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Abstra
t. We present a 
omputer algebra pa
kage in theMaple language for the symboli


manipulation of linear systems of di�erential and re
urren
e equations. This programme

is espe
ially designed to deal with so-
alled holonomi
 systems. This report also gives a

theoreti
al justi�
ation to our implementation.

The set of holonomi
 fun
tions and sequen
es is a large 
lass of obje
ts. It forms an

algebra and is 
losed under algebrai
 substitution and diagonal. An implementation of these

properties makes it possible to perform 
omputer assisted proofs of holonomi
 identities in

a simple way, sin
e a holonomi
 system has a normal form obtained by an extension of

the Gr�obner basis algorithm. For instan
e, 
ombinatorial problems often lead to holonomi


systems and to identities involving binomial 
oeÆ
ients. Many identities involving spe
ial

fun
tions are also 
aptured by the theory of holonomy. Examples are given to show how

some interesting identities are proved by our system.

Introdu
tion

An interesting 
lass of numeri
al sequen
es is formed by sequen
es (u

n

)

n2N

satisfying linear

re
urren
es with polynomial (or equivalently rational) 
oeÆ
ients, like

p

0

(n)u

n

+ p

1

(n)u

n+1

+ � � �+ p

2

(r)u

n+r

= 0:

In an analogous way, there is mu
h interest in studying fun
tions f in one variable x that are

solutions of linear di�erential equations with polynomial (or rational) 
oeÆ
ients, su
h as

p

0

(x) f(x) + p

1

(x) f

0

(x) + � � �+ p

r

(x) f

(r)

(x) = 0:

In the former 
ase the sequen
e (u

n

)

n2N

is 
alled P -re
ursive, in the latter the fun
tion f(x) is


alled D-�nite. Moreover, the link between both 
on
epts is very strong: a sequen
e (u

n

)

n2N

is

P -re
ursive if and only if its 
orresponding generating fun
tion

f(x) =

+1

X

n=0

u

n

x

n

is D-�nite. The same word holonomi
, that was �rst legitimated by the theory of D-modules in the


ase of D-�nite fun
tions, is now used in both 
ases to emphasise this duality between P -re
ursive

sequen
es and the 
orresponding D-�nite generating fun
tions.

This work was suggested by Ph. Flajolet and B. Salvy and has been 
ondu
ted in the Algorithms

proje
t at INRIA, Ro
quen
ourt (Fran
e). It was partly supported by the Esprit Basi
 Resear
h A
tion

of the E.C. No. 7141 (Al
om II)
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2 FORMAL MANIPULATIONS OF LINEAR OPERATORS

P -re
ursive sequen
es and a

ordingly D-�nite fun
tions enjoy a ri
h set of 
losure properties.

P -re
ursive sequen
es extend sequen
es satisfying re
urren
es with 
onstant 
oeÆ
ients; D-�nite

fun
tions extend fun
tions satisfying di�erential equations with 
onstant 
oeÆ
ients. The set of

D-�nite fun
tions satisfy the following properties:

{ it is an algebra and in parti
ular is 
losed under sum and produ
t;

{ it 
ontains all algebrai
 fun
tions and is 
losed under algebrai
 substitution;

{ it is 
losed under Hadamard (i.e. term-wise) produ
t and under diagonal.

All these results are proved by Stanley in [23℄. P -re
ursive sequen
es also form an algebra and

satisfy 
orresponding properties.

These interesting properties have led Salvy and Zimmermann to implement the Gfun Maple

pa
kage des
ribed in [22℄. This pa
kage manipulates sequen
es, linear re
urren
e equations or

linear di�erential equations and generating fun
tions of various types. In parti
ular, they have

implemented algorithms that 
ompute the sum, produ
t and Hadamard produ
t of holonomi


fun
tions in a single variable and sum, produ
t and Cau
hy produ
t of holonomi
 sequen
es in a

single index.

For instan
e, sin
e the fun
tion f =

1

p

1�z

is algebrai
, hen
e holonomi
, and the fun
tion g =


os(z) is holonomi
, their pa
kage Gfun is able to 
ompute a di�erential equation satis�ed by

h =

1

1� z

+


os z

p

1� z

= f (f + g):

The answer of the programme is

(16z

5

� 80z

4

+ 172z

3

� 196z

2

+ 116z � 28)h

000

+(32z

4

� 128z

3

+ 240z

2

� 224z + 80)h

00

+(16z

5

� 80z

4

+ 168z

3

� 184z

2

+ 125z � 45)h

0

+(16z

4

� 64z

3

+ 136z

2

� 144z + 53)h = 0:

The theory of holonomi
 fun
tions and sequen
es allows automati
 proof of a large 
lass of

identities. Zeilberger has given in [33℄ an algorithm to prove 
ertain 
ombinatorial identities and


ertain identities involving spe
ial fun
tions. This algorithm works by sear
hing for equations

satis�ed by ea
h side of the identity to be proved|or to be disproved. Then, if these equations are


ompatible and suÆ
iently many initial 
onditions are satis�ed, the identity holds. The basi
 idea

is that holonomi
 fun
tions 
an be identi�ed by a �nite amount of information. More spe
i�
ally,

they are fully 
hara
terised by a �nite number of equations and a �nite number of initial 
onditions.

Furthermore, using the theory of holonomy, it is not only possible to 
he
k identities, but also to

evaluate sums of holonomi
 sequen
es and integrals of holonomi
 fun
tions. An example is given

by Flajolet and Salvy in [12℄. Again with Gfun, they 
ompute a re
urren
e equation in n satis�ed

by




n

=

n

X

m=0

 

�

1

4

m

!

2

 

�

1

4

n�m

!

2

:

Using Gfun and a stepwise 
onstru
tion of the 


n

, they �nd the re
urren
e

8n

3




n

� (2n� 1)

3




n�1

= 0:

Using the initial 
onditions on 
, it is then obvious that

n

X

m=0

 

�

1

4

m

!

2

 

�

1

4

n�m

!

2

=

1

2

6n�3

 

2n� 1

n

!

3

:

This example is one of many 
ombinatorial problems that naturally lead to holonomi
 equations.

The 
on
ept of holonomy readily extends to several variables, that is, either multi-index sequen
es

or multivariate fun
tions. A �rst attempt at generalisation to sequen
es in several variables was
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done by Zeilberger in [32℄. The de�nitions given there appeared to be ina

urate. This was �xed by

Lipshitz in [18℄. For 
onvenien
e, we 
all holonomi
 fun
tions the fun
tions, sequen
es and formal

power series to whi
h we apply the 
on
ept of holonomy, whenever we want to denote any of these


ases. We shall 
onsider holonomi
 obje
ts that may be

{ either sequen
es de�ned on N

r

,

{ or fun
tions de�ned on K

s

,

and more generally

{ either fun
tions de�ned on a produ
t N

r

� K

s

,

{ or series h of formal power series

h : N

r

7! K [[x

1

; : : : ; x

s

℄℄;

where K is a �eld, r and s are integers.

An important work has been done in the 
ase of several variables by Takayama. This work led to

the implementation of his system Kan. In [25℄ and [26℄, Takayama presents the theory of Gr�obner

bases applied in the 
ase of modules over a Weyl algebra. In [26℄ and [27℄, he largely deals with

the problem of determining integrals or sums of holonomi
 fun
tions. His system Kan is des
ribed

in [28℄ and [29℄. It performs the major part of all operations on holonomi
 fun
tions dealt with in

this report. However, it is not able to work in the generality of all algebras of operators we 
onsider

in this report (namely 
ertain Noetherian Ore algebras).

As an example, Ja
obi polynomials, that generalise Legendre polynomials obtained for � = � = 0,

J

(�;�)

n

(x) = 2

�n

n

X

k=0

 

n+ �

k

! 

n� �

n� k

!

(1 + x)

k

(1� x)

n�k

are typi
al holonomi
 fun
tions. (Both parameters � and � are �xed, only n and x vary.) Like

many orthogonal polynomials, they satisfy a se
ond order di�erential equation with polynomial


oeÆ
ients in x and n and a se
ond order re
urren
e equation with polynomial 
oeÆ
ients in x

and n. Besides, they satisfy a linear equation involving derivatives of several J

(�;�)

n

, for the same

values of � and � but for di�erent n. The system Kan 
annot work with these J

(�;�)

n

(x), while our

programme does (see Se
tion 4.1 for a similar example on Legendre polynomials).

As another example, the Fren
h mathemati
ian Ap�ery proved in 1978 that the real number

�(3) =

+1

X

n=1

1

n

3

whi
h equals approximatively

1:2020569031595942853997381615114499907649862923405

is irrational, solving in this way a problem that dates ba
k to Euler.

Ap�ery's proof is based in a 
ru
ial way on the fa
t that the sequen
e

a

n

=

n

X

k=0

 

n

k

!

2

 

n+ k

k

!

2

satis�es the following polynomial re
urren
e of order 2 (with 
oeÆ
ients of degree 3):

n

3

a

n

� (34n

3

� 51n

2

+ 27n� 5) a

n�1

+ (n� 1)

3

a

n�2

= 0:(1)

This result was �rst announ
ed without a proof, and 
ost weeks of work to highly experien
ed

mathemati
ians. It is now known that it is 
aptured by the theory of holonomi
 sequen
es and

that the proof 
an be performed automati
ally. Indeed, we will use our programme in Appendix B

to give a proof of identity (1).

The subje
t of our work thus lies at a 
rossroad of domains:
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{ 
ombinatori
s, sin
e a great deal of 
ombinatorial problems and some problems 
lose to

the analysis of algorithms involve holonomi
 re
urren
es. For instan
e, numerous identi-

ties involving binomial 
oeÆ
ients usually proved manually and painfully be
ome provable

automati
ally|at least in prin
iple;

{ the theory of spe
ial fun
tions|in parti
ular, of hypergeometri
 fun
tions|, and the 
om-

putation of some integrals;

{ 
omputer algebra, sin
e many tools ne
essary to manipulate di�erential or re
urren
e op-

erators need to be spe
ially developed in a high-level language su
h as Maple.

In this work, we introdu
e a general framework that en
ompasses both D-�niteness and P -re-


ursiveness in several variables and vindi
ate it by our Maple pa
kage Mgfun. This programme


onsists of the three following layers:

(i) OreAlgebra, that performs elementary operations in 
ertain suitable non-
ommutative al-

gebras;

(ii) OreGroebner, that 
omputes Gr�obner bases of left ideals in these non-
ommutative algebras;

(iii) Holonomi
, that performs operations on holonomi
 fun
tions.

This pa
kage is available:

{ by anonynous ftp on the site ftp.inria.fr dire
tory

/INRIA/Proje
ts/algo/programms/Mgfun;

{ on the web at http://www-ro
q.inria.fr/Combinatori
s-Library/www.

Plan of this report. We shall begin by re
alling results on the two typi
al 
lasses of holonomi


fun
tions that we have just mentioned, namely D-�nite fun
tions and P -re
ursive sequen
es. This

is done in Se
tion 1.

Des
riptions of su
h holonomi
 fun
tions are given by systems of di�erential or di�eren
e equa-

tions respe
tively. These equations 
an be viewed as di�erential or di�eren
e operators vanishing

on a fun
tion. But di�erential operators 
an in turn be viewed as polynomials in a di�erential

indeterminate and re
urren
e operators as polynomials in a shift indeterminate. In order to make

both kind of operators 
oexist, we need a notion of pseudo-di�erential operators. In Se
tion 2, we

re
all the de�nition of Weyl algebras and some properties of these rings of di�erential polynomi-

als, and then introdu
e a 
on
ept of Ore algebras to deal with mixed di�erential and re
urren
e

polynomials.

We also use some algebrai
 theory of di�erential modules: the 
on
ept of holonomy in left D-mod-

ules is related to the dimension of a di�erential ideal, and the set of operators that vanish either on

a D-�nite fun
tion or on a P -re
ursive sequen
e is pre
isely an ideal of the 
orresponding Weyl or

Ore algebra. Therefore, in Se
tion 3, we borrow some results from the theory of D-modules due to

Hilbert and Bernstein and we show how they have to be restri
ted in our 
ontext of Ore algebras.

This is where we de�ne holonomy, along with a 
on
ept of admissible Ore algebra in whi
h the

de�nition of holonomy is meaningful.

The algorithms that deal with di�erential and re
urren
e operators often perform redu
tions to

a normal form and elimination. In the single indeterminate 
ase, these operations of redu
tion

and elimination are a
hieved using the Eu
lidean division. In the 
ase of several indeterminates,

we use Gr�obner bases in a (pseudo-)di�erential 
ontext to generalise them. In Se
tion 4, we re
all

Bu
hberger's algorithm to 
ompute Gr�obner bases and some of its 
lassi
al improvements. Then, we

show how we extend this method to non-
ommutative algebra and we des
ribe our implementation

of non-
ommutative Gr�obner bases.

Finally, in Se
tion 5, we give the algorithms 
urrently implemented in our pa
kage Mgfun to


ompute with holonomi
 fun
tions. We also des
ribe other algorithms for other operations on holo-

nomi
 fun
tions, that 
an be performed using our pa
kage as a toolbox. So far, our implementation


overs:

{ sear
h for linear dependen
ies between derivatives of an expression involving holonomi
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fun
tions;

{ sum and produ
t of two holonomi
 fun
tions and symmetri
 power of a holonomi
 fun
tion;

{ 
onversion of the polynomial equation de�ning a fun
tion as algebrai
 into equations de�ning

it as holonomi
;

{ 
omputation of the generating fun
tion of a holonomi
 fun
tion,

{ diagonal of a holonomi
 fun
tion.

After this rather theoreti
al part, the appendix gives more pra
ti
al information.

We 
ompare our implementation withMaple's usual grobner pa
kage for 
ommutation Gr�obner

bases 
omputation in Appendix A. In parti
ular, we 
omment on some results of timings. We also

give exe
ution times for non-
ommutative Gr�obner bases 
omputations.

Appendix B gives an example of use of our pa
kage to prove a very interesting identity about

Ap�ery numbers.

We 
omment on the pro
edures available in our pa
kage in Appendix C.

1. D-finite fun
tions, P -re
ursive sequen
es and holonomi
 systems

We �rst introdu
e the two \pure" 
ases of holonomi
 fun
tions, D-�nite fun
tions in Se
tion 1.1

and P -re
ursive sequen
es in Se
tion 1.2. We re
all proofs of their 
losure properties and of the

fundamental equivalen
e theorem; detailed proofs 
an be found in [23, 18, 19℄. Then, in Se
tion 1.3,

we extend the de�nitions to holonomi
 systems, that involve both D-�niteness and P -re
ursiveness.

Throughout Se
tions 1.1 and 1.2, K is a �eld of 
hara
teristi
 zero. This �eld K will usually be Q,

R or C in pra
ti
e; it may also be a �nitely generated extension of Q for the purpose of e�e
tive


omputation.

1.1. D-�nite fun
tions.

1.1.1. De�nition and 
hara
terisation. Let x denote a d-tuple of variables (x

1

; : : : ; x

d

).

De�nition 1.1. A formal power series f(x) =

P

i

1

�0;:::;i

d

�0

u

i

1

;:::;i

d

x

i

1

1

� � � x

i

d

d

2 K [[x℄℄ is 
alled D-�-

nite (or holonomi
) if and only if the family

�

�

�

1

+�

2

+���+�

d

f

�x

�

1

1

�x

�

2

2

� � � �x

�

d

d

�

(�

1

;�

2

;:::;�

d

)2N

d

spans a �nite dimensional K (x)-ve
tor subspa
e of K [[x℄℄.

A formal power series f(x) =

P

i

1

�a

1

>�1;:::;i

d

�a

d

>�1

u

i

1

;:::;i

d

x

i

1

1

� � � x

i

d

d

2 K ((x)) is 
alled D-�nite

(or holonomi
) if and only if the family

�

�

�

1

+�

2

+���+�

d

f

�x

�

1

1

�x

�

2

2

� � � �x

�

d

d

�

�2I

;

where I = f� 2 Z

d

j 8i = 1; : : : ; d �

i

� a

i

g spans a �nite dimensional K (x)-ve
tor subspa
e

of K ((x)).

When the series f 
onverges, the 
orresponding fun
tion is also 
alled D-�nite or holonomi
.

In the 
ase of a single variable, this de�nition is simply another formulation of the one suggested

in the introdu
tion, sin
e a linear di�erential equation with polynomial, or equivalently rational,


oeÆ
ients satis�ed by f is nothing but a dependen
y relation over K (x) of the

�

p

f

�x

p

's for p 2 N.

When � = (�

1

; : : : ; �

d

) 2 N

d

, let �

�

1

x

1

� � � �

�

d

x

d

, or even �

�

when there is no doubt on the set of

variables under 
onsideration, denote

�

�

1

+���+�

d

�x

1

�

1

� � � �x

d

�

d

:

Likewise, let x

�

denote x

�

1

1

� � � x

�

d

d

.

Moreover, we use �

i

in pla
e of �

x

i

ea
h time this does not 
reate any 
onfusion, and (x; �)

without any referen
e to any variable in the 
ase of a single pair of variables.
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The following proposition gives a simple 
hara
terisation of D-�nite formal power series or of

D-�nite formal Laurent series.

Proposition 1.2. A formal power series or a formal Laurent series f of several variables x

1

; : : : ; x

d

is D-�nite if and only if there exist d polynomials P

i

with 
oeÆ
ients in K [x℄ su
h that

P

i

(�

i

) :f = 0:(2)

Proof. When f isD-�nite, the family f�

�

fg

�2N

d

spans by de�nition a �nite dimensional K (x)-ve
tor

spa
e. Thus it is the same for the families f�

p

i

g

p2N

with i 2 f1; : : : ; dg. Taking a dependen
y relation

for ea
h of these families, and if ne
essary 
learing denominators, one �nds the P

i

's satisfying (2).

Conversely, with the use of the relations (2), any �

�

f 
an be rewritten as a linear 
ombination

over K (x) of the �

�

f where the � are limited by 0 � �

i

< degP

i

for all i 2 f1; : : : ; dg. �

De�nition 1.1 has been used for a long time in the 
ase of a single variable. Its generalisation

to the 
ase of several variables presents no surprise. Se
tion 1.2 shows that the situation is more

subtle in the 
ase of P -re
ursive sequen
es.

A set of equation like (2) is sometimes 
alled a re
tangular system.

1.1.2. Operations on D-�nite power series. First, we re
all simple 
losure results on D-�nite power

series (see [19℄); then we re
all the de�nition of the diagonal of a formal power series together with

Lipshitz's important result that the diagonal of a D-�nite power series is D-�nite (see [18℄). Finally,

Hadamard produ
ts and some kinds of integrals of D-�nite power series are D-�nite, sin
e they are

expressible in terms of diagonals.

Theorem 1.3. The following 
losure properties hold for D-�nite power series:

(i) D-�nite power series form a sub-algebra of K [[x℄℄;

(ii) if f is algebrai
, then f is D-�nite;

(iii) if f(x) is D-�nite, g

i

(y

1

; : : : ; y

d

0

) is algebrai
 for i 2 f1; : : : ; dg and the substitution in f(x)

of ea
h x

i

by the 
orresponding g

i

(y

1

; : : : ; y

d

0

) is valid (i.e. if f(g

1

(0); : : : ; g

d

(0)) is de�ned),

then y 7�! (f Æ g)(y) = f(g

1

(y); : : : ; g

d

(y)) is D-�nite.

Corresponding results also hold for D-�nite Laurent series, with K [[x℄℄ repla
ed by K ((x)).

Proof. The proofs of these results are all based on the same idea: generate suÆ
iently many deriva-

tives of the fun
tion under 
onsideration and redu
e them into a �nite dimensional ve
tor spa
e,

thereby proving that the fun
tion is D-�nite. Moreover, the following proofs are also valid in the


ase of D-�nite Laurent series, with K [[x℄℄ repla
ed by K ((x)) and N

d

repla
ed by suitable subsets

of Z

d

.

Sum. Let f and g be two D-�nite formal power series. Let hf�

�

fg

�2N

d

i and hf�

�

gg

�2N

d

i denote

the K (x)-ve
tor spa
es spanned by all derivatives of f or g respe
tively. Of 
ourse, these ve
tor

spa
es are both �nite dimensional.

For any � 2 N

d

, �

�

(f + g) = �

�

f + �

�

g lies in a homomorphi
 image of the formal dire
t

sum hf�

�

fg

�2N

d

i � hf�

�

gg

�2N

d

i, whi
h is 
learly a �nite dimensional K -ve
tor spa
e. Therefore,

the subspa
e hf�

�

(f + g)g

�2N

d

i of this homomorphi
 image is also a �nite dimensional K (x)-ve
tor

spa
e.

(The meaning of a formal dire
t sum is that the dire
t sum must be taken as a formal summation

without any referen
e to the a
tual values of the �

�

f 's and the �

�

g's|ex
ept that they span only

�nite dimensional spa
es. In other words, the �

�

f 's and the �

�

g's are viewed as new indeterminates

and possible dependen
ies between the �

�

f 's and the �

�

g's must not be taken into a

ount.)
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Produ
t. Let f and g be two D-�nite formal power series. For any � 2 N

d

, �

�

(fg) 
an be

rewritten as a sum of produ
ts of an element of f�

�

fg

�2N

d

by an element of f�

�

gg

�2N

d

. Moreover,

hf�

�

f�

�

0

gg

�2N

d

;�

0

2N

d

i is a homomorphi
 image of the �nite dimensional ve
tor spa
e hf�

�

fg

�2N

d

i


hf�

�

gg

�2N

d

i. (A remark similar to the one made in the 
ase of the dire
t sum applies to the 
ase

of the tensor produ
t.)

Therefore, hf�

�

(fg)g

�2N

d

i is a �nite dimensional K -ve
tor spa
e.

Algebrai
 fun
tion. Let f be algebrai
. There exists P 2 K [x; y℄ de�ning f by

P (x; f(x)) = 0:(3)

Moreover, it 
an be assumed without loss of generality that P is minimal and that

P ^ �

y

P = 1:

By the extended g
d algorithm, there exists (A;B) 2 K (x)[y℄

2

satisfying

A(x; y)P (x; y) +B(x; y) �

y

P (x; y) = 1:(4)

For ea
h i = 1; : : : ; n, we 
ompute the su

essive derivatives of (3) with respe
t to x

i

and redu
e

them into K (x)[y℄=I, where I = (P ) is the two-sided ideal K (x)PK (x). First, di�erentiating (3)

with respe
t to x

i

yields

�

x

i

P (x; f(x)) + �

y

P (x; f(x)) �

x

i

f(x) = 0:

Note that (4) provides an inverse of �

y

P (x; y) in K (x)[y℄=I : evaluating this equation at (x; f) and

simplifying it by (3) gives B(x; f) �

y

P (x; f) = 1. Thus,

B(x; f) �

x

i

P (x; f) + �

x

i

f = 0

and

�

i

f 2 K (x)[f ℄:(5)

Now by indu
tion on k, if �

k

i

f = R

k

(x; f) where R

k

2 K (x)[y℄, di�erentiating with respe
t to x

i

leads to �

k+1

i

f = �

x

i

R

k

(x; f) + �

y

R

k

(x; f) �

i

f . By (5), �

k+1

i

f 2 K (x)[f ℄.

Finally, the K (x)-ve
tor spa
e K (x)[f ℄ is �nite dimensional (of dimension degP ), and one thus

�nds a linear dependen
y between the f�

k

i

fg

k2N

. By Proposition 1.2, f is then D-�nite.

Algebrai
 substitution. Let f be holonomi
, the g

i

's be algebrai
 and 
onsider h(y) = (f Æ g)(y) =

f(g

1

(y); : : : ; g

d

(y)).

For ea
h i = 1; : : : ; d

0

, we 
ompute the su

essive derivatives of h(y) with respe
t to y

i

and show

by indu
tion that they are all elements of a homomorphi
 image of

hf�

�

f Æ gg

�2N

d

i 
 hfg

�

1

1

� � � g

�

d

d

g

�2N

d

i:

First, the result is true for h. Assume the property holds for �

k

i

h:

�

k

i

h =

X

�2N

d

;�2N

d




�;�

(�

�

f Æ g) g

�

1

1

� � � g

�

d

d

:(6)

Then,

�

k+1

i

h =

X

�2N

d

;�2N

d

j2f1;:::;dg




�;�

�

(�

j

�

�

f Æ g) �

i

g

j

g

�

1

1

� � � g

�

d

d

+ (�

�

f Æ g)�

j

g

�

1

1

� � � g

�

j

�1

j

� � � g

�

d

d

�

i

g

j

�

:

(7)

As in the previous 
ase, the �

i

g

j

's are elements of K (y)[g

j

℄; therefore �

k+1

i

h 2 hf�

�

f Æ gg

�2N

d

i 


hfg

�

1

1

� � � g

�

n

n

g

�2N

d

i.
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By indu
tion on k, the result holds for any k; sin
e every derivative lies in the same �nite

dimensional ve
tor spa
e, there is a linear dependen
y on the family f�

k

i

hg

k2N

, for all i 2 f1; : : : ; d

0

g.

By Proposition 1.2, h is then D-�nite. �

The following remark will prove very useful when we dis
uss algorithms operating on holonomi


fun
tions. Ea
h of the previous proofs redu
es the derivatives of a power series into a �nite dimen-

sional ve
tor spa
e in order to prove the D-�niteness of the series. The �nite dimensional ve
tor

spa
es used in the proofs are homomorphi
 images of:

{ hf�

�

fg

�2N

d

i � hf�

�

gg

�2N

d

i for the sum;

{ hf�

�

fg

�2N

d

i 
 hf�

�

gg

�2N

d

i for the produ
t;

{ hff

p

g

p2N

i for the 
ase of an algebrai
 fun
tion;

{ hf�

�

f Æ gg

�2N

d

i 
 hfg

�

1

1

� � � g

�

n

n

g

�2N

d

i for the algebrai
 substitution.

More generally, when an expression s involves a family of holonomi
 fun
tions fh

i

g

i2I

, it is often

easy to determine a formal �nite dimensional ve
tor spa
e built on the derivatives of the h

i

's and

into whi
h all derivatives of s 
an be redu
ed. Then s is 
ertainly D-�nite.

We next re
all the de�nition of the diagonals of a formal power series.

De�nition 1.4. With f =

P

�2N

d




�

x

�

, the primitive diagonal diag

1;2

(f) of f is

X

�2N

d

�

1

=�

2




�

1

;�

1

;�

3

;:::;�

d

x

�

1

1

x

�

3

3

� � � x

�

d

d

:

The other primitive diagonal diag

i;j

(f) are de�ned in an analogous way. A diagonal is any 
om-

position of the diag

i;j

. The 
omplete diagonal of f is the series diag

1;2

� � � diag

d�1;d

(f) in a single

indeterminate x,

diag

1;2

� � � diag

d�1;d

(f)(x) =

X

p2N




p;:::;p

x

p

We re
all the following theorem due to Lipshitz without detailing its proof. The 
omplete proof

is rather long and 
an be found in [18℄.

Theorem 1.5. The primitive diagonal diag

1;2

(f) of a D-�nite power series f is D-�nite. There-

fore, any diagonal of a D-�nite power series f is D-�nite.

Proof. [Sket
h℄ Given a D-�nite power series f , Lipshitz 
onsiders in his proof the fun
tion

F (s; x

1

; x

3

; : : : ; x

d

) = s

�1

f(s;

x

1

s

; x

3

; : : : ; x

d

):

(The residue of F with respe
t to s is exa
tly the diagonal diag

1;2

(f).) In a suitable sense, this

extended Laurent series is D-�nite, so that there are polynomials

A(s; x

1

; : : : ; x

d

;D

s

);

and

B

i

(s; x

1

; : : : ; x

d

;D

i

);

for all i 2 f1; 3; : : : ; dg that vanish on F .

