On the Existence of Telescopers for
Mixed Hypergeometric Terms

Shaoshi Chen®, Frédéric Chyzak”
Ruyong Feng®, Guofeng Fu®, Ziming Li®

“Key Laboratory of Math.-Mech., AMSS,
Chinese Academy of Sciences, 100190 Beijing, China

®INRIA, 91120 Palaiseau, France

Abstract

We present a criterion for the existence of telescopers for mixed hypergeometric terms, which
is based on additive and multiplicative decompositions. The criterion enables us to determine
the termination of Zeilberger’s algorithms for mixed hypergeometric inputs, and to verify that
certain indefinite sums do not satisfy any polynomial differential equation.
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1. Introduction

Given a sum U, := Zf:o Um,n to be computed, creative telescoping is a process
that determines a recurrence in m satisfied by the univariate sequence U = (Up,) from
a system of recurrences in m and n satisfied by the bivariate summand u = (U ). A
natural counterpart exists for integration. Algorithmic research on this topic has been
initiated by Zeilberger in the early 1980s, leading in the 1990s to creative-telescoping
algorithms for summands and integrands described by first-order linear equations, i.e., for
hypergeometric terms and hyperexponential functions (Zeilberger, 1990a, 1991; Almkvist
and Zeilberger, 1990).
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The termination problem of Zeilberger’s algorithms has been extensively studied in
the last two decades (Wilf and Zeilberger, 1992b; Abramov and Le, 2002; Abramov, 2003;
Chen et al., 2005) and can be related to existence problems for other operations, like the
computation of diagonals (Lipshitz, 1988). The main output of creative telescoping is the
recurrence on the sum U. It is called a telescoper for u. Zeilberger’s algorithms terminate
if and only if telescopers exist, whence the interest to discuss their existence. Zeilberger
(1990b) shows that holonomicity, a notion borrowed from the theory of D-modules, im-
plies the existence of telescopers. In particular, the fundamental theorem in (Wilf and
Zeilberger, 1992a) states that telescopers always exist for proper hypergeometric terms.
However, holonomicity is merely a sufficient condition, i.e., there are cases in which the
input functions are not holonomic (proper) but Zeilberger’s algorithms still terminate,
see Chyzak et al. (2009). Therefore, a challenging problem is to find a necessary and
sufficient condition that enables us to determine the existence of telescopers.

In view of the theoretical difficulty, special attention has been focused on the subclass
of hypergeometric terms, hyperexponential functions, and mixed hypergeometric terms
(see Definition 2.8). In the continuous case, the results by Bernstein (1971), Kashiwara
(1978), Lipshitz (1988) and Takayama (1992) show that every hyperexponential function
has a telescoper. This implies that Zeilberger’s algorithm always succeeds on hyperex-
ponential inputs. However, the situation in other cases turns out to be more involved.
In the discrete case, the first complete solution to the termination problem has been
given by Le (2001) and Abramov and Le (2002), by deciding whether there exists a
telescoper for a given bivariate rational sequence in the (g)-discrete variables m and n.
According to their criterion, the rational sequence (1/(m* 4 n?)) ., has no tele-
scoper. The criterion has been extended to the general case of bivariate hypergeometric
terms by Abramov (2002, 2003). He proved that a hypergeometric term can be written
as a sum of a hypergeometric-summable term and a proper one if it has a telescoper,
see (Abramov, 2003, Theorem 10). Similar results have been obtained in the g-discrete
case by Chen et al. (2005).

Almkvist and Zeilberger (1990) presented a continuous-discrete analogue of creative
telescoping. This analogue is useful in the study of orthogonal polynomials (Koepf, 1998,
Chapters 10-13). In analogy with the discrete case, not all mixed hypergeometric terms
have telescopers. Therefore, an Abramov-like criterion is also needed in the mixed case.

