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Abstrat. We present a omputer algebra pakage in theMaple language for the symboli

manipulation of linear systems of di�erential and reurrene equations. This programme

is espeially designed to deal with so-alled holonomi systems. This report also gives a

theoretial justi�ation to our implementation.

The set of holonomi funtions and sequenes is a large lass of objets. It forms an

algebra and is losed under algebrai substitution and diagonal. An implementation of these

properties makes it possible to perform omputer assisted proofs of holonomi identities in

a simple way, sine a holonomi system has a normal form obtained by an extension of

the Gr�obner basis algorithm. For instane, ombinatorial problems often lead to holonomi

systems and to identities involving binomial oeÆients. Many identities involving speial

funtions are also aptured by the theory of holonomy. Examples are given to show how

some interesting identities are proved by our system.

Introdution

An interesting lass of numerial sequenes is formed by sequenes (u

n

)

n2N

satisfying linear

reurrenes with polynomial (or equivalently rational) oeÆients, like

p

0

(n)u

n

+ p

1

(n)u

n+1

+ � � �+ p

2

(r)u

n+r

= 0:

In an analogous way, there is muh interest in studying funtions f in one variable x that are

solutions of linear di�erential equations with polynomial (or rational) oeÆients, suh as

p

0

(x) f(x) + p

1

(x) f

0

(x) + � � �+ p

r

(x) f

(r)

(x) = 0:

In the former ase the sequene (u

n

)

n2N

is alled P -reursive, in the latter the funtion f(x) is

alled D-�nite. Moreover, the link between both onepts is very strong: a sequene (u

n

)

n2N

is

P -reursive if and only if its orresponding generating funtion

f(x) =

+1

X

n=0

u

n

x

n

is D-�nite. The same word holonomi, that was �rst legitimated by the theory of D-modules in the

ase of D-�nite funtions, is now used in both ases to emphasise this duality between P -reursive

sequenes and the orresponding D-�nite generating funtions.

This work was suggested by Ph. Flajolet and B. Salvy and has been onduted in the Algorithms

projet at INRIA, Roquenourt (Frane). It was partly supported by the Esprit Basi Researh Ation

of the E.C. No. 7141 (Alom II)
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2 FORMAL MANIPULATIONS OF LINEAR OPERATORS

P -reursive sequenes and aordingly D-�nite funtions enjoy a rih set of losure properties.

P -reursive sequenes extend sequenes satisfying reurrenes with onstant oeÆients; D-�nite

funtions extend funtions satisfying di�erential equations with onstant oeÆients. The set of

D-�nite funtions satisfy the following properties:

{ it is an algebra and in partiular is losed under sum and produt;

{ it ontains all algebrai funtions and is losed under algebrai substitution;

{ it is losed under Hadamard (i.e. term-wise) produt and under diagonal.

All these results are proved by Stanley in [23℄. P -reursive sequenes also form an algebra and

satisfy orresponding properties.

These interesting properties have led Salvy and Zimmermann to implement the Gfun Maple

pakage desribed in [22℄. This pakage manipulates sequenes, linear reurrene equations or

linear di�erential equations and generating funtions of various types. In partiular, they have

implemented algorithms that ompute the sum, produt and Hadamard produt of holonomi

funtions in a single variable and sum, produt and Cauhy produt of holonomi sequenes in a

single index.

For instane, sine the funtion f =

1

p

1�z

is algebrai, hene holonomi, and the funtion g =

os(z) is holonomi, their pakage Gfun is able to ompute a di�erential equation satis�ed by

h =

1

1� z

+

os z

p

1� z

= f (f + g):

The answer of the programme is

(16z

5

� 80z

4

+ 172z

3

� 196z

2

+ 116z � 28)h

000

+(32z

4

� 128z

3

+ 240z

2

� 224z + 80)h

00

+(16z

5

� 80z

4

+ 168z

3

� 184z

2

+ 125z � 45)h

0

+(16z

4

� 64z

3

+ 136z

2

� 144z + 53)h = 0:

The theory of holonomi funtions and sequenes allows automati proof of a large lass of

identities. Zeilberger has given in [33℄ an algorithm to prove ertain ombinatorial identities and

ertain identities involving speial funtions. This algorithm works by searhing for equations

satis�ed by eah side of the identity to be proved|or to be disproved. Then, if these equations are

ompatible and suÆiently many initial onditions are satis�ed, the identity holds. The basi idea

is that holonomi funtions an be identi�ed by a �nite amount of information. More spei�ally,

they are fully haraterised by a �nite number of equations and a �nite number of initial onditions.

Furthermore, using the theory of holonomy, it is not only possible to hek identities, but also to

evaluate sums of holonomi sequenes and integrals of holonomi funtions. An example is given

by Flajolet and Salvy in [12℄. Again with Gfun, they ompute a reurrene equation in n satis�ed

by



n

=

n

X

m=0

 

�

1

4

m

!

2

 

�

1

4

n�m

!

2

:

Using Gfun and a stepwise onstrution of the 

n

, they �nd the reurrene

8n

3



n

� (2n� 1)

3



n�1

= 0:

Using the initial onditions on , it is then obvious that

n

X

m=0

 

�

1

4

m

!

2

 

�

1

4

n�m

!

2

=

1

2

6n�3

 

2n� 1

n

!

3

:

This example is one of many ombinatorial problems that naturally lead to holonomi equations.

The onept of holonomy readily extends to several variables, that is, either multi-index sequenes

or multivariate funtions. A �rst attempt at generalisation to sequenes in several variables was
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done by Zeilberger in [32℄. The de�nitions given there appeared to be inaurate. This was �xed by

Lipshitz in [18℄. For onveniene, we all holonomi funtions the funtions, sequenes and formal

power series to whih we apply the onept of holonomy, whenever we want to denote any of these

ases. We shall onsider holonomi objets that may be

{ either sequenes de�ned on N

r

,

{ or funtions de�ned on K

s

,

and more generally

{ either funtions de�ned on a produt N

r

� K

s

,

{ or series h of formal power series

h : N

r

7! K [[x

1

; : : : ; x

s

℄℄;

where K is a �eld, r and s are integers.

An important work has been done in the ase of several variables by Takayama. This work led to

the implementation of his system Kan. In [25℄ and [26℄, Takayama presents the theory of Gr�obner

bases applied in the ase of modules over a Weyl algebra. In [26℄ and [27℄, he largely deals with

the problem of determining integrals or sums of holonomi funtions. His system Kan is desribed

in [28℄ and [29℄. It performs the major part of all operations on holonomi funtions dealt with in

this report. However, it is not able to work in the generality of all algebras of operators we onsider

in this report (namely ertain Noetherian Ore algebras).

As an example, Jaobi polynomials, that generalise Legendre polynomials obtained for � = � = 0,

J

(�;�)

n

(x) = 2

�n

n

X

k=0

 

n+ �

k

! 

n� �

n� k

!

(1 + x)

k

(1� x)

n�k

are typial holonomi funtions. (Both parameters � and � are �xed, only n and x vary.) Like

many orthogonal polynomials, they satisfy a seond order di�erential equation with polynomial

oeÆients in x and n and a seond order reurrene equation with polynomial oeÆients in x

and n. Besides, they satisfy a linear equation involving derivatives of several J

(�;�)

n

, for the same

values of � and � but for di�erent n. The system Kan annot work with these J

(�;�)

n

(x), while our

programme does (see Setion 4.1 for a similar example on Legendre polynomials).

As another example, the Frenh mathematiian Ap�ery proved in 1978 that the real number

�(3) =

+1

X

n=1

1

n

3

whih equals approximatively

1:2020569031595942853997381615114499907649862923405

is irrational, solving in this way a problem that dates bak to Euler.

Ap�ery's proof is based in a ruial way on the fat that the sequene

a

n

=

n

X

k=0

 

n

k

!

2

 

n+ k

k

!

2

satis�es the following polynomial reurrene of order 2 (with oeÆients of degree 3):

n

3

a

n

� (34n

3

� 51n

2

+ 27n� 5) a

n�1

+ (n� 1)

3

a

n�2

= 0:(1)

This result was �rst announed without a proof, and ost weeks of work to highly experiened

mathematiians. It is now known that it is aptured by the theory of holonomi sequenes and

that the proof an be performed automatially. Indeed, we will use our programme in Appendix B

to give a proof of identity (1).

The subjet of our work thus lies at a rossroad of domains:
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{ ombinatoris, sine a great deal of ombinatorial problems and some problems lose to

the analysis of algorithms involve holonomi reurrenes. For instane, numerous identi-

ties involving binomial oeÆients usually proved manually and painfully beome provable

automatially|at least in priniple;

{ the theory of speial funtions|in partiular, of hypergeometri funtions|, and the om-

putation of some integrals;

{ omputer algebra, sine many tools neessary to manipulate di�erential or reurrene op-

erators need to be speially developed in a high-level language suh as Maple.

In this work, we introdue a general framework that enompasses both D-�niteness and P -re-

ursiveness in several variables and vindiate it by our Maple pakage Mgfun. This programme

onsists of the three following layers:

(i) OreAlgebra, that performs elementary operations in ertain suitable non-ommutative al-

gebras;

(ii) OreGroebner, that omputes Gr�obner bases of left ideals in these non-ommutative algebras;

(iii) Holonomi, that performs operations on holonomi funtions.

This pakage is available:

{ by anonynous ftp on the site ftp.inria.fr diretory

/INRIA/Projets/algo/programms/Mgfun;

{ on the web at http://www-roq.inria.fr/Combinatoris-Library/www.

Plan of this report. We shall begin by realling results on the two typial lasses of holonomi

funtions that we have just mentioned, namely D-�nite funtions and P -reursive sequenes. This

is done in Setion 1.

Desriptions of suh holonomi funtions are given by systems of di�erential or di�erene equa-

tions respetively. These equations an be viewed as di�erential or di�erene operators vanishing

on a funtion. But di�erential operators an in turn be viewed as polynomials in a di�erential

indeterminate and reurrene operators as polynomials in a shift indeterminate. In order to make

both kind of operators oexist, we need a notion of pseudo-di�erential operators. In Setion 2, we

reall the de�nition of Weyl algebras and some properties of these rings of di�erential polynomi-

als, and then introdue a onept of Ore algebras to deal with mixed di�erential and reurrene

polynomials.

We also use some algebrai theory of di�erential modules: the onept of holonomy in left D-mod-

ules is related to the dimension of a di�erential ideal, and the set of operators that vanish either on

a D-�nite funtion or on a P -reursive sequene is preisely an ideal of the orresponding Weyl or

Ore algebra. Therefore, in Setion 3, we borrow some results from the theory of D-modules due to

Hilbert and Bernstein and we show how they have to be restrited in our ontext of Ore algebras.

This is where we de�ne holonomy, along with a onept of admissible Ore algebra in whih the

de�nition of holonomy is meaningful.

The algorithms that deal with di�erential and reurrene operators often perform redutions to

a normal form and elimination. In the single indeterminate ase, these operations of redution

and elimination are ahieved using the Eulidean division. In the ase of several indeterminates,

we use Gr�obner bases in a (pseudo-)di�erential ontext to generalise them. In Setion 4, we reall

Buhberger's algorithm to ompute Gr�obner bases and some of its lassial improvements. Then, we

show how we extend this method to non-ommutative algebra and we desribe our implementation

of non-ommutative Gr�obner bases.

Finally, in Setion 5, we give the algorithms urrently implemented in our pakage Mgfun to

ompute with holonomi funtions. We also desribe other algorithms for other operations on holo-

nomi funtions, that an be performed using our pakage as a toolbox. So far, our implementation

overs:

{ searh for linear dependenies between derivatives of an expression involving holonomi



D-FINITE FUNCTIONS, P -RECURSIVE SEQUENCES AND HOLONOMIC SYSTEMS 5

funtions;

{ sum and produt of two holonomi funtions and symmetri power of a holonomi funtion;

{ onversion of the polynomial equation de�ning a funtion as algebrai into equations de�ning

it as holonomi;

{ omputation of the generating funtion of a holonomi funtion,

{ diagonal of a holonomi funtion.

After this rather theoretial part, the appendix gives more pratial information.

We ompare our implementation withMaple's usual grobner pakage for ommutation Gr�obner

bases omputation in Appendix A. In partiular, we omment on some results of timings. We also

give exeution times for non-ommutative Gr�obner bases omputations.

Appendix B gives an example of use of our pakage to prove a very interesting identity about

Ap�ery numbers.

We omment on the proedures available in our pakage in Appendix C.

1. D-finite funtions, P -reursive sequenes and holonomi systems

We �rst introdue the two \pure" ases of holonomi funtions, D-�nite funtions in Setion 1.1

and P -reursive sequenes in Setion 1.2. We reall proofs of their losure properties and of the

fundamental equivalene theorem; detailed proofs an be found in [23, 18, 19℄. Then, in Setion 1.3,

we extend the de�nitions to holonomi systems, that involve both D-�niteness and P -reursiveness.

Throughout Setions 1.1 and 1.2, K is a �eld of harateristi zero. This �eld K will usually be Q,

R or C in pratie; it may also be a �nitely generated extension of Q for the purpose of e�etive

omputation.

1.1. D-�nite funtions.

1.1.1. De�nition and haraterisation. Let x denote a d-tuple of variables (x

1

; : : : ; x

d

).

De�nition 1.1. A formal power series f(x) =

P

i

1

�0;:::;i

d

�0

u

i

1

;:::;i

d

x

i

1

1

� � � x

i

d

d

2 K [[x℄℄ is alled D-�-

nite (or holonomi) if and only if the family

�

�

�

1

+�

2

+���+�

d

f

�x

�

1

1

�x

�

2

2

� � � �x

�

d

d

�

(�

1

;�

2

;:::;�

d

)2N

d

spans a �nite dimensional K (x)-vetor subspae of K [[x℄℄.

A formal power series f(x) =

P

i

1

�a

1

>�1;:::;i

d

�a

d

>�1

u

i

1

;:::;i

d

x

i

1

1

� � � x

i

d

d

2 K ((x)) is alled D-�nite

(or holonomi) if and only if the family

�

�

�

1

+�

2

+���+�

d

f

�x

�

1

1

�x

�

2

2

� � � �x

�

d

d

�

�2I

;

where I = f� 2 Z

d

j 8i = 1; : : : ; d �

i

� a

i

g spans a �nite dimensional K (x)-vetor subspae

of K ((x)).

When the series f onverges, the orresponding funtion is also alled D-�nite or holonomi.