The 
ru
ial point of the proof is now to �nd operators

P

i

(x

1

; : : : ; x

d

;D

i

;D

s

) =

h

i

X

j=0

P

i;j

(x

1

; x

3

; : : : ; x

d

;D

i

)D

j

s

;

for all i 2 f1; 3; : : : ; dg, where s has been eliminated. This is done by a dimension argument.

Sin
e F is a formal Laurent series, any derivative of F with respe
t to s has a zero 
oeÆ
ient

of s

�1

. Therefore,

[s

�1

℄P

i;j

(x

1

; x

3

; : : : ; x

d

;D

i

)D

j

s

:F = 0



D-FINITE FUNCTIONS, P -RECURSIVE SEQUENCES AND HOLONOMIC SYSTEMS 9

when j > 0. Besides, the 
oeÆ
ient of s

�1

in F is diag

1;2

(f), and so

P

i;0

:diag

1;2

(f) = P

i;0

:([s

�1

℄F ) = [s

�1

℄P

i;0

:F = [s

�1

℄P

i

(x

1

; : : : ; x

d

;D

i

;D

s

):F = 0

for any i 2 f1; 3; : : : ; dg. �

Finally, we re
all some identities involving diagonals, to show that some other operations on

power series are related to diagonals (see [19℄) and that the 
lass of D-�nite power series is 
losed

under these operations.

Hadamard produ
ts 
an be 
omputed with diagonals; 
onversely, diagonals 
an be 
omputed

with Hadamard produ
ts:

f � g = diag

1;d+1

� � � diag

d;2d

(f(x

1

; : : : ; x

d

) g(x

d+1

; : : : ; x

2d

));(8)

diag

1;2

(f) =

�

f �

�

1

1� x

1

x

2

1

1� x

3

� � �

1

1� x

d

��

(x

1

; 1; x

3

; : : : ; x

d

):(9)

Some inde�nite integrals 
an be 
omputed with Hadamard produ
ts:

Z

x

d

0

f(x

1

; : : : ; x

d�1

; t) dt

= (x

d

f)�

�

1

1� x

1

� � �

1

1� x

d�1

log

1

1� x

d

�

:

Therefore the following theorem holds.

Theorem 1.6. When f and g are D-�niteformal series, then

(i) the Hadamard produ
t f � g is D-�nite;

(ii) the primitive fun
tion

R

x

d

0

f(x

1

; : : : ; x

d�1

; t) dt is D-�nite.

1.2. P -re
ursive sequen
es. P -re
ursive sequen
es of a single variable have been fully studied

by Stanley in [23℄; we present his results in Se
tion 1.2.1.

The �rst attempt at generalisation to several variables was made by Zeilberger in [32℄; but the

de�nitions given there made it impossible to obtain the equivalen
e between P -re
ursiveness of a

sequen
e and D-�niteness of the 
orresponding generating fun
tion. In Se
tion 1.2.2 we reprodu
e

Lipshitz's de�nition whi
h he introdu
ed in [19℄. In Se
tion 1.10, we re
all the fundamental theorem

of equivalen
e between D-�niteness of a series and P -re
ursiveness of the 
orresponding sequen
e.

We �nally re
all some properties of P -re
ursive sequen
es in Se
tion 1.2.4.

1.2.1. Case of a single indeterminate. Let x be an indeterminate.

De�nition 1.7. A sequen
e (u

n

)

n2N

is 
alled P -re
ursive (or holonomi
) if and only if it satis�es

a linear re
urren
e equation with polynomial 
oeÆ
ients (in the indeterminate n).

It it well known that this 
on
ept of P -re
ursiveness in a single indeterminate is equivalent to

the one of D-�niteness in a single variable (see [23℄). Indeed, when f(x) =

P

n�0

u

n

x

n

2 K [[x℄℄ is

D-�nite, it satis�es the equation

r

X

k=0

P

k

(x) �

k

f = 0:

Identifying the 
oeÆ
ient of x

i

to 0 yields a re
urren
e relation of the type

s

X

k=0

Q

k

(n)u

n+k

= 0

where the Q

k

(n) are polynomials.

Conversely, assume that the sequen
e u satis�es a re
urren
e of the previous type. Rewriting the

polynomials Q

k

in the basis n, n(n�1), n(n�1)(n�2), n(n�1) � � � (n�k), : : : yields an expression
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of the equation of re
urren
e in terms of the x

k

�

k

f =

P

n�0

n(n� 1)(n� 2) � � � (n� k+1)x

n

. This

expression is the di�erential formulation we wanted to �nd.

1.2.2. Case of several indeterminates. Let x denote a d-tuple of indeterminates (x

1

; : : : ; x

d

).

If one applies Proposition 1.2 on a formal power series f 2 K [[x℄℄, one obtains some opera-

tors P

i

2 K hx; �

i

i satisfying (2). Then, mimi
king the pro
ess used for the 
ase of a single indeter-

minate yields re
urren
e equations

s

i

X

u=0

Q

i;u

(k)u

k

1

;:::;k

i�1

;k

i

�u;k

i+1

;:::;k

n

= 0:

It is therefore very tempting to take the existen
e of su
h a system as a de�nition of P -re
ursive-

ness for the 
ase of several indeterminates. This was done by Zeilberger in [32℄. However, unlike

the 
ase of a single indeterminate, the equivalen
e between D-�niteness and P -re
ursiveness does

not hold any longer with this de�nition. Several 
ounter-examples were given in [19℄:

(i) (i

2

� j)u

i;j

= 0. An obvious solution is given by the sequen
e

u

i;j

=

(

1 when i

2

= j,

0 otherwise.

The asso
iated generating fun
tion f(x; y) =

P

1

n=0

x

i

y

i

2

is not D-�nite; not even f(1; y)

is: be
ause of the la
unary nature of the series, it 
annot be solution of a linear di�eren-

tial equation with polynomial 
oeÆ
ients. Indeed, su
h an equation involves only a �nite

number of derivatives.

(ii) iju

i;j

= 0. Any solution is of the form

u

i;j

=

(

0 when i 6= 0 and j 6= 0,

an arbitrary 
onstant, otherwise.

Consider a power series in a single indeterminate

P

n2N




n

x

n

that is not D-�nite. (For

instan
e, the series de�ned by the sequen
e




n

=

(

1 when n = 2

p

for a 
ertain p 2 N,

0 otherwise,


annot be P -re
ursive be
ause of its la
unary nature. Similarly, the sequen
e 


n

= the n

th

prime number leads to a power series that 
annot be D-�nite.)

Then, the sequen
e u given by

u

i;j

=

(




j

when j = 0,

0 otherwise,

is asso
iated to a non D-�nite power series, although it is solution of iju

i;j

= 0.

Lipshitz gave a more 
omplete de�nition in [19℄. This de�nition 
aptures the requested equiva-

len
e. We now pro
eed to re
all it, after two preliminary de�nitions.

De�nition 1.8. Let u be a sequen
e de�ned over N

d

, I a non empty subset of f1; : : : ; dg and for

ea
h i 2 I, a

i

an integer. De�ne

(i) a se
tion of u as any subsequen
e of u obtained by 
onsidering only the terms of u whose

indi
es � satisfy �

i

= a

i

for all i 2 I, i.e. any subsequen
e obtained by setting at least one

index to a given value;

(ii) a k-se
tion of u as any se
tion of u de�ned as previously by I and some a

i

, with the

additional 
onstraint that a

i

< k for all i 2 I.
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De�nition 1.9. A sequen
e (u

�

)

�2N

d

is 
alled P -re
ursive if and only if there exists k 2 N su
h

that

(i) for ea
h i = 1; : : : ; d, there exist polynomials p

(i)

�

(n

i

) su
h that

X

�2f0;:::;kg

d

p

(i)

�

(�

i

)u(�� �) = 0

when � satis�es �

i

� k for all i 2 f1; : : : ; dg;

(ii) if d > 1 then all the k-se
tions of u are P -re
ursive.

Note that part (ii) of the previous de�nition is exa
tly what was missing in Zeilberger's de�nition

and what allowed the previous 
ounter-examples to work. Moreover, this de�nition readily extends

to sequen
es de�ned over suitable quadrants of Z

d

.

1.2.3. Fundamental equivalen
e theorem. The following theorem is the raison d'être of the 
umber-

some de�nition of P -re
ursive sequen
es.

Theorem 1.10. A sequen
e (u

�

)

�2N

d

is P -re
ursive if and only if its 
orresponding power se-

ries f(x) =

P

�2N

d

u

�

x

�

is D-�nite.

Proof. We do not give any proof; see [19, Theorem 3.7℄. �

1.2.4. Operations on P -re
ursive sequen
es. Be
ause of Theorem 1.10, the 
losure properties of the

P -re
ursive sequen
es are similar to the ones of the D-�nite series.

Theorem 1.11. The following results hold for P -re
ursive sequen
es:

(i) P -re
ursive sequen
es form a sub-algebra of K

N

d

;

(ii) any diagonal of a P -re
ursive sequen
e is P -re
ursive;

(iii) the 
onvolution of two P -re
ursive sequen
es is P -re
ursive;

(iv) when u is P -re
ursive and the sum

P

�

d

2N

u

�


onverges for every (�

1

; : : : ; �

d�1

), then the

sequen
e

P

�

d

2N

u

�

is P -re
ursive.

Proof. The 
losure property under the sum follows from the 
losure property under sum for D-�-

nite power series (Theorem 1.3) and from Theorem 1.10. The 
losure property under the produ
t

follows from the 
losure property under Hadamard produ
t for D-�nite power series (Theorem 1.6,

part (i)) and from Theorem 1.10. This proves part (i).

Part (ii) follows from the 
losure property under diagonal for D-�nite power series (Theorem 1.5)

and from Theorem 1.10.

Part (iii) follows from the 
losure property under produ
t for D-�nite power series (Theorem 1.3)

and from Theorem 1.10.

Part (iv) follows from Theorem 1.10 and from the fa
t that if the formal series

f =

X

�2N

d

u

�

x

�

is D-�nite, then so is

g =

X

(�

1

;:::;�

d�1

)2N

d�1

 

X

�

d

2N

u

�

!

x

�

1

1

� � � x

�

d�1

d�1

:

To prove this, one simply has to evaluate the equations (2) given by Proposition 1.2 for the fun
-

tion f in (�

1

; : : : ; �

d�1

; 1) to �nd similar equations satis�ed by g. �
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1.3. Holonomi
 systems. So far, we have only dealt with two 
on
epts introdu
ed separately|

D-�nite power series on the one hand and P -re
ursive sequen
es on the other hand. As we have

already shown, those two 
on
epts are 
losely related by the equivalen
e between P -re
ursiveness

of a sequen
e and D-�niteness of the asso
iated generating fun
tion.

But they 
an also 
oexist on the same system, as in the example of Ja
obi polynomials from the

introdu
tion. To de�ne holonomy in several variables, we list 
hara
teristi
s 
ommon toD-�niteness

and P -re
ursiveness whi
h also seem to be essential to holonomy.

(i) D-�nite power series are totally determined by suÆ
iently many di�erential equations and

by initial 
onditions, while P -re
ursive sequen
es are totally determined by suÆ
iently many

re
urren
e equations and by their initial terms. In both 
ases, the amount of information

needed by the determination is �nite; it 
ontains a �nite number of equations and a �nite

number of initial 
onditions.

(ii) Algorithms used to deal with D-�nite power series and P -re
ursive sequen
es are very

similar as soon as the equations they involve are expressed in terms of di�erential or shift

polynomials.

Thus, we would like to de�ne a holonomi
 fun
tion by a �nite system of mixed di�erential and

re
urren
e equations and a �nite number of initial 
onditions. Still, it is not possible to generalise

holonomy to the 
ase of several indeterminates in a simple way. Reasons for this have been given

in the introdu
tion: we �rst need to unify di�erentiation and shift in a single 
on
ept and to

ensure that the so-
alled holonomi
 system des
ribed in a �nite amount of information is enough

to determine a single holonomi
 fun
tion.

An a

urate de�nition of a holonomi
 system will be given in Se
tion 3.4, but what has been

just suggested motivates the following algebrai
 developments.

2. Weyl algebras, Ore algebras

So far, we have 
onsidered D-�nite power series only from the point of view of the ve
tor spa
es

spanned by their derivatives. Sin
e these ve
tor spa
es are �nite dimensional, their derivatives

are 
onstrained by linear dependen
y. These relations 
an be expressed as di�erential operators

whi
h vanish on the D-�nite power series under 
onsideration. We �rst introdu
e a framework for

these di�erential operators, namely Weyl algebras. We then introdu
e a similar 
on
ept for P-�nite

sequen
es and holonomi
 systems in general. Di�erential and di�eren
e operators are thus uni�ed

into a 
ommon algebrai
 framework, whi
h in fa
t 
aptures many other operators.

2.1. Weyl algebras and D-�nite power series. We use the following notation to denote a

non-
ommutative algebra: when u

1

; : : : ; u

p

are indeterminates, let fu

1

; : : : ; u

p

g

�

denote the free

monoid M built on these indeterminates

fu

1

; : : : ; u

p

g

�

= fv

1

� � � v

r

j 8i = 1; : : : ; r v

i

2Mg ;

given a �eld K , let then K hu

1

; : : : ; u

p

i denote the K -algebra K

(M)

over the free non-
ommutative

monoid M , i.e. the set of all sums of a �nite number of produ
ts of the form 
m where 
 2 K

and m 2 M . Still, we also use this notation when there exist 
ommutation rules between the

indeterminates.

De�nition 2.1. Given two d-tuples of indeterminates x = (x

1

; : : : ; x

d

) and � = (�

1

; : : : ; �

d

) along

with a �eld K , the asso
iated Weyl algebra is 
lassi
ally de�ned as the non-
ommutative ring of

polynomials K hx; �i = K hx

1

; : : : ; x

d

; �

1

; : : : ; �

d

i, with the 
ommutation rules

�

i

x

j

= x

j

�

i

+ Æ

i;j

;(10)

�

i

�

j

= �

j

�

i

;(11)

x

i

x

j

= x

j

x

i

;(12)
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for all (i; j) 2 f1; : : : ; dg

2

. (The symbol Æ

i;j

is the Krone
ker symbol whose value is 1 when i = j

and 0 otherwise.) This makes any Weyl algebra a K -algebra.

More formally, let K

(M)

be the K -algebra over the free monoid M = fx

1

; : : : ; x

d

; �

1

; : : : ; �

d

g

�

.

Then, the Weyl algebra is the quotient of K

(M)

by its two-sided ideal generated by the family

f�

i

x

j

� x

j

�

i

� Æ

i;j

; �

i

�

j

� �

j

�

i

; x

i

x

j

� x

j

x

i

g

(i;j)2f1;:::;dg

2

:

This 
onstru
tion proves that a Weyl algebra is a K -algebra.

Note also that the Weyl algebra K hx; �i is isomorphi
 to

N

d

i=1

K hx

i

; �

i

i where ea
h K hx

i

; �

i

i is

the quotient of the K -algebra K

(M

i

)

over the free monoid M

i

= fx

i

; �

i

g

�

by its two-sided ideal

generated by �

i

x

i

� x

i

�

i

� 1. The tensor produ
t used in this de�nition repla
es the 
ommutations

properties (10{12) when i 6= j.

In K hx; �i the following identities hold for any positive integers r; p and any P 2 K [[x℄℄, as simple


onsequen
es of the 
ommutation rules (10{12):

�x

p

= x

p

� + px

p�1

;(13)

�

r

x

p

=

r

X

k=0

 

r

k

!

p (p� 1) � � � (p� k + 1)x

p�k

�

r�k

;(14)

�P (x) = P (x) � +D

x

P (x);(15)

�

r

P (x) =

r

X

k=0

 

r

k

!

D

k

x

P (x) �

r�k

(16)

=

r

X

k=0

1

k!

D

k

x

P (x)D

�

(�

r

);(17)

where D

x

(resp. D

�

) denotes the formal di�erentiation with respe
t to x (resp. �). In the general


ase, they hold for ea
h pair formed by an indeterminate and its asso
iated di�erentiation (x

i

; �

i

).

Note that be
ause of (10{12), all indeterminates 
ommute ex
ept for the pairs an indeterminate and

its asso
iated di�erentiation. Now, 
onsider two polynomials P and Q of a Weyl algebra K hx; �i.

We have the following general formula for the produ
t:

P (x; �)Q(x; �) =

X

k�0

1

k!

D

k

�

P (x; �) �D

k

x

Q(x; �);(18)

where � is a 
ommutative produ
t (polynomials in x and � are then viewed as 
ommutative poly-

nomials of K [x; �℄).

From there, one easily 
he
ks that any element of a Weyl algebra admits a normal form obtained

by rewriting it so that in all of its monomials, every �

i

appears only on the right of the 
orrespond-

ing x

i

. (This rewriting does not preserve the number of monomials|it in
reases it|, but it does

terminate.) The result of su
h a rewriting is a polynomial of the form

X

(�;�)2N

2d




�;�

x

�

�

�

where 
 2 K

(N

2d

)

. This rewriting provides an e�e
tive zero-equivalen
e test in Weyl algebras,

provided that an e�e
tive test to zero exists in the �eld K .

Weyl algebras 
an be 
onsidered as algebras of di�erential operators where:

{ the indeterminate x

i

denotes the produ
t by x

i

;

{ the indeterminate �

i

denotes the di�erentiation with respe
t to x

i

.

This point of view is 
onsistent with the 
ommutation rules of the de�nition.

When dealing with holonomi
 fun
tions, the polynomial nature of the 
oeÆ
ients of operators

will often be irrelevant. We shall therefore often 
onsider the algebras K (x)K hx; �i, whi
h we shall



14 FORMAL MANIPULATIONS OF LINEAR OPERATORS

denote by K (x)h�i. Then, identity (13) extends to negative p's, while identities (15) and (17) extend

to P 2 K (x) and identity (18) extends to P;Q 2 K (x)h�i.

Now, 
onsider a D-�nite power series f 2 K [[x℄℄. The set of elements of the Weyl algebra that

vanish on f plays a prominent role in the sequel; we therefore introdu
e the following notations:

for any given D-�nite power series f 2 K [[x℄℄, let I

f

(resp. V

f

) denote the set of the elements of

the Weyl algebra K hx; �i (resp. K (x)h�i) that vanish on f :

I

f

= fw 2 K hx; �i j w:f = 0g:

(resp. V

f

= fw 2 K (x)h�i j w:f = 0g:)

We also simply write I

f

:f = 0 (resp. V

f

:f = 0).

Conversely, a subset I of a Weyl algebra K hx; �i de�nes a di�erential system whi
h is always

solvable in K [[x℄℄, sin
e 0 is a solution. Note that:

{ the solution set of su
h a system is a K -ve
tor spa
e;

{ on
e the di�erential system has been de�ned, the set of elements of the Weyl algebra that

vanish on any solution of the system may be larger than I.

Example. It is easy to 
he
k that I


os

= I

sin

= Rhx; �i:(�

2

+1) and 
onversely, that this set de�nes

the family f� 
os +� sing

(�;�)2R

2

. Similarly, V


os

= I

sin

= R(x)h�i:(�

2

+ 1).

The following proposition is just another formulation of Proposition 1.2.

Proposition 2.2. A subset I of a Weyl algebra K hx; �i de�nes a ve
tor spa
e of D-�nite power se-

ries f solutions of I:f = 0 if and only if there exist d polynomials P

i

(�

i

) that are linear 
ombinations

of the elements of I with polynomial 
oeÆ
ients and su
h that

P

i

(�

i

):f = 0:

The following example shows that the link between I

f

and V

f

is not trivial: though V

f

= K (x)I

f

and I

f

= V

f

\ K hx; �i, this interse
tion is not easy to 
ompute. This fa
t be prove problemati


when dis
ussing 
reative teles
oping in Se
tion 5.2 and diagonals in Se
tion 5.2.3.

Example. Let f be the fun
tion

f =

1

s

2

� s+ x

=

1

R

:

It is easily veri�ed that

V

f

= (g

s

; g

x

) � K (s; x)hD

s

;D

x

i:(19)

with

g

s

= D

s

R = RD

s

+ (2s� 1)

g

x

= D

x

R = RD

x

+ 1:

Now, let I = (RD

s

� (2s� 1); RD

x

� 1) � K hs; x;D

s

;D

x

i. Trivially, I � I

f

. However, both ideals

are di�erent: the operator

! = D

2

s

+ (4x� 1)D

2

x

+ 6D

x

satis�es

R

3

! = (R

2

Ds� 2(2s� 1)R) g

s

+ ((4x � 1)R

2

Dx+ 2(�x� 3s+ 3s

2

+ 1)R g

x

2 I;

thus ! 2 I

f

, while ! 62 I. In fa
t,

I

f

= (g

s

; g

x

; !) � K hs; x;D

s

;D

x

i:(20)

(Compare des
riptions (19) and (20).)
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2.2. Ore algebras and holonomi
 systems. We need to introdu
e a more general framework

for operators in order to deal with P -re
ursive sequen
es and holonomi
 systems in general. Of


ourse, these operators have to be non-
ommutative operators, so we �rst re
all some old results

on non-
ommutative polynomials.

A study of a large 
lass of non-
ommutative algebras of polynomials was done by Ore in [20℄:

given a �eld k, he introdu
ed an algebra of non-
ommutative polynomials khxi 
losed under a

produ
t determined by a 
ommutation rule and by the following restri
tion:

The degree of a produ
t shall be equal to the sum of the degrees of the fa
tors.

Due to the distributive property, this 
onstraint is equivalent to the following 
ommutation rule

between the indeterminate x and any element a of k:

xa = �ax+ a

0

;

where �a; a

0

2 k. He 
alled �a the 
onjugate of a and a

0

its derivative.

He proved that this ring of polynomials has the following properties of usual polynomials:

{ right division by Eu
lid algorithm and an extended g
d algorithm;

{ left division by Eu
lid algorithm and an extended g
d algorithm when suitable assumptions

on the map a 7�! �a and the leading 
oeÆ
ients of the polynomials under 
onsideration are

satis�ed, as in parti
ular when the map a 7�! �a is an automorphism of k.

This algebra of non-
ommutative polynomials is usually 
alled a skew polynomial ring and its

elements Ore polynomials.

Bronstein and Petkov�sek showed in [5℄ how Ore polynomials 
an always be 
onsidered as linear

operators and be interpreted as linear ordinary di�erential operators as soon as k is a di�erential

�eld of 
hara
teristi
 zero. The indeterminate x is then interpreted as a di�erentiation operator �.

This is why we 
hoose to use � instead of x as the indeterminate name in a skew polynomial ring.

We borrow from [5℄ the notation �(a) for �a and Æ(a) for a

0

. This notation proves 
onvenient in our

generalisation to several indeterminates.

Finally, we are planning to 
onsider linear di�erential operators with polynomial 
oeÆ
ients for

whi
h the di�erential base �eld k is repla
ed by a �eld of rational fra
tions K (x) and the skew

polynomial rings under 
onsideration be
omes K (x)h�i. To draw a parallel with the de�nitions

given for the 
ase of Weyl algebras (see e.g. [26℄), we 
all Ore algebra the ring of pseudo-di�erential

operators K hx; �i.

De�nition 2.3. Given two d-tuples of indeterminates x = (x

1

; : : : ; x

d

) and � = (�

1

; : : : ; �

d

) along

with a �eld K , we de�ne the asso
iated Ore algebra as the non-
ommutative ring of polynomi-

als K hx; �i = K hx

1

; : : : ; x

d

; �

1

; : : : ; �

d

i, with the 
ommutation rules

�

i

x

j

= �

i

(x

j

) �

i

+ Æ

i

(x

j

);(21)

�

i

�

j

= �

j

�

i

;(22)

x

i

x

j

= x

j

x

i

;(23)

as soon as (i; j) 2 f1; : : : ; dg

2

and

{ the �

i

's are endomorphisms of K [x

i

℄ (as an algebra) extended to K [x℄ by the identity,

{ and the Æ

i

's are endomorphisms of K [x

i

℄ (as a K -ve
tor spa
e) multipli
atively extended

to K [x℄,

with the �

i

's and the Æ

i

's 
ommuting two by two. This makes any Ore algebra a K -algebra. Elements

of Ore algebras will also be 
alled pseudo-di�erential operators.

(We use the same notation for Weyl and Ore algebras sin
e the former 
an be 
onsidered as a

spe
ial 
ase of the latter.)
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As in the 
ase of Weyl algebras, a more formal 
onstru
tion of Ore algebras is obtained by

forming the quotient of the K -algebra K

(M)

over the free monoid M = fx

1

; : : : ; x

d

; �

1

; : : : ; �

d

g

�

by

its two-sided ideal generated by the family

f�

i

x

j

� �

i

(x

j

) �

i

� Æ

i

(x

j

); �

i

�

j

� �

j

�

i

; x

i

x

j

� x

j

x

i

g

(i;j)2f1;:::;dg

2

:

This 
onstru
tion also proves that an Ore algebra is a K -algebra.

Note also that the Ore algebra K hx; �i is isomorphi
 to

N

d

i=1

K hx

i

; �

i

i where ea
h K hx

i

; �

i

i is the

quotient of the K -algebra K

(M

i

)

over the free monoidM

i

= fx

i

; �

i

g

�

by its two-sided ideal generated

by �

i

x

i

� �

i

(x

i

) �

i

� Æ

i

(x

i

). The tensor produ
t used in this de�nition repla
es the 
ommutations

properties (21{23) when i 6= j.

The required properties of the �

i

's and the Æ

i

's are so designed as to separate the a
tion of

di�erentiation operators on di�erent indeterminates. They also simplify identities involving several

di�erentiation operators multiplied to the left of a pseudo-di�erential operator.

Another 
onstru
tion of Ore algebras will prove fruitful when we dis
uss non-
ommutative

Gr�obner bases. After Kandri-Rody and Weispfenning (see [15℄), a polynomial ring of solvable

type K hu

1

; : : : ; u

r

i is de�ned as the quotient of the free non-
ommutative K -algebra over the

monoid (u

1

; : : : ; u

r

)

�

by two-sided ideals of the form

u

j

u

i

� 


i;j

u

i

u

j

� lower order terms (j > i):

(The monoid is endowed with a term order whi
h is 
ompatible with the produ
t and su
h that 1

is the lowest element.) Ore algebras are then simple examples of polynomial rings of solvable type.

For the sake of 
ompleteness, re
all that in the 
ase of a single pair (x; �) and a ring A , the Ore

algebra A hx; �i is often 
alled an Ore extension of the ring A . Therefore, another viewpoint on the

Ore algebras de�ned here is that they are spe
ial 
ases of so-
alled iterated Ore extensions, with

the restri
tion that both indeterminates introdu
ed by an extension 
ommute with all previously

existing indeterminate.

We now give some simple 
onsequen
es of the 
ommutation rules (21{23).

Proposition 2.4. The following identities hold for any i 2 f1; : : : ; dg and for any positive inte-

gers r; p:

�

i

x

p

i

= �

i

(x

i

)

p

�

i

+

p�1

X

k=0

�

i

(x

i

)

k

Æ

i

(x

i

)x

p�1�k

i

;(24)

Æ

i

(x

p

i

) =

p�1

X

k=0

�

i

(x

i

)

k

Æ

i

(x

i

)x

p�1�k

i

:(25)

In the 
ase of a single pair of indeterminates, the following identity holds for any positive inte-

gers r; p:

�

r

x

p

=

r

X

k=0

 

r

k

!