In order to unify the various cases of mixed rational terms, Chen and Singer (2012) re-
cently presented a criterion that is based on residue analysis for the existence of telescop-
ers for bivariate rational functions. In the present paper, we give a criterion, Theorem 6.3,
on the existence of telescopers for mixed hypergeometric terms, including continuous-
discrete, continuous-g-discrete and discrete-g-discrete terms. The criterion determines
whether Zeilberger’s algorithms for mixed hypergeometric terms terminate. Moreover,
the non-existence of telescopers makes us able to verify that some indefinite sums do not
satisfy any polynomial differential equation. See (Hardouin and Singer, 2008; Schneider,
2010) and Example 6.8 in this paper.

The rest of this paper is organized as follows. An algebraic setting for mixed hyperge-
ometric terms is described in Section 2, and the existence problem of telescopers is stated
in Section 3. In Section 4, we define the two notions of exact and proper terms, and we
describe two kinds of decompositions: additive and structural. These notions and decom-
positions are crucial for establishing our criterion. A necessary condition on the existence
of telescopers is presented in Section 5. The criterion is given in Section 6, which is based
on the fundamental theorem in Wilf and Zeilberger (1992a). The appendix contains a
detailed proof of the fundamental theorem in the mixed setting (Theorem 6.1).



2. Preliminaries

The goal of this section is to present an algebraic setting for mixed hypergeometric
terms in continuous-discrete, continuous-g-discrete, and discrete-g-discrete cases.

Throughout the paper, we let k be an algebraically closed field of characteristic zero,
and ¢ be a nonzero element of k. Assume further that ¢ is not a root of unity. Let k(z,y)
be the field of rational functions in  and y over k. For an element f € k(z,y), the
denominator and numerator of f are denoted by den(f) and num(f), respectively. They
are two coprime polynomials in k[z,y], and numerators are monic with respect to a
pre-selected term order.

This section contains three subsections. In §2.1, we describe a field that will serve as
ground field in our subsequent algebraic constructions, and we define a (noncommutative)
ring of Ore polynomials whose elements will be regarded as linear functional operators.
In §2.2, we describe a (commutative) ring extension of the ground field, and recall from
(Chen et al., 2011) the notion of compatible rational functions. In §2.3, we define the
notion of mixed hypergeometric terms that occur in the study of existence of telescopers.
The terms are contained in the ring extension described in the previous subsection.

2.1.  Fields endowed with a pair of operators

Let 0, = 0/0, be the usual derivation with respect to z, and §, = 9/9, be that with
respect to y. For an element f € k(z,y), we define the shift operators o, and o, as

Jw(f({,&y)) = f(.’L' + 17y) and Uy(f($>y)) = f(:c,y + 1)7

respectively, and g-shift operators 7, and 7, as

7 (f(z,y)) = flgz,y) and 7,(f(z,y)) = f(=,qy),

respectively. To describe the mixed cases concisely, we introduce the following notation.

Convention 2.1. Set © := {d;,0,,7:} X {Jy, 04, 7y} \ {(02,9y), (0z,0y), (Tz,7y)}. A
pair (05, 6,) is always assumed to be in O, and is called a mized pair of operators.

Note that 6, 0 0,(f) = 0, 0 0,(f) for all f € k(z,y). In the sequel, k(z,y) is usual-
ly endowed with a mixed pair (6,,6,) of operators. The resulting structure is denoted
as (k(z,y), (0z,0y)). Given a field (k(x,y), (0z,0y)), one can define a ring of Ore polyno-
mials (Chyzak and Salvy, 1998), which we denote here by k(x,y)(0z, 9y). Its commutation
rules are 0,0, = 0,0, and, for every f € k(z,y) and z € {x,y}, 0.f = f0. + 0.(f) if
0, =06, and 0, f =0.(f)0, if0, € {0, 7.}

According to the different choices of operator pairs in ©, the associated Ore rings corre-
spond to the rings of linear differential-difference, differential-g-difference, and difference-
g-difference operators, respectively. Telescopers to be studied in the sequel are regarded
as elements of associated Ore rings. Since telescopers need to be studied type by type,
we denote 9, by D,, S, and T, when 6, is chosen to be ., o, and 7,, respectively. The
same convention applies when x is replaced by y. These fields and associated Ore rings
are illustrated in Table 2.3.