In the ase of a single variable, this de�nition is simply another formulation of the one suggested

in the introdution, sine a linear di�erential equation with polynomial, or equivalently rational,

oeÆients satis�ed by f is nothing but a dependeny relation over K (x) of the

�

p

f

�x

p

's for p 2 N.

When � = (�

1

; : : : ; �

d

) 2 N

d

, let �

�

1

x

1

� � � �

�

d

x

d

, or even �

�

when there is no doubt on the set of

variables under onsideration, denote

�

�

1

+���+�

d

�x

1

�

1

� � � �x

d

�

d

:

Likewise, let x

�

denote x

�

1

1

� � � x

�

d

d

.

Moreover, we use �

i

in plae of �

x

i

eah time this does not reate any onfusion, and (x; �)

without any referene to any variable in the ase of a single pair of variables.
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The following proposition gives a simple haraterisation of D-�nite formal power series or of

D-�nite formal Laurent series.

Proposition 1.2. A formal power series or a formal Laurent series f of several variables x

1

; : : : ; x

d

is D-�nite if and only if there exist d polynomials P

i

with oeÆients in K [x℄ suh that

P

i

(�

i

) :f = 0:(2)

Proof. When f isD-�nite, the family f�

�

fg

�2N

d

spans by de�nition a �nite dimensional K (x)-vetor

spae. Thus it is the same for the families f�

p

i

g

p2N

with i 2 f1; : : : ; dg. Taking a dependeny relation

for eah of these families, and if neessary learing denominators, one �nds the P

i

's satisfying (2).

Conversely, with the use of the relations (2), any �

�

f an be rewritten as a linear ombination

over K (x) of the �

�

f where the � are limited by 0 � �

i

< degP

i

for all i 2 f1; : : : ; dg. �

De�nition 1.1 has been used for a long time in the ase of a single variable. Its generalisation

to the ase of several variables presents no surprise. Setion 1.2 shows that the situation is more

subtle in the ase of P -reursive sequenes.

A set of equation like (2) is sometimes alled a retangular system.

1.1.2. Operations on D-�nite power series. First, we reall simple losure results on D-�nite power

series (see [19℄); then we reall the de�nition of the diagonal of a formal power series together with

Lipshitz's important result that the diagonal of a D-�nite power series is D-�nite (see [18℄). Finally,

Hadamard produts and some kinds of integrals of D-�nite power series are D-�nite, sine they are

expressible in terms of diagonals.

Theorem 1.3. The following losure properties hold for D-�nite power series:

(i) D-�nite power series form a sub-algebra of K [[x℄℄;

(ii) if f is algebrai, then f is D-�nite;

(iii) if f(x) is D-�nite, g

i

(y

1

; : : : ; y

d

0

) is algebrai for i 2 f1; : : : ; dg and the substitution in f(x)

of eah x

i

by the orresponding g

i

(y

1

; : : : ; y

d

0

) is valid (i.e. if f(g

1

(0); : : : ; g

d

(0)) is de�ned),

then y 7�! (f Æ g)(y) = f(g

1

(y); : : : ; g

d

(y)) is D-�nite.

Corresponding results also hold for D-�nite Laurent series, with K [[x℄℄ replaed by K ((x)).

Proof. The proofs of these results are all based on the same idea: generate suÆiently many deriva-

tives of the funtion under onsideration and redue them into a �nite dimensional vetor spae,

thereby proving that the funtion is D-�nite. Moreover, the following proofs are also valid in the

ase of D-�nite Laurent series, with K [[x℄℄ replaed by K ((x)) and N

d

replaed by suitable subsets

of Z

d

.

Sum. Let f and g be two D-�nite formal power series. Let hf�

�

fg

�2N

d

i and hf�

�

gg

�2N

d

i denote

the K (x)-vetor spaes spanned by all derivatives of f or g respetively. Of ourse, these vetor

spaes are both �nite dimensional.

For any � 2 N

d

, �

�

(f + g) = �

�

f + �

�

g lies in a homomorphi image of the formal diret

sum hf�

�

fg

�2N

d

i � hf�

�

gg

�2N

d

i, whih is learly a �nite dimensional K -vetor spae. Therefore,

the subspae hf�

�

(f + g)g

�2N

d

i of this homomorphi image is also a �nite dimensional K (x)-vetor

spae.

(The meaning of a formal diret sum is that the diret sum must be taken as a formal summation

without any referene to the atual values of the �

�

f 's and the �

�

g's|exept that they span only

�nite dimensional spaes. In other words, the �

�

f 's and the �

�

g's are viewed as new indeterminates

and possible dependenies between the �

�

f 's and the �

�

g's must not be taken into aount.)
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Produt. Let f and g be two D-�nite formal power series. For any � 2 N

d

, �

�

(fg) an be

rewritten as a sum of produts of an element of f�

�

fg

�2N

d

by an element of f�

�

gg

�2N

d

. Moreover,

hf�

�

f�

�

0

gg

�2N

d

;�

0

2N

d

i is a homomorphi image of the �nite dimensional vetor spae hf�

�

fg

�2N

d

i


hf�

�

gg

�2N

d

i. (A remark similar to the one made in the ase of the diret sum applies to the ase

of the tensor produt.)

Therefore, hf�

�

(fg)g

�2N

d

i is a �nite dimensional K -vetor spae.

Algebrai funtion. Let f be algebrai. There exists P 2 K [x; y℄ de�ning f by

P (x; f(x)) = 0:(3)

Moreover, it an be assumed without loss of generality that P is minimal and that

P ^ �

y

P = 1:

By the extended gd algorithm, there exists (A;B) 2 K (x)[y℄

2

satisfying

A(x; y)P (x; y) +B(x; y) �

y

P (x; y) = 1:(4)

For eah i = 1; : : : ; n, we ompute the suessive derivatives of (3) with respet to x

i

and redue

them into K (x)[y℄=I, where I = (P ) is the two-sided ideal K (x)PK (x). First, di�erentiating (3)

with respet to x

i

yields

�

x

i

P (x; f(x)) + �

y

P (x; f(x)) �

x

i

f(x) = 0:

Note that (4) provides an inverse of �

y

P (x; y) in K (x)[y℄=I : evaluating this equation at (x; f) and

simplifying it by (3) gives B(x; f) �

y

P (x; f) = 1. Thus,

B(x; f) �

x

i

P (x; f) + �

x

i

f = 0

and

�

i

f 2 K (x)[f ℄:(5)

Now by indution on k, if �

k

i

f = R

k

(x; f) where R

k

2 K (x)[y℄, di�erentiating with respet to x

i

leads to �

k+1

i

f = �

x

i

R

k

(x; f) + �

y

R

k

(x; f) �

i

f . By (5), �

k+1

i

f 2 K (x)[f ℄.

Finally, the K (x)-vetor spae K (x)[f ℄ is �nite dimensional (of dimension degP ), and one thus

�nds a linear dependeny between the f�

k

i

fg

k2N

. By Proposition 1.2, f is then D-�nite.

Algebrai substitution. Let f be holonomi, the g

i

's be algebrai and onsider h(y) = (f Æ g)(y) =

f(g

1

(y); : : : ; g

d

(y)).

For eah i = 1; : : : ; d

0

, we ompute the suessive derivatives of h(y) with respet to y

i

and show

by indution that they are all elements of a homomorphi image of

hf�

�

f Æ gg

�2N

d

i 
 hfg

�

1

1

� � � g

�

d

d

g

�2N

d

i:

First, the result is true for h. Assume the property holds for �

k

i

h:

�

k

i

h =

X

�2N

d

;�2N

d



�;�

(�

�

f Æ g) g

�

1

1

� � � g

�

d

d

:(6)

Then,

�

k+1

i

h =

X

�2N

d

;�2N

d

j2f1;:::;dg



�;�

�

(�

j

�

�

f Æ g) �

i

g

j

g

�

1

1

� � � g

�

d

d

+ (�

�

f Æ g)�

j

g

�

1

1

� � � g

�

j

�1

j

� � � g

�

d

d

�

i

g

j

�

:

(7)

As in the previous ase, the �

i

g

j

's are elements of K (y)[g

j

℄; therefore �

k+1

i

h 2 hf�

�

f Æ gg

�2N

d

i 


hfg

�

1

1

� � � g

�

n

n

g

�2N

d

i.
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By indution on k, the result holds for any k; sine every derivative lies in the same �nite

dimensional vetor spae, there is a linear dependeny on the family f�

k

i

hg

k2N

, for all i 2 f1; : : : ; d

0

g.

By Proposition 1.2, h is then D-�nite. �

The following remark will prove very useful when we disuss algorithms operating on holonomi

funtions. Eah of the previous proofs redues the derivatives of a power series into a �nite dimen-

sional vetor spae in order to prove the D-�niteness of the series. The �nite dimensional vetor

spaes used in the proofs are homomorphi images of:

{ hf�

�

fg

�2N

d

i � hf�

�

gg

�2N

d

i for the sum;

{ hf�

�

fg

�2N

d

i 
 hf�

�

gg

�2N

d

i for the produt;

{ hff

p

g

p2N

i for the ase of an algebrai funtion;

{ hf�

�

f Æ gg

�2N

d

i 
 hfg

�

1

1

� � � g

�

n

n

g

�2N

d

i for the algebrai substitution.

More generally, when an expression s involves a family of holonomi funtions fh

i

g

i2I

, it is often

easy to determine a formal �nite dimensional vetor spae built on the derivatives of the h

i

's and

into whih all derivatives of s an be redued. Then s is ertainly D-�nite.

We next reall the de�nition of the diagonals of a formal power series.

De�nition 1.4. With f =

P

�2N

d



�

x

�

, the primitive diagonal diag

1;2

(f) of f is

X

�2N

d

�

1

=�

2



�

1

;�

1

;�

3

;:::;�

d

x

�

1

1

x

�

3

3

� � � x

�

d

d

:

The other primitive diagonal diag

i;j

(f) are de�ned in an analogous way. A diagonal is any om-

position of the diag

i;j

. The omplete diagonal of f is the series diag

1;2

� � � diag

d�1;d

(f) in a single

indeterminate x,

diag

1;2

� � � diag

d�1;d

(f)(x) =

X

p2N



p;:::;p

x

p

We reall the following theorem due to Lipshitz without detailing its proof. The omplete proof

is rather long and an be found in [18℄.

Theorem 1.5. The primitive diagonal diag

1;2

(f) of a D-�nite power series f is D-�nite. There-

fore, any diagonal of a D-�nite power series f is D-�nite.

Proof. [Sketh℄ Given a D-�nite power series f , Lipshitz onsiders in his proof the funtion

F (s; x

1

; x

3

; : : : ; x

d

) = s

�1

f(s;

x

1

s

; x

3

; : : : ; x

d

):

(The residue of F with respet to s is exatly the diagonal diag

1;2

(f).) In a suitable sense, this

extended Laurent series is D-�nite, so that there are polynomials

A(s; x

1

; : : : ; x

d

;D

s

);

and

B

i

(s; x

1

; : : : ; x

d

;D

i

);

for all i 2 f1; 3; : : : ; dg that vanish on F .

The ruial point of the proof is now to �nd operators

P

i

(x

1

; : : : ; x

d

;D

i

;D

s

) =

h

i

X

j=0

P

i;j

(x

1

; x

3

; : : : ; x

d

;D

i

)D

j

s

;

for all i 2 f1; 3; : : : ; dg, where s has been eliminated. This is done by a dimension argument.

Sine F is a formal Laurent series, any derivative of F with respet to s has a zero oeÆient

of s

�1

. Therefore,

[s

�1

℄P

i;j

(x

1

; x

3

; : : : ; x

d

;D

i

)D

j

s

:F = 0
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when j > 0. Besides, the oeÆient of s

�1

in F is diag

1;2

(f), and so

P

i;0

:diag

1;2

(f) = P

i;0

:([s

�1

℄F ) = [s

�1

℄P

i;0

:F = [s

�1

℄P

i

(x

1

; : : : ; x

d

;D

i

;D

s

):F = 0

for any i 2 f1; 3; : : : ; dg. �

Finally, we reall some identities involving diagonals, to show that some other operations on

power series are related to diagonals (see [19℄) and that the lass of D-�nite power series is losed

under these operations.

Hadamard produts an be omputed with diagonals; onversely, diagonals an be omputed

with Hadamard produts:

f � g = diag

1;d+1

� � � diag

d;2d

(f(x

1

; : : : ; x

d

) g(x

d+1

; : : : ; x

2d

));(8)

diag

1;2

(f) =

�

f �

�

1

1� x

1

x

2

1

1� x

3

� � �

1

1� x

d

��

(x

1

; 1; x

3

; : : : ; x

d

):(9)

Some inde�nite integrals an be omputed with Hadamard produts:

Z

x

d

0

f(x

1

; : : : ; x

d�1

; t) dt

= (x

d

f)�

�

1

1� x

1

� � �

1

1� x

d�1

log

1

1� x

d

�

:

Therefore the following theorem holds.

Theorem 1.6. When f and g are D-�niteformal series, then

(i) the Hadamard produt f � g is D-�nite;

(ii) the primitive funtion

R

x

d

0

f(x

1

; : : : ; x

d�1

; t) dt is D-�nite.

1.2. P -reursive sequenes. P -reursive sequenes of a single variable have been fully studied

by Stanley in [23℄; we present his results in Setion 1.2.1.

The �rst attempt at generalisation to several variables was made by Zeilberger in [32℄; but the

de�nitions given there made it impossible to obtain the equivalene between P -reursiveness of a

sequene and D-�niteness of the orresponding generating funtion. In Setion 1.2.2 we reprodue

Lipshitz's de�nition whih he introdued in [19℄. In Setion 1.10, we reall the fundamental theorem

of equivalene between D-�niteness of a series and P -reursiveness of the orresponding sequene.

We �nally reall some properties of P -reursive sequenes in Setion 1.2.4.

1.2.1. Case of a single indeterminate. Let x be an indeterminate.

De�nition 1.7. A sequene (u

n

)

n2N

is alled P -reursive (or holonomi) if and only if it satis�es

a linear reurrene equation with polynomial oeÆients (in the indeterminate n).

It it well known that this onept of P -reursiveness in a single indeterminate is equivalent to

the one of D-�niteness in a single variable (see [23℄). Indeed, when f(x) =

P

n�0

u

n

x

n

2 K [[x℄℄ is

D-�nite, it satis�es the equation

r

X

k=0

P

k

(x) �

k

f = 0:

Identifying the oeÆient of x

i

to 0 yields a reurrene relation of the type

s

X

k=0

Q

k

(n)u

n+k

= 0

where the Q

k

(n) are polynomials.