�

(r�k)

Æ Æ

(k)

(x

p

)�

r�k

;(26)

where �

(i)

and Æ

(i)

denote the i

th

iterates of � and Æ respe
tively.

Consider two polynomials P and Q of an Ore algebra K hx; �i. As in the 
ase of Weyl algebras,

we have the following general formula for the produ
t:

P (x; �)Q(x; �) =

X

k�0

1

k!

(D

k

�

P (x; �))

�=(� 7!�(�)��)

�

D

k

x

Q(x; �)

�

;(27)

where � is a 
ommutative produ
t (polynomials in x and � are then viewed as 
ommutative polyno-

mials of K [x; �℄) and � is multipli
atively extended to the whole Ore algebra.
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When dealing with holonomi
 fun
tions, the polynomial nature of the 
oeÆ
ients of operators

will often be irrelevant. We shall therefore often 
onsider the algebras K (x)K hx; �i, whi
h we shall

denote by K (x)h�i. Then, identity (27) extends to P;Q 2 K (x)h�i.

Again, this proves that any element of an Ore algebra admits a normal form whi
h is a polynomial

of the type

P

(�;�)2N

2d




�;�

x

�

�

�

where 
 2 K

(N

2d

)

. Thus, there is an e�e
tive zero-test in Ore

algebras, provided that an e�e
tive zero-test exists in the �eld K . Identities (24{25) also prove that

the 
ommutation rules are totally determined by the �

i

(x

i

)'s and the Æ

i

(x

i

)'s.

Now we are able to show to what extent this 
on
ept generalises Weyl algebras and to explain the


onne
tion between Ore algebras and holonomi
 systems. To do so, we simply produ
e examples of

Ore operators; without loss of generality, we give them in the 
ase of a single variable, sin
e the �

i

's

and x

j

's 
ommute as soon as i 6= j.

Di�erentiation. Let �(x) = x and Æ(x) = 1, then �x = x� + 1 and the Ore algebra is the Weyl

algebra in a single variable. Thus, � 
an be viewed as the di�erentiation operator D

x

over K [[x℄℄

and K hx; �i = K hx;D

x

i.

Shift. Let �(x) = x + 1 and Æ(x) = 0, then �x = (x + 1) � and � is the shift operator: to

re
over the notation of re
urren
e operators, 
hange x into n and � to S

n

, then S

n

n = (n+ 1)S

n

and K hx; �i = K hn; S

n

i. For any given sequen
e u, we have nu = (nu

n

)

n2N

and S

n

u = (u

n+1

)

n2N

.

Di�eren
e. Let �(x) = x+1 and Æ(x) = 1, then �x = (x+1) � and � is the di�eren
e operator|

either in a 
ontinuous or a dis
rete variable: to re
over more usual notation, 
hange � to �

x

,

then �

x

x = x�

x

+ �

x

+ 1 and K hx; �i = K hx;�

x

i. For any given fun
tion in x, �

x

:f(x) =

f(x+ 1)� f(x).

q-Dilation. Let �(x) = qx and Æ(x) = 0, then �x = qx� and � is the q-dilation operator.

Put � = H

(q)

x

, then H

(q)

x

x = xH

(q)

x

and K hx; �i = K hx;H

(q)

x

i. For any given fun
tion in x,

H

(q)

x

:f(x) = f(qx).

q-Di�erentiation. Let �(x) = qx and Æ(x) = 1, then �x = qx� + 1 and � is the q-di�erentiation

operator. Put � = D

(q)

x

, then D

(q)

x

x = xD

(q)

x

+ 1 and K hx; �i = K hx;D

(q)

x

i. For any given fun
tion

in x, D

(q)

x

:f(x) =

f(qx)�f(x)

(q�1)x

. (For examples of use of these last two operators, see [31℄.)

e

x

-Di�erentiation. Let �(x) = x and Æ(x) = x, then �x = x� + x. If � is interpreted as dif-

ferentiation operator with respe
t to a variable t, and x is the multipli
ation operator by e

t

, the

algebra K hx; �i is K he

t

;D

t

i. (An example of appli
ation is given in Se
tion 5.3.)

e

x

-Di�erentiation. Let �(x) = x and Æ(x) = x, then �x = x� + x. If � is interpreted as the

Eulerian �

x

operator with respe
t to x, whi
h maps a fun
tion f(x) to the fun
tion xf

0

(x), and x

is the multipli
ation operator by x, the algebra K hx; �i is K hx; �

x

i.

Mahlerian operators. Let �(x) = x

p

for any given integer p > 1 and Æ(x) = 0, then � a
ts as the

Mahlerian operator M

x

: M

x

x = x

p

M

x

. The a
tion of x is the multipli
ation by x and the a
tion

of M

x

is M

x

:f(x) = f(x

p

). (See for instan
e [8℄ for appli
ations to divide and 
onquer re
urren
es.)

These de�nitions are summarised in Table 1.

We now give simple examples of holonomi
 fun
tions with a des
ription in term of pseudo-

di�erential operators.

Example.

(i) Fa
torial: let u

n

= n!, then (S

n

� (n+ 1)):u = 0, showing that n! is P -re
ursive.

(ii) Binomial 
oeÆ
ients: let b

n;k

=

�

n

k

�

=

n!

(n�k)!k!

, then:



18 FORMAL MANIPULATIONS OF LINEAR OPERATORS

Operator x � �(x) Æ(x) �x

Di�erentiation x D

x

x 1 xD

x

+ 1

Shift n S

n

n+ 1 0 (n+ 1)S

n

Di�eren
e x �

x

x+ 1 1 (x+ 1)�

x

+ 1

q-Dilation x H

(q)

x

qx 0 xH

(q)

x

q-Di�erentiation x D

(q)

x

qx 1 xD

(q)

x

+ 1

e

x

-Di�erentiation e

x

D

x

e

x

e

x

e

x

D

x

+ e

x

Eulerian operator x �

x

x x x�

x

+ x

Mahlerian operator x M

x

x

p

0 x

p

M

x

Table 1. De�nitions of di�erent pseudo-di�erential operators.

{ b

n+1;k

=

(n+1)!

(n+1�k)! k!

, so that ((n+ 1� k)S

n

� (n+ 1)):b = 0;

{ b

n;k+1

=

n!

(n�k�1)! (k+1)!

, so that ((k + 1)S

k

� (n� k)):b = 0;

{ b

n+1;k+1

=

(n+1)!

(n�k)! (k+1)!

, so that ((k + 1)S

n

S

k

� (n+ 1)):b = 0.

(iii) More generally, any re
urren
e equation 
an be written with the shift operator, or equiva-

lently, with the di�eren
e operator, sin
e S

n

= �

n

+ 1.

(iv) Let f be the sequen
e of fun
tions f

n

(x) = n! 
os x. Then, in the Ore algebra K hx; n;D

x

; S

n

i,

(D

2

x

+ 1):f = 0 and (S

n

� (n+ 1)):f = 0.

As for the 
ase of the di�erential operator, the set of operators of an Ore algebra that vanish on a

given fun
tion has a prominent role in the sequel. It has a ri
h algebrai
 stru
ture on whi
h all our

implementation is based. So we introdu
e the same notation and de�nition as for the di�erential

operators:

for any given fun
tion or formal power series f , I

f

(resp. V

f

) denotes the set of the elements of

the Ore algebra K hx; �i (resp. K (x)h�i) that vanish on f :

I

f

= fw 2 K hx; �i j w:f = 0g:

(resp. V

f

= fw 2 K (x)h�i j w:f = 0g:)

We also write I

f

:f = 0 (resp. V

f

:f = 0).

Conversely, a subset I of an Ore algebra K hx

1

; : : : ; x

d

; �

1

; : : : ; �

d

i de�nes a re
urren
e system

whi
h is solvable in K

N

d

, sin
e 0 is a solution. Note that the solution set of su
h a system is

a K -ve
tor spa
e.

Example. It is easily seen that the sequen
es u and v de�ned by

u(2k) =

(�1)

k

(2k)!

; u(2k + 1) = 0;

and

v(2k) = 0; v(2k + 1) =

(�1)

k

(2k + 1)!

;

satisfy the following relation in Rhk; S

k

i

I

u

= I

v

= Rhk; S

k

i:(S

2

k

+ k (k � 1))

and that 
onversely, this latter set de�nes the family f�u+ � vg

(�;�)2R

2

.

As in the 
ase of Weyl algebras, the link between I

f

and V

f

is not trivial, as exempli�ed by

the binomial 
oeÆ
ients and the identity from Pas
al's triangle. (Of 
ourse, we have on
e again

that I

f

= V

f

\ K hx; �i.)
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Example. Let again b

n;k

=

�

n

k

�

. Then

V

b

= ((n+ 1� k)S

n

� (n+ 1); (k + 1)S

k

� (n� k)) � K (n; k)hS

n

; S

k

i:

Now, let

I = ((n+ 1� k)S

n

� (n+ 1); (k + 1)S

k

� (n� k)) � K hn; k; S

n

; S

k

i:

Consider the operator ! = S

n

S

k

� S

k

� 1, one easily proves that

(n+ 1)!; (k + 1)! 2 I;

but that ! 2 I

f

� I. In fa
t,

I

b

= ((n+ 1� k)S

n

� (n+ 1); (k + 1)S

k

� (n� k); S

n

S

k

� S

k

� 1) � K hn; k; S

n

; S

k

i:

Finally, we pro
eed to extend the 
on
ept of Ore algebras of pseudo-di�erential operators with

polynomial 
oeÆ
ients (in x) to algebras of operators with rational 
oeÆ
ients. We need this

extension in Se
tion 3.

We use equation (24) to perform this generalisation:

� = �x

p

x

�p

= �(x)

p

�x

�p

+

p�1

X

k=0

�(x)

k

Æ(x)x

�(1+k)

;

from where it follows that

�x

�p

= �(x)

�p

� �

p�1

X

k=0

�(x)

k�p

Æ(x)x

�(1+k)

:

Clearly, this identity makes it possible to de�ne an algebra K ((x))h�i of pseudo-di�erential

operators with formal series as 
oeÆ
ients. In parti
ular, we de�ne the algebra K (x)h�i of pseudo-

di�erential operators with rational 
oeÆ
ients with the same 
ommutation rules.

2.3. Implementation of the arithmeti
 of Ore algebras. We now show how the 
onstru
tion

of Ore algebras given in De�nition 2.3 leads to a natural implementation in Maple. We then give

an example of exe
ution in the 
ase of an Ore algebra based on a di�erential operator and on a

shift operator.

First, Ore algebras are non-
ommutative polynomial rings. Whereas this non-
ommutativity has

no in
uen
e on the sum, the produ
t is not the usual one implemented for 
ommutative polynomials

in Maple. Therefore, our implementation uses the standard sum of Maple and provides the user

with a new produ
t. This solution has several advantages:

{ Maple handles polynomials very eÆ
iently: it uses a hashing method to re
ognise mono-

mials, so that sums of sparse polynomials are performed very qui
kly;

{ the produ
t implemented in our programme 
an be fully parameterised (by equivalents of

the �

i

's and of the Æ

i

's of De�nition 2.3) to implement any Ore algebra.

Sin
e the representation used is the polynomial representation of Maple, Maple assumes any

monomial x� to be equal to the monomial �x. This be
omes true if we de
ide to handle only

normal forms of operators, as de�ned in Se
tion 2.2.

Our implementation of the produ
t uses identities (18) and (27) rather than the formul� (13{

17) and (24{25), be
ause the 
omputation of �(P ) and Æ(P ) when P is a polynomial 
an often

be done more eÆ
iently by dire
t means than by using these latter identities. (This argument

is dramati
ally illustrated by the 
ase of the derivation: � is the identity and Æ is the standard

derivation already implemented in Maple.)

For further information on the implementation, we refer the reader to Appendix C.
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Example. We intend to 
ompute the produ
t of two randomly generated operators in the Ore

algebra Qhx; n;D

x

; S

n

i.

We �rst load the pa
kage and 
reate the algebra Qhx; n;D

x

; S

n

i. The des
ription of this algebra

is stored in a variable to be available later.

> with(Mgfun):

A:=orealg([x,diff,Dx℄,[n,shift,Sn℄):

The des
ription in
ludes amongst others the di�erent fun
tions �

i

's and Æ's de�ning the operators.

> indi
es(A);

[�℄; [Æ℄; [algebrastru
ttable℄; [diÆndet℄; [di�table℄; [di�typetable℄; [allindet℄; [indet℄

> print(A[sigma℄),print(A[delta℄);

table([x = (k 7! k); n = (k 7! subs(n = n+ 1; k))℄); table([x = (k 7!

�

�x

k); n = 0℄)

We easily re
all the fundamental 
ommutations.

> opprod(dx,x,A),opprod(Sn,n,A);

1 + xD

x

; nS

n

+ S

n

We draw two random operators and 
ompute their produ
t.

> randopr(5,6,2,A),randopr(5,6,2,A);

opprod(",A);

D

4

x

n

2

+ 2S

4

n

n

2

; 2x

2

n

4

+ 2D

2

x

xn

2

24n

6

D

2

x

+ 16n

6

xD

3

x

+ 2n

6

x

2

D

4

x

+ 8n

4

D

5

x

+ 2n

4

D

6

x

x+ 4n

6

x

2

S

4

n

+ 64n

5

x

2

S

4

n

+ 384n

4

x

2

S

4

n

+ 1024n

3

x

2

S

4

n

+ 1024n

2

x

2

S

4

n

+ 4n

4

xS

4

n

D

2

x

+ 32n

3

xS

4

n

D

2

x

+ 64n

2

xS

4

n

D

2

x

3. Ideals of operators and definition of holonomy

So far, we have introdu
ed Ore algebras and seen how D-�nite power series on the one hand and

P -re
ursive sequen
es on the other hand are de�ned as solutions of pseudo-di�erential operators.

Conversely, given an Ore algebra K hx; �i (resp. K (x)h�i) and f a fun
tion on whi
h the elements

of this algebra operate (either a D-�nite power series or a P -re
ursive sequen
e or, generally, a

holonomi
 fun
tion), the set I

f

(resp. V

f

) of all operators that vanish on f has the ri
h algebrai


stru
ture of a left ideal:

(i) 0 2 I

f

: I

f

is not empty;

(ii) 8w;w

0

2 I

f

w:f + w

0

:f = 0, therefore w + w

0

2 I

f

: I

f

is 
losed under sum;

(iii) 8a 2 K hx; �i 8w 2 I

f

(aw):f = a:(w:f) = 0, therefore aw 2 I

f

: I

f

is 
losed under

multipli
ation on the right by any element of K hx; �i.

(resp. same properties for V

f

, with K hx; �i 
hanged into K (x)h�i.)

The non-
ommutativity of Ore algebras and the fa
t that a fun
tion is applied on the right of

a pseudo-di�erential operator make us handle left ideals. As a matter of fa
t, they 
annot also be


losed under multipli
ation on the right by any element of the algebra without being degenerated


ases: as is proved in [9, 3℄, Ore algebras are simple. This means that any two-sided ideal of a Weyl

algebra is either f0g or the whole algebra itself, de�ning respe
tively the whole set of fun
tions

on whi
h the algebra operates or the singleton of the zero fun
tion. Thus, only left ideals will be


onsidered later on.

The word holonomi
 was �rst used in the framework of Weyl algebras to qualify 
ertain ideals.

We now aim at explaining the 
onne
tion between this holonomy of ideals and the holonomy of

fun
tions, and to generalise what 
an be to Ore algebras.
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In Se
tion 3.1, we re
all general de�nitions and results on �ltrations and graduations of algebras

that are dealt with in [3, Chapter 1℄.

In Se
tion 3.2, we de�ne a 
lass of so-
alled admissible Ore algebras that behave like Weyl

algebras when �ltrated by the Bernstein �ltration|more pre
isely, they are Noetherian.

In Se
tion 3.3, we use a 
on
ept of dimension of modules to give our de�nitions of holonomi


systems and holonomi
 fun
tions, thereby making the 
onne
tion between the theory of D-modules

on the one hand, and D-�nite power series and P -re
ursive sequen
es on the other hand.

3.1. Filtrations of an algebra and of a module. We begin by re
alling general de�nitions and

a general theorem from [3, Chapter 1℄.

De�nition 3.1. A �ltration of a K -algebra A is an in
reasing sequen
e of �nite dimensional K -ve
-

tor subspa
es (F

m

)

m2N

of A with the properties:

f0g = F

�1

� F

0

� F

1

� � � � � A;

[

m2N

F

m

= A;

F

m

:F

m

0

� F

m+m

0

;

for any pair (m;m

0

) 2 N

2

.

On
e an algebra has been equipped with a �ltration, it is asso
iated a graded algebra de�ned as

follows.

De�nition 3.2. The asso
iated graded algebra gr

F

A is the in�nite dire
t sum

M

m2N

F

m

=F

m�1

;

with the produ
t indu
ed by the produ
t over A.

We prove that the produ
t is well de�ned.

Proof. For any given (m;m

0

) 2 N

2

, 
onsider � 2 F

m

=F

m�1

and � 2 F

m

0

=F

m

0

�1

, as well as (A;A

0

) 2

�

2

and (B;B

0

) 2 �

2

. Then,

AB �A

0

B

0

= A (B �B

0

) + (A�A

0

)B

0

2 F

m+m

0

�1

:

We therefore de�ne �� as the image of AB in the quotient spa
e F

m+m

0

=F

m+m

0

�1

.

The produ
t generalises to any pair of elements of gr

F

A by distribution of the produ
t over the

sum. �

(Note that all de�nitions and properties re
alled in this se
tion 
ould be generalised to any

ordered monoid M instead of N, in order to get more re�ned results. To this end, any expression

of the form F

m�1

should be repla
ed by

P

m

0

2M

m

0

<m

F

m

0

.)

Similarly, there is a 
on
ept of �ltration on a left A-module as well as a 
on
ept of asso
iated

graded module.

De�nition 3.3. Let A be an algebra equipped with a �ltration F . A �ltration of a leftA-moduleM

is an in
reasing sequen
e of �nite dimensional K -ve
tor subspa
es (�

m

)

m�N

ofM with the properties:

f0g = �

�1

� �

0

� �

1

� � � � �M;

[

m2N

�

m

= A;

F

m

:�

m

0

� �

m+m

0

;

for any pair (m;m

0

) 2 N

2

.
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De�nition 3.4. The asso
iated graded module gr

�

M is the in�nite dire
t sum

M

m2N

�

m

=�

m�1

:

It is a left gr

F

A-module.

We explain how the external produ
t is well de�ned to prove that the asso
iated graded module

is a left gr

F

A-module.

Proof. For any given (m;m

0

) 2 N

2

, 
onsider � 2 F

m

=F

m�1

and � 2 �

m

0

=�

m

0

�1

, as well as (A;A

0

) 2

�

2

and (M;M

0

) 2 �

2

. Then, AM , AM

0

, A

0

M and A

0

M

0

are elements of �

m+m

0

, and

AM �A

0

M

0

= A (M �M

0

) + (A�A

0

)M

0

2 �

m+m

0

�1

:

We therefore de�ne �� as the image of AM in the quotient spa
e �

m+m

0

=�

m+m

0

�1

.

The produ
t generalises to any pair of elements of gr

�

M by distribution of the produ
t over the

sum. �

As a spe
ial 
ase, note that when K [x℄ = K [x

1

; : : : ; x

d

℄ is an algebra of polynomials, a graded K [x℄-

module is a K [x℄-module M with the de
omposition

M =

M

m2N

M

m

;

where the M

m

's are K -ve
tor subspa
es of M satisfying

x

j

M

m

�M

m+1

(28)

for all j 2 f1; : : : ; dg and all m 2 N. More pre
isely, for ea
h m, M

m

is the set of all polynomials

of total degree m. The M

m

's form a �ltration of the module M. In
lusion (28) follows from

x

j

M

m

�M

1

M

m

�M

m+1

:

The following important theorem is due to Hilbert and is proved in [3℄.

Theorem 3.5 (Hilbert polynomial). Let M be a graded and �nitely generated K [x

1

; : : : ; x

d

℄-

module and M =

L

m2N

M

m

be its graduation. Then, the integer

P

i�m

dim

K

M

i

is asymptoti
ally

equal to a polynomial fun
tion in m.

3.2. Admissible Ore algebras and noetherianity. We pro
eed to spe
ialise the 
on
epts of

�ltrations, asso
iated graded algebras and asso
iated graded modules when the base algebra A is an

Ore algebra. Still, in order to ensure that the following propositions are valid, we restri
t ourselves

to the 
ases of Ore algebras built on pseudo-di�erentiation operators �

i

su
h that

�

i

(x

i

) = p

i

x

i

+ q

i

;(29)

Æ

i

(x

i

) = r

i

x

i

+ s

i

;(30)

where all 
oeÆ
ients are in K and no p

i

is zero. This is for instan
e the 
ase when these operators

are di�erential, di�eren
e, shift or even e

x

-di�erential and Eulerian operators, while it is not the


ase if they are Mahlerian operators. More spe
i�
ally, these requirements ensure that the Ore

algebras under 
ondideration are Noetherian, i.e. that they 
ontain no in�nite stri
tly in
reasing

sequen
e of ideals. We pro
eed to prove this property in this se
tion.

Note that hypothesis (29) is equivalent to the fa
t that all �

i

's are automorphisms of K [x

i

℄.

If �

i

is an automorphism of K [x

i

℄, then there exists P 2 K [x

i

℄ su
h that �

i

(P (x

i

)) = x

i

. Then,

P (�

i

(x

i

)) = x

i

. Now, �

i

(x

i

) is a polynomial Q 2 K [x

i

℄, from where it follows that

P ÆQ(x

i

) = x

i

(31)
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and that both polynomials are of degree 1:

P = ax

i

+ b;

Q = 
x

i

+ d;

where all 
oeÆ
ients are in K . Substituting in (29) yields

a
 =1;

ad+ b =0;

from where it follows that neither a nor 
 is zero. The 
onverse impli
ation is trivial.

Hypothesis (30) implies the property that the Æ

i

's do not in
rease the degree. As a matter of

fa
t, identity (25) 
an be rewritten in the 
ontext of these hypotheses into

Æ

i

(x

u

i

) =

u�1

X

k=0

(p

i

x

i

+ q

i

)

k

(r

i

x

i

+ s

i

)x

p�1�k

i

;(32)

whi
h is a polynomial of degree at most p in x

i

.

For 
onvenien
e, we introdu
e the following de�nition.

De�nition 3.6. An Ore algebra K hx; �i is admissible when it satis�es hypotheses (29{30).

Hen
eforth, all Ore algebras under 
onsideration are admissible. We �rst deal with 
ommutations

des
ribed by identities (29{30) where all p

i

's are equal to 1.

In the sequel, we make 
onstant use of the following �ltration, that allows the 
ommutativity of

the 
orresponding asso
iated graded algebra.

De�nition 3.7. We de�ne the Bernstein �ltration of an admissible Ore algebra K hx; �i as

F

m

=

n

w 2 K hx; �i

�

�

�

w =

X

(�;�)2N

2d

j�j+j�j�m




�;�

x

�

�

�

; when 
 2 K

(N

2d

)

o

:

Proposition 3.8. The graded algebra asso
iated to the Bernstein �ltration of an admissible Ore

algebra K hx; �i is 
ommutative.

Proof. Suppose � 2 F

m

=F

m�1

and � 2 F

m

0

=F

m

0

�1

. Given A 2 � and B 2 �, it is easily seen from

the 
ommutation rule (26) and from the parti
ular properties of an admissible Ore algebra (29{30)

(with p

i

= 1) and (32) that

AB �BA 2 F

m+m

0

�1

:(33)

Then, modulo F

m+m

0

�1

, equation (33) yields �� � �� = 0 2 F

m+m

0

=F

m+m

0

�1

. By distribution

of the produ
t over the sum, the asso
iated graded algebra gr

F

A is 
ommutative. �

Let K hx; �i be an admissible Ore algebra. The de�nition of admissible Ore algebras and the


ommutativity of the asso
iated graded algebra are suÆ
ient 
onditions for the next two results.

Proposition 3.9. gr

F

K hx; �i is a 
ommutative polynomial ring in 2d indeterminates with 
oeÆ-


ients in K . More pre
isely,

gr

F

K hx; �i = K [�x

1

; : : : ; �x

d

;

�

�

1

; : : : ;

�

�

d

℄;

where �x

i

and

�

�

i

are the 
lasses of x

i

and �

i

respe
tively in the asso
iated graded algebra.

Theorem 3.10. K hx; �i is a left Noetherian ring, i.e. any of its left ideals is �nitely generated.

Proof. We do not give any proof for these results, sin
e those given by Bj�ork in [3℄ in the 
ase of

Weyl algebras extend word for word to our framework of admissible Ore algebras. �
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We now brie
y 
onsider the general 
ase of Ore algebras built on equations (29{30) without any

restri
tion on the p

i

's. Then, De�nition 3.7 is still relevant, but Propositions 3.8 and 3.9 no longer

holds: let for instan
e K (q)hx;Hi be the q-
al
ulus algebra ruled by

Hx = qxH:

(q is trans
endental over K .) This identity also holds for 
lasses

�

H�x = q�x

�

H;

so that the asso
iated graded algebra is not 
ommutative. However, Theorem 3.10 is still valid. A

full proof 
an be found in the more general setting of polynomials rings of solvable type, see [15,

Theorem 4.7℄ (this is a 
onsequen
e of the validity of Di
kson's lemma in these rings).

Though we do not have any proposition that 
hara
terises Noetherian Ore algebras, it seems that

equations (29{30) are 
lose to be an equivalent property to noetherianity; the following example

gives a non-Noetherian (non-admissible) Ore algebra.

Example. Let I

n

= (x; xM; xM

2

; : : : ; xM

n

) � K hx;M i, where M is the Mahlerian operator de-

�ned by

Mx = x

p

M;

for a �xed p 2 N. It is easily veri�ed that xM

n+1

62 I

n

, so that (I

n

)

n2N

is a stri
tly in
reasing

sequen
e of ideals, and K hx;M i is not Noetherian. A similar result holds as soon as a �

i

(x

i

) is a

polynomial of degree greater than or equal to 2.

3.3. Bernstein inequality in an Ore algebra, holonomi
 modules. From now on, we assume

that I is a non-null left ideal of an admissible Ore algebra K hx; �i distin
t from the whole algebra,

and that K hx; �i is equipped with its Bernstein �ltration (F

m

)

m2N

. The quotient K hx; �i=I is then

a left K hx; �i-module. As a ve
tor subspa
e of its Ore algebra, this module has a dimension over

the base �eld K . There is nonetheless another 
on
ept of dimension for modules, whi
h is more or

less related to the numbers of monomials of a 
ertain total degree in the Ore algebra that 
annot

be redu
ed into a linear 
ombination of some of lower total degree. We pro
eed to give some results

on Weyl algebras detailed in [3, 9℄, and to extend them to admissible Ore algebras, in order to show

how this 
on
ept of dimension is related to holonomy.

Let M be a K hx; �i-module and (�

m

)

m2N

a �ltration of M. We extend the following theorem

valid for Weyl algebras to our admissible Ore algebras.

Theorem 3.11. The fun
tion H(m) = dim

K

�

m

is asymptoti
ally equal to a polynomial in m.