Remark 2.2. Table 2.3 contains three choices, although there are six distinct mixed
pairs of operators in ©. This is because the last three pairs can be identified with the
first three when the indeterminates = and y are switched.



Choice (0s,0y) | Ground field (k(z,y), (0z,0y)) | Associated Ore ring k(z,y){0z, 0y)
(02, 07y) (k(z,9), 0z, 7)) k(z,y){Dz, Sy)
(0a,7y) (k(x, y), (02, 7y)) k(z,y){(Dz, Ty)
(02, 7y) (k(z,9), (02, 7y)) k(z,y)(Sz, Ty)

Table 2.3. Ground fields and rings of Ore polynomials
2.2.  Linear functional operators and compatible rational functions

A first-order mixed linear-functional system is of the form

0.(z) = az,

0,(z) = bz, W

where (0,,6,) € © and a,b € k(z,y). For brevity, we call (1) a first-order mized system.
Example 2.4. Let (0,,60,) = (05,0y), a =y/x and b = —x. The system (1) becomes

0e(2) =22,
oy(z) = -z 2.

It is straightforward to verify that the expression (—x)Y solves this mixed system. More-
over, this system does not have any nonzero rational solution in k(z,y): if it had, we
could write such a solution in the form

P Pmy™ 4 -+ Do . .
z=—=—>"———--_ where p; and ¢; are in k(x) with 0.
Q gny™ + -+ qo Di 4j ( ) Pmn 7
By the equality o,(z) = —xz, we have 0,(P)Q = —2Po,(Q). Equating the leading
coeflicients with respect to y yields ppq¢n = —xPmgn, which implies that x = —1. This is
a contradiction with the assumption that x is transcendental over k.

The example given above shows that solving a mixed system generally requires to
extend the field k(z,y). This motivates us to consider ring extensions of k(x,y) endowed
with a mixed pair of operators.

Definition 2.5. For a pair (6,,6,) € O, we call a tuple (R, (Gx,ﬂy)) a ring extension
of (k(x,v), (0s,0,)) if the following conditions are satisfied.
i) R is a commutative ring containing k(z,y).

(ii) 0, : R — R is an extension of 6, and , : R — R is an extension of 0,,.
(iii) is a derivation on R if 8, = d,,, and it is a monomorphism if 8, = o, or 8, = 7,.
(iv) 0, is a derivation on R if 6, = ¢,, and it is a monomorphism if 6, = o, or 6, = 7,,.

(v) 0, and 6, commute.
Moreover, such a ring extension is said to be simple if there does not exist any ideal
of R such that 6, (1) C I and ,(I) C I except for I = R and I = {0}.

0.
O

Without any possible ambiguity, we denote the operators 6, and éy obtained as in the
definition given above by ¢, and 6, respectively. The reader may find more general ring
extensions endowed with derivations, shift and g-shift operators, potentially with respect
to the same variable, in (Hardouin and Singer, 2008).



Let L =3, a;,j050) be an Ore polynomial in k(z,y)(0s,d,), where k(z,y) is en-
dowed with a mixed palr (04,0,) of operators. Let (R, (0y,0,)) be a ring extension
of (k(x,v), (0s,0,)). The application of L to an element r € R is defined to be

r)=>a;;0%00)(r)
0

So an Ore polynomial can be viewed as a linear functional operator on R. One can verify
that multiplication of Ore polynomials and composition of linear functional operators
are compatible, that is, (L1L2)(r) = L1(La(r)) for Ly, Ly € k(x,y)(0s,0y) and r € R.

We are about to define the constants of a given field (k(z,y), (6x,0y)), by describing
them in a uniform way as the solutions of specific operators. Define

D, if 0, = 6,
A:c = az_ax(]-): Sw—l ifemz()'w, (2)
T, —1if 6, = 7.

We define A, similarly by replacing x with y. An element ¢ € R is then called a
constant with respect to the pair (0,,0,) if

Ag(e) = Ay(c) = 0.

One can easily verify that ¢ € k(x,y) is a constant with respect to (0,,0,) if and only
if ¢ is an element of k.

