Frédéric CHYZAK
DEA Informatique, Mathématiques et Applications
Année universitaire 1994-1995

Rapport de Stage de DEA

Formal manipulations of linear operators

and

Holonomic calculations

MANIPULATIONS FORMELLES D’OPERATEURS LINEAIRES
et

CALCULS HOLONOMES

Organisme d’accueil : Institut National de la Recherche
en Informatique et Automatique
Projet ALGORITHMES

Adresse : Domaine de Voluceau,
78153 Le Chesnay (FRANCE)
Directeur du stage : B. SALvy

Dates du stage : du 1°" mars au 30 juin 1995

FORMAL MANIPULATIONS OF LINEAR OPERATORS AND HOLONOMIC
CALCULATIONS

FREDERIC CHYZAK

Frederic.Chyzak@inria.fr

Algorithms Project,
INRIA,
78153 Le Chesnay Cedex,
FRANCE

ABSTRACT. We present a computer algebra package in the MAPLE language for the symbolic
manipulation of linear systems of differential and recurrence equations. This programme
is especially designed to deal with so-called holonomic systems. This report also gives a
theoretical justification to our implementation.

The set of holonomic functions and sequences is a large class of objects. It forms an
algebra and is closed under algebraic substitution and diagonal. An implementation of these
properties makes it possible to perform computer assisted proofs of holonomic identities in
a simple way, since a holonomic system has a normal form obtained by an extension of
the Grobner basis algorithm. For instance, combinatorial problems often lead to holonomic
systems and to identities involving binomial coefficients. Many identities involving special
functions are also captured by the theory of holonomy. Examples are given to show how
some interesting identities are proved by our system.

INTRODUCTION

An interesting class of numerical sequences is formed by sequences (uy)nen satisfying linear
recurrences with polynomial (or equivalently rational) coefficients, like

Po(n) tn +pi(n) tpyy + -+ 4 pa(r) ungr = 0.

In an analogous way, there is much interest in studying functions f in one variable z that are
solutions of linear differential equations with polynomial (or rational) coefficients, such as

po(@) f(2) +pi(2) f'(2) + -+ pe(2) f7(2) = 0.

In the former case the sequence (u,),ey is called P-recursive, in the latter the function f(z) is
called D-finite. Moreover, the link between both concepts is very strong: a sequence (u,)nen iS
P-recursive if and only if its corresponding generating function

+0o0
fl@) =) u,a"

is D-finite. The same word holonomic, that was first legitimated by the theory of D-modules in the
case of D-finite functions, is now used in both cases to emphasise this duality between P-recursive
sequences and the corresponding D-finite generating functions.

This work was suggested by Ph. FLAJOLET and B. SALvY and has been conducted in the ALGORITHMS
project at INRIA, Rocquencourt (FRANCE). It was partly supported by the EspriT Basic Research Action
of the E.C. No. 7141 (ALcoMm II)

2 FORMAL MANIPULATIONS OF LINEAR OPERATORS

P-recursive sequences and accordingly D-finite functions enjoy a rich set of closure properties.
P-recursive sequences extend sequences satisfying recurrences with constant coefficients; D-finite
functions extend functions satisfying differential equations with constant coefficients. The set of
D-finite functions satisfy the following properties:

— it is an algebra and in particular is closed under sum and product;
— it contains all algebraic functions and is closed under algebraic substitution;
— it is closed under Hadamard (i.e. term-wise) product and under diagonal.

All these results are proved by Stanley in [23]. P-recursive sequences also form an algebra and
satisfy corresponding properties.

These interesting properties have led Salvy and Zimmermann to implement the Gfun MAPLE
package described in [22]. This package manipulates sequences, linear recurrence equations or
linear differential equations and generating functions of various types. In particular, they have
implemented algorithms that compute the sum, product and Hadamard product of holonomic
functions in a single variable and sum, product and Cauchy product of holonomic sequences in a
single index.

For instance, since the function f = \/11: is algebraic, hence holonomic, and the function g =

cos(z) is holonomic, their package Gfun is able to compute a differential equation satisfied by

1 Cos 2
h= 1+ === f(+q).

The answer of the programme is

(162° — 802" + 1722° — 1962> + 1162 — 28) h'"
+(322* — 1282° + 24027 — 224z + 80) b
+(162° — 802" + 1682° — 1842> + 1252 — 45) b’
+(162* — 642 + 1362% — 1442 +53) h = 0.

The theory of holonomic functions and sequences allows automatic proof of a large class of
identities. Zeilberger has given in [33] an algorithm to prove certain combinatorial identities and
certain identities involving special functions. This algorithm works by searching for equations
satisfied by each side of the identity to be proved—or to be disproved. Then, if these equations are
compatible and sufficiently many initial conditions are satisfied, the identity holds. The basic idea
is that holonomic functions can be identified by a finite amount of information. More specifically,
they are fully characterised by a finite number of equations and a finite number of initial conditions.

Furthermore, using the theory of holonomy, it is not only possible to check identities, but also to
evaluate sums of holonomic sequences and integrals of holonomic functions. An example is given
by Flajolet and Salvy in [12]. Again with Gfun, they compute a recurrence equation in n satisfied

by
n 1 2 1 2
Cp = 4 .
m=0
Using Gfun and a stepwise construction of the c,, they find the recurrence

8n’c, — (2n —1)%c,_, = 0.

=

Using the initial conditions on c, it is then obvious that

2":—52 1\ 1 (-
= \m n—m) 2603 n '

This example is one of many combinatorial problems that naturally lead to holonomic equations.
The concept of holonomy readily extends to several variables, that is, either multi-index sequences
or multivariate functions. A first attempt at generalisation to sequences in several variables was

INTRODUCTION 3

done by Zeilberger in [32]. The definitions given there appeared to be inaccurate. This was fixed by
Lipshitz in [18]. For convenience, we call holonomic functions the functions, sequences and formal
power series to which we apply the concept of holonomy, whenever we want to denote any of these
cases. We shall consider holonomic objects that may be

— either sequences defined on N,
— or functions defined on K*,

and more generally

— either functions defined on a product N* x K*,
— or series h of formal power series

h:N = Kz, ..,z

where K is a field, and s are integers.

An important work has been done in the case of several variables by Takayama. This work led to
the implementation of his system Kan. In [25] and [26], Takayama presents the theory of Grobner
bases applied in the case of modules over a Weyl algebra. In [26] and [27], he largely deals with
the problem of determining integrals or sums of holonomic functions. His system Kan is described
in [28] and [29]. It performs the major part of all operations on holonomic functions dealt with in
this report. However, it is not able to work in the generality of all algebras of operators we consider
in this report (namely certain Noetherian Ore algebras).

As an example, Jacobi polynomials, that generalise Legendre polynomials obtained for o = § = 0,

“(n+a\n-—
Jr(;"”g) () =27" ,CZ_;) (_]:) (n B IZ) (14 z)k(1 — z)"*
are typical holonomic functions. (Both parameters o and 8 are fixed, only n and x vary.) Like
many orthogonal polynomials, they satisfy a second order differential equation with polynomial
coefficients in « and n and a second order recurrence equation with polynomial coefficients in z
and n. Besides, they satisfy a linear equation involving derivatives of several J(®#) for the same
values of o and 3 but for different n. The system Kan cannot work with these J(*% (z), while our
programme does (see Section 4.1 for a similar example on Legendre polynomials).
As another example, the French mathematician Apéry proved in 1978 that the real number

+001

CIEDY

3
n=1 n

which equals approximatively
1.2020569031595942853997381615114499907649862923405

is irrational, solving in this way a problem that dates back to Euler.
Apéry’s proof is based in a crucial way on the fact that the sequence

2 2
" (n n+ k)
=3
k=0 <k> (k
satisfies the following polynomial recurrence of order 2 (with coefficients of degree 3):

(1) na, — (34n® — 51n° + 270 — 5) ap_y + (n — 1)* a,_5 = 0.

This result was first announced without a proof, and cost weeks of work to highly experienced
mathematicians. It is now known that it is captured by the theory of holonomic sequences and
that the proof can be performed automatically. Indeed, we will use our programme in Appendix B
to give a proof of identity (1).

The subject of our work thus lies at a crossroad of domains:

4 FORMAL MANIPULATIONS OF LINEAR OPERATORS

— combinatorics, since a great deal of combinatorial problems and some problems close to
the analysis of algorithms involve holonomic recurrences. For instance, numerous identi-
ties involving binomial coefficients usually proved manually and painfully become provable
automatically—at least in principle;

— the theory of special functions—in particular, of hypergeometric functions—, and the com-
putation of some integrals;

— computer algebra, since many tools necessary to manipulate differential or recurrence op-
erators need to be specially developed in a high-level language such as MAPLE.

In this work, we introduce a general framework that encompasses both D-finiteness and P-re-
cursiveness in several variables and vindicate it by our MAPLE package Mgfun. This programme
consists of the three following layers:

(i) OreAlgebra, that performs elementary operations in certain suitable non-commutative al-
gebras;
(ii) OreGroebner, that computes Grobner bases of left ideals in these non-commutative algebras;
(iii) Holonomic, that performs operations on holonomic functions.

This package is available:

— by anonynous ftp on the site ftp.inria.fr directory
/INRIA/Projects/algo/programms/Mgfun;
— on the web at http://www-rocq.inria.fr/Combinatorics-Library/www.

Plan of this report. We shall begin by recalling results on the two typical classes of holonomic
functions that we have just mentioned, namely D-finite functions and P-recursive sequences. This
is done in Section 1.

Descriptions of such holonomic functions are given by systems of differential or difference equa-
tions respectively. These equations can be viewed as differential or difference operators vanishing
on a function. But differential operators can in turn be viewed as polynomials in a differential
indeterminate and recurrence operators as polynomials in a shift indeterminate. In order to make
both kind of operators coexist, we need a notion of pseudo-differential operators. In Section 2, we
recall the definition of Weyl algebras and some properties of these rings of differential polynomi-
als, and then introduce a concept of Ore algebras to deal with mixed differential and recurrence
polynomials.

We also use some algebraic theory of differential modules: the concept of holonomy in left D-mod-
ules is related to the dimension of a differential ideal, and the set of operators that vanish either on
a D-finite function or on a P-recursive sequence is precisely an ideal of the corresponding Weyl or
Ore algebra. Therefore, in Section 3, we borrow some results from the theory of D-modules due to
Hilbert and Bernstein and we show how they have to be restricted in our context of Ore algebras.
This is where we define holonomy, along with a concept of admissible Ore algebra in which the
definition of holonomy is meaningful.

The algorithms that deal with differential and recurrence operators often perform reductions to
a normal form and elimination. In the single indeterminate case, these operations of reduction
and elimination are achieved using the Euclidean division. In the case of several indeterminates,
we use Grobner bases in a (pseudo-)differential context to generalise them. In Section 4, we recall
Buchberger’s algorithm to compute Grobner bases and some of its classical improvements. Then, we
show how we extend this method to non-commutative algebra and we describe our implementation
of non-commutative Grobner bases.

Finally, in Section 5, we give the algorithms currently implemented in our package Mgfun to
compute with holonomic functions. We also describe other algorithms for other operations on holo-
nomic functions, that can be performed using our package as a toolbox. So far, our implementation
covers:

— search for linear dependencies between derivatives of an expression involving holonomic

D-FINITE FUNCTIONS, P-RECURSIVE SEQUENCES AND HOLONOMIC SYSTEMS)

functions;

sum and product of two holonomic functions and symmetric power of a holonomic function;
conversion of the polynomial equation defining a function as algebraic into equations defining
it as holonomic;

computation of the generating function of a holonomic function,

diagonal of a holonomic function.

After this rather theoretical part, the appendix gives more practical information.

We compare our implementation with MAPLE’s usual grobner package for commutation Grobner
bases computation in Appendix A. In particular, we comment on some results of timings. We also
give execution times for non-commutative Grobner bases computations.

Appendix B gives an example of use of our package to prove a very interesting identity about
Apéry numbers.

We comment on the procedures available in our package in Appendix C.

1. D-FINITE FUNCTIONS, P-RECURSIVE SEQUENCES AND HOLONOMIC SYSTEMS

We first introduce the two “pure” cases of holonomic functions, D-finite functions in Section 1.1
and P-recursive sequences in Section 1.2. We recall proofs of their closure properties and of the
fundamental equivalence theorem; detailed proofs can be found in [23, 18, 19]. Then, in Section 1.3,
we extend the definitions to holonomic systems, that involve both D-finiteness and P-recursiveness.

Throughout Sections 1.1 and 1.2, K is a field of characteristic zero. This field K will usually be Q,
R or C in practice; it may also be a finitely generated extension of Q for the purpose of effective
computation.

1.1. D-finite functions.
1.1.1. Definition and characterisation. Let x denote a d-tuple of variables (zy,...,z4).

Definition 1.1. A formal power series f(z) =3, 50 ;.50 s, a2t - al € K[[x]] is called D-fi-
nite (or holonomic) if and only if the family
{ 80t1+062+---+0tdf

a1 Q2 . @d }
8:1:1 8$2 8:1:(1 (a17a27“_7ad)eNd

spans a finite dimensional K(z)-vector subspace of K|[[z]].

A formal power series f(z) = Zi12a1>—oo,...,id2ad>—oo Uiy, ig
(or holonomic) if and only if the family

8a1+a2+"'+04df
{8151111 8.’L‘;2 Tt 81534 }ael ’
where I = {« € Z¢ | Vi = 1,...,d «; > a;} spans a finite dimensional K(z)-vector subspace

of K((z)).
When the series f converges, the corresponding function is also called D-finite or holonomic.

zit ... mfid € K((x)) is called D-finite

In the case of a single variable, this definition is simply another formulation of the one suggested
in the introduction, since a linear differential equation with polynomial, or equivalently rational,
coefficients satisfied by f is nothing but a dependency relation over K(z) of the gif 's for p € N.
When a = (a,...,aq) € N, let 997 ---9%¢, or even 9% when there is no doubt on the set of

variables under consideration, denote

oot tag
Or“' - - Oz e,

Likewise, let ® denote z7" - - - zj°.
Moreover, we use 0; in place of J,, each time this does not create any confusion, and (z,0)
without any reference to any variable in the case of a single pair of variables.

6 FORMAL MANIPULATIONS OF LINEAR OPERATORS

The following proposition gives a simple characterisation of D-finite formal power series or of
D-finite formal Laurent series.

Proposition 1.2. A formal power series or a formal Laurent series f of several variables 1, ..., xq
is D-finite if and only if there exist d polynomials P; with coefficients in K[z] such that

(2) Pi(ai) J=0.

Proof. When f is D-finite, the family {0“ f } ,ene spans by definition a finite dimensional K(z)-vector
space. Thus it is the same for the families {0? } ey with ¢ € {1,...,d}. Taking a dependency relation
for each of these families, and if necessary clearing denominators, one finds the P;’s satisfying (2).

Conversely, with the use of the relations (2), any 0“f can be rewritten as a linear combination
over K(z) of the 9° f where the § are limited by 0 < 3; < deg P; for all i € {1,...,d}. [|

Definition 1.1 has been used for a long time in the case of a single variable. Its generalisation
to the case of several variables presents no surprise. Section 1.2 shows that the situation is more
subtle in the case of P-recursive sequences.

A set of equation like (2) is sometimes called a rectangular system.

1.1.2. Operations on D-finite power series. First, we recall simple closure results on D-finite power
series (see [19]); then we recall the definition of the diagonal of a formal power series together with
Lipshitz’s important result that the diagonal of a D-finite power series is D-finite (see [18]). Finally,
Hadamard products and some kinds of integrals of D-finite power series are D-finite, since they are
expressible in terms of diagonals.

Theorem 1.3. The following closure properties hold for D-finite power series:

(i) D-finite power series form a sub-algebra of K[[z]];
(ii) if f is algebraic, then f is D-finite;
(iii) if f(z) is D-finite, g;(y1,-..,ya) is algebraic for i € {1,...,d} and the substitution in f(x)
of each x; by the corresponding g;(y1, ..., yaq) is valid (i.e. if f(g1(0),...,g4(0)) is defined),
then y — (f 0 9)(y) = f(91(y), -, 9a(y)) is D-finite.

Corresponding results also hold for D-finite Laurent series, with K[[z]] replaced by K((z)).

Proof. The proofs of these results are all based on the same idea: generate sufficiently many deriva-
tives of the function under consideration and reduce them into a finite dimensional vector space,
thereby proving that the function is D-finite. Moreover, the following proofs are also valid in the
case of D-finite Laurent series, with K[[z]] replaced by K((z)) and N¢ replaced by suitable subsets
of 7.

Sum. Let f and g be two D-finite formal power series. Let ({9° f}sene) and ({0°g}sena) denote
the K(x)-vector spaces spanned by all derivatives of f or g respectively. Of course, these vector
spaces are both finite dimensional.

For any a € N, 9*(f + g) = 9°f + 0%¢g lies in a homomorphic image of the formal direct
sum ({0°f}sena) @ ({0°g}sena), which is clearly a finite dimensional K-vector space. Therefore,
the subspace ({0°(f + g)}sene) of this homomorphic image is also a finite dimensional K(z)-vector
space.

(The meaning of a formal direct sum is that the direct sum must be taken as a formal summation
without any reference to the actual values of the 9° f’s and the 9°¢’s—except that they span only
finite dimensional spaces. In other words, the 8° f’s and the 9°¢g’s are viewed as new indeterminates
and possible dependencies between the 0” f’s and the 9°g’s must not be taken into account.)

D-FINITE FUNCTIONS, P-RECURSIVE SEQUENCES AND HOLONOMIC SYSTEMS 7

Product. Let f and g be two D-finite formal power series. For any a € N!, 9°(fg) can be
rewritten as a sum of products of an element of {9” f}sena by an element of {0°g}zena. Moreover,
({0° f0 g} sena prena) is a homomorphic image of the finite dimensional vector space ({9 f } sena) ®
({0°g}sena). (A remark similar to the one made in the case of the direct sum applies to the case
of the tensor product.)

Therefore, ({0°(fg)}sene) is a finite dimensional K-vector space.

Algebraic function. Let f be algebraic. There exists P € K[z,y] defining f by

(3) P(z, f(z)) = 0.
Moreover, it can be assumed without loss of generality that P is minimal and that
PAO,P =1.
By the extended ged algorithm, there exists (A, B) € K(z)[y]* satisfying
(4) A(z,y) P(z,y) + B(z,y) 0,P(z,y) = 1.
For each i = 1,...,n, we compute the successive derivatives of (3) with respect to z; and reduce

them into K(x)[y]/J, where 3 = (P) is the two-sided ideal K(z)PK(z). First, differentiating (3)
with respect to z; yields

0o, P(z, f(2)) + 0y P(x, f(2)) O, f (x) = 0.

Note that (4) provides an inverse of 0, P(z,y) in K(z)[y]/J: evaluating this equation at (z, f) and
simplifying it by (3) gives B(z, f) 0,P(«, f) = 1. Thus,

and
(5) 0;f € K(z)[f].

Now by induction on k, if 8% f = Ry(z, f) where R, € K(z)[y], differentiating with respect to z;
leads t0 011 = 0, Ry(z, f) + 0, Ru(z, f) O3 By (5), 011 € K()[f).

Finally, the K(z)-vector space K(z)[f] is finite dimensional (of dimension deg P), and one thus
finds a linear dependency between the {0F f }1en. By Proposition 1.2, f is then D-finite.

Algebraic substitution. Let f be holonomic, the g;’s be algebraic and consider h(y) = (f o g)(y) =
flg1(y)s---,94(y)).

For each i = 1,...,d', we compute the successive derivatives of h(y) with respect to y; and show
by induction that they are all elements of a homomorphic image of

<{aﬂf o glpene) ® ({g1" - ggd}BeNd>-

First, the result is true for h. Assume the property holds for 0¥ h:
(6) Ofh= 3 cas(@fog g g

aeNd, BeNd

Gh= Y cCap ((ajaaf °g) dig; 91"+~ 94"
(7) eSSy
+(0°F 0g) Bigl)" g 0ug;)

As in the previous case, the d;g;’s are elements of K(y)[g;]; therefore 9*'h € ({0°f o g}pend) ®
({gr" -+~ g0 Yaena).

8 FORMAL MANIPULATIONS OF LINEAR OPERATORS

By induction on k, the result holds for any k; since every derivative lies in the same finite
dimensional vector space, there is a linear dependency on the family {0Fh} ey, foralli € {1,...,d'}.
By Proposition 1.2, h is then D-finite. []

The following remark will prove very useful when we discuss algorithms operating on holonomic
functions. Each of the previous proofs reduces the derivatives of a power series into a finite dimen-
sional vector space in order to prove the D-finiteness of the series. The finite dimensional vector
spaces used in the proofs are homomorphic images of:

= ({07 f}sene) ® ({0°g}sena) for the sum;

= ({07 f}sene) ® ({07g}ena) for the product;

— ({f?}pen) for the case of an algebraic function;

— ({0°f o g}pena) @ ({g+ - g }sena) for the algebraic substitution.

More generally, when an expression s involves a family of holonomic functions {h;};cs, it is often
easy to determine a formal finite dimensional vector space built on the derivatives of the h;’s and
into which all derivatives of s can be reduced. Then s is certainly D-finite.

We next recall the definition of the diagonals of a formal power series.

Definition 1.4. With f =} v cor®, the primitive diagonal diag, ,(f) of f is

E a1 Q3
calyalya37~~~,adx1 $3 Ly -

acnd
aj=ag

The other primitive diagonal diag, ;(f) are defined in an analogous way. A diagonal is any com-
position of the diag; ;. The complete diagonal of f is the series diag, ,---diag, , ,(f) in a single
indeterminate x,

diagm T dia‘gdfl,d(f)(x) = Z Cp,....pT"

peEN
We recall the following theorem due to Lipshitz without detailing its proof. The complete proof
is rather long and can be found in [18].
Theorem 1.5. The primitive diagonal diag, ,(f) of a D-finite power series f is D-finite. There-
fore, any diagonal of a D-finite power series f is D-finite.
Proof. [Sketch] Given a D-finite power series f, Lipshitz considers in his proof the function

_ T
F(s7$17$3a"'axd) =S lf(sa?lax&"'axd)'

(The residue of F' with respect to s is exactly the diagonal diag, ,(f).) In a suitable sense, this
extended Laurent series is D-finite, so that there are polynomials

A(s,xy,...,zq,Dy),
and
Bi(S,fL’l, ey gy Di)7

for all 4 € {1,3,...,d} that vanish on F.
The crucial point of the proof is now to find operators

hi

Pi(:vl, - ,.’L‘d,Di, DS) = ZB7j($1,$3, - ,:vd, Dz) Dg,
7j=0
for all 4 € {1,3,...,d}, where s has been eliminated. This is done by a dimension argument.
Since F' is a formal Laurent series, any derivative of F' with respect to s has a zero coefficient

1

of s~*. Therefore,

[5_1] Pi’j(.’L‘l,iEg, - ,:vd, Dz) _DZ_F = 0

D-FINITE FUNCTIONS, P-RECURSIVE SEQUENCES AND HOLONOMIC SYSTEMS 9

when j > 0. Besides, the coefficient of s~! in F is diag, ,(f), and so
P . diaglyz(f) = Piyo.([sfl] F) = [371] P y.F = [371] P(zy,...,zq4,D;,D,).F =0
for any 7 € {1,3,...,d}. [|

Finally, we recall some identities involving diagonals, to show that some other operations on
power series are related to diagonals (see [19]) and that the class of D-finite power series is closed
under these operations.