Conversely, assume that the sequene u satis�es a reurrene of the previous type. Rewriting the

polynomials Q

k

in the basis n, n(n�1), n(n�1)(n�2), n(n�1) � � � (n�k), : : : yields an expression
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of the equation of reurrene in terms of the x

k

�

k

f =

P

n�0

n(n� 1)(n� 2) � � � (n� k+1)x

n

. This

expression is the di�erential formulation we wanted to �nd.

1.2.2. Case of several indeterminates. Let x denote a d-tuple of indeterminates (x

1

; : : : ; x

d

).

If one applies Proposition 1.2 on a formal power series f 2 K [[x℄℄, one obtains some opera-

tors P

i

2 K hx; �

i

i satisfying (2). Then, mimiking the proess used for the ase of a single indeter-

minate yields reurrene equations

s

i

X

u=0

Q

i;u

(k)u

k

1

;:::;k

i�1

;k

i

�u;k

i+1

;:::;k

n

= 0:

It is therefore very tempting to take the existene of suh a system as a de�nition of P -reursive-

ness for the ase of several indeterminates. This was done by Zeilberger in [32℄. However, unlike

the ase of a single indeterminate, the equivalene between D-�niteness and P -reursiveness does

not hold any longer with this de�nition. Several ounter-examples were given in [19℄:

(i) (i

2

� j)u

i;j

= 0. An obvious solution is given by the sequene

u

i;j

=

(

1 when i

2

= j,

0 otherwise.

The assoiated generating funtion f(x; y) =

P

1

n=0

x

i

y

i

2

is not D-�nite; not even f(1; y)

is: beause of the launary nature of the series, it annot be solution of a linear di�eren-

tial equation with polynomial oeÆients. Indeed, suh an equation involves only a �nite

number of derivatives.

(ii) iju

i;j

= 0. Any solution is of the form

u

i;j

=

(

0 when i 6= 0 and j 6= 0,

an arbitrary onstant, otherwise.

Consider a power series in a single indeterminate

P

n2N



n

x

n

that is not D-�nite. (For

instane, the series de�ned by the sequene



n

=

(

1 when n = 2

p

for a ertain p 2 N,

0 otherwise,

annot be P -reursive beause of its launary nature. Similarly, the sequene 

n

= the n

th

prime number leads to a power series that annot be D-�nite.)

Then, the sequene u given by

u

i;j

=

(



j

when j = 0,

0 otherwise,

is assoiated to a non D-�nite power series, although it is solution of iju

i;j

= 0.

Lipshitz gave a more omplete de�nition in [19℄. This de�nition aptures the requested equiva-

lene. We now proeed to reall it, after two preliminary de�nitions.

De�nition 1.8. Let u be a sequene de�ned over N

d

, I a non empty subset of f1; : : : ; dg and for

eah i 2 I, a

i

an integer. De�ne

(i) a setion of u as any subsequene of u obtained by onsidering only the terms of u whose

indies � satisfy �

i

= a

i

for all i 2 I, i.e. any subsequene obtained by setting at least one

index to a given value;

(ii) a k-setion of u as any setion of u de�ned as previously by I and some a

i

, with the

additional onstraint that a

i

< k for all i 2 I.
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De�nition 1.9. A sequene (u

�

)

�2N

d

is alled P -reursive if and only if there exists k 2 N suh

that

(i) for eah i = 1; : : : ; d, there exist polynomials p

(i)

�

(n

i

) suh that

X

�2f0;:::;kg

d

p

(i)

�

(�

i

)u(�� �) = 0

when � satis�es �

i

� k for all i 2 f1; : : : ; dg;

(ii) if d > 1 then all the k-setions of u are P -reursive.

Note that part (ii) of the previous de�nition is exatly what was missing in Zeilberger's de�nition

and what allowed the previous ounter-examples to work. Moreover, this de�nition readily extends

to sequenes de�ned over suitable quadrants of Z

d

.

1.2.3. Fundamental equivalene theorem. The following theorem is the raison d'être of the umber-

some de�nition of P -reursive sequenes.

Theorem 1.10. A sequene (u

�

)

�2N

d

is P -reursive if and only if its orresponding power se-

ries f(x) =

P

�2N

d

u

�

x

�

is D-�nite.

Proof. We do not give any proof; see [19, Theorem 3.7℄. �

1.2.4. Operations on P -reursive sequenes. Beause of Theorem 1.10, the losure properties of the

P -reursive sequenes are similar to the ones of the D-�nite series.

Theorem 1.11. The following results hold for P -reursive sequenes:

(i) P -reursive sequenes form a sub-algebra of K

N

d

;

(ii) any diagonal of a P -reursive sequene is P -reursive;

(iii) the onvolution of two P -reursive sequenes is P -reursive;

(iv) when u is P -reursive and the sum

P

�

d

2N

u

�

onverges for every (�

1

; : : : ; �

d�1

), then the

sequene

P

�

d

2N

u

�

is P -reursive.

Proof. The losure property under the sum follows from the losure property under sum for D-�-

nite power series (Theorem 1.3) and from Theorem 1.10. The losure property under the produt

follows from the losure property under Hadamard produt for D-�nite power series (Theorem 1.6,

part (i)) and from Theorem 1.10. This proves part (i).

Part (ii) follows from the losure property under diagonal for D-�nite power series (Theorem 1.5)

and from Theorem 1.10.

Part (iii) follows from the losure property under produt for D-�nite power series (Theorem 1.3)

and from Theorem 1.10.

Part (iv) follows from Theorem 1.10 and from the fat that if the formal series

f =

X

�2N

d

u

�

x

�

is D-�nite, then so is

g =

X

(�

1

;:::;�

d�1

)2N

d�1

 

X

�

d

2N

u

�

!

x

�

1

1

� � � x

�

d�1

d�1

:

To prove this, one simply has to evaluate the equations (2) given by Proposition 1.2 for the fun-

tion f in (�

1

; : : : ; �

d�1

; 1) to �nd similar equations satis�ed by g. �
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1.3. Holonomi systems. So far, we have only dealt with two onepts introdued separately|

D-�nite power series on the one hand and P -reursive sequenes on the other hand. As we have

already shown, those two onepts are losely related by the equivalene between P -reursiveness

of a sequene and D-�niteness of the assoiated generating funtion.

But they an also oexist on the same system, as in the example of Jaobi polynomials from the

introdution. To de�ne holonomy in several variables, we list harateristis ommon toD-�niteness

and P -reursiveness whih also seem to be essential to holonomy.

(i) D-�nite power series are totally determined by suÆiently many di�erential equations and

by initial onditions, while P -reursive sequenes are totally determined by suÆiently many

reurrene equations and by their initial terms. In both ases, the amount of information

needed by the determination is �nite; it ontains a �nite number of equations and a �nite

number of initial onditions.

(ii) Algorithms used to deal with D-�nite power series and P -reursive sequenes are very

similar as soon as the equations they involve are expressed in terms of di�erential or shift

polynomials.

Thus, we would like to de�ne a holonomi funtion by a �nite system of mixed di�erential and

reurrene equations and a �nite number of initial onditions. Still, it is not possible to generalise

holonomy to the ase of several indeterminates in a simple way. Reasons for this have been given

in the introdution: we �rst need to unify di�erentiation and shift in a single onept and to

ensure that the so-alled holonomi system desribed in a �nite amount of information is enough

to determine a single holonomi funtion.

An aurate de�nition of a holonomi system will be given in Setion 3.4, but what has been

just suggested motivates the following algebrai developments.

2. Weyl algebras, Ore algebras

So far, we have onsidered D-�nite power series only from the point of view of the vetor spaes

spanned by their derivatives. Sine these vetor spaes are �nite dimensional, their derivatives

are onstrained by linear dependeny. These relations an be expressed as di�erential operators

whih vanish on the D-�nite power series under onsideration. We �rst introdue a framework for

these di�erential operators, namely Weyl algebras. We then introdue a similar onept for P-�nite

sequenes and holonomi systems in general. Di�erential and di�erene operators are thus uni�ed

into a ommon algebrai framework, whih in fat aptures many other operators.

2.1. Weyl algebras and D-�nite power series. We use the following notation to denote a

non-ommutative algebra: when u

1

; : : : ; u

p

are indeterminates, let fu

1

; : : : ; u

p

g

�

denote the free

monoid M built on these indeterminates

fu

1

; : : : ; u

p

g

�

= fv

1

� � � v

r

j 8i = 1; : : : ; r v

i

2Mg ;

given a �eld K , let then K hu

1

; : : : ; u

p

i denote the K -algebra K

(M)

over the free non-ommutative

monoid M , i.e. the set of all sums of a �nite number of produts of the form m where  2 K

and m 2 M . Still, we also use this notation when there exist ommutation rules between the

indeterminates.

De�nition 2.1. Given two d-tuples of indeterminates x = (x

1

; : : : ; x

d

) and � = (�

1

; : : : ; �

d

) along

with a �eld K , the assoiated Weyl algebra is lassially de�ned as the non-ommutative ring of

polynomials K hx; �i = K hx

1

; : : : ; x

d

; �

1

; : : : ; �

d

i, with the ommutation rules

�

i

x

j

= x

j

�

i

+ Æ

i;j

;(10)

�

i

�

j

= �

j

�

i

;(11)

x

i

x

j

= x

j

x

i

;(12)
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for all (i; j) 2 f1; : : : ; dg

2

. (The symbol Æ

i;j

is the Kroneker symbol whose value is 1 when i = j

and 0 otherwise.) This makes any Weyl algebra a K -algebra.

More formally, let K

(M)

be the K -algebra over the free monoid M = fx

1

; : : : ; x

d

; �

1

; : : : ; �

d

g

�

.

Then, the Weyl algebra is the quotient of K

(M)

by its two-sided ideal generated by the family

f�

i

x

j

� x

j

�

i

� Æ

i;j

; �

i

�

j

� �

j

�

i

; x

i

x

j

� x

j

x

i

g

(i;j)2f1;:::;dg

2

:

This onstrution proves that a Weyl algebra is a K -algebra.

Note also that the Weyl algebra K hx; �i is isomorphi to

N

d

i=1

K hx

i

; �

i

i where eah K hx

i

; �

i

i is

the quotient of the K -algebra K

(M

i

)

over the free monoid M

i

= fx

i

; �

i

g

�

by its two-sided ideal

generated by �

i

x

i

� x

i

�

i

� 1. The tensor produt used in this de�nition replaes the ommutations

properties (10{12) when i 6= j.

In K hx; �i the following identities hold for any positive integers r; p and any P 2 K [[x℄℄, as simple

onsequenes of the ommutation rules (10{12):

�x

p

= x

p

� + px

p�1

;(13)

�

r

x

p

=

r

X

k=0

 

r

k

!

p (p� 1) � � � (p� k + 1)x

p�k

�

r�k

;(14)

�P (x) = P (x) � +D

x

P (x);(15)

�

r

P (x) =

r

X

k=0

 

r

k

!

D

k

x

P (x) �

r�k

(16)

=

r

X

k=0

1

k!

D

k

x

P (x)D

�

(�

r

);(17)

where D

x

(resp. D

�

) denotes the formal di�erentiation with respet to x (resp. �). In the general

ase, they hold for eah pair formed by an indeterminate and its assoiated di�erentiation (x

i

; �

i

).

Note that beause of (10{12), all indeterminates ommute exept for the pairs an indeterminate and

its assoiated di�erentiation. Now, onsider two polynomials P and Q of a Weyl algebra K hx; �i.

We have the following general formula for the produt:

P (x; �)Q(x; �) =

X

k�0

1

k!

D

k

�

P (x; �) �D

k

x

Q(x; �);(18)

where � is a ommutative produt (polynomials in x and � are then viewed as ommutative poly-

nomials of K [x; �℄).

From there, one easily heks that any element of a Weyl algebra admits a normal form obtained

by rewriting it so that in all of its monomials, every �

i

appears only on the right of the orrespond-

ing x

i

. (This rewriting does not preserve the number of monomials|it inreases it|, but it does

terminate.) The result of suh a rewriting is a polynomial of the form

X

(�;�)2N

2d



�;�

x

�

�

�

where  2 K

(N

2d

)

. This rewriting provides an e�etive zero-equivalene test in Weyl algebras,

provided that an e�etive test to zero exists in the �eld K .

Weyl algebras an be onsidered as algebras of di�erential operators where:

{ the indeterminate x

i

denotes the produt by x

i

;

{ the indeterminate �

i

denotes the di�erentiation with respet to x

i

.

This point of view is onsistent with the ommutation rules of the de�nition.

When dealing with holonomi funtions, the polynomial nature of the oeÆients of operators

will often be irrelevant. We shall therefore often onsider the algebras K (x)K hx; �i, whih we shall
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denote by K (x)h�i. Then, identity (13) extends to negative p's, while identities (15) and (17) extend

to P 2 K (x) and identity (18) extends to P;Q 2 K (x)h�i.

Now, onsider a D-�nite power series f 2 K [[x℄℄. The set of elements of the Weyl algebra that

vanish on f plays a prominent role in the sequel; we therefore introdue the following notations:

for any given D-�nite power series f 2 K [[x℄℄, let I

f

(resp. V

f

) denote the set of the elements of

the Weyl algebra K hx; �i (resp. K (x)h�i) that vanish on f :

I

f

= fw 2 K hx; �i j w:f = 0g:

(resp. V

f

= fw 2 K (x)h�i j w:f = 0g:)

We also simply write I

f

:f = 0 (resp. V

f

:f = 0).

Conversely, a subset I of a Weyl algebra K hx; �i de�nes a di�erential system whih is always

solvable in K [[x℄℄, sine 0 is a solution. Note that:

{ the solution set of suh a system is a K -vetor spae;

{ one the di�erential system has been de�ned, the set of elements of the Weyl algebra that

vanish on any solution of the system may be larger than I.

Example. It is easy to hek that I

os

= I

sin

= Rhx; �i:(�

2

+1) and onversely, that this set de�nes

the family f� os +� sing

(�;�)2R

2

. Similarly, V

os

= I

sin

= R(x)h�i:(�

2

+ 1).

The following proposition is just another formulation of Proposition 1.2.

Proposition 2.2. A subset I of a Weyl algebra K hx; �i de�nes a vetor spae of D-�nite power se-

ries f solutions of I:f = 0 if and only if there exist d polynomials P

i

(�

i

) that are linear ombinations

of the elements of I with polynomial oeÆients and suh that

P

i

(�

i

):f = 0:

The following example shows that the link between I

f

and V

f

is not trivial: though V

f

= K (x)I

f

and I

f

= V

f

\ K hx; �i, this intersetion is not easy to ompute. This fat be prove problemati

when disussing reative telesoping in Setion 5.2 and diagonals in Setion 5.2.3.