Given a system of the form (1), a basic question is whether there exists a ring exten-
sion (R, (04, 0,)) containing a nonzero solution of the system. This question is related to
compatibility conditions of (1).

Let k(z,y) be endowed with a mixed pair (6;,6,) of operators. If system (1) has a
nonzero solution h in a ring extension (R, (65,6,)), then 6, o0 6, (h) = 6, 0 6,(h) by the
commutativity of ¢, and 6,. In addition, if 6,, resp. 6, is a monomorphism, then a,
resp. b, is nonzero. So (1) satisfies the following compatibility conditions:

% (b) =oy(a) —a and b # 0 if (0,,0,) = (05,0y),
%@:Ty( ) —aand b0 if (65,0,) = (6,7, (3)
= 2 and ab £0if (02,6,) = (72,7),

if it has a nonzero solution in a ring extension of (k(z,y), (6z,6,)).

Remark 2.6. The compatibility conditions corresponding to the other three mixed pairs
of operators in © can be obtained by swapping x with y and a with b in (3).

Definition 2.7. Let (a,b) € k(z,y) X k(z,y) and (6,,60,) € ©. We say that a and b
are compatible with respect to (6,0,) if the compatibility conditions corresponding
to (6z,6y) in (3) and Remark 2.6 are satisfied.

A first-order mixed system of the form (1) is said to be compatible if its coefficients a
and b are compatible with respect to (6,6,). Conversely, given a compatible mixed
system of the form (1), Theorem 2 in (Bronstein et al., 2005) implies that there exists
a simple ring extension (R, (6,,6,)) of (k(z,y),(6,,6,)) containing a nonzero solution



of (1). Moreover, under the assumption that k is algebraically closed, R contains no
new constant other than the elements of k. Such a simple ring is called a Picard—Vessiot
extension associated to (1).

2.3.  Mized hypergeometric terms

Hypergeometric terms are a common abstraction of geometric terms, factorials, and
binomial coefficients. They play an important role in combinatorics. The continuous
analogue of hypergeometric terms is hyperexponential functions: they generalize usu-
al exponential functions and simple radicals. In this paper, we will consider a class of
functions in x and y that are solutions of first-order mixed systems, and are therefore
intermediate objects between hypergeometric terms and hyperexponential functions.

Definition 2.8. Let k(z,y) be a field endowed with a mixed pair (6, 6,) of operators.
Assume that (R, (0,0,)) is a simple ring extension of (k(z,y), (6,6,)), and that the set
of constants in R is equal to k. A nonzero element h of R is called a mixed hypergeometric
term over (k(x,y), (0,6y)) if there exist a,b € k(z,y) such that

0;(h) =ah and 6,(h)=bh.
We call a the certificate of h with respect to 0, and b the certificate with respect to 0,,.

The certificates of a mixed term are compatible rational functions, because 6, and 6,
commute. For brevity, a mixed hypergeometric term will be called a mixed term in the
sequel. Viewing mixed terms in an abstract ring allows us to compute their sums, products
and inverses legitimately. Moreover, we will never encounter any analytic considerations,
such as singularities and the regions of definition. This choice will not do any harm, as
the problem we are dealing with is purely algebraic.

We recall some basic facts about mixed terms in this ring setting. These facts are
scattered in the literature. We summarize them for the convenience of later references.

The first lemma says that all mixed terms form a multiplicative group, and that two
mixed terms with the same certificates differ by a multiplicative constant.

Lemma 2.9. Let the ring extension (R, (6,6,)) be given as in Definition 2.8.
(i) The product of mixed terms is a mixed term, and every mixed term is invertible.
(ii) If two mixed terms have the same certificates, then their ratio belongs to k.

Proof. (i) The closure under product follows from simple calculations with certificates.
Now, let h be a mixed term in R, and I be the ideal generated by h in R. Then 6, (h)
and 6,(h) belong to I. It follows that 6,(I) C I and 6,(I) C I. Since R is simple and h
is nonzero, I = R, that is, 1 € I. Consequently, h is invertible.