Proof. On
e again, the proof is the same as the one given in [3℄ for Weyl algebras. The dimen-

sions H(m) are given by

H(m) = dim

K

�

m

=

X

i�m

dim

K

(�

i

=�

i�1

):

Be
ause of the hypothesis of admissibility, it follows from Proposition 3.9 that

gr

�

M =

M

m2N

�

m

=�

m�1

is a �nitely generated and graded module over the 
ommutative polynomial ring

gr

F

K hx; �i = K [�x

1

; : : : ; �x

d

;

�

�

1

; : : : ;

�

�

d

℄

(or over a ring isomorphi
 to K hu

1

; : : : ; u

r

; v

1

; : : : ; v

r

i, with v

i

u

i

= p

i

u

i

v

i

). Thus, Theorem 3.10

applies and there is a polynomial fun
tion to whi
h H(m) is asymptoti
ally equal. �

The nature of the previous result leads to the following de�nition.
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De�nition 3.12. H is 
alled the Hilbert fun
tion of the left K hx; �i-module M. The polynomial

fun
tion to whi
h it is asymptoti
ally equal is 
alled the Hilbert polynomial of the K hx; �i-moduleM.

The degree of this polynomial is then 
alled the Bernstein dimension of the K hx; �i-moduleM and

is denoted by d(M).

When the Ore algebra is simply a Weyl algebra, Bernstein proved the following theorem in [2℄.

Theorem 3.13 (Bernstein inequality). In the 
ase of the Weyl algebra

K hx; �i = K hx

1

; : : : ; x

d

; �

1

; : : : ; �

d

i;

the Bernstein dimension of a left K hx; �i-module M distin
t of f0g and of the whole algebra satis�es

d(M) � d:

Proof. We do not give any demonstration here, but the justi�
ation mainly relies on the 
om-

mutativity of the asso
iated graded algebras and on the fa
t that A 2 F

p

, B 2 F

q

implies

AB�BA 2 F

p+q�2

(in the general theory of graded rings, we would only get AB�BA 2 F

p+q�1

). �

The following de�nition and theorem relate the 
on
ept of Bernstein dimension to the 
on
ept

of holonomy dis
ussed so far.

De�nition 3.14. (i) When a K hx; �i-module M is of smallest possible Bernstein dimension d,

it is 
alled holonomi
 (or in the Bernstein 
lass).

(ii) Let I be a left ideal of the algebra K (x)h�i, where x and � de�ne an Ore algebra K hx; �i.

When the K (x)-ve
tor spa
e

K (x)h�i=I

is �nite dimensional, the ideal I is said zero-dimensional.

Proposition 3.15. In the 
ontext of a Weyl algebra, K hx; �i=I is holonomi
 if and only if K (x)h�i I

is zero-dimensional.

Proof. The dire
t result is due to Bernstein and the 
onverse one to Kashiwara. (See [2, 16℄ for the

proof.) �

Theorem 3.13 
annot be extended to the generality of admissible Ore algebras, as is proved by

the following example.

Example. Let I = (n; S) in the algebra built on the shift operator S

Sn = nS + S:

This ideal I is isomorphi
 to K hn; Si r K

�

(non-null 
onstants are not rea
hed). Therefore, its

dimension d(I) is 0, though this ideal is neither the null ideal, nor the whole algebra.

A similar example 
an be found in Ore algebras built on di�eren
e or Eulerian operators.

3.4. De�nition of holonomy. We now return to the link between D-�niteness and holonomy.

It is 
lear that when f is an element of the set of fun
tions on whi
h a Weyl algebra a
ts naturally,

if K (x)h�i I

f

is zero-dimensional, then K hx; �i=I

f

is holonomi
 in the sense that has just been

de�ned and f is holonomi
 in the sense of De�nition 1.1. Conversely, if f is holonomi
 in the sense

of De�nition 1.1 (i.e. if it is D-�nite), then Proposition 1.2 proves that I

f

is zero dimensional.

This equivalen
e justi�es that D-�nite fun
tions are also 
alled holonomi
, sin
e they vanish on

holonomi
 ideals. In the 
ase of P -re
ursive sequen
es, however, there is no dire
t 
onne
tion to

holonomi
 ideals|we have proved that Bernstein inequality does not hold in Ore algebras built

on shift operators. The use by 
ombinatorialists of the word holonomi
 to denote P -re
ursive

sequen
es is only motivated by the equivalen
e Theorem 1.10.

We are now able to de�ne holonomi
 systems and holonomi
 fun
tions.
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De�nition 3.16. Let K hx; �i = K hx

1

; : : : ; x

d

;D

1

; : : : ;D

d

i be a Weyl algebra. When a set G of ele-

ments of K hx; �i spans a zero-dimensional left ideal I =

P

g2G

K hx; �ig of the algebra|or, equiva-

lently, if I is zero-dimensional|, the set of equations determined by G is 
alled a holonomi
 system.

When f is a fun
tion of the family on whi
h the Weyl algebra a
ts naturally and su
h that I

f

is

zero-dimensional, it is 
alled a holonomi
 fun
tion.

Let K hx; �i = K hx

1

; : : : ; x

d

; n

1

; : : : ; n

d

0

;D

1

; : : : ;D

d

; S

1

; : : : ; S

d

0

i be an (admissible) Ore algebra

build on di�erentiation and shift (or equivalently di�eren
e) operators. When f is a fun
tion of

the family on whi
h the Ore algebra a
ts naturally, let F be its generating fun
tion

F (x

1

; : : : ; x

d

; y

1

; : : : ; y

d

0

) =

X

(n

1

;:::;n

d

0

)2N

d

0

f

n

1

;:::;n

d

0

(x

1

; : : : ; x

d

) y

n

1

1

: : : y

n

d

0

d

0

:

When the ideal I

F

� K hx

1

; : : : ; x

d

; y

1

; : : : ; y

d

0

i is zero-dimensional, the sequen
e of fun
tions f is

also 
alled a holonomi
 fun
tion. When a set G of elements of K hx; �i de�nes a holonomi
 fun
tion

(as just de�ned for sequen
es of fun
tions) up to initial 
onditions, the set of equations determined

by G is again 
alled a holonomi
 system.

Sin
e Bernstein inequality no longer holds in general in Ore algebras, it does not seem possible

to extend holonomy to other types of operators|or not all 
losure properties of D-�nite fun
tions

and P -re
ursive sequen
es will remain valid.

4. Gr

�

obner bases in Ore algebras

The following remarks vindi
ate the introdu
tion of Gr�obner bases. First, the implementation

of the arithmeti
 of Ore algebras, as des
ribed in Se
tion 2.3, 
ontains a sum and a produ
t, but

no equivalent for a division operation. Then, as already noted in Se
tion 1.1.2, the proofs of ea
h

result of Theorem 1.3 work by redu
ing the derivatives of a power series into a �nite dimensional

ve
tor spa
e in order to prove the D-�niteness of the series. The operations des
ribed so far in

Ore algebras do not provide us with any redu
tion fun
tionality. Next, the set I

f

of all operators

of an Ore algebra that vanish on a fun
tion f is a left ideal of this algebra. The problem of

testing whether a given operator vanishes on f is therefore an ideal membership problem. Finally,

some algorithms on holonomi
 fun
tions, su
h as 
omputing the generating fun
tion of a sequen
e,

require elimination.

In the 
ase of a single variable, all these problems are solved simply by performing Eu
lidean

division. In the 
ase of several variables, none of these problems remains solvable by this te
hnique,

sin
e the algebras under 
onsideration are no longer Eu
lidean, and we need to �nd an alternative

for it. Gr�obner bases provide us with this generalisation.

In Se
tion 4.1, we give an example to motivate further the use of Gr�obner bases: we use elimi-

nation to automati
ally dedu
e equations on the Legendre polynomials, provided that simpler ones

are known.

Se
tion 4.2 identi�es the problem of redu
tion, 
ompares it with Eu
lidean division and re
alls

de�nitions needed in the following subse
tions. Redu
tion is also extended to the 
ase of admissible

Ore algebras.

The algorithms of Se
tion 4.3, Bu
hberger's general ones and the improvements for the 
om-

mutative 
ase, are 
lassi
al algorithms that 
an be found in [13, Chapter 10℄ or in [7, Chapter 2℄,

along with proofs of their 
orre
tness. In the same subse
tion, we also re
all what is known as

Bu
hberger's \normal strategy", as well as algorithms for the \sugar strategy". This latter is fully

des
ribed and 
ompared to the former in [14℄. In the same se
tion, we explain how we generalised

all these algorithms to the 
ase of admissible Ore algebras and how we implemented them.

Exe
ution times for examples of Gr�obner bases 
omputations with our Mgfun pa
kage 
an be

found in Appendix A.

The reader who is already familiar with Gr�obner bases may skip dire
tly to the parts of the

next se
tions dealing spe
i�
ally with the extension to admissible Ore algebras. It also has to be

noted that we have developped here a theory of Gr�obner bases in non-
ommutative algebras whi
h
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is a parti
ular 
ase of Kandri-Rody and Weispfenning's theory of polynomial rings of solvable type

(see [15℄).

4.1. Example of the orthogonal Legendre polynomials. We intend to show on an example

how our Mgfun pa
kage deals with mixed di�erential-re
urren
e equations. We refer the reader to

Se
tion 2.3 and Appendix C for a des
ription of our pa
kage. Appendix B gives another, more

involved example of holonomi
 
omputation.

As elements of a large 
lass of orthogonal polynomials, the Legendre polynomials are solutions

of a di�erential equation, of a re
urren
e equation and of a mixed di�erential-re
urren
e equation.

Our aim is to 
ompute one of these equations when both the other ones are given.

To begin with, we re
all the de�nition of the Legendre polynomials, as well as some equations

that they satisfy (see [1, formul� (22.3.8, 22.6.13, 22.7.10, 22.8.5)℄):

P

n

(x) = 2

�n

bn=2


X

k=0

(�1)

k

 

n

k

! 

2 (n� k)

k

!

x

n�2k

;

(1� x

2

)P

00

n

(x)� 2xP

0

n

(x) + n(n+ 1)P

n

(x) = 0;

(n+ 2)P

n+2

(x)� (2n+ 3)xP

n+1

(x) + (n+ 1)P

n

(x) = 0;

(1� x

2

)P

0

n+1

(x) + (n+ 1)xP

n+1

(x)� (n+ 1)P

n

(x) = 0:

We load the pa
kage.

> with(Mgfun):

We de�ne an algebra with two indeterminates. The variable x is asso
iated with a di�erentiation

operator D

x

, while the variable n is asso
iated with a shift operator S

n

.

> A:=orealg([x,diff,Dx℄,[n,shift,Sn℄):

We de�ne the operators.

> DE:=(1-x^2)*dx^2-2*x*dx+n*(n+1):

RE:=(n+2)*Sn^2-(2*n+3)*x*Sn+(n+1):

RDE:=(1-x^2)*dx*Sn+(n+1)*x*Sn-(n+1):

Now, proving an identity is simply performing elimination. Eliminating D

x

between the di�er-

ential equation and the mixed di�erential-re
urren
e equation yields the re
urren
e equation.

> U:=termorder(A,lexdeg=[[dx℄,[n,x,Sn℄℄,max):

GBR:=gbasis(map(expand,[DE,RDE℄),U,rational);

GBR := [D

2

x

�D

2

x

x

2

� 2xD

x

+ n

2

+ n; D

x

S

n

�D

x

S

n

x

2

+ xS

n

n+ xS

n

� n� 1;

nS

n

D

x

� 2n� n

2

� xD

x

� nxD

x

+D

x

S

n

� 1;

D

x

+D

x

n+D

x

S

n

x+ 5S

n

+ 6nS

n

+ 2S

n

n

2

� 2D

x

S

2

n

� nS

2

n

D

x

;

4S

2

n

+ 4nS

2

n

+ n

2

S

2

n

� 6xS

n

� 7xS

n

n� 2n

2

x; S

n

+ 3n+ 2 + n

2

℄

(Note that the term order used is an elimination term order that put D

x

, the indeterminate to be

eliminated, prior to the other indeterminates.) This elimination takes less than 3 se
onds.

The obtained Gr�obner basis 
ontains a polynomial without D

x

, whi
h we prove to be the desired

equation.

> fa
tor(GBR[5℄);

�(n+ 2)(�nS

2

n

� 2S

2

n

+ 2xS

n

n+ 3xS

n

� n� 1)

In the same way, eliminating S

n

between the re
urren
e equation and the mixed di�erential-

re
urren
e equation yields the di�erential equation.
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> V:=termorder(A,lexdeg=[[Sn℄,[x,n,dx℄℄,max):

GBD:=gbasis(map(expand,[RE,RDE℄),V,rational);

[D

x

S

n

�D

x

S

n

x

2

+ xS

n

n+ xS

n

� n� 1;

� 2nS

n

S

n

n

2

+ x

2

D

x

+ x

2

D

x

n+ 2nx+ n

2

x� S

n

+ x�D

x

�D

x

n;

� x

2

n+ n+ 2n

2

� 2D

2

x

x

2

+D

2

x

� 2xD

x

+ 2x

3

nD

x

+ 2x

3

D

x

� 2nxD

x

+ n

3

+D

2

x

n� 2x

2

D

2

x

n+ x

4

D

2

x

n+ x

4

D

2

x

� n

3

x

2

� 2n

2

x

2

;

nS

2

n

+ 2S

2

n

� 2xS

n

n� 3xS

n

+ n+ 1 ℄

(Note that we used another term order with S

n

prior to the other variables to eliminate it.) This

elimination takes less than 3.5 se
onds.

On
e again the operator without S

n

leads to the desired equation.

> fa
tor(GBD[3℄);

�(x� 1)(x+ 1)(n+ 1)(D

2

x

�D

2

x

x

2

� 2xD

x

+ n

2

+ n)

These results were so en
ouraging that we tried to do the same on the orthogonal Ja
obi poly-

nomials, with the use of the 
orresponding de�nition and equations that we re
all here (see [1,

formul� (22.3.1, 22.6.1, 22.7.1, 22.8.1)℄):

J

(�;�)

n

(x) = 2

�n

n

X

k=0

 

n+ �

k

! 

n� �

n� k

!

(1 + x)

k

(1� x)

n�k

;

(1�x

2

)J

(�;�)

n

00

(x) + (� � �� (�+ � + 2)x)J

(�;�)

n

0

(x) + n (n+ �+ � + 1)J

(�;�)

n

(x) = 0

2 (n+ 2)(n+ �+ b+ 2)(2n + �+ b+ 2)J

(�;�)

n+2

(x)

� [(2n+ �+ b+ 3)(�

2

� b

2

)

+ (2n+ �+ b+ 2)(2n+ �+ b+ 3)(2n+ �+ b+ 4)x℄J

(�;�)

n+1

(x)

+ 2 (n+ �+ 1)(n+ b+ 1)(2n+ �+ b+ 4)J

(�;�)

n

(x) = 0

(2n+ �+ � + 2)(1 � x

2

)J

(�;�)

n+1

0

(x)� (n+ 1)(� � � + 2� (2n+ �+ � + 2)x)J

(�;�)

n+1

(x)

� 2 (n+ �+ 1)(n+ � + 1)J

(�;�)

n

(x) = 0

Working this time in K (n; k; �; �)hS

n

; S

k

i|instead of K hn; k; S

n

; S

k

i, as in the previous example of

the Legendre polynomials|, we got similar results in less than 10 se
onds for ea
h 
omputation.

4.2. Division algorithm in the multivariate 
ase. In K [x℄, the Eu
lidean division of a poly-

nomial p by another polynomial q 
omputes two polynomials d and r su
h that p = dq + r

and deg r < deg q. This last property uniquely determines the remainder r in the �nite dimensional

ve
tor-spa
e K [x℄

deg q�1

= fa 2 K [x℄ j deg a � deg q � 1g.

In other words, this Eu
lidean division redu
es p by the ideal (q) = K [x℄ q of K [x℄ in order to �nd

a remainder r in the �nite dimensional ve
tor-spa
e K [x℄

deg q�1

, whi
h is 
anoni
ally isomorphi


to K [x℄=(q).

In this way, Eu
lidean division transfers problems from the in�nite dimensional ve
tor-spa
e K [x℄

into the �nite dimensional ve
tor-spa
e K [x℄

deg q�1

. Easy linear algebra 
an then be performed in

this �nite dimensional ve
tor-spa
e. Unfortunately, Eu
lidean division does not work any longer in

an algebra of polynomials in several indeterminates.
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# Return the remainder of the Eu
lidean division of p by q

fun
tion Eu
lideanDivision(p; q)

# Begin with p itself as the remainder

r = p

# Redu
e the degree of r while this 
an be done

while deg r � deg q f

r = r �

monomial of r of highest degree

monomial of q of highest degree

q

g

# Return a polynomial with no monomial of degree less than q

return r

Algorithm 1. Eu
lidean division

4.2.1. Redu
tion. We now pro
eed to re
all the 
on
ept of redu
tion, whi
h is a generalisation of

Eu
lidean division to the 
ase of polynomials in several indeterminates.

We �rst re
all the algorithm of Eu
lidean division in K [x℄ to identify what has to be required for

a general algorithm of redu
tion.

In the 
ase of several indeterminates x

1

; : : : ; x

d

, we make the following remarks, that we then

detail in the next paragraphs:

(i) there is no longer one single notion of degree: the 
on
ept of term orders has to be substi-

tuted to the one of degree;

(ii) the ideal (q) has to be 
hanged into an ideal of K [x

1

; : : : ; x

d

℄ and it generally is impossible to

�nd a single generator of this ideal; therefore, a general redu
tion algorithm should \divide"

by a set of redu
ers;

(iii) when the leading monomial of a polynomial p is not divisible by the leading monomial of

another polynomial q, it is not ne
essarily true that no monomial of p is divisible by the

leading monomial of q;

(iv) given a polynomial p and a (�nite) set of polynomials q

i

, if there exist d

i

's and a remainder r

su
h that p =

P

i

d

i

q

i

+ r, the remainder r is not uniquely determined by the term order

in K [x

1

; : : : ; x

d

℄, even if we add the 
onstraint that none of its monomials is divisible by the

leading monomial of any q

i

.

Term orders. A more formal de�nition of a term order is the following.

De�nition 4.1. A term order is an order on the 
ommutative monoid hx

1

; : : : ; x

d

i = fx

�

g

�2N

d

with the following properties:

(i) � is total: for all � and � in N

d

, either x

�

� x

�

or x

�

� x

�

;

(ii) � is 
ompatible with the law in hx

1

; : : : ; x

d

i: for all �, � and 
 in N

d

,

x

�

� x

�

=) x

�

x




� x

�

x




;

(iii) � is well-ordered: every non-empty subset of hx

1

; : : : ; x

d

i has a smallest element under �.

Still, we speak of a term order on an algebra of polynomials when referring to the term order of

the monoid on whi
h the algebra is built.

The term orders on the algebra of polynomials K [x

1

; : : : ; x

d

℄ that are most 
ommonly used are

given in the following de�nition.

De�nition 4.2.

{ The lexi
ographi
 order on the algebra K [x

1

; : : : ; x

d

℄ is de�ned by

x

�

�

lex

x

�

() 9 i 2 f1; : : : ; dg (8 j 2 f1; : : : ; dg j < i =) �

j

= �

j

) ^ �

i

< �

i

:
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{ The total degree order on the algebra K [x

1

; : : : ; x

d

℄ is de�ned by

x

�

�

tdeg

x

�

()

(j�j < j�j) _ (9 i 2 f1; : : : ; dg (8 j 2 f1; : : : ; dg i < j =) �

j

= �

j

) ^ �

i

< �

i

) :

(j�j is the sum �

1

+ � � �+ �

d

.)

{ The elimination orders on the algebra K [x

1

; : : : ; x

d

℄ are de�ned by the set fx

1

; : : : ; x

e

g of

indeterminates to be eliminated, and by

x

�

�

elim

x

�

()

�

x

�

1

1

� � � x

�

e

e

�

tdeg

x

�

1

1

� � � x

�

e

e

�

_

�

(�

1

; : : : ; �

e

) = (�

1

; : : : ; �

e

) ^ x

�

e+1

e+1

� � � x

�

d

d

�

tdeg

x

�

e+1

e+1

� � � x

�

d

d

�

:

Note that these three term orders 
oin
ide when d = 1. Moreover, for all of them, the following

property holds

8� 6= 0 1 � x

�

:

We add this assumption for all term orders under 
onsideration in the sequel.

On
e a term order has been 
hosen on an algebra of polynomials, the leading monomial of a

polynomial with respe
t to this term order has a prominent role, so that we give the following

notation: when p is a non-zero element of an algebra of polynomials on whi
h a term order has

been 
hosen, let:

(i) lm(p) denote the leading monomial of p with respe
t to this term order;

(ii) lt(p) denote the leading term of p with respe
t to this term order;

(iii) l
(p) denote the leading 
oeÆ
ient of p with respe
t to this term order.

We have lm(p) = l
(p) lt(p), and l
(p) 6= 0.

Non-prin
ipality of K [x

1

; : : : ; x

d

℄. Of 
ourse, we only deal with the 
ase d > 1.

As already mentioned, a division algorithm in K [x℄ is an algorithm that inputs two polynomials p

and q and returns two polynomials m and r su
h that p = m+ r and m is a multiple of q. This is

an algorithm of redu
tion modulo the ideal of the multiples of q. But K [x

1

; : : : ; x

d

℄ is not prin
ipal,

whi
h means that a generi
 ideal of this ring is not always generated by a single polynomial.

Allowing a set of divisors q

i

instead of a single one, the \division" equation be
omes p = m + r

with m in the ideal spanned by the q

i

's, that is with m =

P

i

d

i

q

i

.

The step of Algorithm 1 that tests the divisibility of lt(r) by lt(q)|by 
omparing the degrees

of the polynomials|must be 
hanged to retain all those q

i

's su
h that lt(q

i

) divides lt(r). Then,

the step that redu
es the degree of r by subtra
ting a multiple of q must be 
hanged to subtra
t a

multiple of one of the q

i

's. Therefore, this raises the problem of 
hoosing whi
h q

i

's to use, when

several �t. For the moment, and as long as there is no matter of eÆ
ien
y, we solve this problem

by 
hoosing any one of them, for instan
e the �rst in the list of those retained.

For 
onvenien
e, the algorithm that are presented in the sequel use the following notation: given

a polynomial p to be redu
ed and a set of redu
ers Q, let the redu
er set R

p;Q

of p by Q be:

{ ? when p = 0;

{ fq 2 Q r f0g j lt(q) divides lt(p)g otherwise.

De�nition 4.3. A polynomial p is redu
ible

{ by a polynomial q if and only if there is a term t with non-zero 
oeÆ
ient in p and a

monomial m su
h that lt(t�mq) is lower than t a

ording to the term order on the ambient

algebra;

{ by a set of polynomials Q if and only if there is a q 2 Q, a term t with non-zero 
oeÆ
ient

in p and another monomial m su
h that lt(t �mq) is lower than t a

ording to the term

order on the ambient algebra.
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When either 
ondition is satis�ed, we also say q redu
es p or Q redu
es p respe
tively. Otherwise,

p is 
alled irredu
ible.

We denote these relations by the following notations:

(i) In ea
h of the two 
ases of the previous de�nition, let r denote p � mq. Then we write

respe
tively p!

q

r and p!

Q

r.

(ii) We write p

+

!

Q

r, whenever there is a �nite sequen
e q

1

; : : : ; q

n

of elements of Q su
h that

p!

q

1

� � �!

q

n

r:

(iii) We write p

�

!

Q

r, whenever p

+

!

Q

r and r is irredu
ible by Q.

End of the redu
tion. In the 
ase of a single indeterminate, when lt(q) does not divide lt(r), the

algorithm stops, and no other monomial of r is divisible by lt(q). We borrow the following example

from [7, Chapter 2℄ to show that this property does not hold any longer in the 
ase of several

indeterminates, but that the algorithm 
an be 
hanged to re
over it.

Example. Let us redu
e p = x

2

y + xy

2

+ y

2

by the set fq

1

= xy � 1; q

2

= y

2

� 1g in the algebra

of polynomials K [x; y℄ equipped with the lexi
ographi
 term order su
h that x � y:

x

2

y + xy

2

+ y

2

= 0 (xy � 1) + 0 (y

2

� 1) + (x

2

y + xy

2

+ y

2

)

= x (xy � 1) + 0 (y

2

� 1) + (xy

2

+ x+ y

2

)

= (x+ y) (xy � 1) + 0 (y

2

� 1) + (x+ y

2

+ y);

where we write all polynomials in de
reasing order with respe
t to �. (Remember that when

both q

1

and q

2


an redu
e the remainder, we use q

1

.)

Now, the remainder r is x+ y

2

+ y and neither lt(q

1

) = xy nor lt(q

2

) = y

2

divides lt(r) = x. But

the se
ond term y

2

appearing in r is divisible by lt(q

2

) = y

2

, and after putting lt(r) away from the

remainder, we keep on redu
ing:

x

2

y + xy

2

+ y

2

= (x+ y) (xy � 1) + 0 (y

2

� 1) + (x) + (y

2

+ y)

= (x+ y) (xy � 1) + 1 (y

2

� 1) + x+ (y + 1)

= (x+ y) (xy � 1) + 1 (y

2

� 1) + (x+ y) + 1

= (x+ y) (xy � 1) + 1 (y

2

� 1) + (x+ y + 1):

This time, the remainder is a sum of monomials, none of whi
h is divisible by the leading terms of

the q

i

.

De�nition 4.4. A polynomial p is fully-redu
ed

{ by a polynomial q when none of the monomials of p is redu
ible by q;

{ by a set of polynomials Q when none of the monomials of p is redu
ible by Q.

We demand that the redu
tion algorithm leads to irredu
ible polynomials.

Uniqueness of the remainder. Another example borrowed from [7℄ proves that even when the term

order is �xed, there is no uniqueness of the remainder.
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Example. We pro
eed as we did in the previous example to perform the same redu
tion with the

same term order, but giving the priority to q

2

rather than q

1

when both 
an redu
e the remainder:

x

2

y + xy

2

+ y

2

= 0 (xy � 1) + 0 (y

2

� 1) + (x

2

y + xy

2

+ y

2

)

= x (xy � 1) + 0 (y

2

� 1) + (xy

2

+ x+ y

2

)

= x (xy � 1) + x (y

2

� 1) + (2x+ y

2

)

= x (xy � 1) + x (y

2

� 1) + 2x+ (y

2

)

= x (xy � 1) + (x+ 1) (y

2

� 1) + 2x+ 1

= x (xy � 1) + (x+ 1) (y

2

� 1) + (2x+ 1):

The remainder is now 2x + 1. It is still a sum of monomials, none of whi
h is divisible by the

leading terms of the q

i

, but is di�erent from the remainder found in the previous example.

The uniqueness of the remainder is guaranteed only by additional properties of the set of redu
ers.

But we postpone 
onsidering this problem until the next se
tion. We are now ready to give an

algorithm of redu
tion.

4.2.2. Full redu
tion of a polynomial modulo an ideal given by generators. Given a polynomial p to

be redu
ed and a set Q of redu
ers, the algorithm of full redu
tion, that has just been suggested,

returns a polynomial r of the form

p�

X

q2Q

w

q

q(34)

with no redu
ible monomial. This algorithm is the one that we have implemented in our pa
k-

age Mgfun and that we re
all in Algorithm 2.

# Given a polynomial p to be redu
ed and a set Q of redu
ers,

# return a q that 
annot be redu
ed any more

fun
tion FullyRedu
e(p;Q)

# Start with the whole polynomial

r = p

# At the beginning, the result 
ontains no monomial

q = 0

# Work monomial after monomial

while r 6= 0 f

# If a redu
er exists, 
ontinue to redu
e

while R

r;Q

6= ? f

f = Sele
tPoly(R

r;Q

)

r = r �

lm(r)

lm(f)

f

g

# Otherwise, strip off the leading monomial

r = r � lm(r)

# And add it to the result

q = q + lm(r)

g

# Return a polynomial with no redu
ible monomial

return q

Algorithm 2. Full redu
tion

It 
alls a pro
edure Sele
tPoly whi
h 
hooses a polynomial between those given as arguments. In

the naivest implementations, the polynomial 
hosen is the �rst element of the given list. But this
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remaining 
hoi
e is intended to make it possible to lessen the exe
ution time of the programme.