Example. Let f be the funtion

f =

1

s

2

� s+ x

=

1

R

:

It is easily veri�ed that

V

f

= (g

s

; g

x

) � K (s; x)hD

s

;D

x

i:(19)

with

g

s

= D

s

R = RD

s

+ (2s� 1)

g

x

= D

x

R = RD

x

+ 1:

Now, let I = (RD

s

� (2s� 1); RD

x

� 1) � K hs; x;D

s

;D

x

i. Trivially, I � I

f

. However, both ideals

are di�erent: the operator

! = D

2

s

+ (4x� 1)D

2

x

+ 6D

x

satis�es

R

3

! = (R

2

Ds� 2(2s� 1)R) g

s

+ ((4x � 1)R

2

Dx+ 2(�x� 3s+ 3s

2

+ 1)R g

x

2 I;

thus ! 2 I

f

, while ! 62 I. In fat,

I

f

= (g

s

; g

x

; !) � K hs; x;D

s

;D

x

i:(20)

(Compare desriptions (19) and (20).)
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2.2. Ore algebras and holonomi systems. We need to introdue a more general framework

for operators in order to deal with P -reursive sequenes and holonomi systems in general. Of

ourse, these operators have to be non-ommutative operators, so we �rst reall some old results

on non-ommutative polynomials.

A study of a large lass of non-ommutative algebras of polynomials was done by Ore in [20℄:

given a �eld k, he introdued an algebra of non-ommutative polynomials khxi losed under a

produt determined by a ommutation rule and by the following restrition:

The degree of a produt shall be equal to the sum of the degrees of the fators.

Due to the distributive property, this onstraint is equivalent to the following ommutation rule

between the indeterminate x and any element a of k:

xa = �ax+ a

0

;

where �a; a

0

2 k. He alled �a the onjugate of a and a

0

its derivative.

He proved that this ring of polynomials has the following properties of usual polynomials:

{ right division by Eulid algorithm and an extended gd algorithm;

{ left division by Eulid algorithm and an extended gd algorithm when suitable assumptions

on the map a 7�! �a and the leading oeÆients of the polynomials under onsideration are

satis�ed, as in partiular when the map a 7�! �a is an automorphism of k.

This algebra of non-ommutative polynomials is usually alled a skew polynomial ring and its

elements Ore polynomials.

Bronstein and Petkov�sek showed in [5℄ how Ore polynomials an always be onsidered as linear

operators and be interpreted as linear ordinary di�erential operators as soon as k is a di�erential

�eld of harateristi zero. The indeterminate x is then interpreted as a di�erentiation operator �.

This is why we hoose to use � instead of x as the indeterminate name in a skew polynomial ring.

We borrow from [5℄ the notation �(a) for �a and Æ(a) for a

0

. This notation proves onvenient in our

generalisation to several indeterminates.

Finally, we are planning to onsider linear di�erential operators with polynomial oeÆients for

whih the di�erential base �eld k is replaed by a �eld of rational frations K (x) and the skew

polynomial rings under onsideration beomes K (x)h�i. To draw a parallel with the de�nitions

given for the ase of Weyl algebras (see e.g. [26℄), we all Ore algebra the ring of pseudo-di�erential

operators K hx; �i.

De�nition 2.3. Given two d-tuples of indeterminates x = (x

1

; : : : ; x

d

) and � = (�

1

; : : : ; �

d

) along

with a �eld K , we de�ne the assoiated Ore algebra as the non-ommutative ring of polynomi-

als K hx; �i = K hx

1

; : : : ; x

d

; �

1

; : : : ; �

d

i, with the ommutation rules

�

i

x

j

= �

i

(x

j

) �

i

+ Æ

i

(x

j

);(21)

�

i

�

j

= �

j

�

i

;(22)

x

i

x

j

= x

j

x

i

;(23)

as soon as (i; j) 2 f1; : : : ; dg

2

and

{ the �

i

's are endomorphisms of K [x

i

℄ (as an algebra) extended to K [x℄ by the identity,

{ and the Æ

i

's are endomorphisms of K [x

i

℄ (as a K -vetor spae) multipliatively extended

to K [x℄,

with the �

i

's and the Æ

i

's ommuting two by two. This makes any Ore algebra a K -algebra. Elements

of Ore algebras will also be alled pseudo-di�erential operators.

(We use the same notation for Weyl and Ore algebras sine the former an be onsidered as a

speial ase of the latter.)
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As in the ase of Weyl algebras, a more formal onstrution of Ore algebras is obtained by

forming the quotient of the K -algebra K

(M)

over the free monoid M = fx

1

; : : : ; x

d

; �

1

; : : : ; �

d

g

�

by

its two-sided ideal generated by the family

f�

i

x

j

� �

i

(x

j

) �

i

� Æ

i

(x

j

); �

i

�

j

� �

j

�

i

; x

i

x

j

� x

j

x

i

g

(i;j)2f1;:::;dg

2

:

This onstrution also proves that an Ore algebra is a K -algebra.

Note also that the Ore algebra K hx; �i is isomorphi to

N

d

i=1

K hx

i

; �

i

i where eah K hx

i

; �

i

i is the

quotient of the K -algebra K

(M

i

)

over the free monoidM

i

= fx

i

; �

i

g

�

by its two-sided ideal generated

by �

i

x

i

� �

i

(x

i

) �

i

� Æ

i

(x

i

). The tensor produt used in this de�nition replaes the ommutations

properties (21{23) when i 6= j.

The required properties of the �

i

's and the Æ

i

's are so designed as to separate the ation of

di�erentiation operators on di�erent indeterminates. They also simplify identities involving several

di�erentiation operators multiplied to the left of a pseudo-di�erential operator.

Another onstrution of Ore algebras will prove fruitful when we disuss non-ommutative

Gr�obner bases. After Kandri-Rody and Weispfenning (see [15℄), a polynomial ring of solvable

type K hu

1

; : : : ; u

r

i is de�ned as the quotient of the free non-ommutative K -algebra over the

monoid (u

1

; : : : ; u

r

)

�

by two-sided ideals of the form

u

j

u

i

� 

i;j

u

i

u

j

� lower order terms (j > i):

(The monoid is endowed with a term order whih is ompatible with the produt and suh that 1

is the lowest element.) Ore algebras are then simple examples of polynomial rings of solvable type.

For the sake of ompleteness, reall that in the ase of a single pair (x; �) and a ring A , the Ore

algebra A hx; �i is often alled an Ore extension of the ring A . Therefore, another viewpoint on the

Ore algebras de�ned here is that they are speial ases of so-alled iterated Ore extensions, with

the restrition that both indeterminates introdued by an extension ommute with all previously

existing indeterminate.

We now give some simple onsequenes of the ommutation rules (21{23).

Proposition 2.4. The following identities hold for any i 2 f1; : : : ; dg and for any positive inte-

gers r; p:

�

i

x

p

i

= �

i

(x

i

)

p

�

i

+

p�1

X

k=0

�

i

(x

i

)

k

Æ

i

(x

i

)x

p�1�k

i

;(24)

Æ

i

(x

p

i

) =

p�1

X

k=0

�

i

(x

i

)

k

Æ

i

(x

i

)x

p�1�k

i

:(25)

In the ase of a single pair of indeterminates, the following identity holds for any positive inte-

gers r; p:

�

r

x

p

=

r

X

k=0

 

r

k

!

�

(r�k)

Æ Æ

(k)

(x

p

)�

r�k

;(26)

where �

(i)

and Æ

(i)

denote the i

th

iterates of � and Æ respetively.

Consider two polynomials P and Q of an Ore algebra K hx; �i. As in the ase of Weyl algebras,

we have the following general formula for the produt:

P (x; �)Q(x; �) =

X

k�0

1

k!

(D

k

�

P (x; �))

�=(� 7!�(�)��)

�

D

k

x

Q(x; �)

�

;(27)

where � is a ommutative produt (polynomials in x and � are then viewed as ommutative polyno-

mials of K [x; �℄) and � is multipliatively extended to the whole Ore algebra.
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When dealing with holonomi funtions, the polynomial nature of the oeÆients of operators

will often be irrelevant. We shall therefore often onsider the algebras K (x)K hx; �i, whih we shall

denote by K (x)h�i. Then, identity (27) extends to P;Q 2 K (x)h�i.

Again, this proves that any element of an Ore algebra admits a normal form whih is a polynomial

of the type

P

(�;�)2N

2d



�;�

x

�

�

�

where  2 K

(N

2d

)

. Thus, there is an e�etive zero-test in Ore

algebras, provided that an e�etive zero-test exists in the �eld K . Identities (24{25) also prove that

the ommutation rules are totally determined by the �

i

(x

i

)'s and the Æ

i

(x

i

)'s.

Now we are able to show to what extent this onept generalises Weyl algebras and to explain the

onnetion between Ore algebras and holonomi systems. To do so, we simply produe examples of

Ore operators; without loss of generality, we give them in the ase of a single variable, sine the �

i

's

and x

j

's ommute as soon as i 6= j.

Di�erentiation. Let �(x) = x and Æ(x) = 1, then �x = x� + 1 and the Ore algebra is the Weyl

algebra in a single variable. Thus, � an be viewed as the di�erentiation operator D

x

over K [[x℄℄

and K hx; �i = K hx;D

x

i.

Shift. Let �(x) = x + 1 and Æ(x) = 0, then �x = (x + 1) � and � is the shift operator: to

reover the notation of reurrene operators, hange x into n and � to S

n

, then S

n

n = (n+ 1)S

n

and K hx; �i = K hn; S

n

i. For any given sequene u, we have nu = (nu

n

)

n2N

and S

n

u = (u

n+1

)

n2N

.

Di�erene. Let �(x) = x+1 and Æ(x) = 1, then �x = (x+1) � and � is the di�erene operator|

either in a ontinuous or a disrete variable: to reover more usual notation, hange � to �

x

,

then �

x

x = x�

x

+ �

x

+ 1 and K hx; �i = K hx;�

x

i. For any given funtion in x, �

x

:f(x) =

f(x+ 1)� f(x).

q-Dilation. Let �(x) = qx and Æ(x) = 0, then �x = qx� and � is the q-dilation operator.

Put � = H

(q)

x

, then H

(q)

x

x = xH

(q)

x

and K hx; �i = K hx;H

(q)

x

i. For any given funtion in x,

H

(q)

x

:f(x) = f(qx).

q-Di�erentiation. Let �(x) = qx and Æ(x) = 1, then �x = qx� + 1 and � is the q-di�erentiation

operator. Put � = D

(q)

x

, then D

(q)

x

x = xD

(q)

x

+ 1 and K hx; �i = K hx;D

(q)

x

i. For any given funtion

in x, D

(q)

x

:f(x) =

f(qx)�f(x)

(q�1)x

. (For examples of use of these last two operators, see [31℄.)

e

x

-Di�erentiation. Let �(x) = x and Æ(x) = x, then �x = x� + x. If � is interpreted as dif-

ferentiation operator with respet to a variable t, and x is the multipliation operator by e

t

, the

algebra K hx; �i is K he

t

;D

t

i. (An example of appliation is given in Setion 5.3.)

e

x

-Di�erentiation. Let �(x) = x and Æ(x) = x, then �x = x� + x. If � is interpreted as the

Eulerian �

x

operator with respet to x, whih maps a funtion f(x) to the funtion xf

0

(x), and x

is the multipliation operator by x, the algebra K hx; �i is K hx; �

x

i.

Mahlerian operators. Let �(x) = x

p

for any given integer p > 1 and Æ(x) = 0, then � ats as the

Mahlerian operator M

x

: M

x

x = x

p

M

x

. The ation of x is the multipliation by x and the ation

of M

x

is M

x

:f(x) = f(x

p

). (See for instane [8℄ for appliations to divide and onquer reurrenes.)

These de�nitions are summarised in Table 1.

We now give simple examples of holonomi funtions with a desription in term of pseudo-

di�erential operators.

Example.

(i) Fatorial: let u

n

= n!, then (S

n

� (n+ 1)):u = 0, showing that n! is P -reursive.

(ii) Binomial oeÆients: let b

n;k

=

�

n

k

�

=

n!

(n�k)!k!

, then:
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Operator x � �(x) Æ(x) �x

Di�erentiation x D

x

x 1 xD

x

+ 1

Shift n S

n

n+ 1 0 (n+ 1)S

n

Di�erene x �

x

x+ 1 1 (x+ 1)�

x

+ 1

q-Dilation x H

(q)

x

qx 0 xH

(q)

x

q-Di�erentiation x D

(q)

x

qx 1 xD

(q)

x

+ 1

e

x

-Di�erentiation e

x

D

x

e

x

e

x

e

x

D

x

+ e

x

Eulerian operator x �

x

x x x�

x

+ x

Mahlerian operator x M

x

x

p

0 x

p

M

x

Table 1. De�nitions of di�erent pseudo-di�erential operators.

{ b

n+1;k

=

(n+1)!

(n+1�k)! k!

, so that ((n+ 1� k)S

n

� (n+ 1)):b = 0;

{ b

n;k+1

=

n!

(n�k�1)! (k+1)!

, so that ((k + 1)S

k

� (n� k)):b = 0;

{ b

n+1;k+1

=

(n+1)!

(n�k)! (k+1)!

, so that ((k + 1)S

n

S

k

� (n+ 1)):b = 0.

(iii) More generally, any reurrene equation an be written with the shift operator, or equiva-

lently, with the di�erene operator, sine S

n

= �

n

+ 1.

(iv) Let f be the sequene of funtions f

n

(x) = n! os x. Then, in the Ore algebra K hx; n;D

x

; S

n

i,

(D

2

x

+ 1):f = 0 and (S

n

� (n+ 1)):f = 0.

As for the ase of the di�erential operator, the set of operators of an Ore algebra that vanish on a

given funtion has a prominent role in the sequel. It has a rih algebrai struture on whih all our

implementation is based. So we introdue the same notation and de�nition as for the di�erential

operators:

for any given funtion or formal power series f , I

f

(resp. V

f

) denotes the set of the elements of

the Ore algebra K hx; �i (resp. K (x)h�i) that vanish on f :

I

f

= fw 2 K hx; �i j w:f = 0g:

(resp. V

f

= fw 2 K (x)h�i j w:f = 0g:)

We also write I

f

:f = 0 (resp. V

f

:f = 0).

Conversely, a subset I of an Ore algebra K hx

1

; : : : ; x

d

; �

1

; : : : ; �

d

i de�nes a reurrene system

whih is solvable in K

N

d

, sine 0 is a solution. Note that the solution set of suh a system is

a K -vetor spae.