(ii) Let hy and hsy be two mixed terms in R. If they have the same certificates, then hy/ho
is a constant by a straightforward calculation, that is to say, h1 = chy for some c € k. O

By the second assertion of Lemma 2.9, two mixed terms having the same certificates
differ by a multiplicative constant. These constants are irrelevant to the main result of
this paper. So we introduce a notation to suppress them.

Let h be a mixed term in R with 6,-certificate a and 0,-certificate b. Set

H(a,b) = {ch | c € k}.



The set consists of zero and mixed terms in R whose respective certificates are a and b.
Clearly, H(a,b) is a one-dimensional linear subspace over k. In the sequel, whenever
the notation H(a,b) is used, a and b are assumed to be compatible rational functions
in k(z,y), and H(a,b) C R. In particular, for a nonzero rational function f € k(zx,y), the
set fH(a,b) is a subset of R. Indeed, it is the one-dimensional linear subspace spanned
by fh over k. By the definition of certificates, we have

0(H(a,b)) = aH(a,b) and 0,(H(a,b)) = bH(a,b).
Let A’ be another mixed term in R with §,-certificate a’ and 6,-certificate t’. Define
H(a,b)H(d', V') = {g9" | g € H(a,b),g" € H(d',V))},

which is equal to the one-dimensional linear subspace spanned by hh’ over k.
More rules for manipulating H(a,b) are given below. They are used for computing the
certificates of the product of two mixed terms.

Lemma 2.10. For a field (k(z,y), (0,0y)), we let H(a,b) and H(a’,b’) be given as
above, and let f be a nonzero rational function in k(z,y).
(i) If 6, = 0., then

fH(a,b) =H (a + gz'](cf)’ bgyj(cf)> and  H(a,b)H(a', V') = H(a+a’,bb).

(ii) If 6, = 6,, then

= aw 0y(f) an a a,b) =H(ad !
f?-[(a,b)—’i-[( Ay > d H(a byH(. V) = H(ad',b+ V).

(iii) If either (0,,0,) = (04, 7y) or (05,60,) = (74, 0y), then

0(5) DY o st bl ) — Al b
7 , b 7 > d H(a,b)H(a',b") = H(ad',bb).

Proof. Let h be a mixed term in H(a,b).

(i) Assume that 6, = 0, and 6, € {o,,7,}. It is straightforward to verify that the 6,-

certificate and ,-certificate of fh are a + 0,(f)/f and b0, (f)/f, respectively. Assume

further that b’ € H(a’,b") with hh’ # 0. Then the 6,-certificate of hh' is a 4+ @/, and its

8,-certificate is bb'. It follows that H(a,b)H(a',b') C H(a + o’,bb’). Equality is then a

consequence of the two sets being one-dimensional vector spaces. This proves part (i).
Parts (ii) and (iii) can be proved in a similar way. O

FH(a,b) = H (a

Two mixed terms hy and hg are said to be similar if the ratio hy/hg is in k(x, y) \ {0}.
Similarity is an equivalence relation. When studying the existence of telescopers, we will
encounter at most finitely many mixed terms that are dissimilar to each other. These
terms can be regarded as elements in a simple ring extension, because a finite number
of Picard—Vessiot extensions associated to compatible first-order mixed systems can be
embedded into a simple ring (Li et al., 2006, §2.2). From now on, we assume that R is
given as in Definition 2.8. It will be sufficient to consider mixed terms in R.

The next lemma shows that the set consisting of zero and mixed terms similar to each
other form a linear space over k(x,y), which is closed under the application of every
linear functional operator in k(x,y){(0y, 0y).



Lemma 2.11. Let g and h be two mixed terms over (k(z,y), (6z,0y)). If g and h are
similar, then

(i) g+ h is either equal to zero or similar to h;

(ii) for any L € k(x,y)(0s,0y), L(h) is either equal to zero or similar to h.

Proof. (i) Let r € k(z,y) be equal to g/h. Then g +h = (r + 1)h.

(ii) Since h is a mixed term, its successive derivatives and (g-)shifts are either equal to
zero or similar to h. So L(h) is either equal to zero or similar to h by part (i). O

Remark 2.12. Let h, hq, ho be three mixed terms. If h = hy + ho, then the three terms
are similar, because the sum of two dissimilar mixed terms is not a mixed term.