Hadamard products can be computed with diagonals; conversely, diagonals can be computed
with Hadamard products:

(8) f ©g= dia‘gl,d+1 e dia‘gd,zd(f(xlv s ’xd) g($d+17 s ’de))v
(9) dia‘g172(f) = {f © (! ! o !)} ($17 1ax3a' v ’xd)‘

1l—zi201 — x5 .l—md

Some indefinite integrals can be computed with Hadamard products:
/ f(mla"'axd—lat)dt
0
1 1 1
:(xdf)®< " log)

1—.’L’1 .1—.’L'd_1 1—.’L'd

Therefore the following theorem holds.

Theorem 1.6. When f and g are D-finiteformal series, then

(i) the Hadamard product f ® g is D-finite;
(ii) the primitive function [; f(1,...,xq—1,t) dt is D-finite.

1.2. P-recursive sequences. P-recursive sequences of a single variable have been fully studied
by Stanley in [23]; we present his results in Section 1.2.1.

The first attempt at generalisation to several variables was made by Zeilberger in [32]; but the
definitions given there made it impossible to obtain the equivalence between P-recursiveness of a
sequence and D-finiteness of the corresponding generating function. In Section 1.2.2 we reproduce
Lipshitz’s definition which he introduced in [19]. In Section 1.10, we recall the fundamental theorem
of equivalence between D-finiteness of a series and P-recursiveness of the corresponding sequence.
We finally recall some properties of P-recursive sequences in Section 1.2.4.

1.2.1. Case of a single indeterminate. Let be an indeterminate.

Definition 1.7. A sequence (u,),en is called P-recursive (or holonomic) if and only if it satisfies
a linear recurrence equation with polynomial coefficients (in the indeterminate n).

It it well known that this concept of P-recursiveness in a single indeterminate is equivalent to
the one of D-finiteness in a single variable (see [23]). Indeed, when f(z) = 3=, 5, u,z" € K[[7]] is
D-finite, it satisfies the equation

> P(z)0*f =0.
k=0
Identifying the coefficient of z' to 0 yields a recurrence relation of the type
Z Qk (n) Upyk = 0
k=0
where the Q(n) are polynomials.

Conversely, assume that the sequence u satisfies a recurrence of the previous type. Rewriting the
polynomials @y in the basis n, n(n—1), n(n—1)(n—2), n(n—1)---(n—k), ... yields an expression

10 FORMAL MANIPULATIONS OF LINEAR OPERATORS

of the equation of recurrence in terms of the z* 0y f = 3,5, n(n —1)(n —2)--- (n —k +1) 2". This
expression is the differential formulation we wanted to find.

1.2.2. Case of several indeterminates. Let x denote a d-tuple of indeterminates (z,...,z4).

If one applies Proposition 1.2 on a formal power series f € K[[z]], one obtains some opera-
tors P; € K(z, 0;) satisfying (2). Then, mimicking the process used for the case of a single indeter-
minate yields recurrence equations

s;
Z Ql,u(k) Uk yooiks— 1,k —wyki g1 ook — 0.
u=0

It is therefore very tempting to take the existence of such a system as a definition of P-recursive-
ness for the case of several indeterminates. This was done by Zeilberger in [32]. However, unlike
the case of a single indeterminate, the equivalence between D-finiteness and P-recursiveness does
not hold any longer with this definition. Several counter-examples were given in [19]:

(i) (i* —j)u;; = 0. An obvious solution is given by the sequence

|1 when i* =j,
“ 10 otherwise.

The associated generating function f(z,y) = Y.°°, z'y’ is not D-finite; not even f(1,y)
is: because of the lacunary nature of the series, it cannot be solution of a linear differen-
tial equation with polynomial coefficients. Indeed, such an equation involves only a finite
number of derivatives.

(ii) iju;; = 0. Any solution is of the form

{ 0 when i # 0 and j # 0,
U,'J:

an arbitrary constant, otherwise.

Consider a power series in a single indeterminate) .\ c,2" that is not D-finite. (For
instance, the series defined by the sequence

{1 when n = 2P for a certain p € N,
C, =

0 otherwise,
cannot be P-recursive because of its lacunary nature. Similarly, the sequence ¢, = the nth
prime number leads to a power series that cannot be D-finite.)
Then, the sequence u given by

¢; when j =0,
Ui ; =
! 0 otherwise,

is associated to a non D-finite power series, although it is solution of iju; ; = 0.

Lipshitz gave a more complete definition in [19]. This definition captures the requested equiva-
lence. We now proceed to recall it, after two preliminary definitions.

Definition 1.8. Let u be a sequence defined over N, I a non empty subset of {1,...,d} and for
each ¢ € I, a; an integer. Define

(i) a section of u as any subsequence of u obtained by considering only the terms of u whose
indices « satisfy a; = a; for all ¢+ € I, i.e. any subsequence obtained by setting at least one
index to a given value;

(ii) a k-section of u as any section of u defined as previously by I and some a;, with the
additional constraint that a; < k for all ¢ € I.

D-FINITE FUNCTIONS, P-RECURSIVE SEQUENCES AND HOLONOMIC SYSTEMS 11

Definition 1.9. A sequence (ugy)qene is called P-recursive if and only if there exists k € N such
that

(i) for each i = 1,...,d, there exist polynomials p?)(n;) such that

> (@) ula—p)=0

Be{0,...,k}?

when « satisfies o; > k for all i € {1,...,d};
(ii) if d > 1 then all the k-sections of u are P-recursive.

Note that part (ii) of the previous definition is exactly what was missing in Zeilberger’s definition
and what allowed the previous counter-examples to work. Moreover, this definition readily extends
to sequences defined over suitable quadrants of Z<.

1.2.3. Fundamental equivalence theorem. The following theorem is the raison d’étre of the cumber-
some definition of P-recursive sequences.

Theorem 1.10. A sequence (uy)aene is P-recursive if and only if its corresponding power se-
ries f(x) = ene Uax® is D-finite.

Proof. We do not give any proof; see [19, Theorem 3.7].]

1.2.4. Operations on P-recursive sequences. Because of Theorem 1.10, the closure properties of the
P-recursive sequences are similar to the ones of the D-finite series.

Theorem 1.11. The following results hold for P-recursive sequences:

. . d
(i) P-recursive sequences form a sub-algebra of KV ;
(ii) any diagonal of a P-recursive sequence is P-recursive;
(iii) the convolution of two P-recursive sequences is P-recursive;
(iv) when w is P-recursive and the sum Y., .U converges for every (ay,...,aq_1), then the
sequence), cnUq 8 P-recursive.

g€

Proof. The closure property under the sum follows from the closure property under sum for D-fi-
nite power series (Theorem 1.3) and from Theorem 1.10. The closure property under the product
follows from the closure property under Hadamard product for D-finite power series (Theorem 1.6,
part (i)) and from Theorem 1.10. This proves part (i).

Part (ii) follows from the closure property under diagonal for D-finite power series (Theorem 1.5)
and from Theorem 1.10.

Part (iii) follows from the closure property under product for D-finite power series (Theorem 1.3)
and from Theorem 1.10.

Part (iv) follows from Theorem 1.10 and from the fact that if the formal series

f= E Uy T
a€END
is D-finite, then so is
_ aq dd—1
g= E (Zua>xl ezt
(a1,.yaq—1)ENG—L \ag€N

To prove this, one simply has to evaluate the equations (2) given by Proposition 1.2 for the func-
tion f in (aq,...,aq 1,1) to find similar equations satisfied by g. [|

12 FORMAL MANIPULATIONS OF LINEAR OPERATORS

1.3. Holonomic systems. So far, we have only dealt with two concepts introduced separately—
D-finite power series on the one hand and P-recursive sequences on the other hand. As we have
already shown, those two concepts are closely related by the equivalence between P-recursiveness
of a sequence and D-finiteness of the associated generating function.

But they can also coexist on the same system, as in the example of Jacobi polynomials from the
introduction. To define holonomy in several variables, we list characteristics common to D-finiteness
and P-recursiveness which also seem to be essential to holonomy.

(i) D-finite power series are totally determined by sufficiently many differential equations and
by initial conditions, while P-recursive sequences are totally determined by sufficiently many
recurrence equations and by their initial terms. In both cases, the amount of information
needed by the determination is finite; it contains a finite number of equations and a finite
number of initial conditions.

(ii) Algorithms used to deal with D-finite power series and P-recursive sequences are very
similar as soon as the equations they involve are expressed in terms of differential or shift
polynomials.

Thus, we would like to define a holonomic function by a finite system of mixed differential and
recurrence equations and a finite number of initial conditions. Still, it is not possible to generalise
holonomy to the case of several indeterminates in a simple way. Reasons for this have been given
in the introduction: we first need to unify differentiation and shift in a single concept and to
ensure that the so-called holonomic system described in a finite amount of information is enough
to determine a single holonomic function.

An accurate definition of a holonomic system will be given in Section 3.4, but what has been
just suggested motivates the following algebraic developments.

2. WEYL ALGEBRAS, ORE ALGEBRAS

So far, we have considered D-finite power series only from the point of view of the vector spaces
spanned by their derivatives. Since these vector spaces are finite dimensional, their derivatives
are constrained by linear dependency. These relations can be expressed as differential operators
which vanish on the D-finite power series under consideration. We first introduce a framework for
these differential operators, namely Weyl algebras. We then introduce a similar concept for P-finite
sequences and holonomic systems in general. Differential and difference operators are thus unified
into a common algebraic framework, which in fact captures many other operators.

2.1. Weyl algebras and D-finite power series. We use the following notation to denote a
non-commutative algebra: when w,,...,u, are indeterminates, let {u,...,u,}* denote the free
monoid M built on these indeterminates

{ug, ... up} ={vy -0, |Vi=1,....,r v; € M};

given a field K, let then K(uy,...,u,) denote the K-algebra K*) over the free non-commutative
monoid M, i.e. the set of all sums of a finite number of products of the form ¢m where ¢ € K
and m € M. Still, we also use this notation when there exist commutation rules between the
indeterminates.

Definition 2.1. Given two d-tuples of indeterminates z = (z,,...,24) and @ = (04, ...,0,) along
with a field K, the associated Weyl algebra is classically defined as the non-commutative ring of
polynomials K(z,d) = K(zy,...,24,0,...,0), with the commutation rules

(11) 9;0; = 0;0;,

(12) .’L','ﬂ}j = Q?j.’l]',',

WEYL ALGEBRAS, ORE ALGEBRAS 13

for all (i,5) € {1,...,d}*. (The symbol ¢, ; is the Kronecker symbol whose value is 1 when i = j
and 0 otherwise.) This makes any Weyl algebra a K-algebra.

More formally, let K™ be the K-algebra over the free monoid M = {z,,...,24,0y,...,04}".
Then, the Weyl algebra is the quotient of K™ by its two-sided ideal generated by the family

{8i$j - :vjai - 51'7]', 818] - 8j8i,xixj - LEJ'.’L‘Z'} ij

This construction proves that a Weyl algebra is a K-algebra.

Note also that the Weyl algebra K(z,d) is isomorphic to ®?:1 K(z;,0;) where each K(z;,d;) is
the quotient of the K-algebra K*) over the free monoid M; = {z;,0;}* by its two-sided ideal
generated by 0;x; — x;0; — 1. The tensor product used in this definition replaces the commutations
properties (10-12) when i # j.

In K(z, 0) the following identities hold for any positive integers r, p and any P € K[[z]], as simple
consequences of the commutation rules (10-12):

(13) 0z” = 20 + pz’ !,

(14) 3%‘”:23 (,:)p(p—l)---(p—kJrl)x”’“@r’“,
(15) OP(z) = P(2) 9+ D.P(a),

(16) 9" P(z) = Z (Z) DEP(z) 97"

(17 = " L DEP) D),

where D, (resp. Dy) denotes the formal differentiation with respect to z (resp. 9). In the general
case, they hold for each pair formed by an indeterminate and its associated differentiation (z;, 0;).
Note that because of (10-12), all indeterminates commute except for the pairs an indeterminate and
its associated differentiation. Now, consider two polynomials P and @ of a Weyl algebra K(z, 9).
We have the following general formula for the product:

(18) P(z,0) Q(z,0) =>_ %DgP(:v, 9) * DEQ(x,),

k>0

where * is a commutative product (polynomials in z and 0 are then viewed as commutative poly-
nomials of K[z, J]).

From there, one easily checks that any element of a Weyl algebra admits a normal form obtained
by rewriting it so that in all of its monomials, every 0; appears only on the right of the correspond-
ing z;. (This rewriting does not preserve the number of monomials—it increases it—, but it does
terminate.) The result of such a rewriting is a polynomial of the form

Z Cap T0°

(a,3)EN?4

where ¢ € K™% This rewriting provides an effective zero-equivalence test in Weyl algebras,
provided that an effective test to zero exists in the field K.
Weyl algebras can be considered as algebras of differential operators where:

— the indeterminate z; denotes the product by z;;
— the indeterminate 0; denotes the differentiation with respect to x;.

This point of view is consistent with the commutation rules of the definition.
When dealing with holonomic functions, the polynomial nature of the coefficients of operators
will often be irrelevant. We shall therefore often consider the algebras K(z)K(z, d), which we shall

14 FORMAL MANIPULATIONS OF LINEAR OPERATORS

denote by K(x)(0). Then, identity (13) extends to negative p’s, while identities (15) and (17) extend
to P € K(z) and identity (18) extends to P, Q € K(z)(0).

Now, consider a D-finite power series f € K[[z]]. The set of elements of the Weyl algebra that
vanish on f plays a prominent role in the sequel; we therefore introduce the following notations:
for any given D-finite power series f € K[[z]], let J; (resp. U;) denote the set of the elements of
the Weyl algebra K(z, d) (resp. K(z)(0)) that vanish on f:

I ={w e Kz,0) | w.f =0}
(resp. Uy = {w € K(z)(9) | w.f = 0}.)
We also simply write J;.f = 0 (resp. Uy.f =0).
Conversely, a subset I of a Weyl algebra K(z,d) defines a differential system which is always
solvable in K[[z]], since O is a solution. Note that:

— the solution set of such a system is a K-vector space;
— once the differential system has been defined, the set of elements of the Weyl algebra that
vanish on any solution of the system may be larger than I.

Example. It is easy to check that J..s = Jg4n = R(z, d).(0*+ 1) and conversely, that this set defines
the family {\cos +psin}y ,ere. Similarly, Beos = Jgn = R(z)(0).(0% + 1).

The following proposition is just another formulation of Proposition 1.2.

Proposition 2.2. A subset I of a Weyl algebra K(z,d) defines a vector space of D-finite power se-
ries f solutions of I.f = 0 if and only if there exist d polynomials P;(0;) that are linear combinations
of the elements of I with polynomial coefficients and such that

The following example shows that the link between J; and Uy is not trivial: though U, = K(z)J;
and J; = U; N K(z, 0), this intersection is not easy to compute. This fact be prove problematic
when discussing creative telescoping in Section 5.2 and diagonals in Section 5.2.3.

Example. Let f be the function

1 1
/= 2—s+z R
It is easily verified that
(19) RUES (gsagx) C K(87$)<DsaDz>'

with
gs=D,R=RD,+ (2s — 1)
g. =D.,R=RD, + 1.
Now, let I = (RD; — (2s — 1), RD, — 1) C K(s, z, D,, D,). Trivially, I C J;. However, both ideals
are different: the operator
w=D?+ (4 —1)D. + 6D,
satisfies
Rw=(R*Ds —2(2s —1)R) g, + (4 — 1)R*Dx + 2(—x — 3s + 3s* + 1)Rg, € I,
thus w € J, while w ¢ I. In fact,
(20) jf:(gsagzaw) CK(‘S?:EaDsaDz)'
(Compare descriptions (19) and (20).)

WEYL ALGEBRAS, ORE ALGEBRAS 15

2.2. Ore algebras and holonomic systems. We need to introduce a more general framework
for operators in order to deal with P-recursive sequences and holonomic systems in general. Of
course, these operators have to be non-commutative operators, so we first recall some old results
on non-commutative polynomials.

A study of a large class of non-commutative algebras of polynomials was done by Ore in [20]:
given a field k, he introduced an algebra of non-commutative polynomials k(z) closed under a
product determined by a commutation rule and by the following restriction:

The degree of a product shall be equal to the sum of the degrees of the factors.

Due to the distributive property, this constraint is equivalent to the following commutation rule
between the indeterminate z and any element a of k:

ra = ar +a',

where a,a’ € k. He called a the conjugate of a and a’ its derivative.
He proved that this ring of polynomials has the following properties of usual polynomials:

— right division by Euclid algorithm and an extended gcd algorithm;

— left division by Euclid algorithm and an extended gcd algorithm when suitable assumptions
on the map a — @ and the leading coefficients of the polynomials under consideration are
satisfied, as in particular when the map a — @ is an automorphism of k.

This algebra of non-commutative polynomials is usually called a skew polynomial ring and its
elements Ore polynomials.

Bronstein and Petkovsek showed in [5] how Ore polynomials can always be considered as linear
operators and be interpreted as linear ordinary differential operators as soon as k is a differential
field of characteristic zero. The indeterminate z is then interpreted as a differentiation operator 0.
This is why we choose to use 0 instead of = as the indeterminate name in a skew polynomial ring.
We borrow from [5] the notation o(a) for @ and d(a) for a’. This notation proves convenient in our
generalisation to several indeterminates.

Finally, we are planning to consider linear differential operators with polynomial coefficients for
which the differential base field k is replaced by a field of rational fractions K(z) and the skew
polynomial rings under consideration becomes K(z)(d). To draw a parallel with the definitions
given for the case of Weyl algebras (see e.g. [26]), we call Ore algebra the ring of pseudo-differential
operators K(z, 0).

Definition 2.3. Given two d-tuples of indeterminates z = (z1,...,24) and 9 = (04, ...,0,) along
with a field K, we define the associated Ore algebra as the non-commutative ring of polynomi-
als K(z,0) = K(z1,...,2q4,01,...,0), with the commutation rules

(21) Oy = oy(x;) 0; + 05(x;),

(22) 8i8j - 8j8,',

(23) T;Tj = T;Tq,

2

as soon as (4,7) € {1,...,d}* and

— the 0;’s are endomorphisms of K[z;| (as an algebra) extended to K[z] by the identity,
— and the §;’s are endomorphisms of K[z;] (as a K-vector space) multiplicatively extended
to Klz],
with the g;’s and the d;’s commuting two by two. This makes any Ore algebra a K-algebra. Elements

of Ore algebras will also be called pseudo-differential operators.

(We use the same notation for Weyl and Ore algebras since the former can be considered as a
special case of the latter.)

16 FORMAL MANIPULATIONS OF LINEAR OPERATORS

As in the case of Weyl algebras, a more formal construction of Ore algebras is obtained by
forming the quotient of the K-algebra K*) over the free monoid M = {z1,...,24,0,,...,04}* by
its two-sided ideal generated by the family

{8l$] - O'Z(IJ) 81 - 5Z($J), 818] - 8]8“1E11EJ - xjxi}(i,j)e{l,...,d}Z .

This construction also proves that an Ore algebra is a K-algebra.

Note also that the Ore algebra K(z,d) is isomorphic to @, K(z;, ;) where each K(x;,d;) is the
quotient of the K-algebra K™ over the free monoid M; = {z;,d;}* by its two-sided ideal generated
by 0;x; — o;(x;) 0; — 6;(x;). The tensor product used in this definition replaces the commutations
properties (21-23) when 7 # j.

The required properties of the o;’s and the d;’s are so designed as to separate the action of
differentiation operators on different indeterminates. They also simplify identities involving several
differentiation operators multiplied to the left of a pseudo-differential operator.

Another construction of Ore algebras will prove fruitful when we discuss non-commutative
Grobner bases. After Kandri-Rody and Weispfenning (see [15]), a polynomial ring of solvable

type K(uy,...,u,) is defined as the quotient of the free non-commutative K-algebra over the
monoid (uy,...,u,)" by two-sided ideals of the form
uju; — ¢; ;u;u; — lower order terms (4 >1).

(The monoid is endowed with a term order which is compatible with the product and such that 1
is the lowest element.) Ore algebras are then simple examples of polynomial rings of solvable type.

For the sake of completeness, recall that in the case of a single pair (z,d) and a ring A, the Ore
algebra Az, d) is often called an Ore extension of the ring A. Therefore, another viewpoint on the
Ore algebras defined here is that they are special cases of so-called iterated Ore extensions, with
the restriction that both indeterminates introduced by an extension commute with all previously
existing indeterminate.

We now give some simple consequences of the commutation rules (21-23).

Proposition 2.4. The following identities hold for any i € {1,...,d} and for any positive inte-
gers ryp:

p—1
(24) O} = 0i(:)"0; + Y () di(wi) 2?77
k=0
p—1
(25) 6 (z) = Zai(mi)k(si(ﬂ?i) xé)flfk‘
k=0

In the case of a single pair of indeterminates, the following identity holds for any positive inte-
gers r,p:

(26) 0"xf = Z (;;) or=k) o 5B (zP) g —F,
k=0

where 0 and 69 denote the it iterates of o and & respectively.
Consider two polynomials P and Q of an Ore algebra K(x,0). As in the case of Weyl algebras,
we have the following general formula for the product:

1
(27) P($7 8) Q($7 8) = Z E(Dgp(xa 6))§=(m—>cr(a)*8) (DI;Q(.’E, 8)))
k>0 "
where * is a commutative product (polynomials in x and O are then viewed as commutative polyno-

mials of K|z, d]) and o is multiplicatively extended to the whole Ore algebra.

WEYL ALGEBRAS, ORE ALGEBRAS 17

When dealing with holonomic functions, the polynomial nature of the coefficients of operators
will often be irrelevant. We shall therefore often consider the algebras K(z)K(x, d), which we shall
denote by K(z)(9). Then, identity (27) extends to P, Q € K(z)(09).

Again, this proves that any element of an Ore algebra admits a normal form which is a polynomial
of the type > (, 5)en2d Cas %9 where ¢ € KN, Thus, there is an effective zero-test in Ore
algebras, provided that an effective zero-test exists in the field K. Identities (24-25) also prove that
the commutation rules are totally determined by the o;(z;)’s and the d;(z;)’s.

Now we are able to show to what extent this concept generalises Weyl algebras and to explain the
connection between Ore algebras and holonomic systems. To do so, we simply produce examples of
Ore operators; without loss of generality, we give them in the case of a single variable, since the 9;’s
and z;’s commute as soon as ¢ # j.

Differentiation. Let o(xz) = x and 0(xz) = 1, then 0z = x0d + 1 and the Ore algebra is the Weyl
algebra in a single variable. Thus, 0 can be viewed as the differentiation operator D, over K][[z]]
and K(z,0) = K(z, D,).