Example. It is easily seen that the sequenes u and v de�ned by

u(2k) =

(�1)

k

(2k)!

; u(2k + 1) = 0;

and

v(2k) = 0; v(2k + 1) =

(�1)

k

(2k + 1)!

;

satisfy the following relation in Rhk; S

k

i

I

u

= I

v

= Rhk; S

k

i:(S

2

k

+ k (k � 1))

and that onversely, this latter set de�nes the family f�u+ � vg

(�;�)2R

2

.

As in the ase of Weyl algebras, the link between I

f

and V

f

is not trivial, as exempli�ed by

the binomial oeÆients and the identity from Pasal's triangle. (Of ourse, we have one again

that I

f

= V

f

\ K hx; �i.)
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Example. Let again b

n;k

=

�

n

k

�

. Then

V

b

= ((n+ 1� k)S

n

� (n+ 1); (k + 1)S

k

� (n� k)) � K (n; k)hS

n

; S

k

i:

Now, let

I = ((n+ 1� k)S

n

� (n+ 1); (k + 1)S

k

� (n� k)) � K hn; k; S

n

; S

k

i:

Consider the operator ! = S

n

S

k

� S

k

� 1, one easily proves that

(n+ 1)!; (k + 1)! 2 I;

but that ! 2 I

f

� I. In fat,

I

b

= ((n+ 1� k)S

n

� (n+ 1); (k + 1)S

k

� (n� k); S

n

S

k

� S

k

� 1) � K hn; k; S

n

; S

k

i:

Finally, we proeed to extend the onept of Ore algebras of pseudo-di�erential operators with

polynomial oeÆients (in x) to algebras of operators with rational oeÆients. We need this

extension in Setion 3.

We use equation (24) to perform this generalisation:

� = �x

p

x

�p

= �(x)

p

�x

�p

+

p�1

X

k=0

�(x)

k

Æ(x)x

�(1+k)

;

from where it follows that

�x

�p

= �(x)

�p

� �

p�1

X

k=0

�(x)

k�p

Æ(x)x

�(1+k)

:

Clearly, this identity makes it possible to de�ne an algebra K ((x))h�i of pseudo-di�erential

operators with formal series as oeÆients. In partiular, we de�ne the algebra K (x)h�i of pseudo-

di�erential operators with rational oeÆients with the same ommutation rules.

2.3. Implementation of the arithmeti of Ore algebras. We now show how the onstrution

of Ore algebras given in De�nition 2.3 leads to a natural implementation in Maple. We then give

an example of exeution in the ase of an Ore algebra based on a di�erential operator and on a

shift operator.

First, Ore algebras are non-ommutative polynomial rings. Whereas this non-ommutativity has

no inuene on the sum, the produt is not the usual one implemented for ommutative polynomials

in Maple. Therefore, our implementation uses the standard sum of Maple and provides the user

with a new produt. This solution has several advantages:

{ Maple handles polynomials very eÆiently: it uses a hashing method to reognise mono-

mials, so that sums of sparse polynomials are performed very quikly;

{ the produt implemented in our programme an be fully parameterised (by equivalents of

the �

i

's and of the Æ

i

's of De�nition 2.3) to implement any Ore algebra.

Sine the representation used is the polynomial representation of Maple, Maple assumes any

monomial x� to be equal to the monomial �x. This beomes true if we deide to handle only

normal forms of operators, as de�ned in Setion 2.2.

Our implementation of the produt uses identities (18) and (27) rather than the formul� (13{

17) and (24{25), beause the omputation of �(P ) and Æ(P ) when P is a polynomial an often

be done more eÆiently by diret means than by using these latter identities. (This argument

is dramatially illustrated by the ase of the derivation: � is the identity and Æ is the standard

derivation already implemented in Maple.)

For further information on the implementation, we refer the reader to Appendix C.
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Example. We intend to ompute the produt of two randomly generated operators in the Ore

algebra Qhx; n;D

x

; S

n

i.

We �rst load the pakage and reate the algebra Qhx; n;D

x

; S

n

i. The desription of this algebra

is stored in a variable to be available later.

> with(Mgfun):

A:=orealg([x,diff,Dx℄,[n,shift,Sn℄):

The desription inludes amongst others the di�erent funtions �

i

's and Æ's de�ning the operators.

> indies(A);

[�℄; [Æ℄; [algebrastruttable℄; [diÆndet℄; [di�table℄; [di�typetable℄; [allindet℄; [indet℄

> print(A[sigma℄),print(A[delta℄);

table([x = (k 7! k); n = (k 7! subs(n = n+ 1; k))℄); table([x = (k 7!

�

�x

k); n = 0℄)

We easily reall the fundamental ommutations.

> opprod(dx,x,A),opprod(Sn,n,A);

1 + xD

x

; nS

n

+ S

n

We draw two random operators and ompute their produt.

> randopr(5,6,2,A),randopr(5,6,2,A);

opprod(",A);

D

4

x

n

2

+ 2S

4

n

n

2

; 2x

2

n

4

+ 2D

2

x

xn

2

24n

6

D

2

x

+ 16n

6

xD

3

x

+ 2n

6

x

2

D

4

x

+ 8n

4

D

5

x

+ 2n

4

D

6

x

x+ 4n

6

x

2

S

4

n

+ 64n

5

x

2

S

4

n

+ 384n

4

x

2

S

4

n

+ 1024n

3

x

2

S

4

n

+ 1024n

2

x

2

S

4

n

+ 4n

4

xS

4

n

D

2

x

+ 32n

3

xS

4

n

D

2

x

+ 64n

2

xS

4

n

D

2

x

3. Ideals of operators and definition of holonomy

So far, we have introdued Ore algebras and seen how D-�nite power series on the one hand and

P -reursive sequenes on the other hand are de�ned as solutions of pseudo-di�erential operators.

Conversely, given an Ore algebra K hx; �i (resp. K (x)h�i) and f a funtion on whih the elements

of this algebra operate (either a D-�nite power series or a P -reursive sequene or, generally, a

holonomi funtion), the set I

f

(resp. V

f

) of all operators that vanish on f has the rih algebrai

struture of a left ideal:

(i) 0 2 I

f

: I

f

is not empty;

(ii) 8w;w

0

2 I

f

w:f + w

0

:f = 0, therefore w + w

0

2 I

f

: I

f

is losed under sum;

(iii) 8a 2 K hx; �i 8w 2 I

f

(aw):f = a:(w:f) = 0, therefore aw 2 I

f

: I

f

is losed under

multipliation on the right by any element of K hx; �i.

(resp. same properties for V

f

, with K hx; �i hanged into K (x)h�i.)

The non-ommutativity of Ore algebras and the fat that a funtion is applied on the right of

a pseudo-di�erential operator make us handle left ideals. As a matter of fat, they annot also be

losed under multipliation on the right by any element of the algebra without being degenerated

ases: as is proved in [9, 3℄, Ore algebras are simple. This means that any two-sided ideal of a Weyl

algebra is either f0g or the whole algebra itself, de�ning respetively the whole set of funtions

on whih the algebra operates or the singleton of the zero funtion. Thus, only left ideals will be

onsidered later on.

The word holonomi was �rst used in the framework of Weyl algebras to qualify ertain ideals.

We now aim at explaining the onnetion between this holonomy of ideals and the holonomy of

funtions, and to generalise what an be to Ore algebras.
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In Setion 3.1, we reall general de�nitions and results on �ltrations and graduations of algebras

that are dealt with in [3, Chapter 1℄.

In Setion 3.2, we de�ne a lass of so-alled admissible Ore algebras that behave like Weyl

algebras when �ltrated by the Bernstein �ltration|more preisely, they are Noetherian.

In Setion 3.3, we use a onept of dimension of modules to give our de�nitions of holonomi

systems and holonomi funtions, thereby making the onnetion between the theory of D-modules

on the one hand, and D-�nite power series and P -reursive sequenes on the other hand.

3.1. Filtrations of an algebra and of a module. We begin by realling general de�nitions and

a general theorem from [3, Chapter 1℄.

De�nition 3.1. A �ltration of a K -algebra A is an inreasing sequene of �nite dimensional K -ve-

tor subspaes (F

m

)

m2N

of A with the properties:

f0g = F

�1

� F

0

� F

1

� � � � � A;

[

m2N

F

m

= A;

F

m

:F

m

0

� F

m+m

0

;

for any pair (m;m

0

) 2 N

2

.

One an algebra has been equipped with a �ltration, it is assoiated a graded algebra de�ned as

follows.

De�nition 3.2. The assoiated graded algebra gr

F

A is the in�nite diret sum

M

m2N

F

m

=F

m�1

;

with the produt indued by the produt over A.

We prove that the produt is well de�ned.

Proof. For any given (m;m

0

) 2 N

2

, onsider � 2 F

m

=F

m�1

and � 2 F

m

0

=F

m

0

�1

, as well as (A;A

0

) 2

�

2

and (B;B

0

) 2 �

2

. Then,

AB �A

0

B

0

= A (B �B

0

) + (A�A

0

)B

0

2 F

m+m

0

�1

:

We therefore de�ne �� as the image of AB in the quotient spae F

m+m

0

=F

m+m

0

�1

.

The produt generalises to any pair of elements of gr

F

A by distribution of the produt over the

sum. �

(Note that all de�nitions and properties realled in this setion ould be generalised to any

ordered monoid M instead of N, in order to get more re�ned results. To this end, any expression

of the form F

m�1

should be replaed by

P

m

0

2M

m

0

<m

F

m

0

.)

Similarly, there is a onept of �ltration on a left A-module as well as a onept of assoiated

graded module.

De�nition 3.3. Let A be an algebra equipped with a �ltration F . A �ltration of a leftA-moduleM

is an inreasing sequene of �nite dimensional K -vetor subspaes (�

m

)

m�N

ofM with the properties:

f0g = �

�1

� �

0

� �

1

� � � � �M;

[

m2N

�

m

= A;

F

m

:�

m

0

� �

m+m

0

;

for any pair (m;m

0

) 2 N

2

.
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De�nition 3.4. The assoiated graded module gr

�

M is the in�nite diret sum

M

m2N

�

m

=�

m�1

:

It is a left gr

F

A-module.

We explain how the external produt is well de�ned to prove that the assoiated graded module

is a left gr

F

A-module.

Proof. For any given (m;m

0

) 2 N

2

, onsider � 2 F

m

=F

m�1

and � 2 �

m

0

=�

m

0

�1

, as well as (A;A

0

) 2

�

2

and (M;M

0

) 2 �

2

. Then, AM , AM

0

, A

0

M and A

0

M

0

are elements of �

m+m

0

, and

AM �A

0

M

0

= A (M �M

0

) + (A�A

0

)M

0

2 �

m+m

0

�1

:

We therefore de�ne �� as the image of AM in the quotient spae �

m+m

0

=�

m+m

0

�1

.

The produt generalises to any pair of elements of gr

�

M by distribution of the produt over the

sum. �

As a speial ase, note that when K [x℄ = K [x

1

; : : : ; x

d

℄ is an algebra of polynomials, a graded K [x℄-

module is a K [x℄-module M with the deomposition

M =

M

m2N

M

m

;

where the M

m

's are K -vetor subspaes of M satisfying

x

j

M

m

�M

m+1

(28)

for all j 2 f1; : : : ; dg and all m 2 N. More preisely, for eah m, M

m

is the set of all polynomials

of total degree m. The M

m

's form a �ltration of the module M. Inlusion (28) follows from

x

j

M

m

�M

1

M

m

�M

m+1

:

The following important theorem is due to Hilbert and is proved in [3℄.

Theorem 3.5 (Hilbert polynomial). Let M be a graded and �nitely generated K [x

1

; : : : ; x

d

℄-

module and M =

L

m2N

M

m

be its graduation. Then, the integer

P

i�m

dim

K

M

i

is asymptotially

equal to a polynomial funtion in m.

3.2. Admissible Ore algebras and noetherianity. We proeed to speialise the onepts of

�ltrations, assoiated graded algebras and assoiated graded modules when the base algebra A is an

Ore algebra. Still, in order to ensure that the following propositions are valid, we restrit ourselves

to the ases of Ore algebras built on pseudo-di�erentiation operators �

i

suh that

�

i

(x

i

) = p

i

x

i

+ q

i

;(29)

Æ

i

(x

i

) = r

i

x

i

+ s

i

;(30)

where all oeÆients are in K and no p

i

is zero. This is for instane the ase when these operators

are di�erential, di�erene, shift or even e

x

-di�erential and Eulerian operators, while it is not the

ase if they are Mahlerian operators. More spei�ally, these requirements ensure that the Ore

algebras under ondideration are Noetherian, i.e. that they ontain no in�nite stritly inreasing

sequene of ideals. We proeed to prove this property in this setion.

Note that hypothesis (29) is equivalent to the fat that all �

i

's are automorphisms of K [x

i

℄.

If �

i

is an automorphism of K [x

i

℄, then there exists P 2 K [x

i

℄ suh that �

i

(P (x

i

)) = x

i

. Then,

P (�

i

(x

i

)) = x

i

. Now, �

i

(x

i

) is a polynomial Q 2 K [x

i

℄, from where it follows that

P ÆQ(x

i

) = x

i

(31)
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and that both polynomials are of degree 1:

P = ax

i

+ b;

Q = x

i

+ d;

where all oeÆients are in K . Substituting in (29) yields

a =1;

ad+ b =0;

from where it follows that neither a nor  is zero. The onverse impliation is trivial.

Hypothesis (30) implies the property that the Æ

i

's do not inrease the degree. As a matter of

fat, identity (25) an be rewritten in the ontext of these hypotheses into

Æ

i

(x

u

i

) =

u�1

X

k=0

(p

i

x

i

+ q

i

)

k

(r

i

x

i

+ s

i

)x

p�1�k

i

;(32)

whih is a polynomial of degree at most p in x

i

.

For onveniene, we introdue the following de�nition.

De�nition 3.6. An Ore algebra K hx; �i is admissible when it satis�es hypotheses (29{30).

Heneforth, all Ore algebras under onsideration are admissible. We �rst deal with ommutations

desribed by identities (29{30) where all p

i

's are equal to 1.

In the sequel, we make onstant use of the following �ltration, that allows the ommutativity of

the orresponding assoiated graded algebra.

De�nition 3.7. We de�ne the Bernstein �ltration of an admissible Ore algebra K hx; �i as

F

m

=

n

w 2 K hx; �i

�

�

�

w =

X

(�;�)2N

2d

j�j+j�j�m



�;�

x

�

�

�

; when  2 K

(N

2d

)

o

:

Proposition 3.8. The graded algebra assoiated to the Bernstein �ltration of an admissible Ore

algebra K hx; �i is ommutative.