The next two examples illustrate how a linear differential or recurrence operator ap-
plies to mixed terms similar to a given one. The results will be used for establishing our
criterion.

Example 2.13. Consider how to apply D: to rh, where r is a rational function in k(z, y)
and h is a mixed term in H(u,v) for some u,v € k(z,y).

First, D,(rh) = (6.(r) + ru) h. Putting L1 = D, + u, we rewrite the above relation
as Dy(rh) = Li(r)h.

An easy induction shows that

Dj,(rh) = L;(r)h,
where L; = (D, +u)* € k(x,y)(D,) has coefficients whose common denominators divide

some power of den(u). Moreover, the denominator of L;(r) divides (den(u)den(r))**!.

Example 2.14. Consider how to apply S% to rh, where r and h are the same as those
in the above example.

et M; = i (u i for i > 0. Then an easy induction shows that
Let M, hod(u)) S f 0. Th d hows th
Si(rh) = M;(r)h.

A similar result holds when the shift operator S, is replaced by the ¢-shift operator 7.

3. Telescopers for mixed hypergeometric terms

The method of creative telescoping was first formulated and popularized in a series of
papers by Zeilberger and his collaborators in the early 1990’s (Almkvist and Zeilberger,
1990; Zeilberger, 1990a,b, 1991; Wilf and Zeilberger, 1992a). To illustrate the idea of this
method, we consider the problem of finding a linear recurrence equation for the integral
(if there exists one):

+oo
H(x) = / Wz, y) dy,

where h(x,y) is a mixed term over (k(z,y), (04, dy)). Suppose that all integrals occurring
in the derivation below are well-defined. The key step of creative telescoping tries to find
a nonzero linear recurrence operator L(x,S;) in k(z){S,) such that

Lz, 5;)(h) = Dy(9), (4)



for some mixed term g over k(x,y).
Applying the integral sign to both sides of (4) yields

L(.%‘, SI)(H(x)) = g($7 +OO) - g(l‘, 0)'

This implies that L(z, S;) is indeed the recurrence relation satisfied by H () under certain
nice boundary condition, say g(x,4+00) = g(x,0). For example, consider the integral

+oo
A(x) = /O y*exp(—y) dy.

The differential variant of Zeilberger’s algorithm in Almkvist and Zeilberger (1990) de-
livers a pair (L, g) with

L=S,—2z and g=—y“exp(—y).
Note that, if z > 0, then g(z, +00) = g(z,0) = 0, which implies that
L(A(z)) = Az +1) —zA(z) = 0.

So we recognize the solution A(xz) = I'(x) since the initial value A(1) is equal to 1. For
more interesting examples, see the appendix of (Almkvist and Zeilberger, 1990) or the
book by Koepf (1998, Chapters 10-13).

Definition 3.1. Let h be a mixed term over (k(z,y), (6z,0,)). A nonzero linear opera-
tor L(z,0;) € k(x)(0,) is called a telescoper of type (05,0, ) for h if there exists another
mixed term g such that

L(z,0:)(h) = Ay(9)- ()
Alternatively, the mixed term h is said to be telescopable of type (9;,0,) if it has a
telescoper of type (0, 0y).

For a given mixed term, when does a telescoper of certain type exist? And how can one
construct telescopers? These are two basic problems related to the method of creative
telescoping. In the subsequent sections, we will answer the first one for the mixed cases.
More precisely, we solve the following problem, which is equivalent to the termination
problem of creative-telescoping algorithms for mixed inputs.

Existence Problem for Telescopers. For a mixed term h over (k(z,y), (64,6,)), find
a necessary and sufficient condition on the existence of telescopers of type (9, dy) for h.

Remark 3.2. For a mixed term h, the existence of a telescoper of type (0, d,) does not
imply the existence of a telescoper of type (0y,0,) (see Example 6.4).