For instan
e, one 
an 
hoose the polynomials to redu
e in order to lessen the number of elementary

redu
tions to be done in a full redu
tion. This is the 
hoi
e in the normal strategy. One 
ould also


hoose the polynomials to redu
e with in order to keep the size of the intermediate results|i.e.

the number of monomials in a polynomial|as small as possible.

However, we have not implemented Algorithm 2 exa
tly as it is des
ribed be
ause of the following

point: if we redu
ed a polynomial p by a redu
er q that is not moni
, the algorithm would have to

divide by the leading 
oeÆ
ient of q and the programme would have to deal with fra
tions. This

would lead to a loss of eÆ
ien
y, sin
e all operations on fra
tions are more time-
onsuming than

simple arithmeti
 operations. Thus, it is a good thing to 
lear all denominators of the polynomials

under 
onsideration during the exe
ution of a full redu
tion. But then, the result is no longer of

the form (34). Indeed it be
omes of the form

w

p

p�

X

q2Q

w

q

q:(35)

Fortunately, this does not 
hange the algorithms.

4.2.3. Extension of the full redu
tion to admissible Ore algebras. If we want to extend the algorithm

of full redu
tion to non-
ommutative algebras of polynomials, some problems arise:

{ the 
on
ept of a term order on the monomial does not make sense any longer; however, if

we restri
t ourselves to admissible Ore algebras, as de�ned in De�nition 3.6, we 
an extend

this 
on
ept to the non-
ommutative 
ase;

{ the ideals of su
h algebras are generally not two-sided; sin
e we intend to deal with Ore

algebras, we restri
t ourselves to left ideals;

{ when we redu
e a polynomial p by another polynomial q, we need to determine whether a

monomial of p is a multiple of the lt(q); we show in the sequel that this determination is

made easy if, on
e again, we restri
t ourselves to admissible Ore algebras.

The �rst and the third point deserve to be 
ommented on. Re
all that all Ore algebras under


onsideration are admissible. Let us �rst re
all the properties of su
h algebras (we give them in

the 
ase of a single indeterminate):

�(x) = px+ q;

Æ(x) = rx+ s;

�(x

n

) = (px+ q)

n

;

Æ(x

n

) =

n�1

X

k=0

(px+ q)

k

(rx+ s)x

p�1�k

:

(These are equations (29{30), (32) and a trivial 
onsequen
e of (29).)

Extension of the 
on
ept of term order. The problem is that there is no inner law of the non-


ommutative monoid hx; �i ruled by equations (29{30). However, multiplying x

�

�

�

by x

�

0

�

�

0

returns a polynomial whi
h has the normal form

p

��

0

x

�+�

0

�

�+�

0

+ a polynomial of total degree less than �+ �

0

+ � + �

0

;

if we de�ne the total degree of an Ore polynomial as the total degree of its normal form viewed as

an element of the 
ommutative algebra K [x; �℄.

Now, if we de�ne the produ
t of two non-
ommutative terms as the produ
t of the 
orresponding


ommutative terms of the 
ommutative monoid hx; �i, the de�nitions and notations about term

orders, that were given in the previous se
tion, are readily extended to K hx; �i. Note that this

pro
ess of viewing the monoid on whi
h the admissible Ore algebra is built as a 
ommutative monoid
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is equivalent to 
onstru
ting the asso
iated graded algebra of the Ore algebra|see Se
tion 3 for

the de�nitions and the results.

Extension of the redu
tion. The equations that we have re
alled yield

�x

n

= p

n

x

n

� + a polynomial of total degree less than n+ 1;

and then

�

m

x

n

= p

nm

x

n

�

m

+ a polynomial of total degree less than n+m:

It suÆ
es then to 
hange the step

r = r �

lm(r)

lm(f)

f

of Algorithm 2 by

r = r �

1

p

(deg

�

r�deg

�

f) deg

x

f

lm(r)

lm(f)

f:

Indeed,

r �

1

p

(deg

�

r�deg

�

f) deg

x

f

lm(r)

lm(f)

f

= r �

1

p

(deg

�

r�deg

�

f) deg

x

f

l
(r)

l
(f)

lt(r)

lt(f)

f

= r �

1

p

(deg

�

r�deg

�

f) deg

x

f

l
(r)

l
(f)

�

p

(deg

�

r�deg

�

f) deg

x

f

lt(r)

+ a polynomial of total degree less than the total degree of r

�

= a polynomial of total degree less than the total degree of r:

Now, whi
hever term order we 
hoose on K hx; �i, p redu
es r to this last polynomial.

In this way, we obtain a full redu
tion in admissible Ore algebra, that possess properties similar

to full redu
tion in the 
ommutative 
ase.

We implemented this modi�ed algorithm dealing with non-
ommutative ideals.

4.3. Bu
hberger's basi
 algorithms and extension to admissible Ore algebras. We now

re
all algorithms developed by Bu
hberger to 
ompute Gr�obner bases. We �rst present their tradi-

tional version based on the algorithm of full redu
tion given in Se
tion 4.2, before extending them

to the 
ase of admissible Ore algebras.

4.3.1. Bu
hberger's algorithm for 
omputing Gr�obner bases. The algorithm of full redu
tion stops

when the remainder has no redu
ible monomial left. We intend to test ideal membership by testing

the nullity of a remainder. Therefore, we need to be sure that the redu
ers are able to redu
e the

leading terms of every element of the ideal under 
onsideration. This happens only when the set

of redu
ers is a Gr�obner basis of the ideal they span.

Most de�nitions and results of this se
tion are re
alled from [7, Chapter 2℄. This is the reason

why we do not prove the next results.

Commutative 
ase. The leading terms of the redu
ers play a prominent role in the redu
tion, and

we need the following de�nition before introdu
ing Gr�obner bases.

De�nition 4.5. Let I be an ideal of K [x

1

; : : : ; x

d

℄ other than f0g on whi
h a term order has been


hosen. We denote by lt(I) the set fx

�

j 9 p 2 I lt(p) = x

�

g of leading terms of elements of I.

We denote by hlt(I)i the ideal generated by the elements of lt(I).



GR

�

OBNER BASES IN ORE ALGEBRAS 35

De�nition 4.6. In the same 
ontext, a set G = fg

i

g

i=1;:::;t

of elements of the ideal I is 
alled

a Gr�obner basis if and only if

hlt(g

1

); : : : ; lt(g

t

)i = hlt(I)i:

We re
all the following properties of Gr�obner bases, that prove their power with regard to

redu
tion.

Proposition 4.7. Any ideal I other than f0g has a Gr�obner basis and any Gr�obner basis of an

ideal generates this ideal.

Theorem 4.8. Let G = fg

1

; : : : ; g

t

g be a Gr�obner basis of an ideal I of K [x

1

; : : : ; x

d

℄ and p an

element of I. Then, there is a unique polynomial r su
h that:

(i) no monomial of r is redu
ible by G;

(ii) there is g 2 G su
h that p = g + r.

Equivalently, p belongs to I if and only if the remainder of the redu
tion of p by G is zero.

Now, given an ideal I generated by a set of polynomial G = fg

1

; : : : ; g

t

g, the problem is to


ompute a Gr�obner basis of I. Suppose that the set G is not a Gr�obner basis of I. Then, be
ause

of De�nition 4.6, the ideal of leading terms hlt(g

1

); : : : ; lt(g

t

)i is di�erent from hlt(I)i. The idea of

an algorithm to 
ompute a Gr�obner basis of I determined by G is then to add polynomials to G

that do not enlarge the ideal spanned by the g

i

's but that enlarge the 
orresponding ideal of leading

terms. To do so, we need a tool that, given two polynomials p and q, returns a polynomial whose

leading term is not element of hlt(p); lt(q)i. We now re
all the de�nition of su
h a tool, after a

preliminary one.

De�nition 4.9. Let x

�

and x

�

be two elements of the monoid hx

1

; : : : ; x

d

i and 
 the tuple de�ned

by 


i

= max(�

i

; �

i

). Then, the term x




is 
alled the least 
ommon multiple of x

�

and x

�

.

De�nition 4.10 (Syzygy in the 
ommutative 
ase). Let the S-polynomial of two polynomi-

als p and q be the linear 
ombination

Spoly(p; q) = l
(q)

l
m(lt(p); lt(q))

lt(p)

p� l
(p)

l
m(lt(p); lt(q))

lt(q)

q:

We also use the word syzygy to denote a S-polynomial.

It has to be mentioned that this 
on
ept of syzygies is but an instan
e of that of 
riti
al pairs in

general rewriting theory.

Finally, the following last theorem dire
tly leads to Bu
hberger's algorithm.

Theorem 4.11. A set G = fg

1

; : : : ; g

t

g of elements of an ideal I is a Gr�obner basis of I if and

only if G redu
es all syzygies Spoly(g; g

0

) of two elements of G to zero.

Proof. As for all results of this se
tion, we do not give any proof and refer the reader to [7, Chapter 2℄

or to [13, Chapter 10℄. Still, to justify that the syzygies need to be redu
ed, let us 
onsider the

redu
tion of a polynomial p by a set Q leading to the remainder r. As far as the ideals of leading

terms are 
on
erned, we have:

hflm(q)g

q2Q

; lm(p)i � hflm(q)g

q2Q

; lm(r)i:

Intuitively, this means that the new set of generators Q [ frg is able to redu
e more polynomials

than the older Q[ fpg. Sin
e the the ideal of leading terms has to be as large as possible, it is not

astonishing that the syzygies need to be redu
ed. �
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# Given a set of polynomials P

# return a Gr�obner basis G generating the same ideal

fun
tion Gr�obnerBasis(P )

# Ea
h generator from P will be in G

G = P

k = length(G)

# Initialise the set of syzygies still to be dealt with

B = f(G

i

; G

j

) j 1 � i < j � kg

# Work until all syzygies have been redu
ed

while B 6= ? f

(G

i

; G

j

) = Sele
tPair(B;G)

B = B r f(G

i

; G

j

)g

h = FullyRedu
e(Spoly(G

i

; G

j

); G)

# The S-polynomial is kept iff it adds another

# irredu
ible monomial

if h 6= 0 then f

G = G [ fhg

k = k + 1

# Do not forget to add the 
orresponding syzygies

B = B [ f(G

i

; G

k

) j 1 � i < kg

g

g

return G

Algorithm 3. Bu
hberger's algorithm

We re
all Bu
hberger's algorithm in Algorithm 3. It uses a pro
edure Spoly whi
h 
omputes the

S-polynomial of two polynomials.

The pro
ess of this algorithm is to generate and redu
e all possible syzygies between two el-

ements of the input set G. Then, the algorithm adds to G those results of redu
tion that are

not zero and loops until no new syzygy 
an be generated. When it stops, the ideal of leading

terms hlt(g

1

); : : : ; lt(g

t

0

)i has been saturated and equals hlt Ii. Then, fg

i

g

i=1;:::;t

0

is a Gr�obner basis

of I.

On
e again, there is some freedom in the algorithm, through the order a

ording to whi
h the

syzygies are to be dealt with. The pro
edure Sele
tPair 
hooses a syzygy between those that have

not been dealt with yet.

Case of admissible Ore algebras. This algorithm generalises with a single 
hange to the 
ase of

admissible Ore algebras: the syzygies have to be rede�ned.

De�nition 4.12 (Syzygy in the 
ase of admissible Ore algebras). When �, �, �

0

and �

0

are integers su
h that � � �

0

and � � �

0

, let

�

x

�

�

�

: x

�

0

�

�

0

�

denote x

���

0

�

���

0

.

Let the S-polynomial of two operators p and q of an admissible Ore algebra K hx; �i be the linear


ombination

Spoly(p; q) = l
(q) [l
m(lt(p); lt(q)) : lt(p)℄ p� l
(p) [l
m(lt(p); lt(q)) : lt(q)℄ q:

As far as the theory is 
on
erned, everything that has been said in the 
ommutative 
ase is

still valid. Indeed, the proofs of the previous results only involve the leading monomials of the
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polynomials under 
onsideration and the good property that the leading term of a produ
t is the

produ
t of the leading terms. But they never involve the 
oeÆ
ients of the non-leading terms.

4.3.2. Inter-redu
tion of a set of polynomials and redu
ed Gr�obner bases. Algorithm 3 dis
ussed in

Se
tion 4.3.1 returns one Gr�obner basis of the input ideal. But there usually exist many Gr�obner

bases of a given ideal. The problem of uniqueness of Gr�obner bases is solved by additional 
onditions

on them, whi
h lead to so-
alled redu
ed Gr�obner bases.

Besides, we intend to 
ompute remainders of redu
tions by a Gr�obner basis of an ideal. This

leads to a dramati
 loss of eÆ
ien
y, when the Gr�obner basis used is not \redu
ed" in a sense that

we detail further in the sequel. (In this 
ase, there is a kind of redundan
y in the elements of the

Gr�obner basis.)

We begin with an example that illustrates this last point.

Example. We 
onsider Q[x; y; z; t℄ equipped with the lexi
ographi
 term order su
h that x � y �

z � t. Let us redu
e p = x

5

by the set P = fp

1

; p

2

; p

3

; p

4

g where

p

1

= x

5

� y

4

+ 1;

p

2

= y

4

� z

3

;

p

3

= z

3

� t

2

;

p

4

= t

2

� 1:

The set P is 
ertainly a Gr�obner basis of the ideal I it spans. The result of the redu
tion is trivially

zero, but after three intermediate results. Now, redu
ing x

10

takes eight steps, and one gets easily


onvin
ed that redu
ing x

10

(y + z + t) takes 24 steps.

The �rst redu
tion proves that x

5

is in I. Thus, if we put p

0

= x

5

, the new set P

0

=

fp

0

; p

1

; p

2

; p

3

; p

4

g also generates I. Sin
e the ideals of leading terms of both P and P

0

are the

same ideal, P

0

is also a Gr�obner basis of I. Still, the numbers of steps needed for the redu
tions

under 
onsideration drop to 1, 2 and 6 instead of 3, 8 and 24 respe
tively.

The following proposition makes it possible to lessen the number of elements of a Gr�obner basis.

Proposition 4.13. Let G be a Gr�obner basis of an ideal I. Let g be an element of G su
h

that lt(g) 2 hlt(G r fgg)i. Then G r fgg is also a Gr�obner basis of I.

We get rid of the problem of redundan
y mentioned in the last example with the following

de�nitions.

De�nition 4.14. A minimal Gr�obner basis of an ideal I is a Gr�obner basis G of I su
h that for

all g in G,

(i) l
(g) = 1,

(ii) lt(g) 62 hlt(G r fgg)i.

De�nition 4.15. A redu
ed Gr�obner basis of an ideal I is a Gr�obner basis G of I su
h that for

all g in G,

(i) l
(g) = 1,

(ii) no monomial of g lies in hlt(G r fgg)i.

Note that any redu
ed Gr�obner basis is a minimal Gr�obner basis.

The following proposition answers the question of uniqueness.

Proposition 4.16. On
e the ambient polynomial algebra has been equipped with a given term order,

any ideal possess a single redu
ed Gr�obner basis.
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Example. The (only) redu
ed Gr�obner basis of

I = hx

5

� y

4

+ 1; y

4

� z

3

; z

3

� t

2

; t

2

� 1i

with respe
t to the total degree order is

G = fx

5

; y

4

� 1; z

3

� 1; t

2

� 1g:

The set G is also the redu
ed Gr�obner basis of I with respe
t to the lexi
ographi
 order su
h

that x � y � z � t. It is 
lear that the redu
tions under 
onsideration in the example of the

beginning of the se
tion are performed in less steps with G than with the initial basis.

The point is now to be able to transform a given Gr�obner basis into a redu
ed Gr�obner basis.

Algorithm 4 performs this transformation.

# Given a set E of polynomials generating an ideal,

# return a redu
ed set generating the same ideal

fun
tion Redu
eSet(E)

# First, remove any redundant element

R = E

# Put generators that in
rease the ideal one after another

# Thus begin with none

P = ?

# Test ea
h element of the input set one after another

while R 6= ? f

h = Sele
tPoly(R)

R = R r fhg

h = FullyRedu
e(h; P )

# Do not use it unless it in
reases the ideal

if h 6= 0 then f

Q = fq 2 P j lt(h) divides lt(q)g

R = R [Q

P = (P rQ) [ fhg

g

g

# Ensure ea
h element is redu
ed modulo the others

E

0

= ?

forea
h h 2 P f

h = FullyRedu
e(h; P r fhg)

E

0

= E

0

[ fhg

g

return E

0

Algorithm 4. Inter-redu
tion

This algorithm works in two steps.

First, the input polynomials are tested to keep only a subset that generates the same ideal:

polynomials that are 
ombinations of the others are not kept. Moreover, the sele
ted polynomials

are redu
ed in terms of the ones previously sele
ted. For this stage, the role of the Sele
tPoly

pro
edure is to 
hoose polynomials that will not need a lot of work to be inter-redu
ed afterwards.

The result of this phase is a minimal Gr�obner basis.

The se
ond phase does an inter-redu
tion of the sele
ted polynomials. Thus, the �nal polynomials


onsist of linear 
ombinations of the lowest possible monomials needed to generate the ideal.

It suÆ
es now to 
all Redu
eSet at the end of Gr�obnerBasis to get a redu
ed Gr�obner basis.



GR

�

OBNER BASES IN ORE ALGEBRAS 39

4.4. Improvements of Bu
hberger's algorithm. A �rst remark on the 
omplexity of the al-

gorithm is that it is intrinsi
ally high. More pre
isely, if n is the number of indeterminates and d

is the maximum degree of the input, the 
omplexity of the algorithm is d

O(n

2

)

, although it drops

to d

O(n)

with some assumptions on the input and on the implementation (see [17, Se
tion 6℄). These

exponential 
omplexities apply both in time and spa
e, be
ause they are related to the size of the

result. (The output is uniquely determined by the input, in the most interesting 
ase of the redu
ed

Gr�obner bases.) Therefore, a large part of the 
lassi
al improvements of the algorithm take pla
e

in the way the syzygies to be redu
ed are 
hosen.

Another point is that the 
ost in time for a full redu
tion of a syzygy be
omes very important

as the algorithm progresses and as the polynomials under 
onsideration grow. In the meantime,

lots of these redu
tions lead to a null result, that 
auses the syzygy to be thrown away without any

bene�t.

Thus, the best dire
tion for improvement is to �nd a way to determine very qui
kly whether

the syzygy under 
onsideration will lead to a null result; this leads to Bu
hberger's old \normal

strategy" and to the \sugar strategy".

4.4.1. Normal strategy. The interest of this strategy is that more re�ned strategies use several ideas

of it as their starting point. This strategy 
an be viewed as \lo
ally optimal": the 
hoi
es made to

redu
e are intended to optimize one redu
tion after another, without using information about the

whole ideal.

We �rst re
all Bu
hberger's results for the 
ommutative 
ase, before extending them to admissible

Ore algebras.

Commutative 
ase. Two 
riteria allow us to easily reje
t uninteresting syzygies.

We �rst re
all two propositions that justify these 
riteria from [13, Chapter 10℄. (The results are

also proved in [7, Chapter 2℄.)

Proposition 4.17. For any pair of polynomials (p; q),

l
m(lt(p); lt(q)) = lt(p) lt(q)) Spoly(p; q)

�

!

fp;qg

0:

Proof. Let p and q be su
h that

l
m(lt(p); lt(q)) = lt(p) lt(q):(36)

Then,

Spoly(p; q) = l
(q)

l
m(lt(p); lt(q))

lt(p)

p� l
(p)

l
m(lt(p); lt(q))

lt(q)

q

= l
(q) lt(q)p� l
(p) lt(p)q

= lm(q) (p� lm(p))� lm(p) (q � lm(q)):

(37)

The hypothesis (36) implies that lm(p) and lm(q) do not have the same indeterminates and

there is no 
an
ellation between the terms of the last di�eren
e. Then, lm(Spoly(p; q)) is ei-

ther lm(q) lm(p� lm(p)) or lm(p) lm(q � lm(q)).

Suppose, without loss of generality, that we are in the �rst 
ase. Then

lm(q)!

q

lm(q)� q

yields

lm(q) (p� lm(p))!

q

(lm(q)� q) (p� lm(p)):

Similarly,

lm(p) (q � lm(q))!

p

(lm(p)� p) (q � lm(q)):
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Finally, summing both results yields

Spoly(p; q)

�

!

fp;qg

0:

�

Proposition 4.18. A set of polynomial G is a Gr�obner basis if and only if for all (p; q) 2 G

2

(i) either

Spoly(p; q)

�

!

G

0;

(ii) or there exists h 2 G distin
t from p and q su
h that

lt(h) j l
m(lt(p); lt(q)) ^ Spoly(p; h)

�

!

G

0 ^ Spoly(q; h)

�

!

G

0:

These propositions are 
onverted into 
riteria as follows.

Criterion 1. A syzygy (G

i

; G

j

) under 
onsideration during Bu
hberger's algorithm may be skipped

as soon as

l
m(lt(G

i

); lt(G

j

)) = lt(G

i

) lt(G

j

):

Criterion 2. A syzygy (G

i

; G

j

) under 
onsideration during Bu
hberger's algorithm may be skipped

as soon as there exists a k su
h that

lt(G

k

) j l
m(lt(G

i

); lt(G

j

));

where both syzygies (G

i

; G

k

) and (G

k

; G

j

) have already been dealt with.

Algorithm 5 implements Bu
hberger's algorithm to 
ompute redu
ed Gr�obner bases and skips a

syzygy when either 
riterion is satis�ed.

The fun
tions Criterion1 and Criterion2 return true if the 
orresponding 
riterion is satis�ed,

false otherwise. They test whether the syzygy under 
onsideration may be skipped.

Besides, one has to 
hoose with whi
h syzygy one should deal �rst. This is the goal of the

fun
tion Sele
tPair. Bu
hberger and Winkler showed in [6℄ that a good sele
tion is to deal with the

pair of lowest l
m of its leading terms �rst. This sele
tion in
reases the frequen
y of reje
tion a priori

thanks to the 
riteria.

The use of both 
riteria in 
onjun
tion with sele
tion s
heme is known as Bu
hberger's normal

strategy.

Finally, note that the pre-redu
tion 
ould optionally be forgotten.

Case of admissible Ore algebras. We have shown that the 
on
ept of redu
tion exists in admissible

Ore algebras. Algorithms 4 and 5 
annot be implemented as they are in su
h a non-
ommutative


ase, sin
e some of the results they rely on make 
ru
ial use of the 
ommutativity. We pro
eed to

show how to generalise them to make this implementation possible.

First, we prove on an example that Criterion 1 is wrong in the non-
ommutative 
ase|at least

with no other hypothesis.

Example. Let p = x and q = D

x

in the Ore algebra K hx;D

x

i on whi
h we 
hoose the lexi
ographi


term order su
h that D

x

� x. Then, the syzygy Spoly(p; q) equals D

x

p�xq = 1 whi
h is irredu
ible,

but not zero. The pair (x;D

x

) is then a 
ounter-example of Criterion 1 in the non-
ommutative


ase.

When analysing the proof of Criterion 1, it appears that the equality (37) holds only if the

leading terms lt(p) and lt(q) 
ommute. An idea is therefore to add the hypothesis that the leading

monomials of p and q should 
ommute. This leads to the following example.
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# Given a set of polynomials P

# return a redu
ed Gr�obner basis G generating the same ideal

fun
tion Redu
edGr�obnerBasis(P )

# Ea
h generator from P will be in G

G = Redu
eSet(P )

k = length(G)

# Initialise the set of syzygies still to be dealt with

B = f(G

i

; G

j

) j 1 � i < j � kg

# Work until all syzygies have been redu
ed

while B 6= ? f

(G

i

; G

j

) = Sele
tPair(B;G)

B = B r f(G

i

; G

j

)g

if Criterion1(B;G) or Criterion2((G

i

; G

j

); B;G) then f

h = FullyRedu
e(Spoly(G

i

; G

j

); G)

# The S-polynomial is kept iff it adds another

# irredu
ible monomial

if h 6= 0 then f

G = G [ fhg

k = k + 1

# Do not forget to add the 
orresponding syzygies

B = B [ f(G

i

; G

k

) j 1 � i < kg

g

g

g

# Dis
ard redundant elements and inter-redu
e

R = fg 2 G j R

g;G

r fgg 6= ?g

return Redu
eSet(G rR)

Algorithm 5. Redu
ed Gr�obner basis

Example. Let p = M + x and q = N + D

x

in an Ore algebra built on a set of indeterminates

in
luding amongst others x and D

x

. We assume that M and N are the leading monomials of p

and q respe
tively and that they 
ommute. We assume also that neither x nor D

x

appears in these

leading terms. (This is possible for instan
e in K hx; y; z; D

x

;D

y

;D

z

i with p = y+x and q = z+D

x

and an adequate term order.) Then, Spoly(p; q) = N (M + x) �M (N +D

x

) = xN �MD

x

, and

there is no simpli�
ation in this polynomial.

Now, Spoly(p; q)!

p

xN + xD

x

+ 1!

q

1, whi
h is irredu
ible but not zero.

Besides, Spoly(p; q)!

q

�xD

x

�MD

x

!

p

1, whi
h is irredu
ible but not zero. The pair (M+x;N+

D

x

) is then another 
ounter-example of Criterion 1 in the non-
ommutative 
ase.

Therefore, it seems that there is no hope of generalising Criterion 1 ex
ept when every indeter-

minate in p 
ommutes with every indeterminate in q.

Proposition 4.19. When every indeterminate in p 
ommutes with every indeterminate in q,

l
m(lt(p); lt(q)) = lt(p) lt(q)) Spoly(p; q)

�

!

fp;qg

0:

Proof. As in the 
ommutative 
ase, there is no 
an
ellation between the terms of Spoly(p; q).

Now, ea
h possible redu
tion by p or q needs to multiply the polynomial under 
onsideration by a

monomial in indeterminates of the other one. Therefore, everything happens as in the 
ommutative


ase, where

Spoly(p; q)

�

!

fp;qg

0:
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�

Criterion 1'. A syzygy (G

i

; G

j

) under 
onsideration during Bu
hberger's algorithm may be skipped

as soon as every indeterminate in p 
ommutes with every indeterminate in q and

l
m(lt(G

i

); lt(G

j

)) = lt(G

i

) lt(G

j

):

As far as Criterion 2 is 
on
erned, the situation is di�erent: Proposition 4.18 is a general result

of rewriting theory, and it is still valid in any admissible Ore algebra, as well as Criterion 2. In

fa
t, the two 
riteria used in the 
ommutative 
ase have di�erent meanings:

{ Criterion 2 states that the pair (G

i

; G

j

) is a \useless" pair: its redu
tion will return 0,

due to the 
ontext (both pairs (G

i

; G

k

) and (G

k

; G

j

) have already been redu
ed), so this

redu
tion would be a redundant 
al
ulation;

{ Criterion 1 states that the pair (G

i

; G

j

) is a \trivial" pair: its rest of the redu
tion is not

dedu
i
le from the previous 
omputations, but the redu
tion trivially yields 0.