Proof. Suppose � 2 F

m

=F

m�1

and � 2 F

m

0

=F

m

0

�1

. Given A 2 � and B 2 �, it is easily seen from

the ommutation rule (26) and from the partiular properties of an admissible Ore algebra (29{30)

(with p

i

= 1) and (32) that

AB �BA 2 F

m+m

0

�1

:(33)

Then, modulo F

m+m

0

�1

, equation (33) yields �� � �� = 0 2 F

m+m

0

=F

m+m

0

�1

. By distribution

of the produt over the sum, the assoiated graded algebra gr

F

A is ommutative. �

Let K hx; �i be an admissible Ore algebra. The de�nition of admissible Ore algebras and the

ommutativity of the assoiated graded algebra are suÆient onditions for the next two results.

Proposition 3.9. gr

F

K hx; �i is a ommutative polynomial ring in 2d indeterminates with oeÆ-

ients in K . More preisely,

gr

F

K hx; �i = K [�x

1

; : : : ; �x

d

;

�

�

1

; : : : ;

�

�

d

℄;

where �x

i

and

�

�

i

are the lasses of x

i

and �

i

respetively in the assoiated graded algebra.

Theorem 3.10. K hx; �i is a left Noetherian ring, i.e. any of its left ideals is �nitely generated.

Proof. We do not give any proof for these results, sine those given by Bj�ork in [3℄ in the ase of

Weyl algebras extend word for word to our framework of admissible Ore algebras. �
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We now briey onsider the general ase of Ore algebras built on equations (29{30) without any

restrition on the p

i

's. Then, De�nition 3.7 is still relevant, but Propositions 3.8 and 3.9 no longer

holds: let for instane K (q)hx;Hi be the q-alulus algebra ruled by

Hx = qxH:

(q is transendental over K .) This identity also holds for lasses

�

H�x = q�x

�

H;

so that the assoiated graded algebra is not ommutative. However, Theorem 3.10 is still valid. A

full proof an be found in the more general setting of polynomials rings of solvable type, see [15,

Theorem 4.7℄ (this is a onsequene of the validity of Dikson's lemma in these rings).

Though we do not have any proposition that haraterises Noetherian Ore algebras, it seems that

equations (29{30) are lose to be an equivalent property to noetherianity; the following example

gives a non-Noetherian (non-admissible) Ore algebra.

Example. Let I

n

= (x; xM; xM

2

; : : : ; xM

n

) � K hx;M i, where M is the Mahlerian operator de-

�ned by

Mx = x

p

M;

for a �xed p 2 N. It is easily veri�ed that xM

n+1

62 I

n

, so that (I

n

)

n2N

is a stritly inreasing

sequene of ideals, and K hx;M i is not Noetherian. A similar result holds as soon as a �

i

(x

i

) is a

polynomial of degree greater than or equal to 2.

3.3. Bernstein inequality in an Ore algebra, holonomi modules. From now on, we assume

that I is a non-null left ideal of an admissible Ore algebra K hx; �i distint from the whole algebra,

and that K hx; �i is equipped with its Bernstein �ltration (F

m

)

m2N

. The quotient K hx; �i=I is then

a left K hx; �i-module. As a vetor subspae of its Ore algebra, this module has a dimension over

the base �eld K . There is nonetheless another onept of dimension for modules, whih is more or

less related to the numbers of monomials of a ertain total degree in the Ore algebra that annot

be redued into a linear ombination of some of lower total degree. We proeed to give some results

on Weyl algebras detailed in [3, 9℄, and to extend them to admissible Ore algebras, in order to show

how this onept of dimension is related to holonomy.

Let M be a K hx; �i-module and (�

m

)

m2N

a �ltration of M. We extend the following theorem

valid for Weyl algebras to our admissible Ore algebras.

Theorem 3.11. The funtion H(m) = dim

K

�

m

is asymptotially equal to a polynomial in m.

Proof. One again, the proof is the same as the one given in [3℄ for Weyl algebras. The dimen-

sions H(m) are given by

H(m) = dim

K

�

m

=

X

i�m

dim

K

(�

i

=�

i�1

):

Beause of the hypothesis of admissibility, it follows from Proposition 3.9 that

gr

�

M =

M

m2N

�

m

=�

m�1

is a �nitely generated and graded module over the ommutative polynomial ring

gr

F

K hx; �i = K [�x

1

; : : : ; �x

d

;

�

�

1

; : : : ;

�

�

d

℄

(or over a ring isomorphi to K hu

1

; : : : ; u

r

; v

1

; : : : ; v

r

i, with v

i

u

i

= p

i

u

i

v

i

). Thus, Theorem 3.10

applies and there is a polynomial funtion to whih H(m) is asymptotially equal. �

The nature of the previous result leads to the following de�nition.
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De�nition 3.12. H is alled the Hilbert funtion of the left K hx; �i-module M. The polynomial

funtion to whih it is asymptotially equal is alled the Hilbert polynomial of the K hx; �i-moduleM.

The degree of this polynomial is then alled the Bernstein dimension of the K hx; �i-moduleM and

is denoted by d(M).

When the Ore algebra is simply a Weyl algebra, Bernstein proved the following theorem in [2℄.

Theorem 3.13 (Bernstein inequality). In the ase of the Weyl algebra

K hx; �i = K hx

1

; : : : ; x

d

; �

1

; : : : ; �

d

i;

the Bernstein dimension of a left K hx; �i-module M distint of f0g and of the whole algebra satis�es

d(M) � d:

Proof. We do not give any demonstration here, but the justi�ation mainly relies on the om-

mutativity of the assoiated graded algebras and on the fat that A 2 F

p

, B 2 F

q

implies

AB�BA 2 F

p+q�2

(in the general theory of graded rings, we would only get AB�BA 2 F

p+q�1

). �

The following de�nition and theorem relate the onept of Bernstein dimension to the onept

of holonomy disussed so far.

De�nition 3.14. (i) When a K hx; �i-module M is of smallest possible Bernstein dimension d,

it is alled holonomi (or in the Bernstein lass).

(ii) Let I be a left ideal of the algebra K (x)h�i, where x and � de�ne an Ore algebra K hx; �i.

When the K (x)-vetor spae

K (x)h�i=I

is �nite dimensional, the ideal I is said zero-dimensional.

Proposition 3.15. In the ontext of a Weyl algebra, K hx; �i=I is holonomi if and only if K (x)h�i I

is zero-dimensional.

Proof. The diret result is due to Bernstein and the onverse one to Kashiwara. (See [2, 16℄ for the

proof.) �

Theorem 3.13 annot be extended to the generality of admissible Ore algebras, as is proved by

the following example.

Example. Let I = (n; S) in the algebra built on the shift operator S

Sn = nS + S:

This ideal I is isomorphi to K hn; Si r K

�

(non-null onstants are not reahed). Therefore, its

dimension d(I) is 0, though this ideal is neither the null ideal, nor the whole algebra.

A similar example an be found in Ore algebras built on di�erene or Eulerian operators.

3.4. De�nition of holonomy. We now return to the link between D-�niteness and holonomy.

It is lear that when f is an element of the set of funtions on whih a Weyl algebra ats naturally,

if K (x)h�i I

f

is zero-dimensional, then K hx; �i=I

f

is holonomi in the sense that has just been

de�ned and f is holonomi in the sense of De�nition 1.1. Conversely, if f is holonomi in the sense

of De�nition 1.1 (i.e. if it is D-�nite), then Proposition 1.2 proves that I

f

is zero dimensional.

This equivalene justi�es that D-�nite funtions are also alled holonomi, sine they vanish on

holonomi ideals. In the ase of P -reursive sequenes, however, there is no diret onnetion to

holonomi ideals|we have proved that Bernstein inequality does not hold in Ore algebras built

on shift operators. The use by ombinatorialists of the word holonomi to denote P -reursive

sequenes is only motivated by the equivalene Theorem 1.10.

We are now able to de�ne holonomi systems and holonomi funtions.
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De�nition 3.16. Let K hx; �i = K hx

1

; : : : ; x

d

;D

1

; : : : ;D

d

i be a Weyl algebra. When a set G of ele-

ments of K hx; �i spans a zero-dimensional left ideal I =

P

g2G

K hx; �ig of the algebra|or, equiva-

lently, if I is zero-dimensional|, the set of equations determined by G is alled a holonomi system.

When f is a funtion of the family on whih the Weyl algebra ats naturally and suh that I

f

is

zero-dimensional, it is alled a holonomi funtion.

Let K hx; �i = K hx

1

; : : : ; x

d

; n

1

; : : : ; n

d

0

;D

1

; : : : ;D

d

; S

1

; : : : ; S

d

0

i be an (admissible) Ore algebra

build on di�erentiation and shift (or equivalently di�erene) operators. When f is a funtion of

the family on whih the Ore algebra ats naturally, let F be its generating funtion

F (x

1

; : : : ; x

d

; y

1

; : : : ; y

d

0

) =

X

(n

1

;:::;n

d

0

)2N

d

0

f

n

1

;:::;n

d

0

(x

1

; : : : ; x

d

) y

n

1

1

: : : y

n

d

0

d

0

:

When the ideal I

F

� K hx

1

; : : : ; x

d

; y

1

; : : : ; y

d

0

i is zero-dimensional, the sequene of funtions f is

also alled a holonomi funtion. When a set G of elements of K hx; �i de�nes a holonomi funtion

(as just de�ned for sequenes of funtions) up to initial onditions, the set of equations determined

by G is again alled a holonomi system.

Sine Bernstein inequality no longer holds in general in Ore algebras, it does not seem possible

to extend holonomy to other types of operators|or not all losure properties of D-�nite funtions

and P -reursive sequenes will remain valid.

4. Gr

�

obner bases in Ore algebras

The following remarks vindiate the introdution of Gr�obner bases. First, the implementation

of the arithmeti of Ore algebras, as desribed in Setion 2.3, ontains a sum and a produt, but

no equivalent for a division operation. Then, as already noted in Setion 1.1.2, the proofs of eah

result of Theorem 1.3 work by reduing the derivatives of a power series into a �nite dimensional

vetor spae in order to prove the D-�niteness of the series. The operations desribed so far in

Ore algebras do not provide us with any redution funtionality. Next, the set I

f

of all operators

of an Ore algebra that vanish on a funtion f is a left ideal of this algebra. The problem of

testing whether a given operator vanishes on f is therefore an ideal membership problem. Finally,

some algorithms on holonomi funtions, suh as omputing the generating funtion of a sequene,

require elimination.

In the ase of a single variable, all these problems are solved simply by performing Eulidean

division. In the ase of several variables, none of these problems remains solvable by this tehnique,

sine the algebras under onsideration are no longer Eulidean, and we need to �nd an alternative

for it. Gr�obner bases provide us with this generalisation.

In Setion 4.1, we give an example to motivate further the use of Gr�obner bases: we use elimi-

nation to automatially dedue equations on the Legendre polynomials, provided that simpler ones

are known.

Setion 4.2 identi�es the problem of redution, ompares it with Eulidean division and realls

de�nitions needed in the following subsetions. Redution is also extended to the ase of admissible

Ore algebras.

The algorithms of Setion 4.3, Buhberger's general ones and the improvements for the om-

mutative ase, are lassial algorithms that an be found in [13, Chapter 10℄ or in [7, Chapter 2℄,

along with proofs of their orretness. In the same subsetion, we also reall what is known as

Buhberger's \normal strategy", as well as algorithms for the \sugar strategy". This latter is fully

desribed and ompared to the former in [14℄. In the same setion, we explain how we generalised

all these algorithms to the ase of admissible Ore algebras and how we implemented them.

Exeution times for examples of Gr�obner bases omputations with our Mgfun pakage an be

found in Appendix A.

The reader who is already familiar with Gr�obner bases may skip diretly to the parts of the

next setions dealing spei�ally with the extension to admissible Ore algebras. It also has to be

noted that we have developped here a theory of Gr�obner bases in non-ommutative algebras whih
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is a partiular ase of Kandri-Rody and Weispfenning's theory of polynomial rings of solvable type

(see [15℄).

4.1. Example of the orthogonal Legendre polynomials. We intend to show on an example

how our Mgfun pakage deals with mixed di�erential-reurrene equations. We refer the reader to

Setion 2.3 and Appendix C for a desription of our pakage. Appendix B gives another, more

involved example of holonomi omputation.

As elements of a large lass of orthogonal polynomials, the Legendre polynomials are solutions

of a di�erential equation, of a reurrene equation and of a mixed di�erential-reurrene equation.

Our aim is to ompute one of these equations when both the other ones are given.

To begin with, we reall the de�nition of the Legendre polynomials, as well as some equations

that they satisfy (see [1, formul� (22.3.8, 22.6.13, 22.7.10, 22.8.5)℄):

P

n

(x) = 2

�n

bn=2

X

k=0

(�1)

k

 

n

k

! 

2 (n� k)

k

!

x

n�2k

;

(1� x

2

)P

00

n

(x)� 2xP

0

n

(x) + n(n+ 1)P

n

(x) = 0;

(n+ 2)P

n+2

(x)� (2n+ 3)xP

n+1

(x) + (n+ 1)P

n

(x) = 0;

(1� x

2

)P

0

n+1

(x) + (n+ 1)xP

n+1

(x)� (n+ 1)P

n

(x) = 0:

We load the pakage.

> with(Mgfun):

We de�ne an algebra with two indeterminates. The variable x is assoiated with a di�erentiation

operator D

x

, while the variable n is assoiated with a shift operator S

n

.

> A:=orealg([x,diff,Dx℄,[n,shift,Sn℄):

We de�ne the operators.

> DE:=(1-x^2)*dx^2-2*x*dx+n*(n+1):

RE:=(n+2)*Sn^2-(2*n+3)*x*Sn+(n+1):

RDE:=(1-x^2)*dx*Sn+(n+1)*x*Sn-(n+1):

Now, proving an identity is simply performing elimination. Eliminating D

x

between the di�er-

ential equation and the mixed di�erential-reurrene equation yields the reurrene equation.