Shift. Let o(r) = x4+ 1 and 6(z) = 0, then 0z = (z + 1)0 and 0O is the shift operator: to
recover the notation of recurrence operators, change = into n and 0 to S, then S,n = (n + 1) S,
and K(z,0) = K(n, S,,). For any given sequence u, we have nu = (nu,),enx and S,u = (t,11)nen-

Difference. Let o(z) =2+ 1 and 6(x) = 1, then 0x = (z + 1) 0 and 0 is the difference operator—
either in a continuous or a discrete variable: to recover more usual notation, change 0 to A,,
then A,z = A, + A, + 1 and K(z,0) = K(z,A,). For any given function in z, A,.f(z) =
fl@+1) = f(z).

q-Dilation. Let o(z) = qr and §(z) = 0, then dxr = ¢qz0d and 0 is the g¢-dilation operator.
Put 0= H?, then HPx = zHY and K(r,0) = K(r, H{?). For any given function in z,
H{®.f(z) = f(q).

q-Differentiation. Let o(z) = qz and 6(xz) = 1, then dz = qzd + 1 and 0 is the g-differentiation
operator. Put @ = D@ then DWWz = 2D + 1 and K(z,0) = K(z, D{?). For any given function
inz, DYW.f(r) = % (For examples of use of these last two operators, see [31].)
e”-Differentiation. Let o(z) = x and é6(x) = x, then 0xr = z0 + z. If O is interpreted as dif-
ferentiation operator with respect to a variable ¢, and z is the multiplication operator by ef, the
algebra K(z, d) is K(e', D;). (An example of application is given in Section 5.3.)

e*-Differentiation. Let o(x) = x and §(z) = z, then dz = zd + z. If O is interpreted as the
Eulerian 0, operator with respect to z, which maps a function f(z) to the function zf'(x), and z
is the multiplication operator by x, the algebra K(z, d) is K(x,6,).

Mabhlerian operators. Let o(z) = z? for any given integer p > 1 and d(z) = 0, then 0 acts as the
Mahlerian operator M,: M,x = zPM,. The action of x is the multiplication by x and the action
of M, is M,.f(x) = f(z?). (See for instance [8] for applications to divide and conquer recurrences.)

These definitions are summarised in Table 1.
We now give simple examples of holonomic functions with a description in term of pseudo-
differential operators.

Example.
(i) Factorial: let uw,, = n!, then (S, — (n +1)).u = 0, showing that n! is P-recursive.

(ii) Binomial coefficients: let b, = (}) = (n%/:)'/w then:

18 FORMAL MANIPULATIONS OF LINEAR OPERATORS

Operator x 0 o(x) o) Ox
Differentiation z D, T 1 zD, + 1
Shift n S, n+1l 0 (n+1)S,
Difference z A, z+1 1 (z+1)A,+1
g-Dilation r HY qx 0 zH®
g-Differentiation r DY qx 1 zD@ + 1
e”-Differentiation e* D, e e e*D, + €*
Eulerian operator z 0, T T 0, +
Mabhlerian operator = M, z? 0 P M,

TABLE 1. Definitions of different pseudo-differential operators.

— bngik = G 90 that ((n 41— k)S, — (n+1)).b = 0;
— by = ——2——— so that ((k+1)Sy — (n — k)).b =0;

(n—k—1)! (k+1)!
~ buiki = Gt %0 that ((k+1)S,8, — (n+1)).b = 0.
(iii) More generally, any recurrence equation can be written with the shift operator, or equiva-
lently, with the difference operator, since S, = A,, + 1.
(iv) Let f be the sequence of functions f,(z) = n! cos . Then, in the Ore algebra K(x,n, D, , S,),
(D2 +1).f =0and (S, — (n+1)).f =0.

As for the case of the differential operator, the set of operators of an Ore algebra that vanish on a
given function has a prominent role in the sequel. It has a rich algebraic structure on which all our
implementation is based. So we introduce the same notation and definition as for the differential
operators:

for any given function or formal power series f, J; (resp. U;) denotes the set of the elements of
the Ore algebra K(z,0) (resp. K(z)(0)) that vanish on f:

Jp={w e K(z,0) | w.f =0}
(resp. Uy = {w € K(z)(9) | w.f = 0}.)

We also write J;.f = 0 (resp. Uy.f = 0).

Conversely, a subset I of an Ore algebra K(z,,...,z4,0,...,0;) defines a recurrence system
which is solvable in KNd, since 0 is a solution. Note that the solution set of such a system is
a K-vector space.

Example. It is easily seen that the sequences u and v defined by

(=D*

w(Zk) = "gr

u(2k +1) =0,

and

v(2k) =0, v(2k+1) = %7

satisfy the following relation in R(k, S)
Ju =73, = R{k,S;.).(S; +k (k- 1))
and that conversely, this latter set defines the family {Au + p v})ere.

As in the case of Weyl algebras, the link between J; and 2, is not trivial, as exemplified by
the binomial coefficients and the identity from Pascal’s triangle. (Of course, we have once again
that jf = Qif N K(.’L‘, 8>)

WEYL ALGEBRAS, ORE ALGEBRAS 19

Example. Let again b, ; = (). Then
snb = ((TL +1- k)Sn - (TL + 1)7 (k + I)Sk - (n - k)) C K(nak)<sna Sk)

Now, let
I= ((TL +1- k)Sn - (n + 1)7 (k + I)Sk - (n - k)) - K(”aka Snask>'

Consider the operator w = S, S, — S, — 1, one easily proves that
m+1)w,(k+1wel,
but that w € 3y — I. In fact,
J=((n+1-k)S,—(n+1),(k+1)Sy — (n —k),S,Sr — S, — 1) C K(n, &, S,, Sk)-

Finally, we proceed to extend the concept of Ore algebras of pseudo-differential operators with
polynomial coefficients (in z) to algebras of operators with rational coefficients. We need this
extension in Section 3.

We use equation (24) to perform this generalisation:

0= 0xx?
p—1
=o(z)Pox~? + Z o(z)k6(z) z=HR)|
k=0

from where it follows that
p—1
0z P =o(x)?0— Z o(z)fPs(x) xR,

k=0

Clearly, this identity makes it possible to define an algebra K((z))(0) of pseudo-differential
operators with formal series as coefficients. In particular, we define the algebra K(z)(d) of pseudo-
differential operators with rational coefficients with the same commutation rules.

2.3. Implementation of the arithmetic of Ore algebras. We now show how the construction
of Ore algebras given in Definition 2.3 leads to a natural implementation in MAPLE. We then give
an example of execution in the case of an Ore algebra based on a differential operator and on a
shift operator.

First, Ore algebras are non-commutative polynomial rings. Whereas this non-commutativity has
no influence on the sum, the product is not the usual one implemented for commutative polynomials
in MAPLE. Therefore, our implementation uses the standard sum of MAPLE and provides the user
with a new product. This solution has several advantages:

— MAPLE handles polynomials very efficiently: it uses a hashing method to recognise mono-
mials, so that sums of sparse polynomials are performed very quickly;

— the product implemented in our programme can be fully parameterised (by equivalents of
the o;’s and of the ¢;’s of Definition 2.3) to implement any Ore algebra.

Since the representation used is the polynomial representation of MAPLE, M APLE assumes any
monomial 0 to be equal to the monomial dz. This becomes true if we decide to handle only
normal forms of operators, as defined in Section 2.2.

Our implementation of the product uses identities (18) and (27) rather than the formulae (13—
17) and (24-25), because the computation of o(P) and §(P) when P is a polynomial can often
be done more efficiently by direct means than by using these latter identities. (This argument
is dramatically illustrated by the case of the derivation: o is the identity and ¢ is the standard
derivation already implemented in MAPLE.)

For further information on the implementation, we refer the reader to Appendix C.

20 FORMAL MANIPULATIONS OF LINEAR OPERATORS

Example. We intend to compute the product of two randomly generated operators in the Ore
algebra Q(z,n,D,, S,).

We first load the package and create the algebra Q(xz,n, D,, S,). The description of this algebra
is stored in a variable to be available later.

> with(Mgfun) :
A:=orealg([x,diff,Dx],[n,shift,Sn]):

The description includes amongst others the different functions o;’s and 6’s defining the operators.
> indices(A);

[0], [0], [algebrastructtable], [diffindet], [difftable], [difftypetable], [allindet], [indet]
> print(A[sigmal) ,print (A[delta]);

2kz),n =0])

table([z = (k — k),n = (k — subs(n = n + 1,k))]), table([z = (k — pe

We easily recall the fundamental commutations.

> opprod(dx,x,A) ,opprod(Sn,n,A);

1+zD,,nS,+ S,

We draw two random operators and compute their product.

> randopr(5,6,2,A) ,randopr(5,6,2,4);
opprod(",A);

Din® +28in”, 22°n* + 2D2zn’

24n°D? +16n°2D? + 2n52° D + 8n*D5 + 2n* DSz + 4nS2? St + 64n°2*S?
+ 384n*z>S? +1024n°2> S} + 1024n°2°SE + An*zSED? + 32n°x S D2 + 64n°zSE D?
3. IDEALS OF OPERATORS AND DEFINITION OF HOLONOMY

So far, we have introduced Ore algebras and seen how D-finite power series on the one hand and
P-recursive sequences on the other hand are defined as solutions of pseudo-differential operators.

Conversely, given an Ore algebra K(z,0) (resp. K(z)(0)) and f a function on which the elements
of this algebra operate (either a D-finite power series or a P-recursive sequence or, generally, a
holonomic function), the set J; (resp. U;) of all operators that vanish on f has the rich algebraic
structure of a left ideal:

(i) 0 € 34: Iy is not empty;
(ii) Yw,w' € 3; w.f +w'.f = 0, therefore w + w' € J;: T, is closed under sum;
(iii) Ya € K(z,0) Yw € J; (aw).f = a.(w.f) = 0, therefore aw € J;: J; is closed under
multiplication on the right by any element of K(x, d).

(resp. same properties for Uy, with K(z,d) changed into K(z)(0).)

The non-commutativity of Ore algebras and the fact that a function is applied on the right of
a pseudo-differential operator make us handle left ideals. As a matter of fact, they cannot also be
closed under multiplication on the right by any element of the algebra without being degenerated
cases: as is proved in [9, 3], Ore algebras are simple. This means that any two-sided ideal of a Weyl
algebra is either {0} or the whole algebra itself, defining respectively the whole set of functions
on which the algebra operates or the singleton of the zero function. Thus, only left ideals will be
considered later on.

The word holonomic was first used in the framework of Weyl algebras to qualify certain ideals.
We now aim at explaining the connection between this holonomy of ideals and the holonomy of
functions, and to generalise what can be to Ore algebras.

IDEALS OF OPERATORS AND DEFINITION OF HOLONOMY 21

In Section 3.1, we recall general definitions and results on filtrations and graduations of algebras
that are dealt with in [3, Chapter 1].

In Section 3.2, we define a class of so-called admissible Ore algebras that behave like Weyl
algebras when filtrated by the Bernstein filtration—more precisely, they are Noetherian.

In Section 3.3, we use a concept of dimension of modules to give our definitions of holonomic
systems and holonomic functions, thereby making the connection between the theory of D-modules
on the one hand, and D-finite power series and P-recursive sequences on the other hand.

3.1. Filtrations of an algebra and of a module. We begin by recalling general definitions and
a general theorem from [3, Chapter 1].

Definition 3.1. A filtration of a K-algebra A is an increasing sequence of finite dimensional K-vec-
tor subspaces (F,,)men of A with the properties:

{0} =F,CcFR CF C---CA,

U fm:Aa
meN
fm-j:m’ Cj:m-t—m’a

for any pair (m,m’) € N?.

Once an algebra has been equipped with a filtration, it is associated a graded algebra defined as
follows.

Definition 3.2. The associated graded algebra gr, A is the infinite direct sum

D Fn/Fn-s,

meN
with the product induced by the product over A.

We prove that the product is well defined.
Proof. For any given (m,m') € N*, consider « € F,,,/Fp_1 and B € Fp [Frr 1, as well as (A, A') €
a? and (B, B') € 32. Then,
AB-AB' =A(B-B')+(A—A)B € Fryp_1-

We therefore define a5 as the image of AB in the quotient space Fpimr /Frntm:—1-

The product generalises to any pair of elements of gr,.A by distribution of the product over the
sum. -

(Note that all definitions and properties recalled in this section could be generalised to any
ordered monoid M instead of N, in order to get more refined results. To this end, any expression
of the form F,, ; should be replaced by > mem Fppr.)

'<

Similarly, there is a concept of filtration on a left A-module as well as a concept of associated
graded module.

Definition 3.3. Let A be an algebra equipped with a filtration F. A filtration of a left A-module
is an increasing sequence of finite dimensional K-vector subspaces (I,) cn of 9t with the properties:

{O}ZF_1CF0CF1CCWZ,

U Ly = Aa
meN
fm.rm’ C Fm+m77

for any pair (m,m’) € N?.

22 FORMAL MANIPULATIONS OF LINEAR OPERATORS

Definition 3.4. The associated graded module grp 9 is the infinite direct sum
P /T
meN

It is a left gr, .A-module.

We explain how the external product is well defined to prove that the associated graded module
is a left gr,.A-module.

Proof. For any given (m,m') € N*, consider « € F,,,/F,,,_1 and p € [, /T 1, as well as (A, A") €
a? and (M, M') € p?. Then, AM, AM', A’M and A'M' are elements of I, ./, and

AM —AM' =AM - M)+ (A= AYM' €Ty

We therefore define ayu as the image of AM in the quotient space L'y, /T s 1
The product generalises to any pair of elements of gr 9t by distribution of the product over the
sum. u

As a special case, note that when K[z] = K[z, ..., z4] is an algebra of polynomials, a graded K|z]|-
module is a K[z]-module M with the decomposition

m = P m,,

meN

where the 9,,’s are K-vector subspaces of 9 satisfying
(28) :L“jﬁﬁm C DJTm+1

for all j € {1,...,d} and all m € N. More precisely, for each m, 9, is the set of all polynomials
of total degree m. The 9,,’s form a filtration of the module M. Inclusion (28) follows from

:vjfmm - mlmm C merl.
The following important theorem is due to Hilbert and is proved in [3].

Theorem 3.5 (Hilbert polynomial). Let 9 be a graded and finitely generated Kz, ..., z4]-
module and M = D,y M, be its graduation. Then, the integer), dimg 9M; is asymptotically
equal to a polynomial function in m.

i<m

3.2. Admissible Ore algebras and noetherianity. We proceed to specialise the concepts of
filtrations, associated graded algebras and associated graded modules when the base algebra A is an
Ore algebra. Still, in order to ensure that the following propositions are valid, we restrict ourselves
to the cases of Ore algebras built on pseudo-differentiation operators 9; such that

(29) oi(z;) = piw; + qis
(30) 0;(x;) = riw; + 54,

where all coefficients are in K and no p; is zero. This is for instance the case when these operators
are differential, difference, shift or even e”-differential and Eulerian operators, while it is not the
case if they are Mahlerian operators. More specifically, these requirements ensure that the Ore
algebras under condideration are Noetherian, i.e. that they contain no infinite strictly increasing
sequence of ideals. We proceed to prove this property in this section.

Note that hypothesis (29) is equivalent to the fact that all o;’s are automorphisms of K[z;].
If 0; is an automorphism of K[z;], then there exists P € K[z;] such that o;(P(z;)) = x;. Then,
P(oi(z;)) = z;. Now, o;(x;) is a polynomial @ € K[z;], from where it follows that

(31) PoQz) =

IDEALS OF OPERATORS AND DEFINITION OF HOLONOMY 23

and that both polynomials are of degree 1:

P=azx;+0b,
Q =cz; + da
where all coefficients are in K. Substituting in (29) yields

ac =1,
ad + b =0,
from where it follows that neither a nor c¢ is zero. The converse implication is trivial.

Hypothesis (30) implies the property that the d;’s do not increase the degree. As a matter of
fact, identity (25) can be rewritten in the context of these hypotheses into

u—1

(32) 0i(af) = Z(pzxz +q)f (rimi 4+ s;) 2l

k=0

which is a polynomial of degree at most p in z;.
For convenience, we introduce the following definition.

Definition 3.6. An Ore algebra K(z, 0) is admissible when it satisfies hypotheses (29-30).

Henceforth, all Ore algebras under consideration are admissible. We first deal with commutations
described by identities (29-30) where all p;’s are equal to 1.

In the sequel, we make constant use of the following filtration, that allows the commutativity of
the corresponding associated graded algebra.

Definition 3.7. We define the Bernstein filtration of an admissible Ore algebra K(z, d) as

F = {w € K(z, 0) ‘w = Z Ca,B z%0%, when c € K(N2d)}.

(a,B)€n2d
la]+18I<m

Proposition 3.8. The graded algebra associated to the Bernstein filtration of an admissible Ore
algebra K(z,) is commutative.

Proof. Suppose o € F,,,/F,,—1 and 8 € Fi /Fpr 1. Given A € @ and B € f3, it is easily seen from
the commutation rule (26) and from the particular properties of an admissible Ore algebra (29-30)
(with p; = 1) and (32) that

(33) AB — BA € Frppr 1.

Then, modulo F,, ., 1, equation (33) yields aff — fa =0 € Fym'/Fmsm —1- By distribution
of the product over the sum, the associated graded algebra gr, A is commutative.]

Let K(z,0) be an admissible Ore algebra. The definition of admissible Ore algebras and the
commutativity of the associated graded algebra are sufficient conditions for the next two results.

Proposition 3.9. gr-K(z,0) is a commutative polynomial ring in 2d indeterminates with coeffi-
cients in K. More precisely,

gryK(z,0) = K[Z1,...,%4,01,...,04),
where Z; and 0; are the classes of x; and O; respectively in the associated graded algebra.
Theorem 3.10. K(z,0) is a left Noetherian ring, i.e. any of its left ideals is finitely generated.

Proof. We do not give any proof for these results, since those given by Bjork in [3] in the case of
Weyl algebras extend word for word to our framework of admissible Ore algebras. |

24 FORMAL MANIPULATIONS OF LINEAR OPERATORS

We now briefly consider the general case of Ore algebras built on equations (29-30) without any
restriction on the p;’s. Then, Definition 3.7 is still relevant, but Propositions 3.8 and 3.9 no longer
holds: let for instance K(q){x, H) be the g-calculus algebra ruled by

Hzx =qxH.
(q is transcendental over K.) This identity also holds for classes
Hz =qzH,

so that the associated graded algebra is not commutative. However, Theorem 3.10 is still valid. A
full proof can be found in the more general setting of polynomials rings of solvable type, see [15,
Theorem 4.7] (this is a consequence of the validity of Dickson’s lemma in these rings).

Though we do not have any proposition that characterises Noetherian Ore algebras, it seems that
equations (29-30) are close to be an equivalent property to noetherianity; the following example
gives a non-Noetherian (non-admissible) Ore algebra.

Example. Let I, = (z,zM,zM?,... , xM") C K(z, M), where M is the Mahlerian operator de-
fined by

Mx = 2" M,

for a fixed p € N. It is easily verified that zM"* & I, so that (I,),ey Is a strictly increasing
sequence of ideals, and K(z, M) is not Noetherian. A similar result holds as soon as a o;(x;) is a
polynomial of degree greater than or equal to 2.

3.3. Bernstein inequality in an Ore algebra, holonomic modules. From now on, we assume
that J is a non-null left ideal of an admissible Ore algebra K(z, d) distinct from the whole algebra,
and that K(z, d) is equipped with its Bernstein filtration (F,,)men. The quotient K(z, d) /3 is then
a left K(z,d)-module. As a vector subspace of its Ore algebra, this module has a dimension over
the base field K. There is nonetheless another concept of dimension for modules, which is more or
less related to the numbers of monomials of a certain total degree in the Ore algebra that cannot
be reduced into a linear combination of some of lower total degree. We proceed to give some results
on Weyl algebras detailed in [3, 9], and to extend them to admissible Ore algebras, in order to show
how this concept of dimension is related to holonomy.

Let 91 be a K(z, d)-module and (T,,),en a filtration of 9. We extend the following theorem
valid for Weyl algebras to our admissible Ore algebras.

Theorem 3.11. The function H(m) = dimg T',, is asymptotically equal to a polynomial in m.

Proof. Once again, the proof is the same as the one given in [3] for Weyl algebras. The dimen-
sions H(m) are given by

H(m) = dimg I'y, =) dimg(I;/T4).

i<m
Because of the hypothesis of admissibility, it follows from Proposition 3.9 that
grrM =P L/l
meN

is a finitely generated and graded module over the commutative polynomial ring

gI‘_;—K(.’L‘,@) :K[:Ela"'ajduéh"'aad]

(or over a ring isomorphic to K(u;,..., U, v1,...,v,), with v;u; = p;u;v;). Thus, Theorem 3.10
applies and there is a polynomial function to which H(m) is asymptotically equal. []

The nature of the previous result leads to the following definition.

IDEALS OF OPERATORS AND DEFINITION OF HOLONOMY 25

Definition 3.12. H is called the Hilbert function of the left K(z,d)-module M. The polynomial
function to which it is asymptotically equal is called the Hilbert polynomial of the K(x, d)-module 97.
The degree of this polynomial is then called the Bernstein dimension of the K(x, d)-module 9 and
is denoted by d(9n).

When the Ore algebra is simply a Weyl algebra, Bernstein proved the following theorem in [2].
Theorem 3.13 (Bernstein inequality). In the case of the Weyl algebra
K(z,0) = K(zy,...,24,01,...,04),
the Bernstein dimension of a left K(z, 0) -module M distinct of {0} and of the whole algebra satisfies
d(om) > d.

Proof. We do not give any demonstration here, but the justification mainly relies on the com-
mutativity of the associated graded algebras and on the fact that A € F,, B € F, implies
AB—-BA € F,.,—» (in the general theory of graded rings, we would only get AB—BA € F,iy—1). R

The following definition and theorem relate the concept of Bernstein dimension to the concept
of holonomy discussed so far.

Definition 3.14. (i) When a K(z, d)-module M is of smallest possible Bernstein dimension d,
it is called holonomic (or in the Bernstein class).
(ii) Let J be a left ideal of the algebra K(z)(d), where = and 0 define an Ore algebra K(z, d).
When the K(x)-vector space
K(x)(9) /3

is finite dimensional, the ideal J is said zero-dimensional.

Proposition 3.15. In the context of a Weyl algebra, K(x,) /3 is holonomic if and only if K(x)(J) J
is zero-dimensional.

Proof. The direct result is due to Bernstein and the converse one to Kashiwara. (See [2, 16] for the
proof.) [|

Theorem 3.13 cannot be extended to the generality of admissible Ore algebras, as is proved by
the following example.

Example. Let I = (n,S) in the algebra built on the shift operator S
Sn=nS+S.

This ideal I is isomorphic to K(n,S) \ K* (non-null constants are not reached). Therefore, its
dimension d(I) is 0, though this ideal is neither the null ideal, nor the whole algebra.

A similar example can be found in Ore algebras built on difference or Eulerian operators.

3.4. Definition of holonomy. We now return to the link between D-finiteness and holonomy.
It is clear that when f is an element of the set of functions on which a Weyl algebra acts naturally,
if K(z)(0) J; is zero-dimensional, then K(z,d)/J; is holonomic in the sense that has just been
defined and f is holonomic in the sense of Definition 1.1. Conversely, if f is holonomic in the sense
of Definition 1.1 (i.e. if it is D-finite), then Proposition 1.2 proves that J; is zero dimensional.
This equivalence justifies that D-finite functions are also called holonomic, since they vanish on
holonomic ideals. In the case of P-recursive sequences, however, there is no direct connection to
holonomic ideals—we have proved that Bernstein inequality does not hold in Ore algebras built
on shift operators. The use by combinatorialists of the word holonomic to denote P-recursive
sequences is only motivated by the equivalence Theorem 1.10.
We are now able to define holonomic systems and holonomic functions.

26 FORMAL MANIPULATIONS OF LINEAR OPERATORS

Definition 3.16. Let K(z,9) = K(z1,...,24, D1,...,Dq) be a Weyl algebra. When a set G of ele-
ments of K(z,d) spans a zero-dimensional left ideal 3 =} ., K(z, d)g of the algebra—or, equiva-
lently, if J is zero-dimensional—, the set of equations determined by G is called a holonomic system.
When f is a function of the family on which the Weyl algebra acts naturally and such that I; is
zero-dimensional, it is called a holonomic function.

