomial basis {
`

x
k

´
},

together with initial conditions. The basic idea is embodied
in the following.

Lemma 1 (Folklore). If (uk) and (vk) are solutions
of linear difference equations with polynomial coefficients,
then so is the sequence (uN) defined by uN =

PN
k=0 ukvk.

This lemma can be applied to the sequences (ck) and
`

α
k

´
.

Evaluating the resulting sequence at N using Thm. 1 gives
u(α) forO(I(N log N) log N) bit operations, when N is large.

Using Pascal’s formula ∆H
`

x
i

´
=
`

x
i−H

´
, we deduce that

∆Hu(α) =
PN−H

k=0 ck+H

`
α
k

´
. The recurrence satisfied by the

sequence (ck+H)k is obtained by shifting by H the coeffi-
cients of the recurrence of (ck). This new recurrence has bit
size O(log H) and initial conditions can be determined by
binary splitting in O(I(N log N log H) log N log H) bit oper-
ations. Here, our asymptotic bound involves the two pa-
rameters N and H, as both are potentially exponential in
the input size. As above, the compact representation of the
recurrence satisfied by Dk :=

Pk
`=0 c`+H

`
α
`

´
can be deter-

mined efficiently, as well as its Nth term ∆Hu(α).

3. RATIONAL SOLUTIONS

3.1 Compact Gosper-Petkov̌sek Normal Form
The classical Gosper-Petkovšek normal form [16, 14] of

a reduced rational function P/Q in Q(n) consists of three
polynomials A, B, C in Q[n] such that

P (n)

Q(n)
=

A(n)

B(n)

C(n + 1)

C(n)
, (2)

with the constraints

gcd(A(n), C(n)) = 1, gcd(B(n), C(n + 1)) = 1,

and for all h ∈ N, gcd(A(n), B(n + h)) = 1. (3)

The degree N of the polynomial C(n) is potentially expo-
nentially large. Thus, in our algorithm CompactGPF below,
we modify the usual algorithm (e.g., in [17]) slightly so that
the polynomial C(n) is not expanded. Similar ideas appear
in [13] in the context of indefinite rational summation.

Algorithm CompactGPF

Input: an ordered pair (P (n), Q(n)) of polynomials.
Output: (A(n), B(n), {(gi(n), hi), i = 1, . . . , s}) such
that C(n) =

Q
i gi(n− 1) · · · gi(n− hi) satisfies (2).

1. Compute h1 > · · · > hs > 0 the positive integer
roots of Resn(P (n), Q(n + h));

2. A(n) := P (n), B(n) := Q(n);

3. For i from 1 to s do

a. gi(n) := gcd(A(n), B(n + hi));

b. A(n) := A(n)/gi(n), B(n) := B(n)/gi(n− hi);

4. Return (A, B, {(gi(n), hi), i = 1, . . . , s}).

Example 2. CompactGPF(n, n−N) = (1, 1, {(n, N)}).

Note that the input is an ordered pair (P, Q) and not a ra-
tional function P/Q. The output of the algorithm changes
if (P, Q) is replaced by (FP, FQ) for F ∈ Q[n]. This will be
necessary for our treatment of rational solutions below. On
the other hand, the output A, B, and gi’s also satisfy (3)
whenever P and Q have no common factor, so that the
Gosper-Petkovšek normal form of a rational function in Q(n)
given in reduced form P/Q is obtained by CompactGPF(P, Q).