Remark 3.3. By Lemma 2.11, the mixed term g in (5) is similar to h if A, (g) is nonzero.
Otherwise, g can be chosen to be 1.
4. Exact and proper terms

To study the existence problem for telescopers, we need two key notions: exact terms
and proper terms. They are related to additive and multiplicative decompositions of
mixed terms, respectively.



This section contains three subsections. In §4.1, we define the notion of exact terms and
describe an additive decomposition of mixed terms, based on the additive decompositions
for univariate (¢)-hypergeometric terms and hyperexponential functions in (Abramov and
Petkovsek, 2002b; Geddes et al. , 2004; Chen et al., 2005). In §4.2, we recall the notion
of split polynomials from (Chen, 2011) and that of spread polynomials from (Abramov,
2003), and describe a relation among the two notions and exact terms. In §4.3, we recall
a multiplicative decomposition of mixed terms from (Chen et al., 2011), define the notion
of proper terms, and study how to decide whether a mixed term is proper.

4.1.  Ezxact terms amd additive decompostions

For a univariate hypergeometric term H(y), the Gosper algorithm (Gosper, 1978)
decides whether it is hypergeometric-summable (also known as Gosper-summable) with
respect to y, i.e., whether H = (S, —1)(G) for some hypergeometric term G. Based on the
Gosper algorithm, Zeilberger (1990a,b) developed his fast version of creative-telescoping
algorithms for bivariate hypergeometric terms. Almkvist and Zeilberger (1990) present-
ed a continuous analogue of the Gosper algorithm for deciding the hyperexponential
integrability, which leads to a fast algorithm for hyperexponential telescoping. From the
viewpoint of creative telescoping, the Gosper algorithm and its continuous analogue de-
cide whether the identity operator, 1, is a telescoper for the inputs.

The following notion of exact terms is motivated in the differential case by the existence
of an underlying exact form. This differential-form point of view was taken in (Chen et al.,
2012) recently.

Definition 4.1. Let h be a mixed term over (k(z,y), (64,0,)). We say that h is ezact with
respect to 0, if there exists a mixed term g such that h = A,(g), where A, is defined
in (2). An exact term with respect to 9, is defined likewise.

Remark 4.2. In (Abramov and Petkovsek, 2002b) and (Geddes et al. , 2004), an exact
term is traditionally called a (q-)hypergeometric-summable term in the (g-)discrete case,
and a hyperexponential-integrable function in the continuous case, respectively. For each
choice of 9, in {D,, S;,T,}, it is clear that every exact term with respect to d, has a
telescoper of type (95, 0y): for instance 1 is such a telescoper.

The next notion to be introduced, related to exact terms, is that of additive decompo-
sitions. An algorithm by Abramov and Petkovsek (2002b) decomposes a hypergeometric
term H(y) into the sum A, (H;) + Hs, where H is minimal in some sense. Such a de-
composition is called an additive decomposition for H with respect to y. Abramov and
Petkovsek’s algorithm generalizes the capability of the Gosper algorithm in the sense
that H is hypergeometric-summable if and only if Hs is zero. In the continuous case, an
algorithm to decompose a hyperexponential function H(y) as D,(H1) + Ha, where H;
and Hs are either zero or hyperexponential, is part of the proof of Lemma 4.2 in Dav-
enport (1986). This remained unknown to Geddes et al. (2004), who later described
a similar additive decomposition as a continuous analogue of Abramov and Petkovsek’s
algorithm, but also prove that H, satisfies certain minimality requirements. Based on the
continuous analogue, Bostan et al. (2013) presented a reduction algorithm that decom-
poses a hyperexponential function into the sum of an integrable one and a non-integrable
one in a unique way. On the other hand, a g-discrete analogue is presented in (Chen et al.,
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2005). When H is a rational function, additive decompositions are more classical; they
were presented by Ostrogradskii (1845) and Hermite (1872) for the continuous case, and
by Abramov (1975, 1995) for the discrete and g-discrete cases.

For a mixed term h over (k(z,y), (0,60,)), we can perform three kinds of additive
decompositions with respect to y according to the choice of 6,. We recall now the notions
related to additive decompositions.