Let K(z,0) = K(Zy,...,Zq,N1y5.--sNg,Diy..., D4, S1,...,Sy) be an (admissible) Ore algebra
build on differentiation and shift (or equivalently difference) operators. When f is a function of
the family on which the Ore algebra acts naturally, let F' be its generating function

— § ny ar
F(:Ela"'axmyla"wyd’)_ fn17...,nd/($17"'axd)y1 e Yar -
(n1,...,nd/)ENd'

When the ideal I C K(zy,...,Z4,Y1,...,Ys) is zero-dimensional, the sequence of functions f is
also called a holonomic function. When a set G of elements of K(z,d) defines a holonomic function
(as just defined for sequences of functions) up to initial conditions, the set of equations determined
by G is again called a holonomic system.

Since Bernstein inequality no longer holds in general in Ore algebras, it does not seem possible
to extend holonomy to other types of operators—or not all closure properties of D-finite functions
and P-recursive sequences will remain valid.

4. GROBNER BASES IN ORE ALGEBRAS

The following remarks vindicate the introduction of Grobner bases. First, the implementation
of the arithmetic of Ore algebras, as described in Section 2.3, contains a sum and a product, but
no equivalent for a division operation. Then, as already noted in Section 1.1.2, the proofs of each
result of Theorem 1.3 work by reducing the derivatives of a power series into a finite dimensional
vector space in order to prove the D-finiteness of the series. The operations described so far in
Ore algebras do not provide us with any reduction functionality. Next, the set J; of all operators
of an Ore algebra that vanish on a function f is a left ideal of this algebra. The problem of
testing whether a given operator vanishes on f is therefore an ideal membership problem. Finally,
some algorithms on holonomic functions, such as computing the generating function of a sequence,
require elimination.

In the case of a single variable, all these problems are solved simply by performing Euclidean
division. In the case of several variables, none of these problems remains solvable by this technique,
since the algebras under consideration are no longer Euclidean, and we need to find an alternative
for it. Grobner bases provide us with this generalisation.

In Section 4.1, we give an example to motivate further the use of Grobner bases: we use elimi-
nation to automatically deduce equations on the Legendre polynomials, provided that simpler ones
are known.

Section 4.2 identifies the problem of reduction, compares it with Euclidean division and recalls
definitions needed in the following subsections. Reduction is also extended to the case of admissible
Ore algebras.

The algorithms of Section 4.3, Buchberger’s general ones and the improvements for the com-
mutative case, are classical algorithms that can be found in [13, Chapter 10] or in [7, Chapter 2],
along with proofs of their correctness. In the same subsection, we also recall what is known as
Buchberger’s “normal strategy”, as well as algorithms for the “sugar strategy”. This latter is fully
described and compared to the former in [14]. In the same section, we explain how we generalised
all these algorithms to the case of admissible Ore algebras and how we implemented them.

Execution times for examples of Grobner bases computations with our Mgfun package can be
found in Appendix A.

The reader who is already familiar with Grobner bases may skip directly to the parts of the
next sections dealing specifically with the extension to admissible Ore algebras. It also has to be
noted that we have developped here a theory of Grobner bases in non-commutative algebras which

GROBNER BASES IN ORE ALGEBRAS 27

is a particular case of Kandri-Rody and Weispfenning’s theory of polynomial rings of solvable type
(see [15]).

4.1. Example of the orthogonal Legendre polynomials. We intend to show on an example
how our Mgfun package deals with mixed differential-recurrence equations. We refer the reader to
Section 2.3 and Appendix C for a description of our package. Appendix B gives another, more
involved example of holonomic computation.

As elements of a large class of orthogonal polynomials, the Legendre polynomials are solutions
of a differential equation, of a recurrence equation and of a mixed differential-recurrence equation.
Our aim is to compute one of these equations when both the other ones are given.

To begin with, we recall the definition of the Legendre polynomials, as well as some equations
that they satisfy (see [1, formulae (22.3.8, 22.6.13, 22.7.10, 22.8.5)]):

[n/2] " .
Pue) =27 3 (1) @ (2() ’”)

k=0

(1 —2*) P/ (z) — 2z P)(z) + n(n + 1) P,(z) =0,
(n+2) Pry2() = (20 + 3) 2 Poya (2) + (0 + 1) Py () = 0,
(1—-2*) P, (z) +(n+ 1)z Py (z) — (n+ 1) P(z) = 0.

We load the package.
> with(Mgfun) :

We define an algebra with two indeterminates. The variable x is associated with a differentiation
operator D,, while the variable 7 is associated with a shift operator S,,.

> A:=orealg([x,diff,Dx],[n,shift,Sn]):
We define the operators.

> DE:=(1-x"2) *dx"~2-2*x*dx+n* (n+1) :
RE:=(n+2)*Sn"2-(2*n+3) *x*Sn+(n+1) :
RDE:=(1-x"2)*dx*Sn+(n+1) *x*Sn-(n+1) :

Now, proving an identity is simply performing elimination. Eliminating D, between the differ-
ential equation and the mixed differential-recurrence equation yields the recurrence equation.

> U:=termorder(A,lexdeg=[[dx], [n,x,Sn]],max) :
GBR:=gbasis (map(expand, [DE,RDE]) ,U,rational);
GBR :=[D? — D?s* — 22D, +n? +n, D,S,, — D, S,z* + £S,n + xS, —n — 1,

nS,D, — 2n —n?> — D, — nzD, + D,S, — 1,

D, + D,n+ D,S,z + 5S, + 6nS,, +2S,n* —2D,S?> —nS?D,,

482 +4nS2 +n*S2 — 6xS,, — TxS,n — 2n’z, S, + 3n+ 2+ n’]
(Note that the term order used is an elimination term order that put D,, the indeterminate to be
eliminated, prior to the other indeterminates.) This elimination takes less than 3 seconds.

The obtained Grobner basis contains a polynomial without D,, which we prove to be the desired
equation.

> factor(GBR[5]1);

—(n+2)(—nS2 — 282 +228,n + 3zS, —n — 1)

In the same way, eliminating S, between the recurrence equation and the mixed differential-
recurrence equation yields the differential equation.

28 FORMAL MANIPULATIONS OF LINEAR OPERATORS

> V:=termorder(A,lexdeg=[[Sn], [x,n,dx]] ,max):
GBD:=gbasis(map(expand, [RE,RDE]),V,rational);

[D,S, — D,S,z* +xS,n + xS, —n—1,
—2n8,,8,n* + 2°D, + z*D,n + 2nx +n*zx — S,, + x — D, — D,n,
—z’n+n+2n° - 2Dz + D? — 22D, + 22°nD, + 22° D, — 2nzD,
+n® + D?n —22°D%n + 2*D?n + 2*D? — n*z* — 2n*2?,
nS> + 252 — 2xS,n — 3zS, +n +1]
(Note that we used another term order with S, prior to the other variables to eliminate it.) This

elimination takes less than 3.5 seconds.
Once again the operator without S, leads to the desired equation.

> factor(GBD[3]);
~(@ = 1)z +1)(n + 1)(D} - D}a® - 22D, + 0’ +n)

These results were so encouraging that we tried to do the same on the orthogonal Jacobi poly-
nomials, with the use of the corresponding definition and equations that we recall here (see [1,
formulee (22.3.1, 22.6.1, 22.7.1, 22.8.1)]):

JEN (@) = 2y (”Z“) (Zjﬁ)(l +2)H (1 —2)" 7,

k=0

(1=a?) J&2" () + (B — a = (a+ B +2)) JS*D" (@) + n(n+ a+ B+ 1) 1P () =0

2(n+2)(n+a+b+2)2n+a+b+2) J% (2)
—[(2n+ a+b+3)(® —b?)
+(2n+a+b+2)2n+a+b+3)2n+a+b+4) 2] JD (x)
+2(n+a+)(n+b+1)2n+a+b+4)J () =0

Cn+a+B+2)(1—-a?) I @) - (n+1)(a—B+2— 2n+a+B+2)z) IS0 (2)
—2n+a+1)(n+B+1)J*(z)=0

Working this time in K(n, &k, «, £)(S,., Sx)—instead of K(n, k, S,,, Si), as in the previous example of
the Legendre polynomials—, we got similar results in less than 10 seconds for each computation.

4.2. Division algorithm in the multivariate case. In K[z], the Euclidean division of a poly-
nomial p by another polynomial ¢ computes two polynomials d and r such that p = dq + r
and degr < degq. This last property uniquely determines the remainder r in the finite dimensional
vector-space K2]qeg —1 = {a € K[z] | dega < degq — 1}.

In other words, this Euclidean division reduces p by the ideal (¢) = K[z] ¢ of K[z] in order to find
a remainder r in the finite dimensional vector-space K[z]qeg,—1, Which is canonically isomorphic
to Klz]/(q)-

In this way, Euclidean division transfers problems from the infinite dimensional vector-space K|z]
into the finite dimensional vector-space K[z]qeg ,—1. Easy linear algebra can then be performed in
this finite dimensional vector-space. Unfortunately, Euclidean division does not work any longer in
an algebra of polynomials in several indeterminates.

GROBNER BASES IN ORE ALGEBRAS 29

Return the remainder of the Euclidean division of p by ¢
function EuclideanDivision(p, q)

Begin with p itself as the remainder

T=p

Reduce the degree of r while this can be done

while degr > degq {

monomial of r of highest degree
monomial of g of highest degree q

r=r—
¥

Return a polynomial with no monomial of degree less than g
return r

ALGORITHM 1. Euclidean division

4.2.1. Reduction. We now proceed to recall the concept of reduction, which is a generalisation of
Euclidean division to the case of polynomials in several indeterminates.

We first recall the algorithm of Euclidean division in K[z| to identify what has to be required for
a general algorithm of reduction.

In the case of several indeterminates z,...,z,, we make the following remarks, that we then
detail in the next paragraphs:

(i) there is no longer one single notion of degree: the concept of term orders has to be substi-
tuted to the one of degree;

(ii) the ideal (¢) has to be changed into an ideal of K[z, ..., z4] and it generally is impossible to
find a single generator of this ideal; therefore, a general reduction algorithm should “divide”
by a set of reducers;

(iii) when the leading monomial of a polynomial p is not divisible by the leading monomial of
another polynomial g, it is not necessarily true that no monomial of p is divisible by the
leading monomial of ¢;

(iv) given a polynomial p and a (finite) set of polynomials g;, if there exist d;’s and a remainder r
such that p =), d;q; + r, the remainder r is not uniquely determined by the term order
in K[z, ...,z,], even if we add the constraint that none of its monomials is divisible by the
leading monomial of any g;.

Term orders. A more formal definition of a term order is the following.

Definition 4.1. A term order is an order on the commutative monoid (zi,...,24) = {z%}aend
with the following properties:
(i) < is total: for all @ and B in N¢, either z* < z” or z° < z°;
(ii) < is compatible with the law in (z1,...,z,): for all a, 8 and «y in N¢,
2% < 2P = %27 < 2P,
(iii) < is well-ordered: every non-empty subset of (zi,...,z4) has a smallest element under <.
Still, we speak of a term order on an algebra of polynomials when referring to the term order of
the monoid on which the algebra is built.
The term orders on the algebra of polynomials K[z, ...,z that are most commonly used are
given in the following definition.
Definition 4.2.
— The lexicographic order on the algebra K[z, ..., z,] is defined by

% <ex 2 = Fi € {l,...,d} (Vi e{l,....d} j<i=qa;=p)Aa<Pp.

30 FORMAL MANIPULATIONS OF LINEAR OPERATORS

— The total degree order on the algebra K[z, ..., z,] is defined by

TY <yaeg T° =
(laf <|Bl)v(@ie{l,...,d}(Vije{l,....d} i<j=a;=0)Na;<pB).

(|| is the sum a; + -+ + aq4.)
— The elimination orders on the algebra K[z,,...,z4| are defined by the set {z,...,z.} of
indeterminates to be eliminated, and by

T <elim b =
(m‘f‘l CTe <tdeg mfl . m’f) Vv
Qe ﬂe
((al,...,ae) = (P15 Be) ANz xgt <ideg :Ee_ﬁl---:v’gd).

Note that these three term orders coincide when d = 1. Moreover, for all of them, the following
property holds
Ya#0 1<z

We add this assumption for all term orders under consideration in the sequel.

Once a term order has been chosen on an algebra of polynomials, the leading monomial of a
polynomial with respect to this term order has a prominent role, so that we give the following
notation: when p is a non-zero element of an algebra of polynomials on which a term order has
been chosen, let:

(i) lm(p) denote the leading monomial of p with respect to this term order;
(ii) 1t(p) denote the leading term of p with respect to this term order;
(iii) lc(p) denote the leading coefficient of p with respect to this term order.

We have lm(p) = lc(p) It(p), and lc(p) # 0.

Non-principality of Klzy,...,z4]. Of course, we only deal with the case d > 1.

As already mentioned, a division algorithm in K[z] is an algorithm that inputs two polynomials p
and ¢ and returns two polynomials m and r such that p = m + r and m is a multiple of ¢g. This is
an algorithm of reduction modulo the ideal of the multiples of g. But K[z, ..., z4] is not principal,
which means that a generic ideal of this ring is not always generated by a single polynomial.
Allowing a set of divisors ¢; instead of a single one, the “division” equation becomes p = m +r
with m in the ideal spanned by the ¢;’s, that is with m =", d;q;.

The step of Algorithm 1 that tests the divisibility of 1t(r) by lt(q)—by comparing the degrees
of the polynomials—must be changed to retain all those ¢;’s such that 1t(g;) divides 1t(r). Then,
the step that reduces the degree of r by subtracting a multiple of ¢ must be changed to subtract a
multiple of one of the ¢;’s. Therefore, this raises the problem of choosing which ¢;’s to use, when
several fit. For the moment, and as long as there is no matter of efficiency, we solve this problem
by choosing any one of them, for instance the first in the list of those retained.

For convenience, the algorithm that are presented in the sequel use the following notation: given
a polynomial p to be reduced and a set of reducers @), let the reducer set R, of p by () be:

— @ when p = 0;
— {q € Q {0} | lt(q) divides It(p)} otherwise.

Definition 4.3. A polynomial p is reducible

— by a polynomial ¢ if and only if there is a term ¢ with non-zero coefficient in p and a
monomial m such that 1t(¢ —mq) is lower than ¢ according to the term order on the ambient
algebra;

— by a set of polynomials @) if and only if there is a ¢ € @), a term ¢ with non-zero coefficient
in p and another monomial m such that 1t(¢ — mq) is lower than ¢ according to the term
order on the ambient algebra.

GROBNER BASES IN ORE ALGEBRAS 31

When either condition is satisfied, we also say q reduces p or @ reduces p respectively. Otherwise,
p is called irreducible.

We denote these relations by the following notations:

(i) In each of the two cases of the previous definition, let » denote p — mg. Then we write
respectively p —r and p 5) T.
q

(ii) We write p% r, whenever there is a finite sequence ¢, ..., g, of elements of () such that
p—re =T
q1 qn

(iii) We write pé) r, whenever p%r and r is irreducible by Q.

End of the reduction. In the case of a single indeterminate, when 1t(q) does not divide lt(r), the
algorithm stops, and no other monomial of r is divisible by 1t(¢). We borrow the following example
from [7, Chapter 2] to show that this property does not hold any longer in the case of several
indeterminates, but that the algorithm can be changed to recover it.

Example. Let us reduce p = 2%y + zy® + y* by the set {q; = zy — 1,q» = y*> — 1} in the algebra
of polynomials K[z, y] equipped with the lexicographic term order such that z > y:

y+ay’ +y =0(xy —1)+0(y* — 1) + (2°y + z¢° + y°)
=z(@zy—1)+0@* - 1)+ (v’ +z+y°)
=(@+y) (ey—1)+0@* -1)+ (= +y° +y),

where we write all polynomials in decreasing order with respect to <. (Remember that when
both ¢; and ¢, can reduce the remainder, we use ¢;.)

Now, the remainder r is z + y* + y and neither 1t(¢;) = zy nor lt(¢g.) = y* divides lt(r) = z. But
the second term y* appearing in r is divisible by 1t(¢s) = y?, and after putting 1t(r) away from the
remainder, we keep on reducing:

sy +ay’ +y' = (z+y) (zy — 1) +0(y* — 1) + (2) + (v* +y)
=@z+y) (zy—1)+1@> 1) +z+(y+1)
=@z+y) (zy—1)+1@w* -1+ (z+y)+1
=(@x+y)(zy—-D)+1 " -1+ (z+y+1)

This time, the remainder is a sum of monomials, none of which is divisible by the leading terms of
the g;.

Definition 4.4. A polynomial p is fully-reduced

— by a polynomial ¢ when none of the monomials of p is reducible by g;
— by a set of polynomials () when none of the monomials of p is reducible by Q.

We demand that the reduction algorithm leads to irreducible polynomials.

Uniqueness of the remainder. Another example borrowed from [7] proves that even when the term
order is fixed, there is no uniqueness of the remainder.

32 FORMAL MANIPULATIONS OF LINEAR OPERATORS

Example. We proceed as we did in the previous example to perform the same reduction with the
same term order, but giving the priority to ¢, rather than ¢; when both can reduce the remainder:

y+ay’ +yP =0(xy —1)+0(y* — 1) + (2°y + 29° + v*)
+0(y* = 1) + (zy* +x +y°)
+z(y> — 1) + (22 + 3°)
+a(y’ —1) + 22+ (y°)

The remainder is now 2z + 1. It is still a sum of monomials, none of which is divisible by the
leading terms of the ¢;, but is different from the remainder found in the previous example.

The uniqueness of the remainder is guaranteed only by additional properties of the set of reducers.
But we postpone considering this problem until the next section. We are now ready to give an
algorithm of reduction.

4.2.2. Full reduction of a polynomial modulo an ideal given by generators. Given a polynomial p to
be reduced and a set) of reducers, the algorithm of full reduction, that has just been suggested,
returns a polynomial r of the form

(34) p— D wyq

7€Q
with no reducible monomial. This algorithm is the one that we have implemented in our pack-
age Mgfun and that we recall in Algorithm 2.

Given a polynomial p to be reduced and a set () of reducers,
return a ¢ that cannot be reduced any more
function FullyReduce(p, Q)
Start with the whole polynomial
r=p
At the beginning, the result contains no monomial
q=0
Work monomial after monomial
while r # 0 {
If a reducer exists, continue to reduce
while R, o # @ {
f = SelectPoly(R, q)
p=p— oy

Otherwise, strip off the leading monomial
r=r —lm(r)
And add it to the result
q=q+Im(r)
¥
Return a polynomial with no reducible monomial
return q

ALGORITHM 2. Full reduction

It calls a procedure SelectPoly which chooses a polynomial between those given as arguments. In
the naivest implementations, the polynomial chosen is the first element of the given list. But this

GROBNER BASES IN ORE ALGEBRAS 33

remaining choice is intended to make it possible to lessen the execution time of the programme.
For instance, one can choose the polynomials to reduce in order to lessen the number of elementary
reductions to be done in a full reduction. This is the choice in the normal strategy. One could also
choose the polynomials to reduce with in order to keep the size of the intermediate results—i.e.
the number of monomials in a polynomial—as small as possible.

However, we have not implemented Algorithm 2 exactly as it is described because of the following
point: if we reduced a polynomial p by a reducer ¢ that is not monic, the algorithm would have to
divide by the leading coefficient of ¢ and the programme would have to deal with fractions. This
would lead to a loss of efficiency, since all operations on fractions are more time-consuming than
simple arithmetic operations. Thus, it is a good thing to clear all denominators of the polynomials
under consideration during the execution of a full reduction. But then, the result is no longer of
the form (34). Indeed it becomes of the form

(35) Wpp — Z Wqq-
4EQ

Fortunately, this does not change the algorithms.

4.2.3. Eaxtension of the full reduction to admissible Ore algebras. If we want to extend the algorithm
of full reduction to non-commutative algebras of polynomials, some problems arise:

— the concept of a term order on the monomial does not make sense any longer; however, if
we restrict ourselves to admissible Ore algebras, as defined in Definition 3.6, we can extend
this concept to the non-commutative case;

— the ideals of such algebras are generally not two-sided; since we intend to deal with Ore
algebras, we restrict ourselves to left ideals;

— when we reduce a polynomial p by another polynomial ¢, we need to determine whether a
monomial of p is a multiple of the 1t(q); we show in the sequel that this determination is
made easy if, once again, we restrict ourselves to admissible Ore algebras.

The first and the third point deserve to be commented on. Recall that all Ore algebras under
consideration are admissible. Let us first recall the properties of such algebras (we give them in
the case of a single indeterminate):

o(z) =pz +q,
d(z) =rz+s,
o(z") = (pz +q)",
d(z") = z_:(px +q)f (rz+s)z?

(These are equations (29-30), (32) and a trivial consequence of (29).)

Ezxtension of the concept of term order. The problem is that there is no inner law of the non-
commutative monoid (z,d) ruled by equations (29-30). However, multiplying z%0° by z* 0%
returns a polynomial which has the normal form

PP 2o+ 9545 1 a polynomial of total degree less than a + o + 8 + 3,

if we define the total degree of an Ore polynomial as the total degree of its normal form viewed as
an element of the commutative algebra K[z, J].

Now, if we define the product of two non-commutative terms as the product of the corresponding
commutative terms of the commutative monoid (z,0), the definitions and notations about term
orders, that were given in the previous section, are readily extended to K(z,d). Note that this
process of viewing the monoid on which the admissible Ore algebra is built as a commutative monoid

34 FORMAL MANIPULATIONS OF LINEAR OPERATORS

is equivalent to constructing the associated graded algebra of the Ore algebra—see Section 3 for
the definitions and the results.

Eztension of the reduction. The equations that we have recalled yield
0x™ = p"z"0 + a polynomial of total degree less than n + 1,

and then
0"z = p"™mz" 0™ + a polynomial of total degree less than n + m.

It suffices then to change the step

Im(r)
r=17r — f
Im(f)
of Algorithm 2 by
B 1 Im(r)
P e T ()
Indeed,
1 Im(r)
r— pldegy r—deg, f) degwflm(f)f
1
o le(r) li(r)
pldegy r—deg, f) deg,, f lC(f) 16(f)
1 le(r)

((degy r—degy f) deg, f lt()
pldesy r—degy f) deg, f]¢(f)

+ a polynomial of total degree less than the total degree of r)

= a polynomial of total degree less than the total degree of r.

Now, whichever term order we choose on K(z, d), p reduces r to this last polynomial.

In this way, we obtain a full reduction in admissible Ore algebra, that possess properties similar
to full reduction in the commutative case.

We implemented this modified algorithm dealing with non-commutative ideals.

4.3. Buchberger’s basic algorithms and extension to admissible Ore algebras. We now
recall algorithms developed by Buchberger to compute Grobner bases. We first present their tradi-
tional version based on the algorithm of full reduction given in Section 4.2, before extending them
to the case of admissible Ore algebras.

4.3.1. Buchberger’s algorithm for computing Grobner bases. The algorithm of full reduction stops
when the remainder has no reducible monomial left. We intend to test ideal membership by testing
the nullity of a remainder. Therefore, we need to be sure that the reducers are able to reduce the
leading terms of every element of the ideal under consideration. This happens only when the set
of reducers is a Grobner basis of the ideal they span.

Most definitions and results of this section are recalled from [7, Chapter 2]. This is the reason
why we do not prove the next results.

Commutative case. The leading terms of the reducers play a prominent role in the reduction, and
we need the following definition before introducing Grobner bases.