As an outcome of this algorithm, the rational function
C(n)/C(n + j) (j = 1, 2, . . .) is easily obtained as

C(n)

C(n + j)
=

sY
i=1

gi(n + j − 1− hi) · · · gi(n− hi)

gi(n + j − 1) · · · gi(n)
. (4)

34

Algorithm HomCompactRatSols

Input: a homogeneous LRE Ru(n) = 0.
Output: a basis of its rational solutions in compact form

1. (A, B, C) := CompactGPF(ar(n− r + 1), a0(n));

2. Normalize C(n)R(v(n)/C(n)) using (4) and denote
the result T v(n);

3. Compute a basis B of the polynomial solutions of
T v(n) = 0;

4. Return {p(n)/C(n) | p(n) ∈ B}.

For large N and j = O(1), it has “small” numerator and de-
nominator of degrees bounded by j times those of P and Q.
This equation for j = 1 is a homogeneous LRE that plays the
role of a compact representation of C. The initial value C(0)
(more generally C(k) where k = O(1)) has size O(N log N)
and can be computed by Thm. 1 within O(I(N log N) log N)
bit operations. In the next sections, we use this to design
“compact” variants of Abramov’s and Gosper’s algorithms.

Proposition 1. Algorithm CompactGPF is correct. For
(P, Q) with rational coefficients, it has deterministic polyno-
mial bit complexity in the bit size of (P, Q).

Proof. The correctness is that of the classical algorithm
since the only difference is that we do not expand C. Step 1
is dealt with by a deterministic algorithm due to Loos [15]
(cf. [12, 13] for faster probabilistic algorithms). Step 3 is
performed at most deg P deg Q times, and each step is poly-
nomial by the classical algorithms as found in [11].

3.2 Compact Rational Solutions
We now consider rational solutions of the LRE Ru(n) =

f(n), with f a polynomial in Q[n].
Our starting point is the following result of Abramov [1].

Lemma 2 (Abramov). The polynomial C(n) of the
Gosper-Petkovšek form of (ar(n− r + 1), a0(n)) is a multi-
ple of the denominator of all rational solutions of Ru(n) =
f(n).

Abramov’s algorithm first computes C(n), then performs
the change of variable u(n) = v(n)/C(n), leading to

ar(n)
v(n + r)

C(n + r)
+ · · ·+ a0(n)

v(n)

C(n)
= f(n), (5)

whose polynomial solutions v(n) are then sought.
In the homogeneous case (f(n) = 0), using (4) reduces

this equation to an equation of polynomial size. This is
described in Algorithm HomCompactRatSols (see Figure).
In Step 2, the “Normalize” operation consists in expand-
ing C(n)/C(n + j) using (4) and taking the numerator of
the resulting expression. Also, if necessary, we change n
into n + α with C(α) 6= 0, so that 0 is not a singular point
in Step 3. This can be detected and changed at a cost
of O(I(N log N) log N) operations. In Step 4, the output
is given by the compact forms of the numerators and C is
given by the output of CompactGPF.

In the nonhomogeneous case, reducing (5) to the same
denominator would lead to an equation whose right-hand

side has a potentially exponential degree. Instead, we con-
sider the homogeneous operator S = (f(n)Sn − f(n + 1))R,
whose bit size is polynomial in that of Ru(n) = f(n) and
that can be treated by the algorithm above. If un is a ra-
tional solution of S, then wn = Run is a rational solution
of f(n)wn+1 = f(n + 1)wn. This implies that wn = λf(n)
for all n larger than the largest root of f and since wn is
rational, also for all other values of n. Thus fixing λ so that
Ru(k) = f(k) for any k such that f(k) 6= 0 concludes the
computation. This is the basis of the following algorithm.

Algorithm NonhomCompactRatSols

Input: a LRE Ru(n) = f(n), with f 6= 0.
Output: a particular rational solution p and a ba-
sis (b1, . . . , bd) of rational solutions of Ru in compact
form

1. W := HomCompactRatSols((f(n)Sn − f(n + 1))R);

2. Find k ∈ N such that f(k) 6= 0;

3. Write R(
P

w∈W ξww(k)) =: U(ξ) for an unknown
ξ = (ξw)w∈W and solve U(ξ) = 0 for a basis

(µ(1), . . . , µ(d)) of its solution space and U(ξ) =
f(k) for a particular solution λ;

4. Return p :=
P

w∈W λww(n) and the bi’s given by

bi :=
P

w∈W µ
(i)
w w(n).