Definition 4.3. Let K be a field of characteristic zero, and a be a nonzero polynomial
in K[z]. Denote by 6,0, and 7, the usual derivation, shift and ¢-shift operators with
respect to z on K (z), respectively.
(i) a is said to be §.-free, or squarefree, if ged (a, d,(a)) = 1.
(ii) a is said to be o, -free, or shift-free, if ged(a, ol (a)) = 1 for every nonzero integer i.
(iii) Let a = 2z™a with a € K[z] and z t a. Then a is said to be 7,-free, or q-shift-free, if

ged (d, Té(d)) =1 for every nonzero integer i.

Moreover, let f be a nonzero rational function in K(z). Set @ = num(f) and b = den(f).

(iv) f is said to be §,-reduced if ged(b,a —id,(b)) =1 for all i € Z;
(v) f is said to be o,-reduced if ged(b, oi(a)) =1 for all i € Z; and
(vi) f is said to be 7,-reduced if ged(b, 7i(a)) = 1 for all i € Z.

A univariate polynomial is J,-free if and only if it has no multiple root. It is o,-free
if and only if its distinct roots do not differ by an integer additively; and it is 7,-free if
and only if its distinct nonzero roots do not differ by a power of ¢ multiplicatively.

A univariate rational function is §,-reduced if it has no integral residue at any simple
pole by Lemma 2 in (Geddes et al. , 2004). It is o,-reduced (resp. 7,-reduced) if any root
of the numerator and any root of the denominator do not differ by an integer additively
(resp. a power of ¢ multiplicatively).

For a polynomial p in k[z,y], we say that it is 6,-free when p is 0,-free as a polynomial
in y over k(x). The same convention applies to 0,-reduced functions.

Finally, we define an additive decomposition in the setting of mixed terms.

Definition 4.4. Let h be a mixed term over (k(z,y), (64,0,)). Assume that
h=Ay(hy) + ho (6)

where hy is a mixed term, and hs is equal to either zero or a mixed term. We call (6)
an additive decomposition of h with respect to d, if there exist r € k(x,y) with a 6,-free
denominator, and compatible rational functions u,v € k(x,y) with v being 6,-reduced
such that

he € rH(u,v). (7)
The additive decomposition with respect to J, is defined likewise.
We remark that the additive decompositions given in Definition 4.4 are more weakly

constrained than those in (Abramov and Petkovsek, 2001) and (Geddes et al. , 2004).
For example, hs is not necessarily equal to zero when h is an exact term.
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4.2.  Split and spread polynomials

Split polynomials defined in (Chen, 2011) play the same role as integer-linear poly-
nomials in the difference case. A polynomial p € k[x,y] is said to be split if it is of the
form py(2)p2(y) with p; € k[x] and ps € k[y]. A rational function r € k(z,y) is said to
be split if it is of the form ry(x)r2(y) with m € k(x) and ry € k(y).

A rational function f € k(x,y) can always be decomposed as fi(z)f2(y)fs(z,y),
where f1 € k(z), fo € k(y) and neither num(f3) nor den(fs) have split factors ex-
cept constants. We call fi fo and f3 the split and non-split parts of f, respectively. Both
are defined up to a nonzero multiplicative constant.

Remark 4.5. For p € k[z,y], one may decide whether it is split by comparing all monic
normalized coefficients of p with respect to y. More precisely, p is split if and only if all
those are equal. In an implementation, one would abort as soon as a mismatch is found.

Remark 4.6. A nontrivial and nonsplit polynomial p € k[z,y| has at least two terms.
Since ¢ is not a root of unity, 7, (p) and 7] (p) are coprime for all 7, j € Z with i # j if p
is irreducible.

The notion of spread polynomials is introduced by Abramov (2003) for establishing
his criterion on the existence of telescopers for hypergeometric terms. We extend this
notion to the mixed setting so as to connect split rational functions with exact terms.

Definition 4.7. Let K be a field of characteristic zero, and 4., o,, and 7, be the usual
derivation, shift and ¢-shift operators on K|z], respectively. For a polynomial a € K|z]
of positive degree, we say that:

(i) a is d,-spread i