Definition 4.5. Let J be an ideal of K[z, ..., z,] other than {0} on which a term order has been
chosen. We denote by 1t(J) the set {z* | I3p € I lt(p) = z*} of leading terms of elements of J.
We denote by (1t(J)) the ideal generated by the elements of 1t(J).

GROBNER BASES IN ORE ALGEBRAS 35

Definition 4.6. In the same context, a set G = {g;};—1. ., of elements of the ideal J is called

a Grobner basis if and only if

.....

(16(g1), - -, 1t(gr)) = (1£(3))-

We recall the following properties of Grobner bases, that prove their power with regard to
reduction.

Proposition 4.7. Any ideal 3 other than {0} has a Grobner basis and any Grébner basis of an
ideal generates this ideal.

Theorem 4.8. Let G = {g1,...,9:} be a Grobner basis of an ideal I of K[zy,...,x4] and p an
element of 3. Then, there is a unique polynomsial r such that:

(i) no monomial of r is reducible by G;
(ii) there is g € G such thatp =g + .

Equivalently, p belongs to J if and only if the remainder of the reduction of p by G is zero.

Now, given an ideal J generated by a set of polynomial G = {gi,...,9;}, the problem is to
compute a Grobner basis of 3. Suppose that the set G is not a Grobner basis of 3. Then, because
of Definition 4.6, the ideal of leading terms (1t(g;),...,1t(g;)) is different from (1t(J3)). The idea of
an algorithm to compute a Grobner basis of J determined by G is then to add polynomials to G
that do not enlarge the ideal spanned by the g;’s but that enlarge the corresponding ideal of leading
terms. To do so, we need a tool that, given two polynomials p and ¢, returns a polynomial whose
leading term is not element of (lt(p),1t(q)). We now recall the definition of such a tool, after a
preliminary one.

Definition 4.9. Let z* and z° be two elements of the monoid (z,, ..., z,) and 7 the tuple defined
by v; = max(a;, 5;). Then, the term 27 is called the least common multiple of z® and z”.

Definition 4.10 (Syzygy in the commutative case). Let the S-polynomial of two polynomi-
als p and ¢ be the linear combination

Spoly(p, q) = lc(q) lcm(ltli]();’)lt(q))p — le(p)

We also use the word syzygy to denote a S-polynomial.

lem(lt(p), 1t (q))
1t(g)

It has to be mentioned that this concept of syzygies is but an instance of that of critical pairs in
general rewriting theory.
Finally, the following last theorem directly leads to Buchberger’s algorithm.

Theorem 4.11. A set G = {g1,...,9:} of elements of an ideal I is a Grébner basis of J if and
only if G reduces all syzygies Spoly(g,g’) of two elements of G to zero.

Proof. As for all results of this section, we do not give any proof and refer the reader to [7, Chapter 2]
or to [13, Chapter 10]. Still, to justify that the syzygies need to be reduced, let us consider the
reduction of a polynomial p by a set () leading to the remainder r. As far as the ideals of leading
terms are concerned, we have:

{lm(q) }4eq,Im(p)) € ({Im(q)}seq, Im(r)).

Intuitively, this means that the new set of generators) U {r} is able to reduce more polynomials
than the older @ U {p}. Since the the ideal of leading terms has to be as large as possible, it is not
astonishing that the syzygies need to be reduced.]

36 FORMAL MANIPULATIONS OF LINEAR OPERATORS

Given a set of polynomials P
return a Grobner basis (G generating the same ideal
function GrobnerBasis(P)
Each generator from P will be in G
G=P
k = length(QG)
Initialise the set of syzygies still to be dealt with
B={(G,G;)|1<i<j<k)
Work until all syzygies have been reduced
while B # o {
(G;,G;) = SelectPair(B, G)
B=B~{(G.,G))}
h = FullyReduce(Spoly(G;, G;), Q)
The S-polynomial is kept iff it adds another
irreducible monomial
if h # 0 then {
G =GU{h}
k=k~+1
Do not forget to add the corresponding syzygies
B=BU{(G,,Gy) |1<i<k}
}
}
return GG
ALGORITHM 3. Buchberger’s algorithm

We recall Buchberger’s algorithm in Algorithm 3. It uses a procedure Spoly which computes the
S-polynomial of two polynomials.

The process of this algorithm is to generate and reduce all possible syzygies between two el-
ements of the input set G. Then, the algorithm adds to G those results of reduction that are
not zero and loops until no new syzygy can be generated. When it stops, the ideal of leading
terms (1t(g1),...,1t(g»)) has been saturated and equals (1t J). Then, {g;};,—1 . ¢ is a Grébner basis
of 7.

Once again, there is some freedom in the algorithm, through the order according to which the
syzygies are to be dealt with. The procedure SelectPair chooses a syzygy between those that have
not been dealt with yet.

.....

Case of admissible Ore algebras. This algorithm generalises with a single change to the case of
admissible Ore algebras: the syzygies have to be redefined.

Definition 4.12 (Syzygy in the case of admissible Ore algebras). When «, 5, o and [’
are integers such that a > o' and g > g', let

(:E”@B : x“’851>

denote z®* 957",
Let the S-polynomial of two operators p and ¢ of an admissible Ore algebra K(z, d) be the linear
combination

Spoly(p, q) = lc(q) [lem(1t(p), 1t(q)) : 1t(p)] p — lc(p) [lem(1t(p), 1t(q)) : 1t(q)] g-

As far as the theory is concerned, everything that has been said in the commutative case is
still valid. Indeed, the proofs of the previous results only involve the leading monomials of the

GROBNER BASES IN ORE ALGEBRAS 37

polynomials under consideration and the good property that the leading term of a product is the
product of the leading terms. But they never involve the coefficients of the non-leading terms.

4.3.2. Inter-reduction of a set of polynomials and reduced Grobner bases. Algorithm 3 discussed in
Section 4.3.1 returns one Grobner basis of the input ideal. But there usually exist many Grobner
bases of a given ideal. The problem of uniqueness of Grobner bases is solved by additional conditions
on them, which lead to so-called reduced Grobner bases.

Besides, we intend to compute remainders of reductions by a Grobner basis of an ideal. This
leads to a dramatic loss of efficiency, when the Grobuner basis used is not “reduced” in a sense that
we detail further in the sequel. (In this case, there is a kind of redundancy in the elements of the
Grobner basis.)

We begin with an example that illustrates this last point.

Example. We consider Q[z, y, z,t] equipped with the lexicographic term order such that z > y >~
z = t. Let us reduce p = x® by the set P = {p1,ps,p3,ps} where

m=12"—y'+1,

po=y' —2°,
P3:Z3_t27
p4:t2—1.

The set P is certainly a Grobner basis of the ideal J it spans. The result of the reduction is trivially
zero, but after three intermediate results. Now, reducing z'° takes eight steps, and one gets easily
convinced that reducing z'° (y + z + t) takes 24 steps.

The first reduction proves that z° is in 3. Thus, if we put p, = z°, the new set P' =
{Po,p1,p2,P3,ps} also generates J. Since the ideals of leading terms of both P and P’ are the
same ideal, P’ is also a Grobner basis of J. Still, the numbers of steps needed for the reductions
under consideration drop to 1, 2 and 6 instead of 3, 8 and 24 respectively.

The following proposition makes it possible to lessen the number of elements of a Grobner basis.

Proposition 4.13. Let G be a Grobner basis of an ideal 3. Let g be an element of G such
that 1t(g) € (1t(G < {g})). Then G ~ {g} is also a Grébner basis of J.

We get rid of the problem of redundancy mentioned in the last example with the following
definitions.

Definition 4.14. A minimal Grébner basis of an ideal J is a Grobner basis G of J such that for
all g in G,

(i) le(g) = 1,

(ii) 1t(g) & (1t(G ~ {g}))-
Definition 4.15. A reduced Grobner basis of an ideal J is a Grobner basis G of J such that for
all g in G,

(i) le(g) = 1,

(ii) no monomial of ¢ lies in (It(G \ {g})).

Note that any reduced Grobner basis is a minimal Grobner basis.
The following proposition answers the question of uniqueness.

Proposition 4.16. Once the ambient polynomial algebra has been equipped with a given term order,
any ideal possess a single reduced Grobner basis.

38 FORMAL MANIPULATIONS OF LINEAR OPERATORS

Example. The (only) reduced Grébner basis of
T=(2" -yt +1,y" — 2z — 217 = 1)
with respect to the total degree order is
G={2"y* 1,23 — 1,1* — 1}.

The set G is also the reduced Grobner basis of 3 with respect to the lexicographic order such
that x = y > z > t. It is clear that the reductions under consideration in the example of the
beginning of the section are performed in less steps with G than with the initial basis.

The point is now to be able to transform a given Grobner basis into a reduced Grobner basis.
Algorithm 4 performs this transformation.

Given a set EF of polynomials generating an ideal,
return a reduced set generating the same ideal
function ReduceSet(E)
First, remove any redundant element
R=F
Put generators that increase the ideal one after another
Thus begin with none
P=go
Test each element of the input set one after another
while R # o {
h = SelectPoly(R)
R=R~ {h}
h = FullyReduce(h, P)
Do not use it unless it increases the ideal
if h # 0 then {
Q = {q € P | lt(h) divides It(q)}
R=RUQ
P=(P~Q)U{h}
}
}
Ensure each element is reduced modulo the others
E'=go
foreach h € P {
h = FullyReduce(h, P < {h})
E' = E U{h}
}

return £’
ALGORITHM 4. Inter-reduction

This algorithm works in two steps.

First, the input polynomials are tested to keep only a subset that generates the same ideal:
polynomials that are combinations of the others are not kept. Moreover, the selected polynomials
are reduced in terms of the ones previously selected. For this stage, the role of the SelectPoly
procedure is to choose polynomials that will not need a lot of work to be inter-reduced afterwards.
The result of this phase is a minimal Grébner basis.

The second phase does an inter-reduction of the selected polynomials. Thus, the final polynomials
consist of linear combinations of the lowest possible monomials needed to generate the ideal.

It suffices now to call ReduceSet at the end of GrobnerBasis to get a reduced Grobner basis.

GROBNER BASES IN ORE ALGEBRAS 39

4.4. Improvements of Buchberger’s algorithm. A first remark on the complexity of the al-
gorithm is that it is intrinsically high. More precisely, if n is the number of indeterminates and d
is the maximum degree of the input, the complexity of the algorithm is do(”z), although it drops
to d°(™ with some assumptions on the input and on the implementation (see [17, Section 6]). These
exponential complexities apply both in time and space, because they are related to the size of the
result. (The output is uniquely determined by the input, in the most interesting case of the reduced
Grobner bases.) Therefore, a large part of the classical improvements of the algorithm take place
in the way the syzygies to be reduced are chosen.

Another point is that the cost in time for a full reduction of a syzygy becomes very important
as the algorithm progresses and as the polynomials under consideration grow. In the meantime,
lots of these reductions lead to a null result, that causes the syzygy to be thrown away without any
benefit.

Thus, the best direction for improvement is to find a way to determine very quickly whether
the syzygy under consideration will lead to a null result; this leads to Buchberger’s old “normal
strategy” and to the “sugar strategy”.

4.4.1. Normal strategy. The interest of this strategy is that more refined strategies use several ideas
of it as their starting point. This strategy can be viewed as “locally optimal”: the choices made to
reduce are intended to optimize one reduction after another, without using information about the
whole ideal.

We first recall Buchberger’s results for the commutative case, before extending them to admissible
Ore algebras.

Commutative case. Two criteria allow us to easily reject uninteresting syzygies.
We first recall two propositions that justify these criteria from [13, Chapter 10]. (The results are
also proved in [7, Chapter 2].)

Proposition 4.17. For any pair of polynomials (p,q),

lem(It(p). 16(a)) = 16(p) 16(q) = Spoly(p.q) > 0.

Proof. Let p and ¢ be such that

(36) lem(1t(p), 1t(q)) = 16(p) lt(q).
Then,
Spoly(p, q) = le(q) lcm(ltliz()l)),)lt(q))p le(p) lcm(ltlil()()],)lt(q))

(37) = lc(q) It (q)p — le(p) 1t(p)gq

= lm(q) (p — Im(p)) — Im(p) (¢ — Im(g)).
The hypothesis (36) implies that lm(p) and lm(g) do not have the same indeterminates and
there is no cancellation between the terms of the last difference. Then, lm(Spoly(p,q)) is ei-

ther lm(q) lm(p — lm(p)) or lm(p) lm(g — lm(q)).
Suppose, without loss of generality, that we are in the first case. Then

Im(g) —lm(q) — ¢

yields
im(q) (p — im(p)) > (Im(q) - q) (p — Im(p))-

Similarly,
im(p) (g — Im(q)) —(Im(p) — p) (¢ — Im(q))-

40 FORMAL MANIPULATIONS OF LINEAR OPERATORS

Finally, summing both results yields

Spoly(p, q) {—*>} 0.

)

Proposition 4.18. A set of polynomial G is a Grébner basis if and only if for all (p,q) € G*
(i) either
Spoly(p,q) -0,
(ii) or there exists h € G distinct from p and q such that
1t(h) | lem(lt(p),1t(¢)) A Spoly(p,h) —(}0 A Spoly(q, h) —;>0.
These propositions are converted into criteria as follows.

Criterion 1. A syzygy (G;,G;) under consideration during Buchberger’s algorithm may be skipped
as soon as

lem(16(Gy), 16(G,)) = 16(G:) 16(G;).

Criterion 2. A syzygy (G;,G;) under consideration during Buchberger’s algorithm may be skipped
as soon as there exists a k such that

16(G) | lem(16(G), 16(Gy)),
where both syzygies (G, Gy) and (G, G;) have already been dealt with.

Algorithm 5 implements Buchberger’s algorithm to compute reduced Grobner bases and skips a
syzygy when either criterion is satisfied.

The functions Criterionl and Criterion? return true if the corresponding criterion is satisfied,
false otherwise. They test whether the syzygy under consideration may be skipped.

Besides, one has to choose with which syzygy one should deal first. This is the goal of the
function SelectPair. Buchberger and Winkler showed in [6] that a good selection is to deal with the
pair of lowest lcm of its leading terms first. This selection increases the frequency of rejection a priori
thanks to the criteria.

The use of both criteria in conjunction with selection scheme is known as Buchberger’s normal
strategy.

Finally, note that the pre-reduction could optionally be forgotten.

Case of admissible Ore algebras. We have shown that the concept of reduction exists in admissible
Ore algebras. Algorithms 4 and 5 cannot be implemented as they are in such a non-commutative
case, since some of the results they rely on make crucial use of the commutativity. We proceed to
show how to generalise them to make this implementation possible.

First, we prove on an example that Criterion 1 is wrong in the non-commutative case—at least
with no other hypothesis.

Example. Let p = z and ¢ = D, in the Ore algebra K(z, D,) on which we choose the lexicographic
term order such that D, = z. Then, the syzygy Spoly(p, q) equals D,p—xq = 1 which is irreducible,
but not zero. The pair (z,D,) is then a counter-example of Criterion 1 in the non-commutative
case.

When analysing the proof of Criterion 1, it appears that the equality (37) holds only if the
leading terms 1t(p) and 1t(¢) commute. An idea is therefore to add the hypothesis that the leading
monomials of p and ¢ should commute. This leads to the following example.

GROBNER BASES IN ORE ALGEBRAS 41

Given a set of polynomials P
return a reduced Grobner basis (G generating the same ideal
function ReducedGrobner Basis(P)
Each generator from P will be in G
G = ReduceSet(P)
k = length(Q)
Initialise the set of syzygies still to be dealt with
B={(G,G;)|1<i<j<k)
Work until all syzygies have been reduced
while B # o {
(G;,G;) = SelectPair(B,G)
B =B~{(G:,G))}
if Criterionl(B, G) or Criterion2((G;,G;), B,G) then {
h = FullyReduce(Spoly(G;, G;),G)
The S-polynomial is kept iff it adds another
irreducible monomial
if h # 0 then {
G=GU{h}
k=k+1
Do not forget to add the corresponding syzygies
B=BU{(G,,Gy) |1<i<k}

Discard redundant elements and inter-reduce

R={geG|Ryc~{9}# 2}
return ReduceSet(G \ R)

ALGORITHM 5. Reduced Grobner basis

Example. Let p = M + 2z and ¢ = N + D, in an Ore algebra built on a set of indeterminates
including amongst others z and D,. We assume that M and N are the leading monomials of p
and q respectively and that they commute. We assume also that neither z nor D, appears in these
leading terms. (This is possible for instance in K(z,y, 2, D, ,D,,D.) withp =y+z and ¢ =2+ D,
and an adequate term order.) Then, Spoly(p,q) = N(M +z) — M (N + D,) =xN — MD,, and
there is no simplification in this polynomial.

Now, Spoly(p, q) —> aN + 2D, + 1—> 1, which is irreducible but not zero.

Besides, Spoly(p,) —> —zD, MD —> 1, which is irreducible but not zero. The pair (M +z, N +
D,) is then another counter example of Criterion 1 in the non-commutative case.

Therefore, it seems that there is no hope of generalising Criterion 1 except when every indeter-
minate in p commutes with every indeterminate in q.

Proposition 4.19. When every indeterminate in p commutes with every indeterminate in q,

lem(lt(p), 1t(g)) = 1t(p) 1t(q) = Spoly(p, q) {fq)} o

Proof. As in the commutative case, there is no cancellation between the terms of Spoly(p,q).
Now, each possible reduction by p or ¢ needs to multiply the polynomial under consideration by a
monomial in indeterminates of the other one. Therefore, everything happens as in the commutative
case, where

Spoly(p, q) {—*>} 0.

)

42 FORMAL MANIPULATIONS OF LINEAR OPERATORS

Criterion 1°. A syzygy (G;, G;) under consideration during Buchberger’s algorithm may be skipped
as soon as every indeterminate in p commutes with every indeterminate in q and

lem(16(G,), 16(G,)) = 1t(G,) 1t(G,).

As far as Criterion 2 is concerned, the situation is different: Proposition 4.18 is a general result
of rewriting theory, and it is still valid in any admissible Ore algebra, as well as Criterion 2. In
fact, the two criteria used in the commutative case have different meanings:

— Criterion 2 states that the pair (G;,G;) is a “useless” pair: its reduction will return 0,
due to the context (both pairs (G;,Gy) and (Gy, G;) have already been reduced), so this
reduction would be a redundant calculation;

— Criterion 1 states that the pair (G;,G;) is a “trivial” pair: its rest of the reduction is not
deducicle from the previous computations, but the reduction trivially yields 0.

4.4.2. Sugar strategy. The idea of the “sugar strategy” is to build the ideal of leading terms in an
global manner. Let I be an ideal in K[z, ,...,zq,y] and L, = It(I) Uy"K[zy,...,z4]. Then It(]) =
U,.>0 Ln and (L,)nen is an increasing sequence of ideals. The “sugar strategy” tries to compute
the ideals L,, one after another, so that computation made for L, to L,, help that of L, .

Commutative case. We recall here the strategy presented in [14]. All syzygies waiting for treatment
are tagged with their “sugar”; so are the polynomials to reduce with. This sugar more or less
represents the degree of an additional phantom indeterminate that would be used to homogenise the
polynomials. Reductions are performed on syzygies with lowest sugar first, and with polynomials of
lowest sugar as reducers. At the beginning of the algorithm, the sugar of each polynomial is set to
its total degree. Then, the following rules are followed each time an operation between polynomials
is performed:

s(pq) = s(p) +s(q)
s(p +q) = max(s(p), s(q))

where s(p) is the sugar of p. (Note that if simplification occurs in a sum, it is not taken into account
in the sugar: this represents a power of the phantom indeterminate.)

Case of admissible Ore algebras. We implemented the sugar strategy in the context of our ad-
missible Ore algebras. The same interpretation in terms of homogenised ideal is still valid in Ore
algebras, though it does not seem possible to use connection to projective varieties, unlike in the
commutative case, and to get in this way a better understanding of the strategy.

5. IMPLEMENTATION OF OPERATIONS ON HOLONOMIC FUNCTIONS

We proceed to describe our implementation of effective closure properties of holonomic functions
and to give examples of computation on them.

We first deal with simple closure operations as sum and product in Section 5.1. They are based
on reduction and Gaussian elimination. The algorithms for these first simple holonomic closures
extend easily to functions solutions of linear operators of any Ore algebra. The next closures,
however, are properties of holonomic functions only. In Section 5.2, we give algorithms to compute
definite sums, definite integrals and generating functions, that are based on Grobner elimination.
We also present there our implementation of the diagonal. It is based on Gaussian elimination, and
no algorithm based on Grobner-like elimination is known. The problem of finding such an algorithm
remains open. Next, we recall algorithms computing coefficients of a holonomic series, indefinite
sums and indefinite integrals. This algorithms are based on diagonal. Finally, in Section 5.3, we give
an example of computation in the admissible Ore algebra K(e*, D,) showing that several algorithms

IMPLEMENTATION OF OPERATIONS ON HOLONOMIC FUNCTIONS 43

presented in the traditional case of holonomy extend to this context. This example computes the
generating function e®” ! of the Bell numbers, which is certainly not D-finite.

Some of the examples given in this section lead to so-called automatic theorems. By this words, we
do not mean a theorem that has actually been fully proven with a computer. The main part of each
of the proofs of our automatic theorems—finding equations defining a vector-space of holonomic
functions—has been performed on a computer, but minor computations that could be automatised
have not. Still, we intend to implement the missing part—handling initial conditions—in order to
obtain fully automatised proofs of these theorems.

An important remark has to be done about the following algorithms. Taking advantage of
Proposition 1.2, the process of these algorithms is to find operators in a single pseudo-differential
indeterminate vanishing in the holonomic function under consideration. Therefore, no equation
involving cross-derivatives can be found with them, and information is lost by these algorithms.

As an example, assume that the user wants to compute the sum of two functions f and g. Ideally,
the user then inputs holonomic systems generating the ideals U; and U, as defined in Section 2.
Then, the user asks for a holonomic system defining U;,.

Still, because of the intrinsic weakness of the algorithms that are involved in the sum, the holo-
nomic systems that the user receives defines an ideal U that is smaller than U, ,, or equivalently,
or larger set of solutions. In other words, the algorithms used introduce parasitic functions. How-
ever, provided sufficiently many initial conditions on f and g, the user can determine which of the
solutions is f + g.

Finally, we recall that Takayama’s system Kan is able to perform most of the operations described
in the sequel, although not in the generality of admissible Ore algebras. (See [28] and [29].)

5.1. Arithmetical operations. Since most of the algorithms implement the proofs of Theo-
rem 1.3 and of Theorem 1.11, they need to find linear dependencies between (pseudo-)derivatives
of an expression. We first detail the algorithm to obtain such dependencies in Section 5.1.1. Fur-
thermore, the algorithms find these dependencies only because all derivatives are reduced modulo
the ideals defining the holonomic functions involved in the original expression. In Section 5.1.2,
we comment on an algorithm to compute derivatives of an expression and reduce them modulo
ideals defining holonomic functions. In Section 5.1.3, we then use the algorithm of Section 5.1.2
to implement arithmetical operations on holonomic functions and give examples of computation.
We finally present an algorithm computing a holonomic system satisfied by an algebraic function
in Section 5.1.4. Although this algorithm is similar to the previous ones, it is not based on the
algorithms of Section 5.1.2.

As suggested in the previous introduction, the algorithms to compute sums or products of holo-
nomic functions described in this section work in an Ore algebra K(z,0) extended by rational
fractions, namely K(z)(0), rather than in the Ore algebra itself. They mainly rely on the zero-
dimensionality of the annihilating ideals defining the functions in the extended algebra. Therefore,
they extend to functions defined by ideals of any Ore algebra.