In Step 2, just iterating k = 0, 1, . . . till a point where f
is found to be nonzero is sufficient for our purpose. If N
is a bound on the degree of the numerators and denomi-
nator computed in Step 1, then the values of the w(k)’s in
Step 3 have size O(N log N) and can be computed by binary
splitting. From there, it follows that the affine equation in
Step 3 has coefficients of size O(N log N), which is then also
a bound on the size of its solutions. These solutions can be
computed in the form of a point and a basis of a vector space
within O(I(N log N) log N) bit operations by standard linear
algebra. The same complexity is sufficient for the products
of initial conditions in Step 4.

The results of this section are summarized as follows.

Theorem 3. Let N be the sum of the largest nonnega-
tive integer root of the indicial polynomial of R at infinity
and the degree of the polynomial C(n) of (2) with P (n) =
ar(n−r+1) and Q(n) = a0(n). The dimension of the affine
space of rational solutions of Ru(n) = f(n) can be computed

probabilistically using Õ(M(
√

N)I(log N)) bit operations. A
compact representation of the solutions can be computed de-
terministically in O(I(N log N) log N) bit operations.

Proof. The largest integer root of the indicial polyno-
mial of R at infinity is a bound on the valuations of power
series solutions of Ru = 0 at infinity, including the valuation
of v(n)/C(n). Adding the degree of C gives the announced
bound on the degree of polynomial v’s. From there, the
theorem follows from Cor. 1.

3.3 A Compact Gosper Algorithm
Given a hypergeometric term t(n), i.e., such that t(n +

1)/t(n) =: r(n) ∈ Q(n), Gosper’s algorithm [14] finds its
indefinite hypergeometric sum, if it exists. Such a sum
is necessarily of the form u(n)t(n) for some u(n) ∈ Q(n).

35

Zeilberger’s Algorithm

Input: two functions t(n+1,m)
t(n,m)

and t(n,m+1)
t(n,m)

in Q(n, m).

Output: a LRE
Pr

i=0 λi(m)Si
m(
P

n t(n, m)) = 0.

For r = 0, 1, 2, . . . do

1. Construct the equation (Er)

u(n+1, m)
t(n + 1, m)

t(n, m)
−u(n, m) =

rX
i=0

λi(m)
t(n, m + i)

t(n, m)
,

2. Find if there exist λi’s in Q(m) so that (Er) admits
a solution u(n, m) ∈ Q(n, m);

3. If so, compute and return them; otherwise proceed
to the next r.

Thus, the problem is reduced to finding rational solutions
of u(n + 1)r(n) − u(n) = 1. This can be solved by Non-
homCompactRatSols. A further optimization is present in
Gosper’s algorithm: if r(n) = P (n)/Q(n) in reduced form,
the polynomial B(n) of (2) satisfies (3), so that it divides
the numerator of u(n + 1). (This can be generalized to de-
tect factors of numerators in arbitrary LRE’s). This does
not affect the expression of the complexity result, which is
as follows.

Theorem 4. Let t(n) be a hypergeometric term such that
t(n+1)/t(n) =: P (n)/Q(n) ∈ Q(n), with gcd(P, Q) = 1. Let
N be a bound on the degree of C in (2) and on the largest pos-
itive integer root of the indicial polynomial of P (n)Sn−Q(n)
at infinity. Then the existence of an indefinite hypergeomet-
ric sum of t(n) can be determined by a probabilistic algo-

rithm using Õ(M(
√

N)I(log N)) bit operations, a compact
representation of it can be computed deterministically us-
ing O(I(N log N) log N) bit operations.

Note that in the special case of rational summation (i.e.,
t(n) ∈ Q(n)), it is actually possible to decide the existence
of a rational sum in only polynomial complexity, see [13].