4.4.2. Sugar strategy. The idea of the \sugar strategy" is to build the ideal of leading terms in an

global manner. Let I be an ideal in K [x

1

; : : : ; x

d

; y℄ and L

n

= lt(I) [ y

n

K [x

1

; : : : ; x

d

℄. Then lt(I) =

S

n�0

L

n

and (L

n

)

n2N

is an in
reasing sequen
e of ideals. The \sugar strategy" tries to 
ompute

the ideals L

n

one after another, so that 
omputation made for L

0

to L

n

help that of L

n+1

.

Commutative 
ase. We re
all here the strategy presented in [14℄. All syzygies waiting for treatment

are tagged with their \sugar"; so are the polynomials to redu
e with. This sugar more or less

represents the degree of an additional phantom indeterminate that would be used to homogenise the

polynomials. Redu
tions are performed on syzygies with lowest sugar �rst, and with polynomials of

lowest sugar as redu
ers. At the beginning of the algorithm, the sugar of ea
h polynomial is set to

its total degree. Then, the following rules are followed ea
h time an operation between polynomials

is performed:

s(pq) = s(p) + s(q)

s(p+ q) = max(s(p); s(q))

where s(p) is the sugar of p. (Note that if simpli�
ation o

urs in a sum, it is not taken into a

ount

in the sugar: this represents a power of the phantom indeterminate.)

Case of admissible Ore algebras. We implemented the sugar strategy in the 
ontext of our ad-

missible Ore algebras. The same interpretation in terms of homogenised ideal is still valid in Ore

algebras, though it does not seem possible to use 
onne
tion to proje
tive varieties, unlike in the


ommutative 
ase, and to get in this way a better understanding of the strategy.

5. Implementation of operations on holonomi
 fun
tions

We pro
eed to des
ribe our implementation of e�e
tive 
losure properties of holonomi
 fun
tions

and to give examples of 
omputation on them.

We �rst deal with simple 
losure operations as sum and produ
t in Se
tion 5.1. They are based

on redu
tion and Gaussian elimination. The algorithms for these �rst simple holonomi
 
losures

extend easily to fun
tions solutions of linear operators of any Ore algebra. The next 
losures,

however, are properties of holonomi
 fun
tions only. In Se
tion 5.2, we give algorithms to 
ompute

de�nite sums, de�nite integrals and generating fun
tions, that are based on Gr�obner elimination.

We also present there our implementation of the diagonal. It is based on Gaussian elimination, and

no algorithm based on Gr�obner-like elimination is known. The problem of �nding su
h an algorithm

remains open. Next, we re
all algorithms 
omputing 
oeÆ
ients of a holonomi
 series, inde�nite

sums and inde�nite integrals. This algorithms are based on diagonal. Finally, in Se
tion 5.3, we give

an example of 
omputation in the admissible Ore algebra K he

x

;D

x

i showing that several algorithms
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presented in the traditional 
ase of holonomy extend to this 
ontext. This example 
omputes the

generating fun
tion e

e

x

�1

of the Bell numbers, whi
h is 
ertainly not D-�nite.

Some of the examples given in this se
tion lead to so-
alled automati
 theorems. By this words, we

do not mean a theorem that has a
tually been fully proven with a 
omputer. The main part of ea
h

of the proofs of our automati
 theorems|�nding equations de�ning a ve
tor-spa
e of holonomi


fun
tions|has been performed on a 
omputer, but minor 
omputations that 
ould be automatised

have not. Still, we intend to implement the missing part|handling initial 
onditions|in order to

obtain fully automatised proofs of these theorems.

An important remark has to be done about the following algorithms. Taking advantage of

Proposition 1.2, the pro
ess of these algorithms is to �nd operators in a single pseudo-di�erential

indeterminate vanishing in the holonomi
 fun
tion under 
onsideration. Therefore, no equation

involving 
ross-derivatives 
an be found with them, and information is lost by these algorithms.

As an example, assume that the user wants to 
ompute the sum of two fun
tions f and g. Ideally,

the user then inputs holonomi
 systems generating the ideals V

f

and V

g

as de�ned in Se
tion 2.

Then, the user asks for a holonomi
 system de�ning V

f+g

.

Still, be
ause of the intrinsi
 weakness of the algorithms that are involved in the sum, the holo-

nomi
 systems that the user re
eives de�nes an ideal V that is smaller than V

f+g

, or equivalently,

or larger set of solutions. In other words, the algorithms used introdu
e parasiti
 fun
tions. How-

ever, provided suÆ
iently many initial 
onditions on f and g, the user 
an determine whi
h of the

solutions is f + g.

Finally, we re
all that Takayama's system Kan is able to perform most of the operations des
ribed

in the sequel, although not in the generality of admissible Ore algebras. (See [28℄ and [29℄.)

5.1. Arithmeti
al operations. Sin
e most of the algorithms implement the proofs of Theo-

rem 1.3 and of Theorem 1.11, they need to �nd linear dependen
ies between (pseudo-)derivatives

of an expression. We �rst detail the algorithm to obtain su
h dependen
ies in Se
tion 5.1.1. Fur-

thermore, the algorithms �nd these dependen
ies only be
ause all derivatives are redu
ed modulo

the ideals de�ning the holonomi
 fun
tions involved in the original expression. In Se
tion 5.1.2,

we 
omment on an algorithm to 
ompute derivatives of an expression and redu
e them modulo

ideals de�ning holonomi
 fun
tions. In Se
tion 5.1.3, we then use the algorithm of Se
tion 5.1.2

to implement arithmeti
al operations on holonomi
 fun
tions and give examples of 
omputation.

We �nally present an algorithm 
omputing a holonomi
 system satis�ed by an algebrai
 fun
tion

in Se
tion 5.1.4. Although this algorithm is similar to the previous ones, it is not based on the

algorithms of Se
tion 5.1.2.

As suggested in the previous introdu
tion, the algorithms to 
ompute sums or produ
ts of holo-

nomi
 fun
tions des
ribed in this se
tion work in an Ore algebra K hx; �i extended by rational

fra
tions, namely K (x)h�i, rather than in the Ore algebra itself. They mainly rely on the zero-

dimensionality of the annihilating ideals de�ning the fun
tions in the extended algebra. Therefore,

they extend to fun
tions de�ned by ideals of any Ore algebra.

5.1.1. Sear
hing for a linear dependen
y. The algorithm inputs a list of polynomials and a list of

indeterminates, and sear
hes for a linear 
ombination of the polynomials that makes the indeter-

minates disappear.

Moreover, it uses only as many polynomials of the list as are ne
essary to get a dependen
y. By

taking the polynomials in in
reasing order, it is therefore possible to �nd a dependen
y between

derivatives of an expression of smallest possible order.

The indeterminates given to the a
tual pro
edure are Maple expressions and the programme

performs elimination of expressions su
h as f(s; x=s) and �

x

g(x; y) between the input polynomials

(in those \indeterminates"). As a matter of fa
t, given polynomials as des
ribed before, any linear


ombination of the inputs 
ontains only \monomials" that are produ
ts of the \indeterminates" to

be eliminated.

The pro
ess of the algorithm is:
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(i) add new indeterminates, one to ea
h input polynomial, su
h as �

i

for the i

th

; these indeter-

minates are not to be eliminated, but tag the input polynomials to keep tra
k of the linear


ombinations performed on them;

(ii) re
ord all the \monomials" o

urring in the input polynomials and substitute them by

new indeterminates, so that the problem is redu
ed to linear elimination of these new

indeterminates;

(iii) perform a Gaussian elimination on the substituted polynomials �nding the pivots su

es-

sively in the next polynomial of the list|without 
hanging the order of this list|until all

indeterminates have disappeared in one of the polynomials;

(iv) then, the last polynomial under 
onsideration is a linear 
ombination of the �

i

's whi
h

denotes a vanishing linear 
ombination of the input polynomials.

The pro
edure leaves the responsibility to add the 
onstants to the 
alling programme.

Its eÆ
ien
y 
ould be improved in (at least) two ways:

{ the pro
edure should re
ord the su

essive pivots and redu
e the polynomials only when they

are 
onsidered to �nd a new pivot, instead of redu
ing them all; thus some 
omputation

would be spared when an elimination does not need all the input polynomials to �nd a

dependen
y;

{ in 
ase of failure, the pro
edure should re
ord all intermediate pivots, in order to allow an

in
remental elimination; the 
alling pro
edure should be able to 
ompute more polynomials

to add to the input list only when ne
essary instead of 
omputing an ex
essive number of

them.

5.1.2. Sear
hing for a linear dependen
y modulo ideals de�ning holonomi
 fun
tions. The pro
e-

dure takes the initial expression as well as sets of generators of the annihilating ideals I

f

for the

fun
tions f that are known to be holonomi
 (or subideals of these I

f

).

The outline of the algorithm is:

(i) repeat steps (ii) to (iv) until all derivatives to be 
onsidered have been redu
ed:

(ii) generate a new pseudo-derivative;

(iii) 
olle
t from its expression any o

urren
e of a (pseudo-)derivative of the holonomi
 fun
tions

and redu
e them using the given relations;

(iv) repla
e in the expression the (pseudo-)derivatives by their redu
ed form;

(v) the result 
an be sent to the previous algorithm to �nd a linear dependen
y; to do so, it is

ne
essary to tag ea
h expression with a symboli
 
onstant su
h as �

�

dummy(x) and to ask

the previous pro
edure to eliminate all the pseudo-derivatives of the holonomi
 fun
tions.

In order not to perform repeatedly the same redu
tions, the list of all redu
tions already dealt

with is stored and only the new derivatives are redu
ed. In this way, the algorithm be
omes a

rewriting algorithm, sin
e after some iterations, all derivatives have been redu
ed and are dire
tly

rewritten.

Moreover, sin
e for 
onvenien
e the derivatives under 
onsideration are su

essive derivatives

with respe
t to the same variable, it is easy to 
ompute and redu
e them in an in
remental way.

The following example involves very simple di�erential equations, whose solutions are expli
itly

known, so that we 
an 
he
k the results.

Example. We de�ne the fun
tions f and g by the two following di�erential equations:

{ 5f

00

(x) + f(x) = 0, whi
h has the generi
 solution � 
os

x

p

5

+ � sin

x

p

5

;

{ 3g

0

(x) + g(x) = 0, whi
h has the generi
 solution 
 exp

�x

3

.

The aim of the 
omputation is to �nd a di�erential equation satis�ed generi
ally by:

h(x) = �f(x) + g(x) + f(x) g(x) = �(� 
os

x

p

5

+ � sin

x

p

5

) + 
e

�x

3

+ (� 
os

x

p

5

+ � sin

x

p

5

) 
e

�x

3

:
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The equation found by our pa
kage on this problem is the following:

675h

(5)

(x) + 675h

(4)

(x) + 495h

000

(x) + 205h

00

(x) + 72h

0

(x) + 14h(x) = 0:

We �rst load the pa
kage.

> with(Mgfun):

We �rst deal with a Weyl algebra in a single indeterminate; on this algebra, we 
onsider the

total degree term order on both indeterminates x and dx.

> A:=orealg([x,diff,dx℄):

T:=termorder(A,tdeg,max):

We introdu
e the equations.

> GL[f℄:=[5*dx*dx+1℄:

GL[g℄:=[3*dx+1℄:

dependen
y(-f(x)+g(x)+f(x)*g(x),x,6,GL,T);

�675D

5

x

� 72D

x

� 205D

2

x

� 14 � 495D

3

x

� 675D

4

x

(Noti
e that we have had to suggest a maximum number of derivatives to be 
onsidered|namely 6,

in
luding the initial fun
tion|sin
e the programme is neither able to guess it, nor to work in an

in
remental way, yet.)

So we have a proof that h is generi
ally|that is for any (�; �; 
) 2 C

3

|a solution of:

675h

(5)

(x) + 675h

(4)

(x) + 495h

000

(x) + 205h

00

(x) + 72h

0

(x) + 14h(x) = 0;

whi
h is easily 
he
ked:

> applyopr(",-(a*
os(1/sqrt(5)*x)+b*sin(1/sqrt(5)*x))+


*exp(-x/3)+(a*
os(1/sqrt(5)*x)+b*sin(1/sqrt(5)*x))*


*exp(-x/3),A);

expand(");

� 345

�

a

25

sin

�

1

5

p

5x

�

p

5�

b

25


os

�

1

5

p

5x

�

p

5

�


e

�1=3x

� 42

�

�

a

5

sin

�

1

5

p

5x

�

p

5 +

b

5


os

�

1

5

p

5x

�

p

5

�


e

�1=3x

+ 90

�

�

a

5


os

�

1

5

p

5x

�

�

b

5

sin

�

1

5

p

5x

��


e

�1=3x

+ 450

�

a

25


os

�

1

5

p

5x

�

+

b

25

sin

�

1

5

p

5x

��


e

�1=3x

� 675

�

�

a

125

sin

�

1

5

p

5x

�

p

5 +

b

125


os

�

1

5

p

5x

�

p

5

�


e

�1=3x

0

An extra subtlety of the algorithm has to be emphasised to explain this example: as already

mentioned, the pro
ess of redu
tion of an operator p by a list of operators q

1

; : : : ; q

r

does not lead

to an operator of the form (34), but to a multiple of su
h a form in whi
h no fra
tion o

urs.

Therefore, the algorithm has to take 
are of the denominators and the pro
edure of full redu
tion

has to return both polynomials p and w

p

of equation (35).
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5.1.3. Sum, produ
t and symmetri
 power. Not mu
h remains to be said about these operations,

sin
e they happen to be only parti
ular 
ases of the above method to �nd a holonomi
 system

satis�ed by a given expression. In fa
t, the previous algorithms make it possible to 
ompute

dire
tly any polynomial P (x

1

; : : : ; x

d

; h

1

; : : : ; h

r

) that involves any holonomi
 fun
tions h

i

(or even

fun
tions de�ned by zero-dimensional ideals of any Ore algebra).

Spe
ialised algorithms for sum and produ
t 
an be found in [27℄. They are somewhat simpler

than the one explained above be
ause they involve only one fun
tion at a time, and thus work

dire
tly on the pseudo-di�erential operators rather than on the derivatives.

The 
aw of su
h algorithms that perform ea
h sum and produ
t in separate stages, is that they

indu
e a loss of eÆ
ien
y when 
omputing equations for a polynomial in some holonomi
 fun
tions.

The simplest example of this phenomenon is the 
omputation of equations for the symmetri
 power

of a holonomi
 fun
tion f(x): if the order of the di�erential equation satis�ed by �

i

f is !

i

, then

the iterative 
omputation of the r

th

symmetri
 power needs to redu
e (!

0

+ 1) + � � � + (!

r

+ 1)

derivatives, while the dire
t method redu
es only !

r

+ 1 derivatives.

For these simple operations, there are however theoreti
al bounds to the orders of the equations:

let f and g be two holonomi
 fun
tions in a single variable x, I

f

and I

g

being the asso
iated ideals

of operators of an Ore algebra K hx; �i vanishing on these fun
tions. Sin
e f and g are holonomi
,

both ideals are zero dimensional whi
h, by de�nition, means:

k(I

f

) = dim

K(x)

K (x)h�i=V

f

< +1 V

f

= K (x) I

f

k(I

g

) = dim

K(x)

K (x)h�i=V

g

< +1 V

g

= K (x) I

g

Then, as mentioned in [27℄, the 
orresponding quotient is at most of K (x)-dimension:

{ k(I

f

) + k(I

g

)� 1 for the sum;

{ k(I

f

) k(I

g

) for the produ
t.

These bounds are easily proved, when one thinks of the proof of Theorem 1.3 and of the �nite

dimension ve
tor spa
es it involves.

5.1.4. Algebrai
 fun
tions, algebrai
 substitution. The algorithm 
omputing a holonomi
 system

satis�ed by an algebrai
 fun
tion given by its polynomial equation implements the proof of Theo-

rem 1.3:

(i) �rst rewrite the �rst derivative of the algebrai
 fun
tion f as a polynomial in f and redu
e

this polynomial with the polynomial P de�ning f as an algebrai
 fun
tion;

(ii) in
rementally 
ompute the derivatives of f and rewrite them as a (redu
ed) polynomial

in f ;

(iii) when suÆ
iently many derivatives have been dealt with, �nd a linear dependen
y between

these polynomials of K [x℄[f ℄;

(iv) if there are several variables x

1

; : : : ; x

d

, deal with one after another so as to get a re
tangular

system (2) as suggested by Proposition 1.2.

Note that this algorithm is restri
ted to pure fun
tions and to Weyl algebras. A simple reason

is that algebrai
 sequen
es|u

n

=

p

n for instan
e|
annot be P -re
ursive in general.

A
tually, for reasons of eÆ
ien
y, this algorithm is implemented in the Mgfun pa
kage so as to

avoid dealing with fra
tions.

To do so, the extended g
d algorithm is not used to prove �f 2 K (x)[f ℄, but to �nd N 2 K [x; f ℄

and D 2 K [x℄ su
h that:

D(x) �f = N(x; f):(38)

Now, by an e�e
tive indu
tion on k, di�erentiating the equation

D(x)

k

�

k

f = R

k

(x; f) 2 K [x; f ℄
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and using equation (38) yields

D(x)

k+1

�

k+1

f = D(x) (R

k

)

0

x

(x; f) + (R

k

)

0

f

(x:f)N(x; f)� k D

0

(x)R

k

(x; f);

whi
h makes it possible to 
ompute the sequen
e of the R

k

's iteratively.

After this stage, �nding a linear dependen
y between the R

k

's gives by simple substitution a

linear dependen
y between the D(x)

k

�

k

f 's, and then between the �

k

f 's.

Example. First, we 
reate a Weyl algebra of two indeterminates x and y and two 
orresponding

di�erential indeterminates. The term order used eliminates the derivatives of the fun
tions when

�nding dependen
ies.

> with(Mgfun):

A:=weylalg([x,dx℄,[y,dy℄):

T:=termorder(A,tdeg=[dx,dy℄,max):

The equations that des
ribe the algebrai
 fun
tions u (x

2

y)

1=3

with u

3

= 1 and v (xy

2

)

1=3

with v

3

= 1

as holonomi
 fun
tions are found in single 
alls:

> GL[f℄:=algtoholon(x*x*y-f^3,f,T);

GL[g℄:=algtoholon(x*y*y-f^3,f,T);

GL

f

:= [3yD

y

� 1; 3D

x

x� 2℄

GL

g

:= [3yD

y

� 2; 3D

x

x� 1℄

One 
he
ks that these are the minimal order equations satis�ed by f and g respe
tively.

These results enable us to give another example of the sear
h for di�erential equations satis�ed by

an expression 
onsisting of holonomi
 fun
tions: we 
ompute an equation satis�ed by �f + g+ fg,

whi
h equals in the 
urrent example

�(x

2

y)

1=3

+ (xy

2

)

1=3

+ xy:

The result found is

9x

3

D

3

x

+ 9x

2

D

2

x

+ 2xD

x

� 2:

The pro
edure to use is the same as in Se
tion 5.1.2:

> dependen
y(-f(x,y)+g(x,y)+f(x,y)*g(x,y),x,3,GL,T);

9D

2

x

x

2

+ 2D

x

x+ 9D

3

x

x

3

� 2

On
e again, the result is easy to 
he
k.

> applyopr(",-(x*x*y)^(1/3)+(x*y*y)^(1/3)+x*y,A);

numer(normal("));

9x

2

�

8

9

x

2

y

2

(x

2

y)

5=3

�

2

3

y

(x

2

y)

2=3

�

2

9

y

4

(xy

2

)

5=3

�

+ 9x

3

�

�

80

27

x

3

y

3

(x

2

y)

8=3

+

8

3

xy

2

(x

2

y)

5=3

+

10

27

y

6

(xy

2

)

8=3

�

+ 2(x

2

y)

1=3

� 2(xy

2

)

1=3

� 2xy + 2x

�

�

2

3

xy

(x

2

y)

2=3

+

1

3

y

2

(xy

2

)

2=3

+ y

�

0
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This algorithm 
ould be redesigned as a rewriting algorithm and merged with the algorithm

whi
h �nds a linear dependen
y modulo zero dimensional ideals. Indeed, this algorithm rewrites

any o

urren
e of a 
ertain power of f|say f

r

|as well as �f , as polynomials in f of degree

stri
tly lower than r. On
e merged, the programme 
ould dire
tly deal with expressions involving

holonomi
 fun
tions des
ribed either as su
h or as algebrai
 fun
tions. Thus, it 
ould also 
ompute

algebrai
 substitutions of the variables of a holonomi
 fun
tion.

To illustrate this point, 
onsider again the 
omputation des
ribed in the introdu
tion.

Example. The fun
tion f =

1

p

1�z

is algebrai
, hen
e holonomi
, and the fun
tion g = 
os(z) is

holonomi
. With our pa
kage Mgfun, 
omputing a di�erential equation satis�ed by the holonomi


fun
tion

h =

1

1� z

+


os z

p

1� z

= f (f + g)

needs to work in two separate steps:

(i) �rst 
ompute a holonomi
 presentation of f :

> with(Mgfun):

A:=weylalg([z,Dz℄):

T:=termorder(A,plex=[Dz℄,max):

GL[f℄:=algtoholon((1-z)*f^2-1,f,T);

GL[f ℄ := [2D

z

� 2zD

z

� 1℄

(ii) next 
ompute f (f + g):

> GL[g℄:=[Dz^2+1℄:

dependen
y(f(z)*(f(z)+g(z)),z,3,GL,T):


olle
t(",Dz);

(16z

5

� 80z

4

+ 172z

3

� 196z

2

+ 116z � 28)D

3

z

+(32z

4

� 128z

3

+ 240z

2

� 224z + 80)D

2

z

+(16z

5

� 80z

4

+ 168z

3

� 184z

2

+ 125z � 45)D

z

+(16z

4

� 64z

3

+ 136z

2

� 144z + 53);

It would be useful to work in a single step.

5.2. More 
omplex operations of 
losure. Most 
losure operations dealt with in this se
tion

need a more re�ned elimination than Gaussian elimination, namely, elimination based on Gr�obner

bases. We present them in a logi
al order: the last operations use the �rst ones.

An important point is that these operations are restri
ted to sub
lasses of holonomi
 fun
tions.

Though they 
an easily be used in as general settings as Ore algebras, it is ne
essary to prove

spe
ial theory of the 
lass of fun
tions under 
onsideration|hypergeometri
 fun
tions of sequen
es,

for instan
e|to guarantee that the elimination step on whi
h these algorithms are based does not

return 0.

5.2.1. De�nite sums and de�nite integrals. As another example of elimination by Gr�obner bases,

we give an algorithm 
omputing a holonomi
 system satis�ed by de�nite sums and de�nite integrals

of holonomi
 fun
tions. These algorithms are based the method of 
reative teles
oping suggested

by Zeilberger in [34℄. On the 
ontrary to the previous algorithms, those to be des
ribed in this

se
tion require to take pla
e in an Ore algebra K hx; �i, and not in the 
orresponding extended

algebra K (x)h�i, be
ause they rely on the elimination of one of the x

i

's.

We �rst re
all the algorithm 
omputing the de�nite sum of a holonomi
 sequen
e u

n

(x) = u(x; n)

determined by a set of pseudo-di�erential operators G of I

u

in K hx; n; �; S

n

i. Eliminating n between

the elements of G possibly leads to a non-empty set G

0

� K hx; �; S

n

i su
h that g:u = 0 for all g

in G

0

. Sin
e S

n

= �

n

+ 1 and the elements of G

0

are polynomials in (x; �; S

n

), putting G

00

=
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fg(x; �;�

n

� 1)g

g2G

0

de�nes a set of polynomials that vanishes in u. Ea
h element g of G

00

is a

polynomial in �

n

; for ea
h g in G

00

, there is an equation of the form

g

0

:u+

d

g

X

k=1

�

k

n

:g

k

:u = 0:

Now, evaluating at (x; n; �;�

n

) and summing from an integer n

1

2 Z to another integer n

2

2 Z

yields

g

0

(x; y; �) :

n

2

X

n=n

1

u(x; n)

+

d

g

X

k=1

n

2

X

n=n

1

�

(�

k�1

n

g

k

(x; �):u)(x; n + 1)� (�

k�1

n

g

k

(x; �):u)(x; n)

�

= 0:

Sin
e the series teles
opes,

g

0

(x; �):

n

2

X

n=n

1

u(x; n) +

d

g

X

k=1

�

(�

k�1

n

g

k

(x; �):u)(x; n)

�

n=n

2

+1

n=n

1

= 0;

as soon as n

2

� n

1

> 2n

d

.

Now, we need to assume that u tends to 0 when n! �1. Then, making n

1

! �1 and n

2

!

+1 yields g

0

(x; �):s(x) = 0, where s(x) =

P

n2N

u

n

(x).

We summarise this method of summing into the following algorithm:

(i) eliminate n between the elements of G; sele
t those polynomials in whi
h n does not appear

any longer;

(ii) evaluate at S

n

= 1.

The algorithm 
omputing a holonomi
 system satis�ed by a de�nite integral is totally similar to

the previous one: the operator D

n

is simply 
hanged into the 
orresponding one D

x

, in the 
ase of

a holonomi
 fun
tion f(x; y) determined by a set of pseudo-di�erential operators G in D

x

and �:

(i) eliminate x between the elements of G; sele
t those polynomials in whi
h x does not appear

any longer;

(ii) evaluate at D

x

= 0.

The only di�eren
e is that we require that suÆ
iently many �

r

x

f(x; y) tend to 0 when x! �1.

5.2.2. Taking the generating fun
tion of a holonomi
 fun
tion. Again, this algorithm follows the

method suggested by Zeilberger in [34℄: it 
reates teles
oping series. We then give the example of

the generating fun
tion of the orthogonal Legendre polynomials. (See also the example of these

polynomials in Se
tion 4.1.)

Let u(x) be a holonomi
 fun
tion. We do not give the expli
it dependan
e in x; it 
an be

either a dependan
e in a 
ontinuous indeterminate (u is a fun
tion) or a dependan
e in a dis
rete

indeterminate (u is a sequen
e). By de�nition, the generating fun
tion of u is

F (x; y) =

X

n2N

u

n

(x) y

n

:

It is the sum of the sequen
e of fun
tions f

n

(x; y) = u

n

(x) y

n

.

The operations on holonomi
 fun
tions already des
ribed in the previous se
tions enable us to

give the algorithm 
omputing a holonomi
 system satis�ed by the generating fun
tion of a holonomi


fun
tion:

(i) 
ompute a holonomi
 system de�ning the fun
tion y

n

as a fun
tion in (x; y; n);

(ii) 
ompute a holonomi
 system de�ning the fun
tions u

n

(x) as a fun
tion in (x; y; n);

(iii) 
ompute a holonomi
 system de�ning the produ
ts f

n

(x; y);
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(iv) 
ompute a holonomi
 system satis�ed by the sum of the f

n

(x; y) by the algorithm given in

Se
tion 5.2.1.

We now give another algorithm to 
omputes a holonomi
 system satis�ed by the f

n

(x; y)'s. This

algorithm is preferable to the previous one sin
e it does not su�er from the intrinsi
 weakness of

the algorithm 
omputing a produ
t, that loses information.

Let P be a generi
 operator in K hx; n; �; S

n

i that vanishes on u. We have

(S

n

:f)(x; y; n) = u

n+1

(x) y

n+1

= (S

n

:u)(x) y

n

y:

Therefore,

P (x; n; �; y

�1

S

n

):f = (P (x; n; �; S

n

):u) v;

where v is de�ned by v(x; y; n) = y

n

. Now, P (x; n; �; y

�1

S

n

) 2 K ((y))hx; n; �; S

n

i and multiply-

ing P (x; n; �; y

�1

S

n

) by a power of y yields a polynomial P

0

2 K hx; y; n; �;D

y

; S

n

i that vanishes

in f .