5.1.1. Searching for a linear dependency. The algorithm inputs a list of polynomials and a list of
indeterminates, and searches for a linear combination of the polynomials that makes the indeter-
minates disappear.

Moreover, it uses only as many polynomials of the list as are necessary to get a dependency. By
taking the polynomials in increasing order, it is therefore possible to find a dependency between
derivatives of an expression of smallest possible order.

The indeterminates given to the actual procedure are MAPLE expressions and the programme
performs elimination of expressions such as f(s,z/s) and 0,¢(z,y) between the input polynomials
(in those “indeterminates”). As a matter of fact, given polynomials as described before, any linear
combination of the inputs contains only “monomials” that are products of the “indeterminates” to
be eliminated.

The process of the algorithm is:

44 FORMAL MANIPULATIONS OF LINEAR OPERATORS

(i) add new indeterminates, one to each input polynomial, such as); for the i*"; these indeter-
minates are not to be eliminated, but tag the input polynomials to keep track of the linear
combinations performed on them;

(ii) record all the “monomials” occurring in the input polynomials and substitute them by
new indeterminates, so that the problem is reduced to linear elimination of these new
indeterminates;

(iii) perform a Gaussian elimination on the substituted polynomials finding the pivots succes-
sively in the next polynomial of the list—without changing the order of this list—until all
indeterminates have disappeared in one of the polynomials;

(iv) then, the last polynomial under consideration is a linear combination of the A;’s which
denotes a vanishing linear combination of the input polynomials.

The procedure leaves the responsibility to add the constants to the calling programme.
Its efficiency could be improved in (at least) two ways:

— the procedure should record the successive pivots and reduce the polynomials only when they
are considered to find a new pivot, instead of reducing them all; thus some computation
would be spared when an elimination does not need all the input polynomials to find a
dependency;

— in case of failure, the procedure should record all intermediate pivots, in order to allow an
incremental elimination; the calling procedure should be able to compute more polynomials
to add to the input list only when necessary instead of computing an excessive number of
them.

5.1.2. Searching for a linear dependency modulo ideals defining holonomic functions. The proce-
dure takes the initial expression as well as sets of generators of the annihilating ideals J; for the
functions f that are known to be holonomic (or subideals of these J;).

The outline of the algorithm is:

(i) repeat steps (ii) to (iv) until all derivatives to be considered have been reduced:

(ii) generate a new pseudo-derivative;

(iii) collect from its expression any occurrence of a (pseudo-)derivative of the holonomic functions
and reduce them using the given relations;

(iv) replace in the expression the (pseudo-)derivatives by their reduced form;

(v) the result can be sent to the previous algorithm to find a linear dependency; to do so, it is
necessary to tag each expression with a symbolic constant such as d,dummy(z) and to ask
the previous procedure to eliminate all the pseudo-derivatives of the holonomic functions.

In order not to perform repeatedly the same reductions, the list of all reductions already dealt
with is stored and only the new derivatives are reduced. In this way, the algorithm becomes a
rewriting algorithm, since after some iterations, all derivatives have been reduced and are directly
rewritten.

Moreover, since for convenience the derivatives under consideration are successive derivatives
with respect to the same variable, it is easy to compute and reduce them in an incremental way.

The following example involves very simple differential equations, whose solutions are explicitly
known, so that we can check the results.

Example. We define the functions f and g by the two following differential equations:
— 5f"(xz) + f(x) = 0, which has the generic solution a cos 7 + Bsin 7
— 3¢'(z) + g(x) = 0, which has the generic solution yexp <*.

The aim of the computation is to find a differential equation satisfied generically by:

h(z) = —f(z) + g(z) + f(z) g(z) = —(acos% —l—ﬁsin%) +yeT + (acos% +Bsin%)7e%¢.

IMPLEMENTATION OF OPERATIONS ON HOLONOMIC FUNCTIONS 45

The equation found by our package on this problem is the following;:
67515 () + 6750 () + 495k () + 205k (z) 4+ 724 () + 14h(z) =

We first load the package.
> with(Mgfun) :

We first deal with a Weyl algebra in a single indeterminate; on this algebra, we consider the
total degree term order on both indeterminates z and dx.
> A:=orealg([x,diff,dx]):

T:=termorder(A,tdeg,max):

We introduce the equations.
> GL[f] :=[5*dx*dx+1] :

GL[g] :=[3*dx+1]:
dependency (-f (x)+g(x)+f (x) *g(x) ,x,6,GL,T);

—675D3 — 72D, — 205D? — 14 — 495D2 — 675D}

(Notice that we have had to suggest a maximum number of derivatives to be considered—mamely 6,
including the initial function—since the programme is neither able to guess it, nor to work in an
incremental way, yet.)

So we have a proof that h is generically—that is for any («, 3,7) € C*—a solution of:

675h) () + 675h™ () + 495" (x) + 205h" (x) + T2h' (z) + 14h(z) = 0,

which is easily checked:

> applyopr(",-(axcos(1/sqrt(5)*x)+bxsin(1/sqrt(5)*x))+
cxexp(-x/3)+(a*cos(1/sqrt (5) *x)+b*sin(1/sqrt (5) *x)) *
cxexp(-x/3),A);

expand (") ;
345 <%sm (%J@) V5 — % cos (\fx> f) em1/3
— a2 (~Zsin (3v52) V5 + 2 cos (3vBe) V5) e
o m () S ()
(G55 ()
675 (o sin (152 VB + g0 cos (1) VB comt
0

An extra subtlety of the algorithm has to be emphasised to explain this example: as already
mentioned, the process of reduction of an operator p by a list of operators ¢, ..., g, does not lead
to an operator of the form (34), but to a multiple of such a form in which no fraction occurs.
Therefore, the algorithm has to take care of the denominators and the procedure of full reduction
has to return both polynomials p and w, of equation (35).

46 FORMAL MANIPULATIONS OF LINEAR OPERATORS

5.1.3. Sum, product and symmetric power. Not much remains to be said about these operations,
since they happen to be only particular cases of the above method to find a holonomic system
satisfied by a given expression. In fact, the previous algorithms make it possible to compute
directly any polynomial P(z1,...,2g, hi,...,h,) that involves any holonomic functions h; (or even
functions defined by zero-dimensional ideals of any Ore algebra).

Specialised algorithms for sum and product can be found in [27]. They are somewhat simpler
than the one explained above because they involve only one function at a time, and thus work
directly on the pseudo-differential operators rather than on the derivatives.

The flaw of such algorithms that perform each sum and product in separate stages, is that they
induce a loss of efficiency when computing equations for a polynomial in some holonomic functions.
The simplest example of this phenomenon is the computation of equations for the symmetric power

of a holonomic function f(z): if the order of the differential equation satisfied by 9'f is w;, then

the iterative computation of the rth symmetric power needs to reduce (wp + 1) + -+ + (w, + 1)

derivatives, while the direct method reduces only w, + 1 derivatives.

For these simple operations, there are however theoretical bounds to the orders of the equations:
let f and g be two holonomic functions in a single variable x, 3; and J, being the associated ideals
of operators of an Ore algebra K(z,d) vanishing on these functions. Since f and g are holonomic,
both ideals are zero dimensional which, by definition, means:

k(37) = dimg) K(2)(0) /By < 400 By = K(z) Iy
k(3,) = dimg(,) K(z)(0) /T, < +00 U, =K(z)7J,

Then, as mentioned in [27], the corresponding quotient is at most of K(z)-dimension:

— k(3;) + k(3,) — 1 for the sum;
— k(3;) k(3,) for the product.

These bounds are easily proved, when one thinks of the proof of Theorem 1.3 and of the finite
dimension vector spaces it involves.

5.1.4. Algebraic functions, algebraic substitution. The algorithm computing a holonomic system
satisfied by an algebraic function given by its polynomial equation implements the proof of Theo-
rem 1.3:

(i) first rewrite the first derivative of the algebraic function f as a polynomial in f and reduce

this polynomial with the polynomial P defining f as an algebraic function;

(ii) incrementally compute the derivatives of f and rewrite them as a (reduced) polynomial
in f;

(iii) when sufficiently many derivatives have been dealt with, find a linear dependency between
these polynomials of K[z][f];

(iv) if there are several variables x, ..., x4, deal with one after another so as to get a rectangular
system (2) as suggested by Proposition 1.2.

Note that this algorithm is restricted to pure functions and to Weyl algebras. A simple reason
is that algebraic sequences—u,, = y/n for instance—cannot be P-recursive in general.

Actually, for reasons of efficiency, this algorithm is implemented in the Mgfun package so as to
avoid dealing with fractions.

To do so, the extended ged algorithm is not used to prove df € K(z)[f], but to find N € K|z, f]
and D € K[z] such that:

(38) D(xz)0f = N(z, f).
Now, by an effective induction on k, differentiating the equation

D(x)k 8kf = Rk(xuf) € K[xaf]

IMPLEMENTATION OF OPERATIONS ON HOLONOMIC FUNCTIONS 47

and using equation (38) yields
D(z)"*! 0" f = D(2) (By), (@, f) + (By)}(z.f) N(@, f) — k D'(z) Ry.(z, f),

which makes it possible to compute the sequence of the R;’s iteratively.
After this stage, finding a linear dependency between the R;’s gives by simple substitution a
linear dependency between the D(z)* 8 f’s, and then between the 9" f’s.

Example. First, we create a Weyl algebra of two indeterminates « and y and two corresponding
differential indeterminates. The term order used eliminates the derivatives of the functions when
finding dependencies.

> with(Mgfun):
A:=weylalg([x,dx], [y,dyl):
T:=termorder(A,tdeg=[dx,dy] ,max):

The equations that describe the algebraic functions u (z%y)!/? with u® = 1 and v (zy?)'/® with v® = 1
as holonomic functions are found in single calls:

> GL[f]:=algtoholon(x*x*y-£~3,f,T);
GL[g] :=algtoholon(x*y*y-£~3,f,T);

GL; :=[3yD, — 1,3D,x — 2]

GL, = [3yD, — 2,3D,z — 1]

One checks that these are the minimal order equations satisfied by f and g respectively.

These results enable us to give another example of the search for differential equations satisfied by
an expression consisting of holonomic functions: we compute an equation satistied by —f + g+ fg,
which equals in the current example

—(@®y)* + (2y*)'* + zy.
The result found is
9z°D? + 92°D? + 2zD,, — 2.
The procedure to use is the same as in Section 5.1.2:

> dependency (-f (x,y)+g(x,y)+f (x,y)*g(x,y),x,3,GL,T);
9D22* + 2D,z + 9Dz — 2

Once again, the result is easy to check.

> applyopr(",-(x*x*y)~(1/3)+(xxy*y) " (1/3)+x*y,A);
numer (normal("));

9z* <§ =y’ 2y _2 y' >
9 (z29)5° 3 (229)2® 9 (zy?)/
80 x3y? x> 10 o ‘
9 3 - - 2 2 1/3
+95' (=32 Gy + S) A

8
3
2 xy 1y
2\1/3
—2(zy?®)'/? — 22y + 2z <—§ (@2y)2 + 3 (a2 + y)

0

48 FORMAL MANIPULATIONS OF LINEAR OPERATORS

This algorithm could be redesigned as a rewriting algorithm and merged with the algorithm
which finds a linear dependency modulo zero dimensional ideals. Indeed, this algorithm rewrites
any occurrence of a certain power of f—say f"—as well as df, as polynomials in f of degree
strictly lower than r. Once merged, the programme could directly deal with expressions involving
holonomic functions described either as such or as algebraic functions. Thus, it could also compute
algebraic substitutions of the variables of a holonomic function.

To illustrate this point, consider again the computation described in the introduction.

Example. The function f = \/11: is algebraic, hence holonomic, and the function g = cos(z) is

holonomic. With our package Mgfun, computing a differential equation satisfied by the holonomic
function

1 Cos 2
h= 1+ === f(f+9)

needs to work in two separate steps:

(i) first compute a holonomic presentation of f:

> with(Mgfun):
A:=weylalg([z,Dz]):
T:=termorder (A,plex=[Dz] ,max):
GL[f] :=algtoholon((1-z)*£"2-1,f,T);

GL[f] := 2D, — 22D, — 1]

(ii) next compute f (f + g):
> GL[g]:=[Dz"2+1]:
dependency (f (z) *(f (z)+g(=2)),=z,3,GL,T):
collect(",Dz);

(162° — 802" +1722° — 1962> + 116z — 28) D?
+(322" — 1282° + 2402* — 2242 + 80) D?
+(162° — 802" + 1682° — 1842 + 1252 — 45)D,
+(162* — 642° + 1362 — 1442 + 53),
It would be useful to work in a single step.

5.2. More complex operations of closure. Most closure operations dealt with in this section
need a more refined elimination than Gaussian elimination, namely, elimination based on Grobner
bases. We present them in a logical order: the last operations use the first ones.

An important point is that these operations are restricted to subclasses of holonomic functions.
Though they can easily be used in as general settings as Ore algebras, it is necessary to prove
special theory of the class of functions under consideration—hypergeometric functions of sequences,
for instance—to guarantee that the elimination step on which these algorithms are based does not
return 0.

5.2.1. Definite sums and definite integrals. As another example of elimination by Grobner bases,
we give an algorithm computing a holonomic system satisfied by definite sums and definite integrals
of holonomic functions. These algorithms are based the method of creative telescoping suggested
by Zeilberger in [34]. On the contrary to the previous algorithms, those to be described in this
section require to take place in an Ore algebra K(z,d), and not in the corresponding extended
algebra K(z)(0), because they rely on the elimination of one of the z;’s.

We first recall the algorithm computing the definite sum of a holonomic sequence u,,(z) = u(z,n)
determined by a set of pseudo-differential operators G of J,, in K(z, n, 0, S,,). Eliminating n between
the elements of G possibly leads to a non-empty set G' C K(z, 0, S,,) such that gu = 0 for all g
in G'. Since S,, = A, + 1 and the elements of G' are polynomials in (z,0,S,), putting G" =

IMPLEMENTATION OF OPERATIONS ON HOLONOMIC FUNCTIONS 49

{g9(z,0,A, —1)},eq defines a set of polynomials that vanishes in u. Each element g of G" is a
polynomial in A,,; for each g in G", there is an equation of the form

dg
go-u + Z AF gru =0.

k=1
Now, evaluating at (z,n,0,4,) and summing from an integer n; € Z to another integer n, € Z
yields

n2

go(mvyva) : Z ’U,(IL',TL)

n=ni

+§gj S [(AF g, 0)u) (2 + 1) — (A gy (i, 0)),)] = 0.

k=1n=n1

Since the series telescopes,

n2 dg
go(2,0). 3 ulw,n) + 3 [(AL gy, 8)u)(z,n)] " =0,
n=ni k=1

as soon as ny — Ny > 2nNy4.
Now, we need to assume that w tends to 0 when n — £oo. Then, making n; - —oo and ny, —
+o00 yields go(z,0).s(x) = 0, where s(z) = >, oy Un ().
We summarise this method of summing into the following algorithm:
(i) eliminate n between the elements of G; select those polynomials in which n does not appear
any longer;
(ii) evaluate at S, = 1.
The algorithm computing a holonomic system satisfied by a definite integral is totally similar to
the previous one: the operator D, is simply changed into the corresponding one D, in the case of
a holonomic function f(x,y) determined by a set of pseudo-differential operators G in D, and 0:

(i) eliminate z between the elements of G; select those polynomials in which = does not appear
any longer;
(ii) evaluate at D, = 0.

The only difference is that we require that sufficiently many 0’ f(z,y) tend to 0 when z — $o0.

5.2.2. Taking the generating function of a holonomic function. Again, this algorithm follows the
method suggested by Zeilberger in [34]: it creates telescoping series. We then give the example of
the generating function of the orthogonal Legendre polynomials. (See also the example of these
polynomials in Section 4.1.)

Let u(z) be a holonomic function. We do not give the explicit dependance in z; it can be
either a dependance in a continuous indeterminate (u is a function) or a dependance in a discrete
indeterminate (u is a sequence). By definition, the generating function of v is

neN

n

It is the sum of the sequence of functions f,(z,y) = u,(x) y".

The operations on holonomic functions already described in the previous sections enable us to
give the algorithm computing a holonomic system satisfied by the generating function of a holonomic
function:

(i) compute a holonomic system defining the function y™ as a function in (z,y,n);
(ii) compute a holonomic system defining the functions w,(z) as a function in (z,y,n);
(iii) compute a holonomic system defining the products f,, (z,y);

50 FORMAL MANIPULATIONS OF LINEAR OPERATORS

(iv) compute a holonomic system satisfied by the sum of the f,(z,y) by the algorithm given in
Section 5.2.1.

We now give another algorithm to computes a holonomic system satisfied by the f,(z,y)’s. This
algorithm is preferable to the previous one since it does not suffer from the intrinsic weakness of
the algorithm computing a product, that loses information.

Let P be a generic operator in K(z,n, 0, S,,) that vanishes on u. We have

(Sn-f)(@,y:1) =t (@) y" = (Snw) (2) Y™y
Therefore,
P(z,n,0,y 'S,).f = (P(z,n,0,8,).u)v
where v is defined by v(z,y,n) = y". Now, P(z,n,d,y'S,) € K((y)){(z,n,d
ing P(z,n,0,y 'S,) by a power of y yields a polynomial P' € K(z,y,n,0d,D,,
in f.

Besides,

,Sp) and multiply-
S,) that vanishes

((yDy — n).f)(z,y,n) = yu,(z) ny™ " — nu,(z)y" = 0.

Let G be a set of generators of 3; in K(z, n,d, S,). Put G' = {¢'},ec U{yD, —n}, where ¢’ is ob-
tained from g as explained previously for a generic P. This set G’ is a subset of K(z,y,n,0,D,, S,).

We now proceed as in the algorithm for the definite sums by creating telescoping: eliminating n
between the elements of G’ possibly leads to a non-empty set G' C K(z,y, d, D,, S,,) such that g.f =
0 for all g in G".

Since S, = A, +1, putting G = {g(z,y,0, D,, A,,—1)} e defines a set of polynomials vanishing
in f. Each element g of G" is a polynomial in A,,; for each g in G", we have an equation of the
form

d,
k=1

Now, applying in (z,y,n, 0, D,,A,) and summing from an integer n,; € Z to another integer n, € Z
yields

g0(z,y,0,D,) Zfﬂvy,

+ZZ n tgk(w,y,0,D,).f)(z,y,n + k)
k=1 n=n1
— (A g (@, y,0, Dy).f)(w,y,m)] = 0.
Since the series telescopes,
dg
— n=ns+1
go(2,y,9, D) Z f@yy,m) + > (AN (2, y,0, Dy).f) (@, y,)]0 =0,
n=ni k=1

as soon as ny — My > 2ny4.
Now, an assumption on f similar to that suggested in the previous section yields

go(m’y’ 8’ Dy)F(Q},y) =0.

We summarise this method into the following algorithm that inputs a set G of operators vanishing
in u,(z) and outputs a set of operators vanishing in Y, o u,(x) y™:
(i) substitute y='S, to S, in each element of G; multiply each by an adequate power of y to
make them all polynomials;
(ii) add yD, — n to the set;
(iii) eliminate n; select those polynomials in which n does not appear any longer;

IMPLEMENTATION OF OPERATIONS ON HOLONOMIC FUNCTIONS o1

(iv) evaluate at S, = 1.
We now give the example of computation of the generating function of the orthogonal Legendre
polynomials. (See also the example given in Section 4.1.)

Example. To begin with, we recall the definition of these polynomials, as well as some equations
that they satisfy (see [1, formulee (22.3.8, 22.6.13, 22.7.10, 22.8.5)]):

[n/2] " .
Pue) =27 3 (1) <k> (2() ’”)

k=0

(1 —2*) P)(z) — 2z P! (z) + n(n + 1) P,(z) = 0,
(n+2)Pya(z) — 2n+3)z Py (z) + (n+ 1) P,(z) =0,
(1= 2%) Py (2) + (n+ 1) 2 Poya(2) = (n+ 1) Py(2) = 0.
We first input these equations and make the substitution mentioned in the algorithm. We also
add the polynomial yD, — n.

> G:=map(expand, [
(1-x"2) *dx"~2-2*x*dx+n*x(n+1) ,
numer (normal (subs (Sn=Sn/y, (n+2) *Sn"~2-(2*n+3) *x*Sn+(n+1)))),
numer (normal (subs (Sn=Sn/y, (1-x"2) *dx*Sn+(n+1) *x*Sn-(n+1)))),
y*dy-n
1:
We create the algebra K(z,y,n,D,,D,,S,) and an elimination term order that eliminates n.
> with(Mgfun) :
AL:=orealg([n,shift,Sn], [x,diff,dx], [y,diff,dyl):
TN:=termorder (AL,lexdeg=[[n], [x,dx,y,dy,Sn]],max):

We perform the elimination and select those polynomials in the result where n do not appear any
longer.

> GN:=gbasis(G,TN,rational):
SN:=select((p,v)->not has(p,v),GN,n):

We evaluate the polynomials at S, = 1.
> ON:=subs(Sn=1,SN):

ON:=[—-yD,D,+ D,y + D,y’D, +y +yxzD, + 4y>D, + 2y3D§,
—yD,D, +y+ 3y2Dy + yBD; +yzD, + yszny,
Dac - Dx$2 -y + xyDy - y2Dy7
D? — D2a* — 20D, + 2yD, + y° D3,
—yDy, —y* —y’Dy +yz + 2y°zD,,
yDz + DzyQDy + yDy - xDzyDy + y2Dg,21]
This set of polynomials is too complex. To simplify it, we work in the algebra K(z,y, D,,D,).

> A:=weylalg([x,dx], [y,dyl):
T:=termorder(A,tdeg=[dx,dy] ,max):
We separate the differentiations with respect to each indeterminate.
> GL[f]:=0N:
dependency (f(x,y) ,x,2,GL,T):
dependency (f(x,y),y,2,GL,T):
GF:=[IIII’"];

52 FORMAL MANIPULATIONS OF LINEAR OPERATORS

GF :=[—-2yzD, + D, + D,y* —y, —2zyD, + D, + y2Dy +y—z]

Now we check the identity fg(z,y) = (1 — 2zy + y*)~V/2.
> fgi=(1-2xx*xy+y*xy) ~(-1/2):

map (applyopr,GF,fg,A):

map (normal,") ;

[0,0]
Otherwise, we use an ODE solver to compute the generating function.

> applyopr(GF[1],f[yl(x),A):
dsolve(",f[yl(x)):
subs(_Cl=c(y),");

applyopr (GF[2] ,0p(2,"),A):
dsolve(",c(y));

Finally, using the initial condition Py(z) = 1 yields _CI = 1, from which the following automatic
theorem follows.

Automatic Theorem 1. The generating function of the orthogonal Legendre polynomials

[n/2] n "
Pn(.’L') —9-n Z (_l)k <k> (2(L k)>$n—2k

k=0
8
1
Vv1-="2zxy —y2.

In other words, the following identity holds

oo [n/2]

_ . 2(n—k) _ 1

o—n _1k n n—2k, n _ .
nz:% Icz::O() (’“)(k)x ST VT

5.2.3. Diagonal and Hadamard product. We present these two operations together since they are
related to one another by equations (8-9). Although we would like to find and implement an
algorithm to compute Hadamard products directly, we only give an algorithm based on the imple-
mentation of the diagonal.