4. DEFINITE HYPERGEOMETRIC SUMS
A bivariate hypergeometric term t(n, m) is such that both

t(n+1, m)/t(n, m) and t(n, m+1)/t(n, m) belong to Q(n, m).
Given such a term, Zeilberger’s algorithm [21] computes a
LRE satisfied by T (m) =

P
n t(n, m). The idea is to synthe-

size a telescoping recurrence, i.e., a rational function u(n, m)
and a linear operator P (m, Sm) such that

(Sn − 1)u(n, m)t(n, m) = P (m, Sm)t(n, m).

Indeed, summing over n and granted boundary conditions
known as “natural boundaries”, we obtain P (m, Sm)T (m) =
0. If P was known, then Gosper’s algorithm would find the
left-hand side. This is the basis of Zeilberger’s algorithm
(see Figure). Termination is guaranteed only if such a LRE
exists. This occurs in the so-called “proper-hypergeometric”
case [20] and a general criterion has been given by Abramov [2].

Note that knowing u permits to check the output oper-
ator P by simple rational function manipulations, which is
why the rational function u is called “certificate” in [17].

Zeilberger’s algorithm is based on a refinement of Gosper’s
algorithm for Steps 2 and 3. It reduces the computation in

Small Linear System

Input: the equation (Er) from Zeilberger’s algorithm.
Output: an equivalent system linear in the λi.

1. Compute Ru(n) = f(n), the numerator of (Er);

2. Compute a multiple C(n) of the denominator of its
rational solutions and a bound N on the degree in n
of their numerators;

3. Compute Sv(n), the numerator of
C(n)(f(n)Sn − f(n + 1))R(v/C)(n);

4. Compute (T , E) := RecToRec(S); set E := E ∪
{R(v/C)(0) = f(0)}; let s be the order of T ;

5. Compute the value (cN+1, . . . , cN+s) =: V for a
nonzero sequence solution of RecToRec(CR(v/C));

6. Compute the value W := (dN+1, . . . , dN+s) for an
arbitrary sequence solution of T obeying E ; W is
of the form W ? +

Pr
i=0 λiWi, only W ? depends on

the initial conditions;

7. The system (Σ) := (µV +
Pr

i=0 λiWi = 0) is simul-
taneously linear in the λi’s and µ.

Step 2 to solving a system that is linear simultaneously in
the λi’s and in another set of N +1 variables, where N is po-
tentially exponential in the bit size of (Er), see e.g. [17, §6.3].
An equivalent linear system in a small number of variables
can be computed by Algorithm Small Linear System (see Fig-
ure). The important point is linearity: not all solutions of T
are linear in the λi’s, but this property is ensured when the
initial conditions satisfy E . Indeed, in Step 2, by Lemma 2,
C does not depend on the λi’s. Then, by induction on n,
starting from R(v/C)(0) = f(0), the factor f(n) of the lead-
ing coefficient in S cancels out and thus the solution v(n)
is linear in the λi. This property is then preserved by the
linearity of RecToRec. The final system (Σ) has solutions if
and only if (Er) has rational solutions.

The description of Small Linear System is geared towards
the use of compact representations and matrix factorials in
intermediate steps. This is straightforward for Steps 1–5. In
Step 6, we cannot make direct use of the factorial of the ma-
trix associated to T : this matrix involves the λi’s rationally
and its factorial has too large a size for our target complex-
ity. Instead, we exploit the linearity in the λi’s by construct-
ing the vector W using matrix factorials for λ a vector of
0’s with a 1 in ith position for i = 0, . . . , r and setting the
initial condition to 0, which gives the coefficients Wi.

From there we derive our compact version of Zeilberger’s
algorithm given in Compact Zeilberger Algorithm. In Step 2,
the whole construction can be performed by matrix factori-
als with integer entries, within the complexities of Thm. 1.
If a rational solution (λi(m)) exists, then the system (Σ)
has the corresponding (λi(m0)) for solutions. Thus if (Σ)
does not have a nonzero solution, (Er) does not have a ra-
tional one. This gives a fast probabilistic test. Then, in
Step 5, the algorithm is used again with matrices that are
polynomial in the variable m. In that case, the system (Σ)

can be computed by binary splitting with Õ(M(N) log N)

36

Compact Zeilberger Algorithm

Input: two functions t(n+1,m)
t(n,m)

and t(n,m+1)
t(n,m)

in Q(n, m).