> U:=termorder(A,lexdeg=[[dx℄,[n,x,Sn℄℄,max):

GBR:=gbasis(map(expand,[DE,RDE℄),U,rational);

GBR := [D

2

x

�D

2

x

x

2

� 2xD

x

+ n

2

+ n; D

x

S

n

�D

x

S

n

x

2

+ xS

n

n+ xS

n

� n� 1;

nS

n

D

x

� 2n� n

2

� xD

x

� nxD

x

+D

x

S

n

� 1;

D

x

+D

x

n+D

x

S

n

x+ 5S

n

+ 6nS

n

+ 2S

n

n

2

� 2D

x

S

2

n

� nS

2

n

D

x

;

4S

2

n

+ 4nS

2

n

+ n

2

S

2

n

� 6xS

n

� 7xS

n

n� 2n

2

x; S

n

+ 3n+ 2 + n

2

℄

(Note that the term order used is an elimination term order that put D

x

, the indeterminate to be

eliminated, prior to the other indeterminates.) This elimination takes less than 3 seonds.

The obtained Gr�obner basis ontains a polynomial without D

x

, whih we prove to be the desired

equation.

> fator(GBR[5℄);

�(n+ 2)(�nS

2

n

� 2S

2

n

+ 2xS

n

n+ 3xS

n

� n� 1)

In the same way, eliminating S

n

between the reurrene equation and the mixed di�erential-

reurrene equation yields the di�erential equation.
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> V:=termorder(A,lexdeg=[[Sn℄,[x,n,dx℄℄,max):

GBD:=gbasis(map(expand,[RE,RDE℄),V,rational);

[D

x

S

n

�D

x

S

n

x

2

+ xS

n

n+ xS

n

� n� 1;

� 2nS

n

S

n

n

2

+ x

2

D

x

+ x

2

D

x

n+ 2nx+ n

2

x� S

n

+ x�D

x

�D

x

n;

� x

2

n+ n+ 2n

2

� 2D

2

x

x

2

+D

2

x

� 2xD

x

+ 2x

3

nD

x

+ 2x

3

D

x

� 2nxD

x

+ n

3

+D

2

x

n� 2x

2

D

2

x

n+ x

4

D

2

x

n+ x

4

D

2

x

� n

3

x

2

� 2n

2

x

2

;

nS

2

n

+ 2S

2

n

� 2xS

n

n� 3xS

n

+ n+ 1 ℄

(Note that we used another term order with S

n

prior to the other variables to eliminate it.) This

elimination takes less than 3.5 seonds.

One again the operator without S

n

leads to the desired equation.

> fator(GBD[3℄);

�(x� 1)(x+ 1)(n+ 1)(D

2

x

�D

2

x

x

2

� 2xD

x

+ n

2

+ n)

These results were so enouraging that we tried to do the same on the orthogonal Jaobi poly-

nomials, with the use of the orresponding de�nition and equations that we reall here (see [1,

formul� (22.3.1, 22.6.1, 22.7.1, 22.8.1)℄):

J

(�;�)

n

(x) = 2

�n

n

X

k=0

 

n+ �

k

! 

n� �

n� k

!

(1 + x)

k

(1� x)

n�k

;

(1�x

2

)J

(�;�)

n

00

(x) + (� � �� (�+ � + 2)x)J

(�;�)

n

0

(x) + n (n+ �+ � + 1)J

(�;�)

n

(x) = 0

2 (n+ 2)(n+ �+ b+ 2)(2n + �+ b+ 2)J

(�;�)

n+2

(x)

� [(2n+ �+ b+ 3)(�

2

� b

2

)

+ (2n+ �+ b+ 2)(2n+ �+ b+ 3)(2n+ �+ b+ 4)x℄J

(�;�)

n+1

(x)

+ 2 (n+ �+ 1)(n+ b+ 1)(2n+ �+ b+ 4)J

(�;�)

n

(x) = 0

(2n+ �+ � + 2)(1 � x

2

)J

(�;�)

n+1

0

(x)� (n+ 1)(� � � + 2� (2n+ �+ � + 2)x)J

(�;�)

n+1

(x)

� 2 (n+ �+ 1)(n+ � + 1)J

(�;�)

n

(x) = 0

Working this time in K (n; k; �; �)hS

n

; S

k

i|instead of K hn; k; S

n

; S

k

i, as in the previous example of

the Legendre polynomials|, we got similar results in less than 10 seonds for eah omputation.

4.2. Division algorithm in the multivariate ase. In K [x℄, the Eulidean division of a poly-

nomial p by another polynomial q omputes two polynomials d and r suh that p = dq + r

and deg r < deg q. This last property uniquely determines the remainder r in the �nite dimensional

vetor-spae K [x℄

deg q�1

= fa 2 K [x℄ j deg a � deg q � 1g.

In other words, this Eulidean division redues p by the ideal (q) = K [x℄ q of K [x℄ in order to �nd

a remainder r in the �nite dimensional vetor-spae K [x℄

deg q�1

, whih is anonially isomorphi

to K [x℄=(q).

In this way, Eulidean division transfers problems from the in�nite dimensional vetor-spae K [x℄

into the �nite dimensional vetor-spae K [x℄

deg q�1

. Easy linear algebra an then be performed in

this �nite dimensional vetor-spae. Unfortunately, Eulidean division does not work any longer in

an algebra of polynomials in several indeterminates.
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# Return the remainder of the Eulidean division of p by q

funtion EulideanDivision(p; q)

# Begin with p itself as the remainder

r = p

# Redue the degree of r while this an be done

while deg r � deg q f

r = r �

monomial of r of highest degree

monomial of q of highest degree

q

g

# Return a polynomial with no monomial of degree less than q

return r

Algorithm 1. Eulidean division

4.2.1. Redution. We now proeed to reall the onept of redution, whih is a generalisation of

Eulidean division to the ase of polynomials in several indeterminates.

We �rst reall the algorithm of Eulidean division in K [x℄ to identify what has to be required for

a general algorithm of redution.

In the ase of several indeterminates x

1

; : : : ; x

d

, we make the following remarks, that we then

detail in the next paragraphs:

(i) there is no longer one single notion of degree: the onept of term orders has to be substi-

tuted to the one of degree;

(ii) the ideal (q) has to be hanged into an ideal of K [x

1

; : : : ; x

d

℄ and it generally is impossible to

�nd a single generator of this ideal; therefore, a general redution algorithm should \divide"

by a set of reduers;

(iii) when the leading monomial of a polynomial p is not divisible by the leading monomial of

another polynomial q, it is not neessarily true that no monomial of p is divisible by the

leading monomial of q;

(iv) given a polynomial p and a (�nite) set of polynomials q

i

, if there exist d

i

's and a remainder r

suh that p =

P

i

d

i

q

i

+ r, the remainder r is not uniquely determined by the term order

in K [x

1

; : : : ; x

d

℄, even if we add the onstraint that none of its monomials is divisible by the

leading monomial of any q

i

.

Term orders. A more formal de�nition of a term order is the following.

De�nition 4.1. A term order is an order on the ommutative monoid hx

1

; : : : ; x

d

i = fx

�

g

�2N

d

with the following properties:

(i) � is total: for all � and � in N

d

, either x

�

� x

�

or x

�

� x

�

;

(ii) � is ompatible with the law in hx

1

; : : : ; x

d

i: for all �, � and  in N

d

,

x

�

� x

�

=) x

�

x



� x

�

x



;

(iii) � is well-ordered: every non-empty subset of hx

1

; : : : ; x

d

i has a smallest element under �.

Still, we speak of a term order on an algebra of polynomials when referring to the term order of

the monoid on whih the algebra is built.

The term orders on the algebra of polynomials K [x

1

; : : : ; x

d

℄ that are most ommonly used are

given in the following de�nition.

De�nition 4.2.

{ The lexiographi order on the algebra K [x

1

; : : : ; x

d

℄ is de�ned by

x

�

�

lex

x

�

() 9 i 2 f1; : : : ; dg (8 j 2 f1; : : : ; dg j < i =) �

j

= �

j

) ^ �

i

< �

i

:
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{ The total degree order on the algebra K [x

1

; : : : ; x

d

℄ is de�ned by

x

�

�

tdeg

x

�

()

(j�j < j�j) _ (9 i 2 f1; : : : ; dg (8 j 2 f1; : : : ; dg i < j =) �

j

= �

j

) ^ �

i

< �

i

) :

(j�j is the sum �

1

+ � � �+ �

d

.)

{ The elimination orders on the algebra K [x

1

; : : : ; x

d

℄ are de�ned by the set fx

1

; : : : ; x

e

g of

indeterminates to be eliminated, and by

x

�

�

elim

x

�

()

�

x

�

1

1

� � � x

�

e

e

�

tdeg

x

�

1

1

� � � x

�

e

e

�

_

�

(�

1

; : : : ; �

e

) = (�

1

; : : : ; �

e

) ^ x

�

e+1

e+1

� � � x

�

d

d

�

tdeg

x

�

e+1

e+1

� � � x

�

d

d

�

:

Note that these three term orders oinide when d = 1. Moreover, for all of them, the following

property holds

8� 6= 0 1 � x

�

:

We add this assumption for all term orders under onsideration in the sequel.

One a term order has been hosen on an algebra of polynomials, the leading monomial of a

polynomial with respet to this term order has a prominent role, so that we give the following

notation: when p is a non-zero element of an algebra of polynomials on whih a term order has

been hosen, let:

(i) lm(p) denote the leading monomial of p with respet to this term order;

(ii) lt(p) denote the leading term of p with respet to this term order;

(iii) l(p) denote the leading oeÆient of p with respet to this term order.

We have lm(p) = l(p) lt(p), and l(p) 6= 0.

Non-prinipality of K [x

1

; : : : ; x

d

℄. Of ourse, we only deal with the ase d > 1.

As already mentioned, a division algorithm in K [x℄ is an algorithm that inputs two polynomials p

and q and returns two polynomials m and r suh that p = m+ r and m is a multiple of q. This is

an algorithm of redution modulo the ideal of the multiples of q. But K [x

1

; : : : ; x

d

℄ is not prinipal,

whih means that a generi ideal of this ring is not always generated by a single polynomial.

Allowing a set of divisors q

i

instead of a single one, the \division" equation beomes p = m + r

with m in the ideal spanned by the q

i

's, that is with m =

P

i

d

i

q

i

.

The step of Algorithm 1 that tests the divisibility of lt(r) by lt(q)|by omparing the degrees

of the polynomials|must be hanged to retain all those q

i

's suh that lt(q

i

) divides lt(r). Then,

the step that redues the degree of r by subtrating a multiple of q must be hanged to subtrat a

multiple of one of the q

i

's. Therefore, this raises the problem of hoosing whih q

i

's to use, when

several �t. For the moment, and as long as there is no matter of eÆieny, we solve this problem

by hoosing any one of them, for instane the �rst in the list of those retained.

For onveniene, the algorithm that are presented in the sequel use the following notation: given

a polynomial p to be redued and a set of reduers Q, let the reduer set R

p;Q

of p by Q be:

{ ? when p = 0;

{ fq 2 Q r f0g j lt(q) divides lt(p)g otherwise.

De�nition 4.3. A polynomial p is reduible

{ by a polynomial q if and only if there is a term t with non-zero oeÆient in p and a

monomial m suh that lt(t�mq) is lower than t aording to the term order on the ambient

algebra;

{ by a set of polynomials Q if and only if there is a q 2 Q, a term t with non-zero oeÆient

in p and another monomial m suh that lt(t �mq) is lower than t aording to the term

order on the ambient algebra.
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When either ondition is satis�ed, we also say q redues p or Q redues p respetively. Otherwise,

p is alled irreduible.

We denote these relations by the following notations:

(i) In eah of the two ases of the previous de�nition, let r denote p � mq. Then we write

respetively p!

q

r and p!

Q

r.

(ii) We write p

+

!

Q

r, whenever there is a �nite sequene q

1

; : : : ; q

n

of elements of Q suh that

p!

q

1

� � �!

q

n

r:

(iii) We write p

�

!

Q

r, whenever p

+

!

Q

r and r is irreduible by Q.

End of the redution. In the ase of a single indeterminate, when lt(q) does not divide lt(r), the

algorithm stops, and no other monomial of r is divisible by lt(q). We borrow the following example

from [7, Chapter 2℄ to show that this property does not hold any longer in the ase of several

indeterminates, but that the algorithm an be hanged to reover it.

Example. Let us redue p = x

2

y + xy

2

+ y

2

by the set fq

1

= xy � 1; q

2

= y

2

� 1g in the algebra

of polynomials K [x; y℄ equipped with the lexiographi term order suh that x � y:

x

2

y + xy

2

+ y

2

= 0 (xy � 1) + 0 (y

2

� 1) + (x

2

y + xy

2

+ y

2

)

= x (xy � 1) + 0 (y

2

� 1) + (xy

2

+ x+ y

2

)

= (x+ y) (xy � 1) + 0 (y

2

� 1) + (x+ y

2

+ y);

where we write all polynomials in dereasing order with respet to �. (Remember that when

both q

1

and q

2

an redue the remainder, we use q

1

.)

Now, the remainder r is x+ y

2

+ y and neither lt(q

1

) = xy nor lt(q

2

) = y

2

divides lt(r) = x. But

the seond term y

2

appearing in r is divisible by lt(q

2

) = y

2

, and after putting lt(r) away from the

remainder, we keep on reduing:

x

2

y + xy

2

+ y

2

= (x+ y) (xy � 1) + 0 (y

2

� 1) + (x) + (y

2

+ y)

= (x+ y) (xy � 1) + 1 (y

2

� 1) + x+ (y + 1)

= (x+ y) (xy � 1) + 1 (y

2

� 1) + (x+ y) + 1

= (x+ y) (xy � 1) + 1 (y

2

� 1) + (x+ y + 1):

This time, the remainder is a sum of monomials, none of whih is divisible by the leading terms of

the q

i

.

De�nition 4.4. A polynomial p is fully-redued

{ by a polynomial q when none of the monomials of p is reduible by q;

{ by a set of polynomials Q when none of the monomials of p is reduible by Q.

We demand that the redution algorithm leads to irreduible polynomials.

Uniqueness of the remainder. Another example borrowed from [7℄ proves that even when the term

order is �xed, there is no uniqueness of the remainder.
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Example. We proeed as we did in the previous example to perform the same redution with the

same term order, but giving the priority to q

2

rather than q

1

when both an redue the remainder:

x

2

y + xy

2

+ y

2

= 0 (xy � 1) + 0 (y

2

� 1) + (x

2

y + xy

2

+ y

2

)

= x (xy � 1) + 0 (y

2

� 1) + (xy

2

+ x+ y

2

)

= x (xy � 1) + x (y

2

� 1) + (2x+ y

2

)

= x (xy � 1) + x (y

2

� 1) + 2x+ (y

2

)

= x (xy � 1) + (x+ 1) (y

2

� 1) + 2x+ 1

= x (xy � 1) + (x+ 1) (y

2

� 1) + (2x+ 1):

The remainder is now 2x + 1. It is still a sum of monomials, none of whih is divisible by the

leading terms of the q

i

, but is di�erent from the remainder found in the previous example.