Besides,

((yD

y

� n):f)(x; y; n) = yu

n

(x)ny

n�1

� nu

n

(x) y

n

= 0:

Let G be a set of generators of I

f

in K hx; n; �; S

n

i. Put G

0

= fg

0

g

g2G

[fyD

y

�ng, where g

0

is ob-

tained from g as explained previously for a generi
 P . This set G

0

is a subset of K hx; y; n; �;D

y

; S

n

i.

We now pro
eed as in the algorithm for the de�nite sums by 
reating teles
oping: eliminating n

between the elements of G

0

possibly leads to a non-empty set G

0

� K hx; y; �;D

y

; S

n

i su
h that g:f =

0 for all g in G

0

.

Sin
e S

n

= �

n

+1, puttingG

00

= fg(x; y; �;D

y

;�

n

�1)g

g2G

0

de�nes a set of polynomials vanishing

in f . Ea
h element g of G

00

is a polynomial in �

n

; for ea
h g in G

00

, we have an equation of the

form

g

0

:f +

d

g

X

k=1

�

k

n

:g

k

:f = 0:

Now, applying in (x; y; n; �;D

y

;�

n

) and summing from an integer n

1

2 Z to another integer n

2

2 Z

yields

g

0

(x; y; �;D

y

) :

n

2

X

n=n

1

f(x; y; n)

+

d

g

X

k=1

n

2

X

n=n

1

�

(�

k�1

n

g

k

(x; y; �;D

y

):f)(x; y; n+ k)

�(�

k�1

n

g

k

(x; y; �;D

y

):f)(x; y; n)

�

= 0:

Sin
e the series teles
opes,

g

0

(x; y; �;D

y

):

n

2

X

n=n

1

f(x; y; n) +

d

g

X

k=1

�

(�

k�1

n

g

k

(x; y; �;D

y

):f)(x; y; n)

�

n=n

2

+1

n=n

1

= 0;

as soon as n

2

� n

1

> 2n

d

.

Now, an assumption on f similar to that suggested in the previous se
tion yields

g

0

(x; y; �;D

y

):F (x; y) = 0:

We summarise this method into the following algorithm that inputs a set G of operators vanishing

in u

n

(x) and outputs a set of operators vanishing in

P

n2N

u

n

(x) y

n

:

(i) substitute y

�1

S

n

to S

n

in ea
h element of G; multiply ea
h by an adequate power of y to

make them all polynomials;

(ii) add yD

y

� n to the set;

(iii) eliminate n; sele
t those polynomials in whi
h n does not appear any longer;
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(iv) evaluate at S

n

= 1.

We now give the example of 
omputation of the generating fun
tion of the orthogonal Legendre

polynomials. (See also the example given in Se
tion 4.1.)

Example. To begin with, we re
all the de�nition of these polynomials, as well as some equations

that they satisfy (see [1, formul� (22.3.8, 22.6.13, 22.7.10, 22.8.5)℄):

P

n

(x) = 2

�n

bn=2


X

k=0

(�1)

k

 

n

k

! 

2 (n� k)

k

!

x

n�2k

;

(1� x

2

)P

00

n

(x)� 2xP

0

n

(x) + n(n+ 1)P

n

(x) = 0;

(n+ 2)P

n+2

(x)� (2n+ 3)xP

n+1

(x) + (n+ 1)P

n

(x) = 0;

(1� x

2

)P

0

n+1

(x) + (n+ 1)xP

n+1

(x)� (n+ 1)P

n

(x) = 0:

We �rst input these equations and make the substitution mentioned in the algorithm. We also

add the polynomial yD

y

� n.

> G:=map(expand,[

(1-x^2)*dx^2-2*x*dx+n*(n+1),

numer(normal(subs(Sn=Sn/y,(n+2)*Sn^2-(2*n+3)*x*Sn+(n+1)))),

numer(normal(subs(Sn=Sn/y,(1-x^2)*dx*Sn+(n+1)*x*Sn-(n+1)))),

y*dy-n

℄):

We 
reate the algebra K hx; y; n;D

x

;D

y

; S

n

i and an elimination term order that eliminates n.

> with(Mgfun):

AL:=orealg([n,shift,Sn℄,[x,diff,dx℄,[y,diff,dy℄):

TN:=termorder(AL,lexdeg=[[n℄,[x,dx,y,dy,Sn℄℄,max):

We perform the elimination and sele
t those polynomials in the result where n do not appear any

longer.

> GN:=gbasis(G,TN,rational):

SN:=sele
t((p,v)->not has(p,v),GN,n):

We evaluate the polynomials at S

n

= 1.

> ON:=subs(Sn=1,SN):

ON := [ � yD

x

D

y

+D

x

y

2

+D

x

y

3

D

y

+ y + yxD

x

+ 4y

2

D

y

+ 2y

3

D

2

y

;

� yD

x

D

y

+ y + 3y

2

D

y

+ y

3

D

2

y

+ yxD

x

+ y

2

xD

x

D

y

;

D

x

�D

x

x

2

� y + xyD

y

� y

2

D

y

;

D

2

x

�D

2

x

x

2

� 2xD

x

+ 2yD

y

+ y

2

D

2

y

;

� yD

y

� y

2

� y

3

D

y

+ yx+ 2y

2

xD

y

;

yD

x

+D

x

y

2

D

y

+ yD

y

� xD

x

yD

y

+ y

2

D

2

y

℄

This set of polynomials is too 
omplex. To simplify it, we work in the algebra K hx; y;D

x

;D

y

i.

> A:=weylalg([x,dx℄,[y,dy℄):

T:=termorder(A,tdeg=[dx,dy℄,max):

We separate the di�erentiations with respe
t to ea
h indeterminate.

> GL[f℄:=ON:

dependen
y(f(x,y),x,2,GL,T):

dependen
y(f(x,y),y,2,GL,T):

GF:=["","℄;
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GF := [�2yxD

x

+D

x

+D

x

y

2

� y;�2xyD

y

+D

y

+ y

2

D

y

+ y � x ℄

Now we 
he
k the identity fg(x; y) = (1� 2xy + y

2

)

�1=2

.

> fg:=(1-2*x*y+y*y)^(-1/2):

map(applyopr,GF,fg,A):

map(normal,");

[0; 0℄

Otherwise, we use an ODE solver to 
ompute the generating fun
tion.

> applyopr(GF[1℄,f[y℄(x),A):

dsolve(",f[y℄(x)):

subs(_C1=
(y),");

f

y

(x) =


(y)

p

1� 2yx+ y

2

applyopr(GF[2℄,op(2,"),A):

dsolve(",
(y));


(y) = C1

Finally, using the initial 
ondition P

0

(x) = 1 yields C1 = 1, from whi
h the following automati


theorem follows.

Automati
 Theorem 1. The generating fun
tion of the orthogonal Legendre polynomials

P

n

(x) = 2

�n

bn=2


X

k=0

(�1)

k

 

n

k

! 

2 (n� k)

k

!

x

n�2k

is

1

p

1� 2xy � y

2

:

In other words, the following identity holds

1

X

n=0

2

�n

bn=2


X

k=0

(�1)

k

 

n

k

! 

2 (n� k)

k

!

x

n�2k

y

n

=

1

p

1� 2xy � y

2

:

5.2.3. Diagonal and Hadamard produ
t. We present these two operations together sin
e they are

related to one another by equations (8{9). Although we would like to �nd and implement an

algorithm to 
ompute Hadamard produ
ts dire
tly, we only give an algorithm based on the imple-

mentation of the diagonal.

Diagonal of a D-�nite fun
tion. The algorithm to �nd equations for the diagonal is somewhat

di�erent from those des
ribed so far: the proof given by Lipshitz in [18℄ that any diagonal of a

D-�nite power series is D-�nite suggests that we sear
h for a linear dependen
y between derivatives

of the diagonal with respe
t to two indeterminates. The programme used so far is therefore not

suÆ
ient to solve this problem.

However, a �rst part of the proof uses both the algorithm for full redu
tion and the algorithm

to �nd a polynomial in one di�erential indeterminate. The algorithm des
ribed hereafter 
omputes

the diagonal diag

1;2

(f) of the fun
tion f(x

1

; : : : ; x

d

) with respe
t to the indeterminates x

1

and x

2

(see De�nition 1.4).
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(i) for ea
h i = s; 1; 3; : : : ; d, 
ompute a polynomial P

i

(�

i

) vanishing in

F (s; x

1

; x

3

; : : : ; x

d

) =

1

s

f(s;

x

1

s

; x

3

; : : : ; x

d

);

(ii) isolate the leading 
oeÆ
ients of the P

i

(�

i

)'s for i = s; 1; 3; : : : ; d and 
ompute their l
m L;

(iii) for ea
h i = s; 1; 3; : : : ; d:

{ for all indi
es su
h that

P

�

i

+ � + 
 � !, redu
e

L

!

x

�

1

1

x

�

3

3

� � � x

�

d

d

�

�

s

�




1

modulo fP

s

; P

i

g;

{ �nd a linear dependen
y between the redu
ed polynomials|there 
ertainly is one

when ! is large enough;

{ the 
oeÆ
ient of �

0

s

in this dependen
y is an operator in �

i

whi
h vanishes on the

diagonal.

Example. Given the fun
tion

f(x; y) =

1

1� (x+ y)

;

we want to prove that its diagonal is:

g(x) =

1

p

1� 4x

:

We �rst load the pa
kage:

> with(Mgfun):

Then, we simply have to give equations de�ning f as a holonomi
 fun
tion, and 
all the right

pro
edure:

> A:=weylalg([x,dx℄,[y,dy℄):

T:=termorder(A,tdeg=[dx,dy℄,max):

denf:=1-x-y:G:=[expand(denf*dx-1),expand(denf*dy-1)℄;

hdiag(G,[x,y℄,1,3,T);

G := [D

x

�D

x

x�D

x

y � 1;D

y

�D

y

x�D

y

y � 1 ℄

�6D

x

+D

2

x

� 4xD

2

x

Of 
ourse, we 
he
k the result:

> normal(applyopr(",(1-4*x)^(-1/2),A));

0

(Or we 
ould have used a solver to �nd that h is a solution.)

Finally, to prove the result that we announ
ed, we need to 
he
k dire
tly that suÆ
iently many

derivatives of h have the expe
ted value at 0:

f(x) =

X

n�k�0

 

n

k

!

x

k

y

n�k

so that its diagonal is:

X

n�0

 

2n

n

!

x

n

=

1

p

1� 4x

:

(We sele
t only those terms that satisfy k = n� k.) Sin
e the obtained equation is of the se
ond

order, only two terms have to be 
he
ked:

{ g(0) = 1 =

�

0

0

�

;
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{ g

0

(0) = 2 =

�

2

1

�

.

This last step of the algorithm 
ould easily be implemented|though we did not do it. Therefore,

we state the following automati
 theorem.

Automati
 Theorem 2. The diagonal of the fun
tion

1

1� (x+ y)

is

1

p

1� 4x

:

One 
ould also have obtained the equations of the diagonal by 
omputing the di�erent steps of

the algorithm one after the other:

{ �rst load the pa
kage and 
reate an algebra to work with:

> with(Mgfun):

A:=weylalg([x,dx℄,[y,dy℄,[s,ds℄):

T:=termorder(A,tdeg=[dx,dy℄,max):

{ then introdu
e the equations de�ning f :

> denf:=1-x-y:GL[f℄:=[expand(denf*dx-1),expand(denf*dy-1)℄;

GL

f

:= [D

x

�D

x

x�D

x

y � 1;D

y

�D

y

x�D

y

y � 1℄

{ ask manually for ea
h equation on f(s; x=s)=s:

> eq[s℄:=dependen
y(f(s,x/s,0)/s,x,1,GL,T);

eq

s

:= D

x

s

2

�D

x

s

3

�D

x

sx� s

> eq[x℄:=expand(dependen
y(f(s,x/s,0)/s,s,1,GL,T));

eq

x

:= s

3

D

s

� s

4

D

s

� s

2

D

s

x+ s

2

� 2s

3

{ and �nally ask for a dependen
y between the (s

2

� s� x)

3

s

i

x

j

D

k

x

:

> AA:=weylalg([s,ds℄,[x,dx℄):

TT:=termorder(AA,tdeg=[ds,dx℄,max):

`Holonomy/diag`([eq[x℄,eq[s℄℄,3,TT);

�6D

x

+D

2

x

� 4xD

2

x

An interesting property is illustrated on this example: the diagonal of a rational fun
tion 
an

be a non-rational algebrai
 fun
tion. Similarly, the diagonal of an algebrai
 fun
tion 
an be a

non-algebrai
 fun
tion. The next example show this last property.

Example. Given the fun
tion

g(x + y) =

1

p

1� 4(x+ y)

;

we want to prove that its diagonal is

h(x) =

X

n2N

 

4n

2n

! 

2n

n

!

x

n

:

The 
omputation is similar to the one of the previous example and leads to an equation satis�ed

by the diagonal.
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> r:=1-4*(x+y):

H:=map(expand,[r*dx-2,r*dy-2℄);

H := [D

x

� 4D

x

x� 4D

x

y � 2;D

y

� 4D

y

x� 4D

y

y � 2℄

> eq:=hdiag(H,[x,y℄,1,6,T);

eq := 64D

4

x

x

2

+ 384xD

3

x

+ 396D

2

x

� xD

4

x

� 3D

3

x

This equation has no trivial solution, so that we need to use a solver. The GfunMaple pa
kage,

that we have already mentioned in the introdu
tion, enables us to 
hange this di�erential equation

into a re
urren
e equation satis�ed by the sequen
e of 
oeÆ
ients of h.

> with(gfun):

diffeqtore
(expand(applyopr(eq,h(x),A)),h(x),u(n));

(64n

2

+ 320n+ 396)u(n + 2) + (�n

2

� 6n� 9)u(n+ 3)

We get a re
urren
e equation of the �rst order, whi
h enables us to �nd a 
losed form for u

n

.

> 
olle
t(expand(subs(n=n-3,")),{u(n-1),u(n)});

�u(n)n

2

+ (64n

2

� 64n+ 12)u(n � 1)

This proves the following automati
 theorem.

Automati
 Theorem 3. The diagonal of

1

p

1� 4(x+ y)

is

X

n2N

 

4n

2n

! 

2n

n

!

x

n

=

2

F

1

"

3

4

;

1

4

1

; 64x

#

:

Diagonal of a P -re
ursive sequen
e. The following algorithm 
omputes the diagonal of of P -re
ur-

sive sequen
e u

n;k

. It is based on the previous algorithm.

(i) 
ompute a holonomi
 system de�ning the generating fun
tion

f

n

(x) =

X

n2N

u

n;k

x

n

of u

n;k

with respe
t to n;

(ii) 
ompute a holonomi
 system de�ning the generating fun
tion

f(x; y) =

X

n2N;k2N

u

n;k

x

n

y

k

of f

n

with respe
t to k;

(iii) 
ompute a holonomi
 system de�ning the diagonal diag

x;y

f ;

(iv) 
ompute a holonomi
 system de�ning the sequen
e of 
oeÆ
ients [x

n

℄ diag

x;y

f (see Se
-

tion 5.2.4).

Hadamard produ
t. The following algorithm 
omputes a holonomi
 system de�ning the Hadamard

produ
t of two holonomi
 fun
tions f(x) and g(x).

(i) 
ompute a holonomi
 system de�ning the produ
t f(x) g(y);

(ii) 
ompute a holonomi
 system de�ning the diagonal diag

x;y

(f(x) g(y)).

This algorithm relies on the identity

f(x)� g(x) = diag

x;y

(f(x) g(y)):
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5.2.4. Finding the 
oeÆ
ients of a holonomi
 series. The identity

[z

n

℄

X

n2N

u

n

z

n

=

 

X

n2N

u

n

z

n

� z

n

!

z=1

is straightforward, and yields the following algorithm 
omputing a holonomi
 system for the 
oef-

�
ients of a given fun
tion f(z).

(i) 
ompute a holonomi
 system de�ning f(z)� z

n

;

(ii) keep only the remainders of the Eu
lidean divisions of ea
h polynomial of the system by D

z

;

(iii) evaluate ea
h polynomial at z = 1.

5.2.5. Inde�nite sums and inde�nite integrals. These two operators have the 
ommon property to

be the re
ipro
al operators of the di�eren
e operator �

n

and of the di�erentiation operator D

z

respe
tively.

Inde�nite sums. The inde�nite sum of a holonomi
 sequen
e u

n

is the sequen
e

n 7!

n

X

k=0

u

k

:

The trivial identity

n

X

k=0

u

k

= [z

n

℄

 

n

X

k=0

u

k

z

k

1

1� z

!

yields the following algorithm.

(i) 
ompute a holonomi
 system de�ning the generating fun
tion of u;

(ii) 
ompute a holonomi
 system de�ning

P

n

k=0

u

k

z

k

1

1�z

;

(iii) 
ompute a holonomi
 system de�ning the 
oeÆ
ient of z

n

in the previous expression.

Inde�nite integrals. The inde�nite integral of a holonomi
 fun
tion f(z) is the fun
tion

x 7!

Z

x

0

f(t) dt:

It satis�es the identity

Z

x

0

f(t) dt = diag

z;u

�

zf(z) log

1

1� u

�

= (zf(z))� log

1

1� z

:

Therefore, two algorithms are possible.

A �rst one is dedu
ed from the �rst equality:

(i) 
ompute a holonomi
 system de�ning zf(z) as a fun
tion in (z; u);

(ii) 
ompute a holonomi
 system de�ning log

1

1�u

as a fun
tion in (z; u);

(iii) 
ompute a holonomi
 system de�ning the produ
t;

(iv) 
ompute a holonomi
 system de�ning the diagonal.

The se
ond algorithms derives from the se
ond equality:

(i) 
ompute a holonomi
 system de�ning zf(z);

(ii) 
ompute a holonomi
 system de�ning log

1

1�z

;

(iii) 
ompute a holonomi
 system de�ning the Hadamard produ
t.
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5.3. Computation in K he

x

;D

x

i. The algebra K he

x

;D

x

i is an admissible Ore algebra, sin
e it


an be de�ned as the Ore algebra K hy; �i by �(y) = Æ(y) = y. (This example of Ore algebra has

already been given in Se
tion 2.2. See Table 1.)

We pro
eed to show on a very simple example that our pa
kage works in this admissible Ore

algebra. Rather than proving a deep identity, we intend to prove that su
h 
omputations are

possible with our programme. The following example 
omputes the generating fun
tion e

e

x

�1

of

the Bell numbers B

n

, de�ned as the number of partitions of a set of 
ardinality n.

Example. The Bell numbers are related to the Stirling numbers of the se
ond kind S

(n)

m

, whi
h

are the number of ways of partitioning a set of m elements into n non-empty subsets:

B

n

=

X

m2N

S

(n)

m

:

The Stirling numbers have the exponential generating fun
tion (see [1, formula 24.1.4 B℄)

1

X

m=n

S

(n)

m

x

m

m!

=

(e

x

� 1)

n

n!

:

Now, summing over n 2 N gives the exponential generating fun
tion of the Bell numbers

X

n2N

B

n

x

n

n!

= e

e

x

�1

:

We reprodu
e this s
heme in Maple. To begin with, we work in K hy; n;D

x

; S

n

i, where y repre-

sents e

x

. We introdu
e expli
itly the values for the fun
tions �(y) and Æ(y).

> with(Mgfun):

A:=orealg([y,user=[p->p,p->y*diff(p,y)℄,Dx℄,[n,shift,Sn℄):

We introdu
e a term order to eliminate n.

> T:=termorder(A,lexdeg=[[n℄,[y,Dx,Sn℄℄,max):

We perform this elimination between simple equations satis�ed by the exponential generating fun
-

tion

(e

x

�1)

n

n!

of the Stirling numbers of the se
ond kind.

> G:=map(expand,[(y-1)*Dx-n*y,(n+1)*Sn-(y-1)℄):

GB:=gbasis(G,T,rational);

GB := [D

x

y �D

x

� ny; S

n

n+ S

n

� y + 1; yS

n

D

x

� S

n

D

x

� y

2

+ y ℄

We �nish as usually in the 
ase of a sum: we evaluate at S

n

= 1.

> map(fa
tor,[seq(subs(Sn=1,i),i=GB)℄);

[D

x

y �D

x

� ny; n+ 2� y;�(y � 1)(y �D

x

) ℄

The initial 
onditions yield the following automati
 theorem.

Automati
 Theorem 4. The exponential generating fun
tion of the Bell numbers is

e

e

x

�1

:

Con
lusions

In 
on
lusion, here are some ideas for further developments of our pa
kage,

Algebrai
 substitution. We have not implemented the algebrai
 substitution in holonomi
 fun
tions

and sequen
es. This should be done to extend the toolbox on holonomi
 systems.



58 FORMAL MANIPULATIONS OF LINEAR OPERATORS

Pro�ling. The implementation of Bu
hberger's algorithm 
an still be optimised. The use of pro�ler

available inMaple should enable us to gain some more speed, so as to be totally 
ompetitive with

the grobner pa
kage of Maple. However, we do not expe
t any dramati
 drop unless we totally


hange the algorithm. (For instan
e, we 
ould generalise the FGLM algorithm based on linear

algebra|see [10, 11℄|to 
ompute a Gr�obner basis for pure lexi
ographi
 order or elimination

order from the Gr�obner basis for total degree order. The theory extends straightforwardly in the

non-
ommutative 
ase.)

Finding dependen
ies. The algorithms to �nd linear dependen
ies between the derivatives of holo-

nomi
 fun
tions 
an be improved in several ways.

First, as already mentioned, Gaussian elimination as implemented is not optimal. It should be

rewritten in order to 
ompute only the eliminations that are needed in 
ase of su

ess, and to be

able to reenter the pro
edure without 
omputing again the eliminations already dealt with in 
ase

of failure.

Besides, the dependen
ies 
omputed by the programme are only dependen
ies between su

essive

derivatives with respe
t to the same indeterminates. This way, the ideals returned by the pro
edures

that 
ompute arithmeti
al operations on holonomi
 fun
tions may be smaller than the expe
ted

ones. (We get fewer equations than the number we would like to.) The ideals are zero dimensional,

but 
ontain less information than the theoreti
al result. When used for further 
omputation,

like automati
 identity proving, this leads to a loss of eÆ
ien
y and to longer exe
ution times.

Therefore, an improvement would be to �nd other dependen
ies. The FGLM algorithm 
ould also

prove fruitful for this purpose: it sear
hes for all linear dependen
ies between terms after rewriting

into a normal form, so that it should be possible to get more than re
tangular systems.

Finally, it has already been explained that the algorithm �nding dependen
ies is a rewriting

algorithm, and that the algorithm whi
h 
omputes generators de�ning an algebrai
 fun
tion 
an be

redesigned to be a rewriting algorithm too. Both algorithms 
ould therefore be merged to 
ompute

ideals de�ning expressions involving both algebrai
 and holonomi
 fun
tions at the same time.

Filtrations, asso
iated graded algebras and Bernstein inequality. In the 
ase of the di�erentiation,

the 
lass of holonomi
 fun
tions is the Bernstein 
lass of fun
tions f su
h that I

f

is of the low-

est possible Bernstein dimension allowed by Bernstein inequality. We would like to explore this

dire
tion, to know whether Bernstein inequality 
an be generalised to admissible Ore algebras.

Another point is that �ltrations other than the Bernstein �ltration might lead to a graded algebra

and to an equivalent of Bernstein inequality for non-admissible Ore algebras. In that 
ase, holonomy


ould be extended to other operators.

Di�erential algebra and elimination. We feel that the elimination needed to 
ompute a diagonal


ould be performed with Gr�obner-like elimination instead of Gaussian elimination.

However, it appeared on examples that it is not possible to use our pa
kage as it is. The reason

seems to be that some 
ru
ial steps of elimination are forbidden by the de�nition of redu
tion.

More pre
isely, Lipshitz's algorithm implements a spe
ial 
ase of elimination of x in an extended

Ore algebra K (x)h�i. This elimination is not possible with the extension of Bu
hberger's algorithm

that we presented|x 
an only be eliminated in the Ore algebra K hx; �i. The problem is that

we do not have any algorithm to 
ompute the 
ontra
ted ideal I = V \ K hx; �i for any given

ideal V � K (x)h�i. This problem of 
ontra
tion seems to be related to that of 
omputing a

fra
tional ideal 1=sI, where I is an ideal of a 
ommutative entire ring and s any element of this


ommutative ring. (The fra
tional ideal 1=sI is the set of fra
tion a=s for all a 2 I.) An extension

of this 
on
ept that 
ould prove useful is given by Ritt in the 
ase of di�erential algebra in [21℄.

The redu
tion de�ned there gives a prominent role to what are 
alled initial of an operator. These


on
epts may 
orrespond to what is missing in Bu
hberger's version to perform elimination in the


omputation of a diagonal.
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We 
ould also take advantage of 
omputing 
ontra
ted ideals in other 
losure operations: the

example of the binomial 
oeÆ
ients in Se
tion 2.2 shows that the identity from Pas
al's triangle is

hidden in a fra
tional ideal.

Automati
 proof of identities. Using our pa
kage, we would like to implement an identity 
he
ker.

Given an identity, it would determine holonomi
 systems de�ning ea
h 
omponent of the equation,

and then 
he
k whether suÆ
iently many initial 
onditions are satis�ed. In this way, we would

get a pro
edure proving or disproving an identity, provided that it is 
aptured by the theory of

holonomy.

Moreover, on
e a holonomi
 system satis�ed by an expression has been 
omputed, it is in some


ases easy to determine a solution (espe
ially an hypergeometri
 one). Thus, the implementation

of an identity 
he
ker would also provide us with an identity dis
overing pro
edure. In parti
ular,

some summations or integrals 
ould be solved by this pro
edure.

Initial 
onditions. Our pa
kage 
annot deal with the initial 
onditions of sequen
es or fun
tions.

Indeed, they deal only with germs of sequen
es and fun
tions. They are therefore unable to deal

with P -re
ursive sequen
es, stri
tly speaking, sin
e no data stru
ture en
apsulates the P -re
ursive-

ness of the k-se
tion of a P -re
ursive sequen
e, as de�ned in De�nition 1.9.

Be
ause of that, it is neither possible to pass from equations on a P -re
ursive sequen
e to

equations on the asso
iatedD-�nite fun
tion, nor 
onversely from aD-�nite fun
tion to the P -re
ur-

sive sequen
e de�ning its generating series. However, this 
hange of representation is very useful

in proving identities (see a simple example in [12℄), so that it has to be implemented in view of

implementing an identity solver.

Ground �eld. All the equations dealt with are equations with polynomial 
oeÆ
ients. It would

be interesting to study to what extent the theory extends if we 
hange the base �eld of rational

fra
tions in x by a �eld of rational fun
tions in additional indeterminates, su
h as e

x

for example.

In parti
ular, although the 
losure under sum and produ
t 
ertainly holds in this framework, there

is no 
losure under diagonal.

As far as programming is 
on
erned, we would have to generalise our Mgfun pa
kage so that

it deals with several indeterminates sensitive to the same di�erentiation, a

ording to di�erent


ommutation rules. As an example, we would like to 
hange the base �eld to K hx; e

x

; �i with both


ommutation rules �x = x� + 1 and �e

x

= e

x

� + e

x

. (Note that it is already possible to 
ompute

in K he

x

; �i. See the example in Se
tion 5.3.)