Output: a LRE
Pr

i=0 λi(m)Si
m(
P

n t(n, m)) = 0.

For r = 0, 1, 2, . . . do

1. Take a random m0 ∈ Q and construct (Er)
with m = m0;

2. Apply Small Linear System to this equation;

3. Find if there exist nonzero solutions to this system;

4. If not, proceed to the next r;

5. Otherwise, construct (Er), apply Small Linear Sys-
tem and return its solutions. If it does not have
nonzero rational solutions, go to Step 1.

arithmetic operations. The final system has coefficients of
degree O(N) with coefficients of bit size O(N log N) each
and this is also the size of the λi’s to be found. At the same
time, we find µ, which gives us a compact representation of
the certificate.

An optimization is obtained by using the values of the
λi(m0)’s to compute the value N ′ of the degree of the corre-
sponding sequence. With high probability this is the actual
degree in n of the numerator of u(n, m), which can be much
smaller than N , thus saving a lot of computation in Step 5.

The following theorem summarizes this section.

Theorem 5. Let t(n, m) be hypergeometric over Q. Let N
be the maximal number of variables in the linear system
solved in the classical version of Zeilberger’s algorithm. Then
it is possible to detect probabilistically that this system does
not have any nonzero solution in Õ(M(

√
N)I(log N)) bit op-

erations. If it does have a solution, it is possible to com-
pute the corresponding λi’s of degree O(N) and total bit size
O(N2 log N), as well as a compact representation of the cer-

tificate, in Õ(M(N)I(N log N)) bit operations.

For the sake of comparison, a crude analysis by unrolling the
triangular system of dimension N + r + 2 and taking into
account coefficient growth leads to a Õ(N4) bit complexity
estimate for the classical algorithm, which can be reduced
to Õ(N3) by using the binomial basis.

5. EXPERIMENTAL RESULTS

5.1 Rational Solutions
We consider two families of linear recurrences:

2n(N − n)(−4N − 3nN + 6 + 3n2 + 8n)u(n)

− (n + 1)(−3nN + 2N + 3n2 − 4n− 4)(n + 1−N)u(n + 1)

+ (n + 2)(−3nN −N + 3n2 + 2n + 1)(n + 2−N)u(n + 2) = 0,

2n(n− 2N)(n−N)(n2 − 3nN + 3n + 2N2 − 3N + 2)u(n)

−(n+1)(n+1−2N)(n+1−N)(3n2+6n−9nN+6N2−4N)u(n+1)

+(n+2)(n+2−2N)(n+2−N)(n2+n−3nN+2N2)u(n+2) = 0.

The first one (R1) does not have any rational solution, while
the second one (R2) has 1/(n(n−2N)) as a solution. In both
cases, when N is a large integer, a large dispersion has to

Classical Compact
N R1 R2 R1 R2

27 5.4 0.1 0.044 0.019
28 52.8 0.1 0.046 0.019
29 518.0 0.2 0.048 0.021
210 >10000 1.0 0.048 0.021
211 6.2 0.049 0.021
212 46.4 0.051 0.022
213 362.0 0.052 0.023
214 2860. 0.053 0.023
215 >10000 0.055 0.024

240 0.083 0.037

Table 1: Timings (in sec.) for classical and compact
versions of Abramov’s algorithm

be considered. In Table 1, we give a comparison of the tim-
ings1 obtained by our Maple prototype (denoted Compact)
and that of the command ratpolysols of Maple’s pack-
age LREtools (denoted Classical). This table illustrates the
“nonexponential” character of the compact versions of the
algorithms. In the first case, both output are identical (no
solution). In the second case, however, we return a compact
representation of the output. For instance, with N = 2100

we get (in 0.04s) the denominator (n(n−2100)(n−2101)) (in
expanded form) and for the numerator the recurrence

(1− k2)ck + (2100 + Ak − k2)ck+1

+ (k2 − 2k −B)ck+2 + (k2 − Ck + D)ck+3 = 0,

satisfied by its coefficients in the binomial basis, together
with initial conditions c0 = −2100, c1 = 1, where the coeffi-
cients A, . . . , D are 200 bit long integers.