Diagonal of a D-finite function. The algorithm to find equations for the diagonal is somewhat
different from those described so far: the proof given by Lipshitz in [18] that any diagonal of a
D-finite power series is D-finite suggests that we search for a linear dependency between derivatives
of the diagonal with respect to two indeterminates. The programme used so far is therefore not
sufficient to solve this problem.

However, a first part of the proof uses both the algorithm for full reduction and the algorithm
to find a polynomial in one differential indeterminate. The algorithm described hereafter computes
the diagonal diag, ,(f) of the function f(zy,...,z,) with respect to the indeterminates z; and x,
(see Definition 1.4).

IMPLEMENTATION OF OPERATIONS ON HOLONOMIC FUNCTIONS 593
(i) for each i = s,1,3,...,d, compute a polynomial P;(9;) vanishing in

1 I
F(s,21,23,...,2q) = ;f(s,?,a;&...,a;d);

(ii) isolate the leading coefficients of the P;(0;)’s for i = s,1,3,...,d and compute their lem L;
(iii) for each i =s,1,3,...,d:
— for all indices such that " «; + 5+ v < w, reduce

w,o.Q1 .03 | . 96 97
LYz x§ xy* 07 0]

modulo {P;, P;};

— find a linear dependency between the reduced polynomials—there certainly is one
when w is large enough;

— the coefficient of 9% in this dependency is an operator in 9; which vanishes on the

diagonal.
Example. Given the function
1
x’ = T /., o\
we want to prove that its diagonal is:
1

We first load the package:
> with(Mgfun) :

Then, we simply have to give equations defining f as a holonomic function, and call the right
procedure:

> A:=weylalg([x,dx], [y,dyl):
T:=termorder(A,tdeg=[dx,dy] ,max):
denf :=1-x-y:G:=[expand (denf*dx-1) ,expand(denfxdy-1)];
hdiag(G, [x,y],1,3,T);

G::[Dx_sz_Dzy_lvDy_Dyx_Dyy_l]
~6D, + D — 4zD;

Of course, we check the result:
> normal (applyopr (", (1-4*x)~(-1/2),A));

0

(Or we could have used a solver to find that A is a solution.)
Finally, to prove the result that we announced, we need to check directly that sufficiently many
derivatives of h have the expected value at 0:

f@) =3 (Z) aty

so that its diagonal is:

Z 2n\ 1
" = ——.
\n Vv1—4x
(We select only those terms that satisfy & = n — k.) Since the obtained equation is of the second
order, only two terms have to be checked:

—g(0) =1=(J);

o4 FORMAL MANIPULATIONS OF LINEAR OPERATORS

- g0 =2=()).
This last step of the algorithm could easily be implemented—though we did not do it. Therefore,
we state the following automatic theorem.
Automatic Theorem 2. The diagonal of the function
1
1—(r+vy)
8
1
V1—dz’

One could also have obtained the equations of the diagonal by computing the different steps of
the algorithm one after the other:

— first load the package and create an algebra to work with:

> with(Mgfun):
A:=weylalg([x,dx], [y,dy]l, [s,ds]):
T:=termorder (A,tdeg=[dx,dy] ,max) :

— then introduce the equations defining f:
> denf:=1-x-y:GL[f] :=[expand(denf*dx-1),expand(denfxdy-1)];

GL;:=[D, - D,z —-D,y—-1,D, — D,z — D,y — 1]
— ask manually for each equation on f(s,z/s)/s:
> eqls]:=dependency(f(s,x/s,0)/s,x,1,GL,T);

eqs := D,s* — D,s* — D,sx — s

> eqlx] :=expand(dependency(f(s,x/s,0)/s,s,1,GL,T));

eq, == s°D, — s*D, — s*D,x + s* — 2s°
— and finally ask for a dependency between the (s? — s — z)3s'z7 DF:

> AA:=weylalg([s,ds], [x,dx]):
TT:=termorder (AA,tdeg=[ds,dx] ,max) :
‘Holonomy/diag‘ ([eq[x],eq[s]],3,TT);

—6D, + D2 — 4zD?

An interesting property is illustrated on this example: the diagonal of a rational function can
be a non-rational algebraic function. Similarly, the diagonal of an algebraic function can be a
non-algebraic function. The next example show this last property.

Example. Given the function
1

g(z +y) = ma

we want to prove that its diagonal is

- (E)(2)

The computation is similar to the one of the previous example and leads to an equation satisfied
by the diagonal.

IMPLEMENTATION OF OPERATIONS ON HOLONOMIC FUNCTIONS 39

> r:=1-4x(x+y):
H:=map (expand, [r*dx-2,r*xdy-2]1) ;
H:=[D, -4D,x — 4D,y —2,D, — 4D,z — 4D,y — 2]
> eq:=hdiag(H, [x,y],1,6,T);

eq := 64D,z + 384z D? + 396D? — zD, — 3D?

This equation has no trivial solution, so that we need to use a solver. The Gfun MAPLE package,
that we have already mentioned in the introduction, enables us to change this differential equation
into a recurrence equation satisfied by the sequence of coefficients of h.

> with(gfun):
diffeqtorec (expand(applyopr(eq,h(x),A)) ,h(x),u(n));

(64n° + 320m + 396) u(n + 2) + (—n® — 6n — 9) u(n + 3)
We get a recurrence equation of the first order, which enables us to find a closed form for w,,.
> collect(expand(subs(n=n-3,")),{u(n-1),u(n)});

—u(n)n® + (64n* — 64n + 12) u(n — 1)
This proves the following automatic theorem.

Automatic Theorem 3. The diagonal of

4 2 31

Z " " " = ,F | Y1464z .
2n n 1

neN

Diagonal of a P-recursive sequence. The following algorithm computes the diagonal of of P-recur-
sive sequence u,, ;. It is based on the previous algorithm.

18

(i) compute a holonomic system defining the generating function
fn(x) = Z umkxn
neN

of u, with respect to n;
(ii) compute a holonomic system defining the generating function

f(xay) = Z umkxnyk
neN,keN

of f, with respect to k;

(iii) compute a holonomic system defining the diagonal diag, , f;

(iv) compute ;jm holonomic system defining the sequence of coefficients [z"] diag, , f (see Sec-
tion 5.2.4).

Hadamard product. The following algorithm computes a holonomic system defining the Hadamard
product of two holonomic functions f(z) and g(x).

(i) compute a holonomic system defining the product f(z)g(y);
(ii) compute a holonomic system defining the diagonal diag, ,(f(z)g(y)).

This algorithm relies on the identity
f(z) © g(x) = diag, ,(f() g(y))-

56 FORMAL MANIPULATIONS OF LINEAR OPERATORS

5.2.4. Finding the coefficients of a holonomic series. The identity

[2"] Z U, 2" = (Z U, 2" © z”)

neN neN
is straightforward, and yields the following algorithm computing a holonomic system for the coef-
ficients of a given function f(z).

(i) compute a holonomic system defining f(z) ® 2™;
(ii) keep only the remainders of the Euclidean divisions of each polynomial of the system by D.;
(iii) evaluate each polynomial at z = 1.

5.2.5. Indefinite sums and indefinite integrals. These two operators have the common property to
be the reciprocal operators of the difference operator A, and of the differentiation operator D,
respectively.

Indefinite sums. The indefinite sum of a holonomic sequence u,, is the sequence

n

The trivial identity

kzi;)uk = [2"] (éukzkl i z>

yields the following algorithm.

(i) compute a holonomic system defining the generating function of w;

(ii) compute a holonomic system defining Y, _, upz* 2=;

(iii) compute a holonomic system defining the coefficient of 2™ in the previous expression.

Indefinite integrals. The indefinite integral of a holonomic function f(z) is the function

;Ur—)/omf(t)dt.

It satisfies the identity

€ 1 1
[0yt = ding.,, (27(2)log 7) = (2£(2)) @ log
0
Therefore, two algorithms are possible.
A first one is deduced from the first equality:

(i) compute a holonomic system defining zf(z) as a function in (z,u);
(ii) compute a holonomic system defining log - as a function in (z, u);
(iii) compute a holonomic system defining the product;

(iv) compute a holonomic system defining the diagonal.

The second algorithms derives from the second equality:

(i) compute a holonomic system defining z f(z);
(ii) compute a holonomic system defining log =;
(iii) compute a holonomic system defining the Hadamard product.

CONCLUSIONS o7

5.3. Computation in K(e*, D,). The algebra K{e*, D,) is an admissible Ore algebra, since it
can be defined as the Ore algebra K(y,d) by o(y) = §(y) = y. (This example of Ore algebra has
already been given in Section 2.2. See Table 1.)

We proceed to show on a very simple example that our package works in this admissible Ore
algebra. Rather than proving a deep identity, we intend to prove that such computations are
possible with our programme. The following example computes the generating function e®” ! of
the Bell numbers B,,, defined as the number of partitions of a set of cardinality 7.

Example. The Bell numbers are related to the Stirling numbers of the second kind &™) which
are the number of ways of partitioning a set of m elements into n non-empty subsets:

B, =Y e,

meN

The Stirling numbers have the exponential generating function (see [1, formula 24.1.4 B])

Y em? -
= " m!

Now, summing over n € N gives the exponential generating function of the Bell numbers

(-1

n!

n

T z
ZBH—'Zee 1.
n.

neN

We reproduce this scheme in MAPLE. To begin with, we work in K(y,n, D,, S,), where y repre-
sents e”. We introduce explicitly the values for the functions o(y) and §(y).

> with(Mgfun) :
A:=orealg([y,user=[p->p,p—>y*diff(p,y)],Dx], [n,shift,Sn]):

We introduce a term order to eliminate n.
> T:=termorder(A,lexdeg=[[n], [y,Dx,Sn]] ,max):

We perform this elimination between simple equations satisfied by the exponential generating func-
tion % of the Stirling numbers of the second kind.

> G:=map(expand, [(y-1)*Dx-n*y, (n+1)*Sn-(y-1)1):
GB:=gbasis(G,T,rational);

GB = [Dzy_Dz _nyasnn+sn_y+laySan _SHDZ _y2+y]

We finish as usually in the case of a sum: we evaluate at S,, = 1.

> map(factor, [seq(subs(Sn=1,1),i=GB)]);
[-Dzy - Dz - ny7n+2 _y7_(y - 1)(y - Dz)]
The initial conditions yield the following automatic theorem.
Automatic Theorem 4. The exponential generating function of the Bell numbers is

et L.

CONCLUSIONS

In conclusion, here are some ideas for further developments of our package,

Algebraic substitution. We have not implemented the algebraic substitution in holonomic functions
and sequences. This should be done to extend the toolbox on holonomic systems.

o8 FORMAL MANIPULATIONS OF LINEAR OPERATORS

Profiling. The implementation of Buchberger’s algorithm can still be optimised. The use of profiler
available in MAPLE should enable us to gain some more speed, so as to be totally competitive with
the grobner package of MAPLE. However, we do not expect any dramatic drop unless we totally
change the algorithm. (For instance, we could generalise the FGLM algorithm based on linear
algebra—see [10, 11]—to compute a Grobner basis for pure lexicographic order or elimination
order from the Grobner basis for total degree order. The theory extends straightforwardly in the
non-commutative case.)

Finding dependencies. The algorithms to find linear dependencies between the derivatives of holo-
nomic functions can be improved in several ways.

First, as already mentioned, Gaussian elimination as implemented is not optimal. It should be
rewritten in order to compute only the eliminations that are needed in case of success, and to be
able to reenter the procedure without computing again the eliminations already dealt with in case
of failure.

Besides, the dependencies computed by the programme are only dependencies between successive
derivatives with respect to the same indeterminates. This way, the ideals returned by the procedures
that compute arithmetical operations on holonomic functions may be smaller than the expected
ones. (We get fewer equations than the number we would like to.) The ideals are zero dimensional,
but contain less information than the theoretical result. When used for further computation,
like automatic identity proving, this leads to a loss of efficiency and to longer execution times.
Therefore, an improvement would be to find other dependencies. The FGLM algorithm could also
prove fruitful for this purpose: it searches for all linear dependencies between terms after rewriting
into a normal form, so that it should be possible to get more than rectangular systems.

Finally, it has already been explained that the algorithm finding dependencies is a rewriting
algorithm, and that the algorithm which computes generators defining an algebraic function can be
redesigned to be a rewriting algorithm too. Both algorithms could therefore be merged to compute
ideals defining expressions involving both algebraic and holonomic functions at the same time.

Filtrations, associated graded algebras and Bernstein inequality. In the case of the differentiation,
the class of holonomic functions is the Bernstein class of functions f such that J; is of the low-
est possible Bernstein dimension allowed by Bernstein inequality. We would like to explore this
direction, to know whether Bernstein inequality can be generalised to admissible Ore algebras.

Another point is that filtrations other than the Bernstein filtration might lead to a graded algebra
and to an equivalent of Bernstein inequality for non-admissible Ore algebras. In that case, holonomy
could be extended to other operators.

Differential algebra and elimination. We feel that the elimination needed to compute a diagonal
could be performed with Grobner-like elimination instead of Gaussian elimination.

However, it appeared on examples that it is not possible to use our package as it is. The reason
seems to be that some crucial steps of elimination are forbidden by the definition of reduction.
More precisely, Lipshitz’s algorithm implements a special case of elimination of z in an extended
Ore algebra K(z)(0d). This elimination is not possible with the extension of Buchberger’s algorithm
that we presented—z can only be eliminated in the Ore algebra K(z,d). The problem is that
we do not have any algorithm to compute the contracted ideal 3 = U N K(z,d) for any given
ideal ¥ C K(z)(d). This problem of contraction seems to be related to that of computing a
fractional ideal 1/s3, where J is an ideal of a commutative entire ring and s any element of this
commutative ring. (The fractional ideal 1/s7 is the set of fraction a/s for all @ € 3.) An extension
of this concept that could prove useful is given by Ritt in the case of differential algebra in [21].
The reduction defined there gives a prominent role to what are called nitial of an operator. These
concepts may correspond to what is missing in Buchberger’s version to perform elimination in the
computation of a diagonal.

CONCLUSIONS 99

We could also take advantage of computing contracted ideals in other closure operations: the
example of the binomial coefficients in Section 2.2 shows that the identity from Pascal’s triangle is
hidden in a fractional ideal.

Automatic proof of identities. Using our package, we would like to implement an identity checker.
Given an identity, it would determine holonomic systems defining each component of the equation,
and then check whether sufficiently many initial conditions are satisfied. In this way, we would
get a procedure proving or disproving an identity, provided that it is captured by the theory of
holonomy.

Moreover, once a holonomic system satisfied by an expression has been computed, it is in some
cases easy to determine a solution (especially an hypergeometric one). Thus, the implementation
of an identity checker would also provide us with an identity discovering procedure. In particular,
some summations or integrals could be solved by this procedure.

Initial conditions. Our package cannot deal with the initial conditions of sequences or functions.
Indeed, they deal only with germs of sequences and functions. They are therefore unable to deal
with P-recursive sequences, strictly speaking, since no data structure encapsulates the P-recursive-
ness of the k-section of a P-recursive sequence, as defined in Definition 1.9.

Because of that, it is neither possible to pass from equations on a P-recursive sequence to
equations on the associated D-finite function, nor conversely from a D-finite function to the P-recur-
sive sequence defining its generating series. However, this change of representation is very useful
in proving identities (see a simple example in [12]), so that it has to be implemented in view of
implementing an identity solver.

Ground field. All the equations dealt with are equations with polynomial coefficients. It would
be interesting to study to what extent the theory extends if we change the base field of rational
fractions in x by a field of rational functions in additional indeterminates, such as e” for example.
In particular, although the closure under sum and product certainly holds in this framework, there
is no closure under diagonal.

As far as programming is concerned, we would have to generalise our Mgfun package so that
it deals with several indeterminates sensitive to the same differentiation, according to different
commutation rules. As an example, we would like to change the base field to K(z,e®, d) with both
commutation rules 9z = £0 + 1 and de® = €0 + e”. (Note that it is already possible to compute
in K(e”, d). See the example in Section 5.3.)

The point that makes this approach interesting is that the theory of Grobner bases is known in
such a framework: Buchberger’s algorithm has been extended by Kandri-Rody and Weispfenning
to algebras like K(z,e", D,), namely polynomial rings of solvable type (see [15]). An interesting
open problem is to find an analogue to Zeilberger’s creative telescoping.

q-calculus. Another direction of investigation is the g-calculus. The pseudo-differential opera-
tor H9 of g-dilation defined by the commutation rule H @z = gzH? can be used to generate
an Ore algebra K(z, H?). Wilf and Zeilberger showed in [31] how it is possible to implement
hypergeometric g-calculus by specialised algorithms and to prove multi-sum or integral identities
in this context. Since in the ordinary calculus, many multi-sum or integral identities are captured
by the holonomic theory, we hope to be able to prove some g-calculus identities with the help of
our package.

Hypergeometric case. Moreover, Zeilberger—and others—implemented the algorithms described
in [31]. We would like to compare their programmes and our package in the case of hypergeometric
functions in order to find points that could be improved in our implementation, in particular if
there are methods that can be generalised to the class of holonomic functions.

60 FORMAL MANIPULATIONS OF LINEAR OPERATORS

Takayama’s Kan system. Takayama’s Kan system performs algebraic manipulations on the poly-
nomial ring K[z, ...,z,], on the Weyl algebra K(z,,...,z,,D,...,D,), on the difference Weyl
algebra K(zy,...,2,,A,...,A,) and on the ¢-difference Weyl algebra K(z, ..., z,, qu), o, AlDY
when K is Q or Z /pZ (see [28, 29]). When R is one of the algebras listed above, the system provides
us with arithmetic in R™, with computation of Grobner bases of left ideals of R and with a test
of membership for left submodules of R™. The procedures are in C and can be interfaced with C
programmes.

Notwithstanding the fact that our package are in MAPLE, there would be much interest in
comparing them with Kan from the point of view of the class of function and sequences that both
systems deal with, and from the point of view of efficiency.

EXECUTION TIMES FOR GROBNER BASES COMPUTATIONS 61

Set of polynomials grobner[gbasis] Mgfun[gbasis] Mgfun[gbasis] Mgfun[gbasis]

(tdeg) MAPLE release V.3 May 95 Dec ’94 Jun ’94
Steinerl 7.883 1.716 5.016

Steinerle 7.983 1.716 4.700

Steiner2 2.333 1.116 2.433

Steiner2e 2.416 1.133 2.433

Gerdtl 130.549 719.466

Gerdt2 2.816 1.250 5.383 5.500
CyclicRoots3 0.216 0.166 0.283 0.283
CyclicRoots3h 0.266 0.149 0.300 0.283
CyclicRoots4 1.050 0.766 1.800 1.966
CyclicRoots4h 1.116 0.833 1.850 2.116
CyclicRootsb 43.699 136.266 270.150

CyclicRoots5h 70.633 96.033 255.116

ParamCurve 4.283 7.783 33.666 32.316
Integerl 8.250 10.183 21.616

Set of polynomials grobner[gbasis] Mgfun[gbasis] Mgfun[gbasis] Mgfun[gbasis]
(plex) MAPLE release V.3 May 95 Dec ’94 Jun ’94
Gerdtl 58.083 46.983

Gerdt2 128.466 56.616 121.450 134.116
CyclicRoots3 0.216 0.166 0.150 0.183
CyclicRoots3h 0.200 0.183 0.183 0.183
CyclicRoots4 1.016 0.933 1.516 1.966
CyclicRoots4h 1.700 1.033 1.783 2.100
ParamCurve 240.966 29.233 422.716 648.750

TABLE 2. Compared timings of Grobner bases computations with our Mgfun pack-
age and with the grobner package

APPENDIX A. EXECUTION TIMES FOR GROBNER BASES COMPUTATIONS

We first compare our Mgfun package with MAPLE’s grobner package in the case of commutative
algebras. This comparison shows that our package is competitive. Next, we give timings for non-
commutative computations of binomial sums. These examples should be compared to Zeilberger’s
approach (see [34]).

Our implementation of the sugar method lessens the computation times: although we have not
made comparative tests between the normal and the sugar strategies, we gained an average factor
of 2 on several examples. A comparison with the gbasis function of the grobner package in MAPLE
lets us hope that, after some more optimisation of the code, we could achieve faster times in all
examples with our package than with the grobner package; The execution times of our tests can
be found in Table 2 and the corresponding sets of polynomials in Table 3. These tests have been
performed on a Dec Alpha 6000/400 with 64M of memory. The most astonishing result is that
the sugar strategy does not lead to the same speed-up, compared to MAPLE’s normal strategy,
according to what the term order is:

— with the pure lexicographic term order, our implementation of the sugar strategy is always
the best, with at least a speed-up of 10%; this confirms Giovini, Mora, Niesi, Robbiano and
Traverso’s results in [14];

— with the total degree order, our implementation behaves better than the gbasis function of
MAPLE’s grobner package with small examples, but takes longer times on bigger examples;
this is particularly impressive in the case of the Gerdt1, CyclicRootsb and CyclicRoots5h
examples; we have not found any explanation for this, yet.

62

Name

FORMAL MANIPULATIONS OF LINEAR OPERATORS

Polynomials

Indeterminates

Steinerl
Steinerle
Steiner2
Steiner2e

Gerdtl

Gerdt2

CyclicRoots3
CyclicRoots3h
CyclicRoots4
CyclicRoots4h

CyclicRoots5

CyclicRootsb5h

ParamCurve
Integerl

{’I"g - (LE +(J,)2 _yza’rl? - (LE - b)2 - y2,’l“§ — % — (y - 1)2a
f=ra—m—rc}
{’I"g - (LE +(J,)2 +y2a’rl? - (LE - b)2 +y2,’l“§ - x? + (y - 1)2a
f=ra—m—rc}
{’I"g - (LE +a)2 _yQaIrI? - (LE - b)2 - y2,’l“§ —x? — (y - 1)2a
f=ra—m—rc}
{’I"g - (LE +a)2 +y2a’rl? - (LE - b)2 +y27r3 — + (y - 1)2a
f —Tq —Tp — Tc}
{yw — 1/2zw + tw, —2/Tuw? + 10/Tvw?
—20/7Tw? + tu — 5tv + 10tw,
2/Tyw? — 2/Tzw* + 6/Ttw? — yt + zt — 3t2,
— 20* + duvw + 5v°w — 6uw? — Tvw? + 15w?* + 42yv,
— 14zv — 63yw + 212w — 42tw + 147x,
—9/Tuw?® + 45/ Tvw® — 135/7Tw* + 2202
— 2tv? — dzuw + 10tuw
— 2zvw — 28tvw + 4zw? + 86tw? — 42yz
+ 1422 + 42yt — 14zt — 21zu + 105zv — 3157w,
6/7Tyw?® — 9/7zw* + 36/Ttw* — 2zv?
— dytw + 6ztw — 24t*w + dzuw
+ 2zvw — dzw?® + 562y — 35z2 + 84xt,
2uvw — 6viw — uw? + 13vw? — 5w® + ldyw — 28tw,
w?w — 3uvw + Suw? + 1dyw — 28tw,
— 2zuw — 2tuw + 4dyvw + 6zvw — 2tvw
— 16yw?® — 10zw? + 22tw? + 422w,
28/3yuw + 8/3zuw — 20/3tuw — 88/3yvw
— 8zvw + 68/3tvw + 52yw?
+40/3zw* — 44tw?* — 84w,
— dyzw + 10ytw + 8ztw — 20t*w
+ 12zuw — 30zvw + 15zw?,
—y*w + 1/2yzw + ytw — ztw + 2w
— 3zuw + 6rvw — Jzw?,
8ryw — dxzw + 8rtw
{35y — 30zy® — 210y%2 + 3z* 4+ 302
— 10522 + 140yt — 21u,
Szy® — 140y 2z — 32y + 45zyz — 420y2>
+ 210y?*t — 25xt + 70zt 4+ 126yu}
{z+y+2z2y+yz+ze,0yz — 1}
{e+y+z2y+yz+zz,2y2 —h*}
{z+y+z+t,zy+yz+ 2t +tx,
zyz + yzt + ztz + tey, xyzt — 1}
{z+y+z+tzy+yz+ 2t +tx,
zyz + yzt + ztx + try, vyzt — h*}
{z+y+z+t+u,zy+yz+ 2t + tu+ uz,
zyz + yzt + ztu + tuz + uzy,
zyzt + yztu + ztux + tuzy + uryz, cyztu — 1}
{z+y+z+t+u,zy+yz+ 2t + tu+ uz,
zyz + yzt + ztu + tuz + uzy,
zyzt + yztu + ztuz + tuzy + uryz, ryztu — h°}
{23t — 2% —z —y, 2% — 2,2*° — t}
{r?yz* — t,2°5y" — 2%u, —232v + y*, —2°w + zy?}
TABLE 3. Polynomials used for the tests

TayToyTey f7$7y
TayToyTey f7$7y
TayToyTe,y f
TayToyTe,y f

x?y?’z?t?u?v?w

x’y’z’tJuJU

x?y?’z
x?y?’z?h
x?y?’z?t

x?y?’z?t?h

x?y?’z?t’u

x?y?’z?t’u’h

x?y?’z
x’y’z’tJUJU’w

EXECUTION TIMES FOR GROBNER BASES COMPUTATIONS 63

Summand Mgfun[gbasis]

(Z) 0.383
<Z>2 1.116
(Z) (" ']: k) 0.766
<Z>3 5.683
(—1)* <Z>3 5.083
(Z)Z (" ']: k>2 68.550

3
2n
—1)* .31
()<n+k> 3769.316

S EAlG

TABLE 4. Timings for hypergeometric summations

Moreover, the ratios of times between a set of polynomials in total degree order and the same set
in pure lexicographic order, as well as the ratios of times between two sets in the same term order
are different from what was found in [14]. Once again, we do not have any explanation.