The point that makes this approa
h interesting is that the theory of Gr�obner bases is known in

su
h a framework: Bu
hberger's algorithm has been extended by Kandri-Rody and Weispfenning

to algebras like K hx; e

x

;D

x

i, namely polynomial rings of solvable type (see [15℄). An interesting

open problem is to �nd an analogue to Zeilberger's 
reative teles
oping.

q-
al
ulus. Another dire
tion of investigation is the q-
al
ulus. The pseudo-di�erential opera-

tor H

(q)

of q-dilation de�ned by the 
ommutation rule H

(q)

x = qxH

(q)


an be used to generate

an Ore algebra K hx;H

(q)

i. Wilf and Zeilberger showed in [31℄ how it is possible to implement

hypergeometri
 q-
al
ulus by spe
ialised algorithms and to prove multi-sum or integral identities

in this 
ontext. Sin
e in the ordinary 
al
ulus, many multi-sum or integral identities are 
aptured

by the holonomi
 theory, we hope to be able to prove some q-
al
ulus identities with the help of

our pa
kage.

Hypergeometri
 
ase. Moreover, Zeilberger|and others|implemented the algorithms des
ribed

in [31℄. We would like to 
ompare their programmes and our pa
kage in the 
ase of hypergeometri


fun
tions in order to �nd points that 
ould be improved in our implementation, in parti
ular if

there are methods that 
an be generalised to the 
lass of holonomi
 fun
tions.
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Takayama's Kan system. Takayama's Kan system performs algebrai
 manipulations on the poly-

nomial ring K [x

1

; : : : ; x

n

℄, on the Weyl algebra K hx

1

; : : : ; x

n

;D

1

; : : : ;D

n

i, on the di�eren
e Weyl

algebra K hx

1

; : : : ; x

n

;�

1

; : : : ;�

n

i and on the q-di�eren
e Weyl algebra K hx

1

; : : : ; x

n

;�

(q)

1

; : : : ;�

(q)

n

i,

when K is Q or Z=pZ (see [28, 29℄). When R is one of the algebras listed above, the system provides

us with arithmeti
 in R

m

, with 
omputation of Gr�obner bases of left ideals of R and with a test

of membership for left submodules of R

m

. The pro
edures are in C and 
an be interfa
ed with C

programmes.

Notwithstanding the fa
t that our pa
kage are in Maple, there would be mu
h interest in


omparing them with Kan from the point of view of the 
lass of fun
tion and sequen
es that both

systems deal with, and from the point of view of eÆ
ien
y.
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Set of polynomials grobner[gbasis℄ Mgfun[gbasis℄ Mgfun[gbasis℄ Mgfun[gbasis℄

(tdeg) Maple release V.3 May '95 De
 '94 Jun '94

Steiner1 7.883 1.716 5.016

Steiner1e 7.983 1.716 4.700

Steiner2 2.333 1.116 2.433

Steiner2e 2.416 1.133 2.433

Gerdt1 130.549 719.466

Gerdt2 2.816 1.250 5.383 5.500

Cy
li
Roots3 0.216 0.166 0.283 0.283

Cy
li
Roots3h 0.266 0.149 0.300 0.283

Cy
li
Roots4 1.050 0.766 1.800 1.966

Cy
li
Roots4h 1.116 0.833 1.850 2.116

Cy
li
Roots5 43.699 136.266 270.150

Cy
li
Roots5h 70.633 96.033 255.116

ParamCurve 4.283 7.783 33.666 32.316

Integer1 8.250 10.183 21.616

Set of polynomials grobner[gbasis℄ Mgfun[gbasis℄ Mgfun[gbasis℄ Mgfun[gbasis℄

(plex) Maple release V.3 May '95 De
 '94 Jun '94

Gerdt1 58.083 46.983

Gerdt2 128.466 56.616 121.450 134.116

Cy
li
Roots3 0.216 0.166 0.150 0.183

Cy
li
Roots3h 0.200 0.183 0.183 0.183

Cy
li
Roots4 1.016 0.933 1.516 1.966

Cy
li
Roots4h 1.700 1.033 1.783 2.100

ParamCurve 240.966 29.233 422.716 648.750

Table 2. Compared timings of Gr�obner bases 
omputations with our Mgfun pa
k-

age and with the grobner pa
kage

Appendix A. Exe
ution times for Gr

�

obner bases 
omputations

We �rst 
ompare our Mgfun pa
kage withMaple's grobner pa
kage in the 
ase of 
ommutative

algebras. This 
omparison shows that our pa
kage is 
ompetitive. Next, we give timings for non-


ommutative 
omputations of binomial sums. These examples should be 
ompared to Zeilberger's

approa
h (see [34℄).

Our implementation of the sugar method lessens the 
omputation times: although we have not

made 
omparative tests between the normal and the sugar strategies, we gained an average fa
tor

of 2 on several examples. A 
omparison with the gbasis fun
tion of the grobner pa
kage inMaple

lets us hope that, after some more optimisation of the 
ode, we 
ould a
hieve faster times in all

examples with our pa
kage than with the grobner pa
kage; The exe
ution times of our tests 
an

be found in Table 2 and the 
orresponding sets of polynomials in Table 3. These tests have been

performed on a De
 Alpha 6000/400 with 64M of memory. The most astonishing result is that

the sugar strategy does not lead to the same speed-up, 
ompared to Maple's normal strategy,

a

ording to what the term order is:

{ with the pure lexi
ographi
 term order, our implementation of the sugar strategy is always

the best, with at least a speed-up of 10%; this 
on�rms Giovini, Mora, Niesi, Robbiano and

Traverso's results in [14℄;

{ with the total degree order, our implementation behaves better than the gbasis fun
tion of

Maple's grobner pa
kage with small examples, but takes longer times on bigger examples;

this is parti
ularly impressive in the 
ase of the Gerdt1, Cy
li
Roots5 and Cy
li
Roots5h

examples; we have not found any explanation for this, yet.
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Name Polynomials Indeterminates

Steiner1 fr

2

a

� (x+ a)

2

� y

2

; r

2

b

� (x� b)

2

� y

2

; r

2




� x

2

� (y � 1)

2

; r

a

; r

b

; r




; f; x; y

f � r

a

� r

b

� r




g

Steiner1e fr

2

a

� (x+ a)

2

+ y

2

; r

2

b

� (x� b)

2

+ y

2

; r

2




� x

2

+ (y � 1)

2

; r

a

; r

b

; r




; f; x; y

f � r

a

� r

b

� r




g

Steiner2 fr

2

a

� (x+ a)

2

� y

2

; r

2

b

� (x� b)

2

� y

2

; r

2




� x

2

� (y � 1)

2

; r

a

; r

b

; r




; f

f � r

a

� r

b

� r




g

Steiner2e fr

2

a

� (x+ a)

2

+ y

2

; r

2

b

� (x� b)

2

+ y

2

; r

2




� x

2

+ (y � 1)

2

; r

a

; r

b

; r




; f

f � r

a

� r

b

� r




g

Gerdt1 fyw � 1=2zw + tw;�2=7uw

2

+ 10=7vw

2

x; y; z; t; u; v; w

� 20=7w

3

+ tu� 5tv + 10tw;

2=7yw

2

� 2=7zw

2

+ 6=7tw

2

� yt+ zt� 3t

2

;

� 2v

3

+ 4uvw + 5v

2

w � 6uw

2

� 7vw

2

+ 15w

3

+ 42yv;

� 14zv � 63yw + 21zw � 42tw + 147x;

� 9=7uw

3

+ 45=7vw

3

� 135=7w

4

+ 2zv

2

� 2tv

2

� 4zuw + 10tuw

� 2zvw � 28tvw + 4zw

2

+ 86tw

2

� 42yz

+ 14z

2

+ 42yt� 14zt� 21xu+ 105xv � 315xw;

6=7yw

3

� 9=7zw

3

+ 36=7tw

3

� 2xv

2

� 4ytw + 6ztw � 24t

2

w + 4xuw

+ 2xvw � 4xw

2

+ 56xy � 35xz + 84xt;

2uvw � 6v

2

w � uw

2

+ 13vw

2

� 5w

3

+ 14yw � 28tw;

u

2

w � 3uvw + 5uw

2

+ 14yw � 28tw;

� 2zuw � 2tuw + 4yvw + 6zvw � 2tvw

� 16yw

2

� 10zw

2

+ 22tw

2

+ 42xw;

28=3yuw + 8=3zuw � 20=3tuw � 88=3yvw

� 8zvw + 68=3tvw + 52yw

2

+ 40=3zw

2

� 44tw

2

� 84xw;

� 4yzw + 10ytw + 8ztw � 20t

2

w

+ 12xuw � 30xvw + 15xw

2

;

� y

2

w + 1=2yzw + ytw � ztw + 2t

2

w

� 3xuw + 6xvw � 3xw

2

;

8xyw � 4xzw + 8xtw

Gerdt2 f35y

2

� 30xy

2

� 210y

2

z + 3x

2

+ 30xz x; y; z; t; u; v

� 105z

2

+ 140yt� 21u;

5xy

3

� 140y

3

z � 3x

2

y + 45xyz � 420yz

2

+ 210y

2

t� 25xt+ 70zt+ 126yug

Cy
li
Roots3 fx+ y + z; xy + yz + zx; xyz � 1g x; y; z

Cy
li
Roots3h fx+ y + z; xy + yz + zx; xyz � h

3

g x; y; z; h

Cy
li
Roots4 fx+ y + z + t; xy + yz + zt+ tx; x; y; z; t

xyz + yzt+ ztx+ txy; xyzt� 1g

Cy
li
Roots4h fx+ y + z + t; xy + yz + zt+ tx; x; y; z; t; h

xyz + yzt+ ztx+ txy; xyzt� h

4

g

Cy
li
Roots5 fx+ y + z + t+ u; xy + yz + zt+ tu+ ux; x; y; z; t; u

xyz + yzt+ ztu+ tux+ uxy;

xyzt+ yztu+ ztux+ tuxy + uxyz; xyztu� 1g

Cy
li
Roots5h fx+ y + z + t+ u; xy + yz + zt+ tu+ ux; x; y; z; t; u; h

xyz + yzt+ ztu+ tux+ uxy;

xyzt+ yztu+ ztux+ tuxy + uxyz; xyztu� h

5

g

ParamCurve fx

31

� x

6

� x� y; x

8

� z; x

10

� tg x; y; z

Integer1 fx

2

yz

4

� t; x

5

y

7

� z

2

u;�x

3

zv + y

2

;�z

5

w + xy

3

g x; y; z; t; u; v; w

Table 3. Polynomials used for the tests
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Summand Mgfun[gbasis℄

 

n

k

!

0.383

 

n

k

!

2

1.116

 

n

k

! 

n+ k

k

!

0.766

 

n

k

!

3

5.683

(�1)

k

 

n

k

!

3

5.083

 

n

k

!

2

 

n+ k

k

!

2

68.550

(�1)

k

 

2n

n+ k

!

3

3769.316

(�1)

k

 

2n

n+ k

! 

n

k

!

2

1

Table 4. Timings for hypergeometri
 summations

Moreover, the ratios of times between a set of polynomials in total degree order and the same set

in pure lexi
ographi
 order, as well as the ratios of times between two sets in the same term order

are di�erent from what was found in [14℄. On
e again, we do not have any explanation.

As expe
ted, the times in plex|pure lexi
ographi
 term order|are mu
h longer than those

in tdeg|total degree order (ex
ept for the troubling 
ase of Gerdt1). The other result that was

to be waited for is that the series of examples dealing with 
y
li
 roots is more and more diÆ
ult,

while the number of indeterminates in
reases.

We give examples of non-
ommutative 
omputations in Table 4. All these examples 
ompute an

operator that vanishes in the de�nite sum of the summand under 
onsideration. (The sum is over Z.)

They use Gr�obner bases to perform elimination of the summation index (see Se
tion 5.2.1 for a

dis
ussion of 
reative teles
oping). We also tried to perform this elimination using the alternative of

Eu
lidean division (sin
e in all 
ases, a single indeterminate is eliminated from a pair of operators).

At �rst, we expe
ted better timings with this se
ond approa
h. However, the 
ase of Ap�ery numbers

(the sum of the

�

n

k

�

2

�

n+k

k

�

2

over k 2 Z) astonishingly shows that the Gr�obner bases approa
h 
an

be more eÆ
ient, though we do not have a 
omplete explanation.

As side produ
ts, some of these non-
ommutative eliminations give simple enough operators to

prove the following automati
 theorems.

Automati
 Theorem 5. The following identity holds

X

k2Z

 

n

k

!

= 2

n

:
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Automati
 Theorem 6. The following identity holds

X

k2Z

 

n

k

!

2

=

 

2n

n

!

:

The other eliminations introdu
e too many parasiti
 solutions to straightforwardly lead to a


losed form for the sum. However, it is sometimes possible to derive a minimal equation (without

any parasiti
 solutions left), as is des
ribed on the example of Ap�ery numbers, in Appendix B.

Appendix B. A new holonomi
 proof of Ap

�

ery's re
urren
e

We pro
eed to show on an example how holonomi
 
losures 
an be applied to the proof of

identities. In this se
tion, we fo
us on re
urren
e equations and holonomi
 sequen
es.

The example dealt with here is related to Ap�ery's original proof that the number

�(3) =

+1

X

n=1

1

n

3

is irrational. This proof makes 
ru
ial use of the following re
urren
e

(n+ 2)

3

a

n+2

� ((n+ 2)

3

+ (n+ 1)

3

+ 4(2n+ 3)

3

) a

n+1

+ n

3

a

n

= 0(39)

between the famous Ap�ery numbers

a

n

=

n

X

k=0

 

n

k

!

2

 

n+ k

k

!

2

:(40)

In order to prove equation (39), we follow Strehl's presentation in [24℄ and introdu
e the Franel

numbers

f

n

=

n

X

k=0

 

n

k

!

3

:

(See also van der Poorten's presentation of Ap�ery's proof in [30℄.)

We make equation (39) rely on the following identity between Ap�ery and Franel numbers

n

X

k=0

 

n

k

!

2

 

n+ k

k

!

2

=

n

X

k=0

 

n

k

! 

n+ k

k

!

k

X

j=0

 

k

j

!

3

:(41)

Proving this identity is motivated by the values of initial terms: ea
h side of it have the 
ommon

following �rst values

1; 5;73; 1445; 33001; 819005; 21460825; 584307365; 16367912425;

468690849005; 13657436403073:

To prove the identity, we pro
eed by 
omputing atomi
 subexpressions �rst, then by 
omputing

bigger and bigger subexpressions until we get both sides of the identity.

Example. We now prove identities (39) and (41) by means of our pa
kage Mgfun. We �rst load

the pa
kage.

> with(Mgfun):

To 
ompute the Franel numbers f

k

=

P

k

j=0

�

k

j

�

3

, we �rst introdu
e the summand

�

k

j

�

3

along with


orresponding operators in the Ore algebra K hn; k; S

n

; S

k

i.

> A:=orealg([k,shift,Sk℄,[j,shift,Sj℄):

G:=map((w,h,a)->numer(expand(applyopr(args)/h-w)),

[Sk,Sj℄,binomial(k,j)^3,A);
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h

k

3

+ 3k

2

+ 3k + 1� k

3

S

k

� 3k

2

S

k

+ 3k

2

jS

k

� 3kS

k

+ 6kjS

k

� 3kj

2

S

k

� S

k

+ 3jS

k

� 3j

2

S

k

+ j

3

S

k

;

k

3

� 3k

2

j + 3kj

2

� j

3

� j

3

S

j

� 3j

2

S

j

� 3jS

j

� S

j

i

The next step is to perform elimination of j to get the Franel numbers by 
reative teles
oping (see

Se
tion 5.2.1).

> T:=termorder(A,lexdeg=[[j℄,[Sk,Sj℄℄,max):

GB:=gbasis(G,T,ratpoly(rational,[k,j℄)):

subs(Sj=1,sele
t((f,v)->not has(args),GB,j));

h

�56� 136k � 240S

k

+ 3k

3

S

3

k

� 104k

2

� 45k

3

S

k

� 240k

2

S

k

� 419kS

k

+ 51kS

3

k

+ 22k

2

S

3

k

� 24k

3

+ 36S

3

k

� 232kS

2

k

� 18k

3

S

2

k

� 114k

2

S

2

k

� 148S

2

k

i

This yields an operator in the algebra K hk; S

k

i. We then view the Franel numbers as a sequen
e

in the multi-index (n; k) and de
lare them to be independent of n.

> GL[s
ube℄:=["[1℄,Sn-1℄:

We then de�ne the produ
t of binomials

 

n

k

! 

n+ k

k

!

in the algebra K hn; k; S

n

; S

k

i:

> A:=orealg([n,shift,Sn℄,[k,shift,Sk℄):

GL[bin2℄:=map((w,h,a)->numer(expand(applyopr(args)/

h-w)),[Sn,Sk℄,binomial(n,k)*binomial(n+k,k),A);

h

n+ 1 + k � nS

n

� S

n

+ kS

n

; n

2

+ n� k � k

2

� k

2

S

k

� 2kS

k

� S

k

i

Multipli
ation with the Franel numbers yields the summand of the right-hand side of equation (41).

> T:=termorder(A,tdeg=[Sn,Sk℄,max):

hprod(GL[bin2℄,GL[s
ube℄,3,T):

One more 
reative teles
oping (eliminating k) 
omputes the right-hand side:

T:=termorder(A,lexdeg=[[k℄,[Sn,Sk℄℄,max):

GB:=gbasis(G,T,ratpoly(rational,[k,n℄)):

subs(Sk=1,sele
t((f,v)->not has(args),GB,k)):

FRANEL:=
olle
t(op("),Sn,fa
tor);
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FRANEL := (2n+ 7)(2n + 5)(2n+ 3)(3n+ 16)(n+ 6)(n+ 3)(n+ 7)

3

S

7

n

�(2n+ 13)(2n + 5)(2n+ 3)(n+ 6)(n+ 3)

�

93n

4

+ 2021n

3

+ 16187n

2

+ 56403n + 71744

�

S

6

n

�(2n+ 5)(2n + 3)(2n+ 11)

�

297n

6

+ 9294n

5

+ 119466n

4

+806264n

3

+ 3008333n

2

+ 5873514n + 4679744

�

S

5

n

�(2n+ 9)(2n + 3)(2n+ 13)

�

201n

6

+ 6418n

5

+ 79666n

4

+500380n

3

+ 1691885n

2

+ 2933642n + 2044000

�

S

4

n

+(2n+ 7)(2n + 3)(2n+ 13)

�

201n

6

+ 3230n

5

+ 15906n

4

�348n

3

� 236211n

2

� 702906n � 641200

�

S

3

n

+(2n+ 5)(2n + 13)(2n+ 11)

�

297n

6

+ 4962n

5

+ 32826n

4

+109768n

3

+ 195341n

2

+ 174950n + 61488

�

S

2

n

+(2n+ 13)(2n + 11)(2n + 3)(n+ 5)(n+ 2)

�

93n

4

+ 955n

3

+ 3395n

2

+ 5021n + 2664

�

S

n

�(3n+ 8)(2n + 13)(2n+ 11)(2n + 9)(n+ 5)(n+ 2)(n+ 1)

3

Note that this is a 7 order re
urren
e of degree 9.

The same pro
ess applies to the produ
t of binomials

 

n

k

!

2

 

n+ k

k

!

2

that o

urs in the de�nition of Ap�ery numbers (40). However, 
reative teles
oping returns two

operators and we have to perform extended g
d 
omputation to get a (single) minimal operator:

� (2n+ 5)(2n + 3)(4n+ 13)(n+ 4)(n+ 5)

3

S

5

n

+ (2n+ 9)(2n + 3)(n+ 4)

�

140n

4

+ 2077n

3

+ 11351n

2

+ 27015n + 23577

�

S

4

n

� 2(2n+ 7)(2n+ 3)

�

68n

5

+ 1457n

4

+ 11990n

3

+ 47698n

2

+ 92110n + 69217

�

S

3

n

� 2(2n+ 9)(2n+ 5)

�

68n

5

+ 583n

4

+ 1502n

3

+ 290n

2

� 3554n � 3349

�

S

2

n

+ (2n+ 9)(2n + 3)(n+ 2)

�

140n

4

+ 1283n

3

+ 4205n

2

+ 5841n + 2931

�

S

n

� (4n+ 11)(2n + 9)(2n+ 7)(n+ 2)(n+ 1)

3

;

(n+ 2)(2n+ 3)(n+ 4)

3

S

4

n

� (2n+ 7)(2n + 3)

�

18n

3

+ 162n

2

+ 474n+ 445

�

S

3

n

+ (2n+ 5)

�

70n

4

+ 700n

3

+ 2558n

2

+ 4040n + 2313

�

S

2

n

� (2n+ 7)(2n + 3)

�

18n

3

+ 108n

2

+ 204n+ 125

�

S

n

+ (2n+ 7)(n+ 3)(n+ 1)

3

> A:=orealg([n,shift,Sn℄):

APERY:=skewg
dex(",Sn,[n℄,A,

ratpoly(rational,[n℄))[1℄;
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APERY : = 21� 2625S

n

� 6848n

2

S

n

� 792n

4

S

n

+ 76n� 72n

5

S

n

� 3354n

3

S

n

+ 104n

2

� 72n

5

S

3

n

� 5514n

3

S

3

n

� 14662n

2

S

3

n

� 1008n

4

S

3

n

+ 11565S

2

n

� 6784nS

n

� 18854nS

3

n

+ 384S

4

n

+ 140n

5

S

2

n

+ 24826nS

2

n

+ 8616n

3

S

2

n

+ 1750n

4

S

2

n

+ 20870n

2

S

2

n

+ 19n

4

+ 66n

3

+ 2n

5

S

4

n

+ 186n

3

S

4

n

+ 536n

2

S

4

n

+ 31n

4

S

4

n

+ 736nS

4

n

� 9345S

3

n

+ 2n

5

Note that this is a 4 order re
urren
e of degree 5.

Now, the operator l
m(APERY;FRANEL) 
an
els both sides of identity (41) and Ore's theory

of skew polynomial rings (see [20℄) proves that the order of this l
m is at most 7 + 4 � 1 = 10.

Thus, proving (or disproving) identity (41) redu
es to 
omparing the initial values of both sides

for n = 0; : : : ; 10, sin
e these �rst 11 values determine whi
h solution of the operator is being dealt

with|it 
an be shown that the leading 
oeÆ
ient of the l
m never vanishes on the non-negative

integers. We have already noti
ed that the initial values 
oin
ide, so we proved the following

automati
 theorem.

Automati
 Theorem 7. The identity

n

X

k=0

 

n

k

!

2

 

n+ k

k

!

2

=

n

X

k=0

 

n

k

! 

n+ k

k

!

k

X

j=0

 

k

j

!

3

holds for any non-negative integer n.

Sin
e identity (41) is true, Ap�ery numbers de�ned by (40) satisfy both operators APERY

and FRANEL. Therefore, they satisfy the g
d of these operators. This yields Ap�ery's se
ond

order re
urren
e:

> primpart(skewg
dex(FRANEL,APERY,Sn,[n℄,A,ratpoly(rational,[n℄))[1℄,Sn);

(n+ 2)

3

S

2

n

� (2n+ 3)

�

17n

2

+ 51n+ 39

�

S

n

+ (n+ 1)

3

(This is another form of identity (39).) We have got another automati
 theorem.

Automati
 Theorem 8. The Ap�ery numbers

a

n

=

n

X

k=0

 

n

k

!

2

 

n+ k

k

!

2

satisfy the se
ond order re
urren
e equation

(n+ 2)

3

a

n+2

� ((n+ 2)

3

+ (n+ 1)

3

+ 4(2n+ 3)

3

) a

n+1

+ n

3

a

n

= 0:

The previous 
omputations have been performed in 3 minutes on a De
 3000 (alpha).

Appendix C. Des
ription of our pa
kage

The Mgfun pa
kage 
onsists of three layers:

{ OreAlgebra, that performs simple arithmeti
 on Ore algebras;

{ OreGroebner, that 
omputes (pseudo-)di�erential Gr�obner bases;

{ Holonomi
, that implements some 
losure properties of holonomi
 fun
tions.

Ea
h layer uses the fun
tionalities of the previous ones to implement its own algorithms. In the

following subse
tions, we des
ribe the fun
tions of ea
h layer that are available to the user.
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C.1. The OreAlgebra layer. The fun
tion orealg 
reates a new Ore algebra. It must be provided

with the names of indeterminates x

i

, the type of the 
orresponding operators �

i

that are applied on

ea
h of these indeterminates and the names of the 
orresponding pseudo-di�erential indeterminates.

Ea
h type is either a prede�ned one (di�erential, shift or di�eren
e) or one de�ned by the user. In

the former 
ase, the implementation uses 
orresponding de�nitions for the fun
tions �

i

and Æ

i

; in

the latter 
ase, the user must provide the system with them. A 
all to orealg returns a Maple

stru
ture en
apsulating a des
ription of the newly 
reated algebra. This des
riptor has to be present

as last argument in any 
all of a fun
tion of the OreAlgebra layer.

The fun
tion weylalg is an simpler alternative to orealg to de�ne Weyl algebras.

The fun
tion 
ommalg 
reates a new 
ommutative algebra of polynomials. It is used to re
over

the usual 
ommutative Bu
hberger algorithm.

The fun
tion opprod 
omputes the produ
t of two elements of a given Ore algebra.

The fun
tion oppower 
omputes the power of an element of a given Ore algebra.

The fun
tion randopr randomly generates an element of a given Ore algebra.

The fun
tion applyopr applies the operator asso
iated to an element of an Ore algebra on a

fun
tion.

The fun
tion makeopr returns the operator asso
iated to an element of an Ore algebra. This

operator 
an then be applied on a fun
tion.

The fun
tion annihilators 
omputes a non trivial linear 
ombination of two elements of an Ore

algebra (this gives l
m's).

The fun
tion skewg
dex is an extended g
d 
omputation in Ore algebras.

The fun
tion skewelim eliminates an indeterminate between two elements of an Ore algebra by

means of the previous extended g
d 
omputation.

C.2. The OreGroebner layer. The fun
tion termorder 
reates a new term order in a given Ore

algebra|that must have been de�ned using orealg. The term order is either a prede�ned one

(pure lexi
ographi
 order, total degree order or elimination order) or one de�ned by the user. A


all to termorder returns aMaple stru
ture en
apsulating a des
ription of the newly 
reated term

order. This des
riptor has to be present as last argument in any 
all of a fun
tion of the OreGroebner

layer.

The fun
tion gbasis 
omputes the redu
ed Gr�obner basis of a set of elements of an Ore algebra.

The fun
tion redu
e fully redu
es an element of an Ore algebra by a set of elements of the same

algebra.

The fun
tion redu
elist inter-redu
es a list of elements of an Ore algebra.

The fun
tion redu
es
ale does the same as redu
e, but returns

The fun
tion spoly 
omputes the S-polynomial (or syzygy) of two elements of an Ore algebra.

The fun
tion leadmon �nds the leading term and the leading 
oeÆ
ient of an element of a given

Ore algebra.

The funtion testorder tests the order of two terms with respe
t to a given term order.

C.3. The Holonomi
 layer. The fun
tion hsum 
omputes the sum of two holonomi
 fun
tions.

The fun
tion hprod 
omputes the produ
t of two holonomi
 fun
tions.

The fun
tion hsympow 
omputes the power of a holonomi
 fun
tion.

The fun
tion dependen
y sear
hes for a dependen
y between (pseudo-)derivatives of an expres-

sion involving holonomi
 fun
tions.

The fun
tion algtoholon 
omputes (pseudo-)di�erential operators de�ning an algebrai
 fun
tion

as holonomi
.

The fun
tion hdiag 
omputes the diagonal of a holonomi
 fun
tion.
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