5.2 Definite Hypergeometric Summation
We consider the following family of hypergeometric terms:

t(n, m) =

2n + m + N

N

!
2m

2n

!
m

n

!
.

For N ∈ N, the sum
P

n t(n, m) satisfies a third-order homo-
geneous LRE. When Zeilberger’s algorithm is executed on
this term, the bound it has to use on the degrees of numera-
tors of rational solutions of the equation (Er) is N +3(r−1).
This plays the rôle of a “large” N and makes it possible to
exhibit the complexity behaviour of the algorithms.

In Table 2, we give a comparison of the timings obtained
by our prototype implementation in Maple (denoted “Com-
pact”) and those obtained by Maple’s Zeilberger command
in the package SumTools:-Hypergeometric (denoted “Clas-
sical”). The indication “> 2Gb” means that the compu-
tation had to be stopped after two gigabytes of memory
had been exhausted. The first part of the table (Classical)
suggests that the implementation does not behave well for
large N : the observed behaviour is exponential instead of
polynomial. Even then, it is still much better than our im-
plementation. Indeed, we have implemented only the case
with rational values of m and for small N it often takes
longer for our implementation to compute the result with
this value than for the classical method to find the result

1All our tests have been run on an Intel Xeon at 3.6GHz.

37

Classical
N r = 0 r = 1 r = 2 r = 3
16 0.1 0.2 0.3 0.6
32 0.3 0.7 1.5 3.4
64 2.9 6.8 12. 34.3
128 43.9 131.0 276.4 1202.6
256 1793.4 > 2Gb

Compact, random m
N r = 0 r = 1 r = 2 r = 3
16 0.1 0.3 0.9 2.5
32 0.1 0.5 1.4 5.1
64 0.2 0.7 2.6 7.3
128 0.3 1.5 5.0 15.2
256 0.5 2.7 11.3 35.5
512 1.0 6.3 27.8 106.2
1024 2.2 15.7 72.7 240.1

Table 2: Timings (in sec.) for classical and compact
versions of Zeilberger’s algorithm

with a formal m. However, things change as N gets larger:
the predicted behaviour is well observed. When N is mul-
tiplied by 2, the time is multiplied by slightly more than 2.
Had we implemented the baby-step/giant-step version of bi-
nary splitting, the timings in the columns for random m
would have been much better, since the time should be mul-
tiplied by slightly more than

√
2 from one line to the next.

Our experiments with symbolic m show that so far, our com-
plexity result is more of a theoretical nature: although the
degrees of the coefficients of the equations grow like O(N),
the constant in front of the O term is about 18 in this exam-
ple, and a massive cancellation takes place in the final linear
solving. The result has degrees that also grow like O(N),
but with a much smaller constant, so that a direct resolution
in Õ(N4) is much faster in this range than our Õ(N2).

Acknowledgements
This work was supported in part by the French National
Agency for Research (ANR Gecko). Comments of the refer-
ees on the first version of this article have been very useful.

6. REFERENCES
[1] S. A. Abramov. Rational solutions of linear difference

and q-difference equations with polynomial
coefficients. Programming and computer software,
21(6):273–278, 1995.

[2] S. A. Abramov. Applicability of Zeilberger’s algorithm
to hypergeometric terms. In T. Mora, editor,
ISSAC’02, pages 1–7. ACM Press, July 2002.

[3] S. A. Abramov, M. Bronstein, and M. Petkovšek. On
polynomial solutions of linear operator equations. In
A. H. M. Levelt, editor, ISSAC’95, pages 290–296,
New York, 1995. ACM Press.