As expected, the times in plex—pure lexicographic term order—are much longer than those
in tdeg—total degree order (except for the troubling case of Gerdt1). The other result that was
to be waited for is that the series of examples dealing with cyclic roots is more and more difficult,
while the number of indeterminates increases.

We give examples of non-commutative computations in Table 4. All these examples compute an
operator that vanishes in the definite sum of the summand under consideration. (The sum is over Z.)
They use Grobner bases to perform elimination of the summation index (see Section 5.2.1 for a
discussion of creative telescoping). We also tried to perform this elimination using the alternative of
Euclidean division (since in all cases, a single indeterminate is eliminated from a pair of operators).
At first, we expected better timings with this second approach. However, the case of Apéry numbers

(the sum of the (Z)Z(”zk)z over k € Z) astonishingly shows that the Grobner bases approach can
be more efficient, though we do not have a complete explanation.
As side products, some of these non-commutative eliminations give simple enough operators to

prove the following automatic theorems.

Automatic Theorem 5. The following identity holds

o (EES

64 FORMAL MANIPULATIONS OF LINEAR OPERATORS

Automatic Theorem 6. The following identity holds

() =)

The other eliminations introduce too many parasitic solutions to straightforwardly lead to a
closed form for the sum. However, it is sometimes possible to derive a minimal equation (without
any parasitic solutions left), as is described on the example of Apéry numbers, in Appendix B.

APPENDIX B. A NEW HOLONOMIC PROOF OF APERY’S RECURRENCE

We proceed to show on an example how holonomic closures can be applied to the proof of
identities. In this section, we focus on recurrence equations and holonomic sequences.
The example dealt with here is related to Apéry’s original proof that the number

+001

CIEDY

3
n=1 n

is irrational. This proof makes crucial use of the following recurrence
(39) (n+2)’ants = ((n+2)° + (0 +1)° +4(2n + 3)°) apngs +1’a, =0
between the famous Apéry numbers
"\ (n+ k)
@ %) ()

In order to prove equation (39), we follow Strehl’s presentation in [24] and introduce the Franel

numbers ,
" (n
=3 (k) .

k=0
(See also van der Poorten’s presentation of Apéry’s proof in [30].)
We make equation (39) rely on the following identity between Apéry and Franel numbers

@ 0T 26000

Proving this identity is motivated by the values of initial terms: each side of it have the common
following first values

1,5,73,1445, 33001, 819005, 21460825, 584307365, 16367912425,
468690849005, 13657436403073.

To prove the identity, we proceed by computing atomic subexpressions first, then by computing
bigger and bigger subexpressions until we get both sides of the identity.

Example. We now prove identities (39) and (41) by means of our package Mgfun. We first load
the package.
> with(Mgfun):
To compute the Franel numbers f, = Y5, (’;.)3, we first introduce the summand (’J‘)3 along with
corresponding operators in the Ore algebra K(n,k, S, Si).
> A:=orealg([k,shift,Sk],[j,shift,Sjl):

G:=map((w,h,a)->numer (expand (applyopr(args)/h-w)),

[Sk,Sj],binomial(k,j)~3,4);

A NEW HOLONOMIC PROOF OF APERY’S RECURRENCE 65

k> + 3k + 3k + 1 — k*S), — 3k>S,, + 3kjS), — 3kS),
+ 6kj Sy — 3kj* S, — Sk + 35Sk — 35°Sk + 7° Sk,
k* — 3k*j + 3kj* — j° — 7°S; — 35°S; — 35S; — S;

The next step is to perform elimination of j to get the Franel numbers by creative telescoping (see
Section 5.2.1).

> T:=termorder(A,lexdeg=[[j], [Sk,Sjl],max):
GB:=gbasis(G,T,ratpoly(rational, [k,jl)):
subs(Sj=1,select ((f,v)->not has(args),GB,j));

[56 — 136k — 2408y + 3k* S — 104k* — 45k° S,
— 240k*S, — 419k Sy + 51kS? + 22k25% — 24k*
+ 365} — 232kS} — 18k°S? — 114kS} — 14887 |

This yields an operator in the algebra K(k,S;). We then view the Franel numbers as a sequence
in the multi-index (n, k) and declare them to be independent of n.

> GL[scube] :=["[1],Sn-1]:

We then define the product of binomials

in the algebra K(n, k, S, Si):

> A:=orealg([n,shift,Sn], [k,shift,Sk]):
GL[bin2] :=map((w,h,a)->numer (expand(applyopr(args)/
h-w)), [Sn,Sk] ,binomial (n,k)*binomial (n+k,k) ,A);

n+1+k—nS, — S, +kS,, n2+n—k—k2—k25k—2k5k—5k]

Multiplication with the Franel numbers yields the summand of the right-hand side of equation (41).

> T:=termorder (A,tdeg=[Sn,Sk] ,max):
hprod (GL[bin2] ,GL[scubel,3,T):

One more creative telescoping (eliminating k) computes the right-hand side:

T:=termorder (A,lexdeg=[[k], [Sn,Sk]],max):
GB:=gbasis(G,T,ratpoly(rational, [k,n])):

subs (Sk=1,select ((f,v)->not has(args),GB,k)):
FRANEL:=collect (op("),Sn,factor);

66 FORMAL MANIPULATIONS OF LINEAR OPERATORS

FRANEL := (2n + 7)(2n + 5)(2n + 3)(3n + 16)(n + 6)(n + 3)(n + 7)*S”
—(2n + 13)(2n 4+ 5)(2n + 3)(n + 6)(n + 3)
(93n* + 2021n° + 16187n* + 56403n + 71744) S°
—(2n +5)(2n + 3)(2n + 11) (297n° + 9294n° + 1194660
+806264n* + 3008333n* + 5873514n + 4679744) S?
—(2n +9)(2n + 3)(2n + 13) (201n° + 6418n° + 79666n*
+500380n% + 1691885n> + 2933642n + 2044000) S
+(2n 4+ 7)(2n + 3)(2n + 13) (201n°® + 3230n° + 15906n*
—348n° — 236211n> — 702906n — 641200) S?
+(2n 4+ 5)(2n + 13)(2n + 11) (29705 + 4962n° + 328260
+109768n® + 195341n°> + 174950n + 61488) S~
+(2n +13)(2n 4+ 11)(2n + 3)(n + 5)(n + 2)
(93n* + 955n° + 3395n® + 5021n + 2664) S,
—(Bn+8)2n +13)(2n + 11)(2n + 9)(n + 5)(n + 2)(n + 1)*

Note that this is a 7 order recurrence of degree 9.

The same process applies to the product of binomials

(3

that occurs in the definition of Apéry numbers (40). However, creative telescoping returns two
operators and we have to perform extended gcd computation to get a (single) minimal operator:

— (2n.+5)(2n + 3)(4n + 13)(n + 4)(n + 5)*S°
+ (2n + 9)(2n + 3)(n + 4) (140n* + 2077n® + 11351n> + 270150 + 23577) S;
—2(2n + 7)(2n + 3) (68n° + 1457n"* + 11990n° + 47698n> + 92110n + 69217) S3
—2(2n + 9)(2n + 5) (68n° + 583n" 4+ 1502n° + 290n> — 3554n — 3349) S
+ (2n 4+ 9)(2n + 3)(n + 2) (140n* + 1283n° + 42051 + 5841n + 2931) S,
—(An+11)2n +9)2n + 7)(n + 2)(n + 1),
(n+2)(2n + 3)(n + 4)*S*
— (2n +7)(2n + 3) (18n® + 162n” + 474n + 445) S3
+ (2n + 5) (70n* + 700n® + 2558n” + 4040n + 2313) S2
— (2n+7)(2n + 3) (18n® 4 108n” + 204n + 125) S,
+(2n+7)(n+3)(n+ 1)

~— ~— ~— ~—

> A:=orealg([n,shift,Sn]):
APERY :=skewgcdex(",Sn, [n],A,
ratpoly(rational, [n])) [1];

DESCRIPTION OF OUR PACKAGE 67

APERY : = 21 — 2625S,, — 6848n?S, — 792n'S,, + 76n — 72n°S,
— 3354n°S,, + 104n®> — 72n°S3 — 5514n°S3
— 1466217 S? — 1008n*S? + 115655% — 6784n.S,,
— 18854nS?2 4 3845 + 140n°S? + 24826n.S;,
+86161°S? + 1750n* S2 + 20870n%S2 + 19n* + 661
+ 2n°S: + 186n° S, + 53605, + 31n*S, + 73615,
— 934553 + 2n°
Note that this is a 4 order recurrence of degree 5.

Now, the operator lem(APERY, FRANEL) cancels both sides of identity (41) and Ore’s theory
of skew polynomial rings (see [20]) proves that the order of this lcm is at most 7+ 4 — 1 = 10.
Thus, proving (or disproving) identity (41) reduces to comparing the initial values of both sides
forn =0,...,10, since these first 11 values determine which solution of the operator is being dealt
with—it can be shown that the leading coefficient of the lem never vanishes on the non-negative

integers. We have already noticed that the initial values coincide, so we proved the following
automatic theorem.

Automatic Theorem 7. The identity

6 () -500050)

holds for any non-negative integer n.

Since identity (41) is true, Apéry numbers defined by (40) satisfy both operators APERY
and FRANEL. Therefore, they satisfy the gcd of these operators. This yields Apéry’s second
order recurrence:

> primpart (skewgcdex (FRANEL,APERY,Sn, [n],A,ratpoly(rational, [n])) [1],Sn);

(n+2)°S> — (2n +3) (170> + 51n + 39) S, + (n + 1)*
(This is another form of identity (39).) We have got another automatic theorem.

Automatic Theorem 8. The Apéry numbers

. 2 Sk 2
n n
= \k k
satisfy the second order recurrence equation

(n+2)%an0 — (n+2)° +(n+1)°+4(2n + 3)*) apyy + n’a, = 0.

The previous computations have been performed in 3 minutes on a Dec 3000 (alpha).

APPENDIX C. DESCRIPTION OF OUR PACKAGE

The Mgfun package consists of three layers:

— OreAlgebra, that performs simple arithmetic on Ore algebras;
— OreGroebner, that computes (pseudo-)differential Grobner bases;
— Holonomic, that implements some closure properties of holonomic functions.

Each layer uses the functionalities of the previous ones to implement its own algorithms. In the
following subsections, we describe the functions of each layer that are available to the user.

68 FORMAL MANIPULATIONS OF LINEAR OPERATORS

C.1. The OreAlgebra layer. The function orealg creates a new Ore algebra. It must be provided
with the names of indeterminates x;, the type of the corresponding operators 9; that are applied on
each of these indeterminates and the names of the corresponding pseudo-differential indeterminates.
Each type is either a predefined one (differential, shift or difference) or one defined by the user. In
the former case, the implementation uses corresponding definitions for the functions o; and d;; in
the latter case, the user must provide the system with them. A call to orealg returns a MAPLE
structure encapsulating a description of the newly created algebra. This descriptor has to be present
as last argument in any call of a function of the OreAlgebra layer.

The function weylalg is an simpler alternative to orealg to define Weyl algebras.

The function commalg creates a new commutative algebra of polynomials. It is used to recover
the usual commutative Buchberger algorithm.

The function opprod computes the product of two elements of a given Ore algebra.

The function oppower computes the power of an element of a given Ore algebra.

The function randopr randomly generates an element of a given Ore algebra.

The function applyopr applies the operator associated to an element of an Ore algebra on a
function.

The function makeopr returns the operator associated to an element of an Ore algebra. This
operator can then be applied on a function.

The function annihilators computes a non trivial linear combination of two elements of an Ore
algebra (this gives lcm’s).

The function skewgcdex is an extended gcd computation in Ore algebras.

The function skewelim eliminates an indeterminate between two elements of an Ore algebra by
means of the previous extended gcd computation.

C.2. The OreGroebner layer. The function termorder creates a new term order in a given Ore
algebra—that must have been defined using orealg. The term order is either a predefined one
(pure lexicographic order, total degree order or elimination order) or one defined by the user. A
call to termorder returns a MAPLE structure encapsulating a description of the newly created term
order. This descriptor has to be present as last argument in any call of a function of the OreGroebner
layer.

The function gbasis computes the reduced Grobner basis of a set of elements of an Ore algebra.

The function reduce fully reduces an element of an Ore algebra by a set of elements of the same
algebra.

The function reducelist inter-reduces a list of elements of an Ore algebra.

The function reducescale does the same as reduce, but returns

The function spoly computes the S-polynomial (or syzygy) of two elements of an Ore algebra.

The function leadmon finds the leading term and the leading coefficient of an element of a given
Ore algebra.

The funtion testorder tests the order of two terms with respect to a given term order.

C.3. The Holonomic layer. The function hsum computes the sum of two holonomic functions.

The function hprod computes the product of two holonomic functions.

The function hsympow computes the power of a holonomic function.

The function dependency searches for a dependency between (pseudo-)derivatives of an expres-
sion involving holonomic functions.

The function algtoholon computes (pseudo-)differential operators defining an algebraic function
as holonomic.

The function hdiag computes the diagonal of a holonomic function.

REFERENCES

1. ABRAMOWITZ, M., AND STEGUN, I. A. Handbook of Mathematical Functions. Dover, 1973. A reprint
of the tenth National Bureau of Standards edition, 1964.

w

10.

11.

12.

13.

14.

15.
16.
17.
18.
19.
20.

21.
22.

23.

24.

25.

26.

27.

28.

29.
30.

REFERENCES 69

. BERNSTEIN, I. N. The analytic continuation of generalized functions with respect to a parameter.

Functional Analysis and Applications 6, 4 (1972), 26-40 (in Russian); 273-285 (English translation).
BJORK, J. E. Rings of Differential Operators. North Holland P. C., Amsterdam, 1979.

BOREL ET AL., A. Algebraic D-Modules, vol. 2 of Perspectives in Mathematics. Academic Press, Inc.,
1987.

BRONSTEIN, M., AND PETKOVSEK, M. On Ore rings, linear operators and factorisation. Tech. Rep.
200, Department Informatik, ETH, Nov. 1993.

BUCHBERGER, B., AND WINKLER, F. Miscellaneous results on the construction of Grébner bases for
polynomial ideals. Tech. Rep. 137, University of Linz, 1979.

Cox, D., LITTLE, J., AND O’SHEA, D. Ideals, Varieties, and Algorithms. Springer Verlag, 1992. An
Introduction to Computational Algebraic Geometry and Commutative Algebra.

Dumas, P. Algebraic aspects of B-regular series. In Autornata, Languages and Programming (July 1993),
A. Lingas, R. Karlsson, and S. Carlsson, Eds., vol. 700 of Lecture Notes in Computer Science, Springer
Verlag, pp. 457-468. Proceedings of the 20th International Colloquium, ICALP 93, Lund, Sweden, July
1993.

EHLERS, F. The Weyl Algebra, vol. 2 of Perspectives in Mathematics. Academic Press, Inc., 1987, ch. 5,
pp. 173-205.

FAUGERE, J., GIANNI, P., LAZARD, D., AND MoRA, T. Efficient computation of zero-dimensional
Grobuer bases by change of ordering. Journal of Symbolic Computation 16 (Oct. 1993), 329-344.
FAUGERE, J.-C. Résolution de systémes d’équations algébriques. PhD thesis, Université Paris 6, Feb.
1994.

FLAJOLET, P., AND SALVY, B. A finite sum of products of binomial coefficients. SIAM Review 35, 4
(Dec. 1993), 645-646.

GEDDES, K. O., CZAPOR, S. R., AND LABAHN, G. Algorithms for Computer Algebra. Kluwer Academic
Publishers, 1992.

GIovINI, A., Mora, T., Niesi, G., RoBBIANO, L., AND TRAVERSO, C. “one sugar cube, please” or
selection strategies in the Buchberger algorithm. In Symbolic and algebraic computation (1991), S. M.
Watt, Ed., Association for Computing Machinery, pp. 49-54.

KANDRI-RODY, A., AND WEISPFENNING, V. Non-commutative Grébner bases in algebras of solvable
type. Journal of Symbolic Computation 9 (1990), 1-26.

KAsHIWARA, M. On the holonomic systems of linear differential equations II. Inventiones Mathematicae
49 (1978), 121-135.

LazARD, D. Systems of algebraic equations (algorithms and complexity). Tech. Rep. 92.20, LITP, Mar.
1992.

LipsHiTz, L. The diagonal of a D-finite power series is D-finite. Journal of Algebra 113 (1988), 373-378.
LipsHiTZ, L. D-finite power series. Journal of Algebra 122 (1989), 353-373.

ORE, O. Theory of non-commutative polynomials. Annals of Mathematics 34 (1933), 480-508.

RitT, J. F. Differential Algebra, vol. XXXIII of A.M.S. Colloquium. A.M.S., 1950.

SALVY, B., AND ZIMMERMANN, P. Gfun: a Maple package for the manipulation of generating and holo-
nomic functions in one variable. Technical Report 143, Institut National de Recherche en Informatique
et en Automatique, 1992. To appear in ACM Transactions on Mathematical Software.

STANLEY, R. P. Differentiably finite power series. European Journal of Combinatorics 1 (1980), 175-188.
STREHL, V. Binomial identities — combinatorial and algorithmic aspects. Discrete Mathematics 136
(1994), 309-346.

TAKAYAMA, N. Grobner basis and the problem of contiguous relations. Japan Journal of Applied Math-
ematics 6, 1 (1989), 147-160.

TAKAYAMA, N. Grébner basis, integration and transcendental functions. In Symbolic and algebraic
computation (1990), Association for Computing Machinery, pp. 152-156. Proceedings ISSAC’90, Kyoto.
TAKAYAMA, N. An approach to the zero recognition problem by Buchberger algorithm. Journal of
Symbolic Computation 14 (1992), 265-282.

TAKAYAMA, N. Introduction to Kan virtual-machine SM1, June 1993. A system for computational
algebraic analysis.

TAKAYAMA, N. Kan-library Reference Manual, Oct. 1993.

VAN DER POORTEN, A. A proof that Euler missed ... Apéry’s proof of the irrationality of {(3). Math-
ematical Intelligencer 1 (1979), 195-203.

70

31.

32.

33.

34.

FORMAL MANIPULATIONS OF LINEAR OPERATORS

WiLr, H. S., AND ZEILBERGER, D. An algorithmic proof theory for hypergeometric (ordinary and “q”)
multisum /integral identities. Inventiones Mathematicae 108 (1992), 575-633.

ZEILBERGER, D. Sister Celine’s technique and its generalizations. Journal of Mathematical Analysis and
Applications 85 (1982), 114-145.

ZEILBERGER, D. A holonomic systems approach to special functions identities. Journal of Computational
and Applied Mathematics 32 (1990), 321-368.

ZEILBERGER, D. The method of creative telescoping. Journal of Symbolic Computation 11 (1991), 195—
204.

Contents

CONTENTS

Introduction

D-finite functions, P-recursive sequences and holonomic systems
1.1. D-finite functions
1.1.1. Definition and characterisation
1.1.2. Operations on D-finite power series
1.2. P-recursive sequences
1.2.1. Case of a single indeterminate
1.2.2. Case of several indeterminates
1.2.3. Fundamental equivalence theorem
1.2.4. Operations on P-recursive sequences
1.3. Holonomic systems

Weyl algebras, Ore algebras
2.1. Weyl algebras and D-finite power series
2.2. Ore algebras and holonomic systems
2.3. Implementation of the arithmetic of Ore algebras

Ideals of operators and definition of holonomy
3.1. Filtrations of an algebra and of a module
3.2. Admissible Ore algebras and noetherianity
3.3. Bernstein inequality in an Ore algebra, holonomic modules
3.4. Definition of holonomy

Grobner bases in Ore algebras
4.1. Example of the orthogonal Legendre polynomials
4.2. Division algorithm in the multivariate case
4.2.1. Reduction

4.2.2. Full reduction of a polynomial modulo an ideal given by generators

4.2.3. Extension of the full reduction to admissible Ore algebras

4.3. Buchberger’s basic algorithms and extension to admissible Ore algebras

4.3.1. Buchberger’s algorithm for computing Grobner bases

4.3.2. Inter-reduction of a set of polynomials and reduced Groébner bases

4.4. TImprovements of Buchberger’s algorithm
4.4.1. Normal strategy
4.4.2. Sugar strategy

Implementation of operations on holonomic functions
5.1. Arithmetical operations
5.1.1. Searching for a linear dependency

5.1.2. Searching for a linear dependency modulo ideals defining holonomic functions

5.1.3. Sum, product and symmetric power
5.1.4. Algebraic functions, algebraic substitution
5.2. More complex operations of closure
5.2.1. Definite sums and definite integrals
5.2.2. Taking the generating function of a holonomic function
5.2.3. Diagonal and Hadamard product
5.2.4. Finding the coefficients of a holonomic series
5.2.5. Indefinite sums and indefinite integrals
5.3. Computation in K(e*, D,)

Conclusions

71

12

12
12
15
19

20
21
22
24
25

26
27
28

34

39

42
43

48

o7
57

72 FORMAL MANIPULATIONS OF LINEAR OPERATORS

Appendix A. Execution times for Grobner bases computations
Appendix B. A new holonomic proof of Apéry’s recurrence

Appendix C. Description of our package
C.1. The OreAlgebra layer
C.2. The OreGroebner layer
C.3. The Holonomic layer

References

61
64

67
68
68
68

68