[4] S. A. Abramov, M. Petkovšek, and A. Ryabenko.
Special formal series solutions of linear operator
equations. Discrete Mathematics, 210(1–3):3–26, 2000.

[5] G. Boole. A treatise on the calculus of finite
differences. Macmillan, London, 2nd edition, 1872.

[6] A. Bostan, F. Chyzak, T. Cluzeau, and B. Salvy. Fast
algorithms for polynomial and rational solutions of
linear operators equations, In preparation.

[7] A. Bostan, T. Cluzeau, and B. Salvy. Fast algorithms
for polynomial solutions of linear differential
equations. In M. Kauers, editor, ISSAC’05, pages
45–52, New York, 2005. ACM Press.

[8] A. Bostan, P. Gaudry, and É. Schost. Linear
recurrences with polynomial coefficients and
computation of the Cartier-Manin operator on
hyperelliptic curves. In International Conference on
Finite Fields and Applications (Toulouse, 2003),
volume 2948 of Lecture Notes in Computer Science,
pages 40–58. Springer–Verlag, 2004.

[9] P. Bürgisser, M. Clausen, and M. A. Shokrollahi.
Algebraic complexity theory, volume 315 of
Grundlehren der Mathematischen Wissenschaften.
Springer-Verlag, Berlin, 1997.

[10] D. V. Chudnovsky and G. V. Chudnovsky.
Approximations and complex multiplication according
to Ramanujan. In Ramanujan revisited, pages
375–472. Academic Press, Boston, MA, 1988.

[11] J. von zur Gathen and J. Gerhard. Modern computer
algebra. Cambridge University Press, New York, 1999.

[12] J. Gerhard. Modular algorithms in symbolic
summation and symbolic integration. Number 3218 in
Lecture Notes in Computer Science. Springer, 2004.

[13] J. Gerhard, M. Giesbrecht, A. Storjohann, and E. V.
Zima. Shiftless decomposition and polynomial-time
rational summation. In ISSAC’03, pages 119–126,
New York, 2003. ACM.

[14] R. W. Gosper. Decision procedure for indefinite
hypergeometric summation. Proc. of the National
Academy of Sciences USA, 75(1):40–42, Jan. 1978.

[15] R. Loos. Computing rational zeros of integral
polynomials by p−adic expansion. SIAM Journal on
Computing, 12(2):286–293, May 1983.

[16] M. Petkovšek. Hypergeometric solutions of linear
recurrences with polynomial coefficients. Journal of
Symbolic Computation, 14(2-3):243–264, 1992.

[17] M. Petkovšek, H. S. Wilf, and D. Zeilberger. A = B.
A. K. Peters, Wellesley, MA, 1996.

[18] A. Schönhage, A. F. W. Grotefeld, and E. Vetter. Fast
algorithms. Bibliographisches Institut, Mannheim,
1994. A multitape Turing machine implementation.

[19] A. Schönhage and V. Strassen. Schnelle Multiplikation
großer Zahlen. Computing, 7:281–292, 1971.

[20] H. S. Wilf and D. Zeilberger. An algorithmic proof
theory for hypergeometric (ordinary and “q”)
multisum/integral identities. Inventiones
Mathematicae, 108:575–633, 1992.

[21] D. Zeilberger. The method of creative telescoping.
Journal of Symbolic Computation, 11:195–204, 1991.

38

	Introduction
	Polynomial Solutions
	Compact Representation
	High-Order Terms of Sequences
	Expansion in the Binomial Basis
	Finite Support and Polynomial Solutions
	Evaluation in Compact Representation

	Rational Solutions
	Compact Gosper-Petkovšek Normal Form
	Compact Rational Solutions
	A Compact Gosper Algorithm

	Definite Hypergeometric Sums
	Experimental Results
	Rational Solutions
	Definite Hypergeometric Summation

	REFERENCES -9pt