The uniqueness of the remainder is guaranteed only by additional properties of the set of reduers.

But we postpone onsidering this problem until the next setion. We are now ready to give an

algorithm of redution.

4.2.2. Full redution of a polynomial modulo an ideal given by generators. Given a polynomial p to

be redued and a set Q of reduers, the algorithm of full redution, that has just been suggested,

returns a polynomial r of the form

p�

X

q2Q

w

q

q(34)

with no reduible monomial. This algorithm is the one that we have implemented in our pak-

age Mgfun and that we reall in Algorithm 2.

# Given a polynomial p to be redued and a set Q of reduers,

# return a q that annot be redued any more

funtion FullyRedue(p;Q)

# Start with the whole polynomial

r = p

# At the beginning, the result ontains no monomial

q = 0

# Work monomial after monomial

while r 6= 0 f

# If a reduer exists, ontinue to redue

while R

r;Q

6= ? f

f = SeletPoly(R

r;Q

)

r = r �

lm(r)

lm(f)

f

g

# Otherwise, strip off the leading monomial

r = r � lm(r)

# And add it to the result

q = q + lm(r)

g

# Return a polynomial with no reduible monomial

return q

Algorithm 2. Full redution

It alls a proedure SeletPoly whih hooses a polynomial between those given as arguments. In

the naivest implementations, the polynomial hosen is the �rst element of the given list. But this
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remaining hoie is intended to make it possible to lessen the exeution time of the programme.

For instane, one an hoose the polynomials to redue in order to lessen the number of elementary

redutions to be done in a full redution. This is the hoie in the normal strategy. One ould also

hoose the polynomials to redue with in order to keep the size of the intermediate results|i.e.

the number of monomials in a polynomial|as small as possible.

However, we have not implemented Algorithm 2 exatly as it is desribed beause of the following

point: if we redued a polynomial p by a reduer q that is not moni, the algorithm would have to

divide by the leading oeÆient of q and the programme would have to deal with frations. This

would lead to a loss of eÆieny, sine all operations on frations are more time-onsuming than

simple arithmeti operations. Thus, it is a good thing to lear all denominators of the polynomials

under onsideration during the exeution of a full redution. But then, the result is no longer of

the form (34). Indeed it beomes of the form

w

p

p�

X

q2Q

w

q

q:(35)

Fortunately, this does not hange the algorithms.

4.2.3. Extension of the full redution to admissible Ore algebras. If we want to extend the algorithm

of full redution to non-ommutative algebras of polynomials, some problems arise:

{ the onept of a term order on the monomial does not make sense any longer; however, if

we restrit ourselves to admissible Ore algebras, as de�ned in De�nition 3.6, we an extend

this onept to the non-ommutative ase;

{ the ideals of suh algebras are generally not two-sided; sine we intend to deal with Ore

algebras, we restrit ourselves to left ideals;

{ when we redue a polynomial p by another polynomial q, we need to determine whether a

monomial of p is a multiple of the lt(q); we show in the sequel that this determination is

made easy if, one again, we restrit ourselves to admissible Ore algebras.

The �rst and the third point deserve to be ommented on. Reall that all Ore algebras under

onsideration are admissible. Let us �rst reall the properties of suh algebras (we give them in

the ase of a single indeterminate):

�(x) = px+ q;

Æ(x) = rx+ s;

�(x

n

) = (px+ q)

n

;

Æ(x

n

) =

n�1

X

k=0

(px+ q)

k

(rx+ s)x

p�1�k

:

(These are equations (29{30), (32) and a trivial onsequene of (29).)

Extension of the onept of term order. The problem is that there is no inner law of the non-

ommutative monoid hx; �i ruled by equations (29{30). However, multiplying x

�

�

�

by x

�

0

�

�

0

returns a polynomial whih has the normal form

p

��

0

x

�+�

0

�

�+�

0

+ a polynomial of total degree less than �+ �

0

+ � + �

0

;

if we de�ne the total degree of an Ore polynomial as the total degree of its normal form viewed as

an element of the ommutative algebra K [x; �℄.

Now, if we de�ne the produt of two non-ommutative terms as the produt of the orresponding

ommutative terms of the ommutative monoid hx; �i, the de�nitions and notations about term

orders, that were given in the previous setion, are readily extended to K hx; �i. Note that this

proess of viewing the monoid on whih the admissible Ore algebra is built as a ommutative monoid
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is equivalent to onstruting the assoiated graded algebra of the Ore algebra|see Setion 3 for

the de�nitions and the results.

Extension of the redution. The equations that we have realled yield

�x

n

= p

n

x

n

� + a polynomial of total degree less than n+ 1;

and then

�

m

x

n

= p

nm

x

n

�

m

+ a polynomial of total degree less than n+m:

It suÆes then to hange the step

r = r �

lm(r)

lm(f)

f

of Algorithm 2 by

r = r �

1

p

(deg

�

r�deg

�

f) deg

x

f

lm(r)

lm(f)

f:

Indeed,

r �

1

p

(deg

�

r�deg

�

f) deg

x

f

lm(r)

lm(f)

f

= r �

1

p

(deg

�

r�deg

�

f) deg

x

f

l(r)

l(f)

lt(r)

lt(f)

f

= r �

1

p

(deg

�

r�deg

�

f) deg

x

f

l(r)

l(f)

�

p

(deg

�

r�deg

�

f) deg

x

f

lt(r)

+ a polynomial of total degree less than the total degree of r

�

= a polynomial of total degree less than the total degree of r:

Now, whihever term order we hoose on K hx; �i, p redues r to this last polynomial.

In this way, we obtain a full redution in admissible Ore algebra, that possess properties similar

to full redution in the ommutative ase.

We implemented this modi�ed algorithm dealing with non-ommutative ideals.

4.3. Buhberger's basi algorithms and extension to admissible Ore algebras. We now

reall algorithms developed by Buhberger to ompute Gr�obner bases. We �rst present their tradi-

tional version based on the algorithm of full redution given in Setion 4.2, before extending them

to the ase of admissible Ore algebras.

4.3.1. Buhberger's algorithm for omputing Gr�obner bases. The algorithm of full redution stops

when the remainder has no reduible monomial left. We intend to test ideal membership by testing

the nullity of a remainder. Therefore, we need to be sure that the reduers are able to redue the

leading terms of every element of the ideal under onsideration. This happens only when the set

of reduers is a Gr�obner basis of the ideal they span.

Most de�nitions and results of this setion are realled from [7, Chapter 2℄. This is the reason

why we do not prove the next results.

Commutative ase. The leading terms of the reduers play a prominent role in the redution, and

we need the following de�nition before introduing Gr�obner bases.

De�nition 4.5. Let I be an ideal of K [x

1

; : : : ; x

d

℄ other than f0g on whih a term order has been

hosen. We denote by lt(I) the set fx

�

j 9 p 2 I lt(p) = x

�

g of leading terms of elements of I.

We denote by hlt(I)i the ideal generated by the elements of lt(I).
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De�nition 4.6. In the same ontext, a set G = fg

i

g

i=1;:::;t

of elements of the ideal I is alled

a Gr�obner basis if and only if

hlt(g

1

); : : : ; lt(g

t

)i = hlt(I)i:

We reall the following properties of Gr�obner bases, that prove their power with regard to

redution.

Proposition 4.7. Any ideal I other than f0g has a Gr�obner basis and any Gr�obner basis of an

ideal generates this ideal.

Theorem 4.8. Let G = fg

1

; : : : ; g

t

g be a Gr�obner basis of an ideal I of K [x

1

; : : : ; x

d

℄ and p an

element of I. Then, there is a unique polynomial r suh that:

(i) no monomial of r is reduible by G;

(ii) there is g 2 G suh that p = g + r.

Equivalently, p belongs to I if and only if the remainder of the redution of p by G is zero.

Now, given an ideal I generated by a set of polynomial G = fg

1

; : : : ; g

t

g, the problem is to

ompute a Gr�obner basis of I. Suppose that the set G is not a Gr�obner basis of I. Then, beause

of De�nition 4.6, the ideal of leading terms hlt(g

1

); : : : ; lt(g

t

)i is di�erent from hlt(I)i. The idea of

an algorithm to ompute a Gr�obner basis of I determined by G is then to add polynomials to G

that do not enlarge the ideal spanned by the g

i

's but that enlarge the orresponding ideal of leading

terms. To do so, we need a tool that, given two polynomials p and q, returns a polynomial whose

leading term is not element of hlt(p); lt(q)i. We now reall the de�nition of suh a tool, after a

preliminary one.

De�nition 4.9. Let x

�

and x

�

be two elements of the monoid hx

1

; : : : ; x

d

i and  the tuple de�ned

by 

i

= max(�

i

; �

i

). Then, the term x



is alled the least ommon multiple of x

�

and x

�

.

De�nition 4.10 (Syzygy in the ommutative ase). Let the S-polynomial of two polynomi-

als p and q be the linear ombination

Spoly(p; q) = l(q)

lm(lt(p); lt(q))

lt(p)

p� l(p)

lm(lt(p); lt(q))

lt(q)

q:

We also use the word syzygy to denote a S-polynomial.

It has to be mentioned that this onept of syzygies is but an instane of that of ritial pairs in

general rewriting theory.

Finally, the following last theorem diretly leads to Buhberger's algorithm.

Theorem 4.11. A set G = fg

1

; : : : ; g

t

g of elements of an ideal I is a Gr�obner basis of I if and

only if G redues all syzygies Spoly(g; g

0

) of two elements of G to zero.

Proof. As for all results of this setion, we do not give any proof and refer the reader to [7, Chapter 2℄

or to [13, Chapter 10℄. Still, to justify that the syzygies need to be redued, let us onsider the

redution of a polynomial p by a set Q leading to the remainder r. As far as the ideals of leading

terms are onerned, we have:

hflm(q)g

q2Q

; lm(p)i � hflm(q)g

q2Q

; lm(r)i:

Intuitively, this means that the new set of generators Q [ frg is able to redue more polynomials

than the older Q[ fpg. Sine the the ideal of leading terms has to be as large as possible, it is not

astonishing that the syzygies need to be redued. �
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# Given a set of polynomials P

# return a Gr�obner basis G generating the same ideal

funtion Gr�obnerBasis(P )

# Eah generator from P will be in G

G = P

k = length(G)

# Initialise the set of syzygies still to be dealt with

B = f(G

i

; G

j

) j 1 � i < j � kg

# Work until all syzygies have been redued

while B 6= ? f

(G

i

; G

j

) = SeletPair(B;G)

B = B r f(G

i

; G

j

)g

h = FullyRedue(Spoly(G

i

; G

j

); G)

# The S-polynomial is kept iff it adds another

# irreduible monomial

if h 6= 0 then f

G = G [ fhg

k = k + 1

# Do not forget to add the orresponding syzygies

B = B [ f(G

i

; G

k

) j 1 � i < kg

g

g

return G

Algorithm 3. Buhberger's algorithm

We reall Buhberger's algorithm in Algorithm 3. It uses a proedure Spoly whih omputes the

S-polynomial of two polynomials.

The proess of this algorithm is to generate and redue all possible syzygies between two el-

ements of the input set G. Then, the algorithm adds to G those results of redution that are

not zero and loops until no new syzygy an be generated. When it stops, the ideal of leading

terms hlt(g

1

); : : : ; lt(g

t

0

)i has been saturated and equals hlt Ii. Then, fg

i

g

i=1;:::;t

0

is a Gr�obner basis

of I.

One again, there is some freedom in the algorithm, through the order aording to whih the

syzygies are to be dealt with. The proedure SeletPair hooses a syzygy between those that have

not been dealt with yet.

Case of admissible Ore algebras. This algorithm generalises with a single hange to the ase of

admissible Ore algebras: the syzygies have to be rede�ned.

De�nition 4.12 (Syzygy in the ase of admissible Ore algebras). When �, �, �

0

and �

0

are integers suh that � � �

0

and � � �

0

, let

�

x

�

�

�

: x

�

0

�

�

0

�

denote x

���

0

�

���

0

.

Let the S-polynomial of two operators p and q of an admissible Ore algebra K hx; �i be the linear

ombination

Spoly(p; q) = l(q) [lm(lt(p); lt(q)) : lt(p)℄ p� l(p) [lm(lt(p); lt(q)) : lt(q)℄ q:

As far as the theory is onerned, everything that has been said in the ommutative ase is

still valid. Indeed, the proofs of the previous results only involve the leading monomials of the
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polynomials under onsideration and the good property that the leading term of a produt is the

produt of the leading terms. But they never involve the oeÆients of the non-leading terms.

4.3.2. Inter-redution of a set of polynomials and redued Gr�obner bases. Algorithm 3 disussed in

Setion 4.3.1 returns one Gr�obner basis of the input ideal. But there usually exist many Gr�obner

bases of a given ideal. The problem of uniqueness of Gr�obner bases is solved by additional onditions

on them, whih lead to so-alled redued Gr�obner bases.

Besides, we intend to ompute remainders of redutions by a Gr�obner basis of an ideal. This

leads to a dramati loss of eÆieny, when the Gr�obner basis used is not \redued" in a sense that

we detail further in the sequel. (In this ase, there is a kind of redundany in the elements of the

Gr�obner basis.)

We begin with an example that illustrates this last point.

Example. We onsider Q[x; y; z; t℄ equipped with the lexiographi term order suh that x � y �

z � t. Let us redue p = x

5

by the set P = fp

1

; p

2

; p

3

; p

4

g where

p

1

= x

5

� y

4

+ 1;

p

2

= y

4

� z

3

;

p

3

= z

3

� t

2

;

p

4

= t

2

� 1:

The set P is ertainly a Gr�obner basis of the ideal I it spans. The result of the redution is trivially

zero, but after three intermediate results. Now, reduing x

10

takes eight steps, and one gets easily

onvined that reduing x

10

(y + z + t) takes 24 steps.

The �rst redution proves that x

5

is in I. Thus, if we put p

0

= x

5

, the new set P

0

=

fp

0

; p

1

; p

2

; p

3

; p

4

g also generates I. Sine the ideals of leading terms of both P and P

0

are the

same ideal, P

0

is also a Gr�obner basis of I. Still, the numbers of steps needed for the redutions

under onsideration drop to 1, 2 and 6 instead of 3, 8 and 24 respetively.

The following proposition makes it possible to lessen the number of elements of a Gr�obner basis.

Proposition 4.13. Let G be a Gr�obner basis of an ideal I. Let g be an element of G suh

that lt(g) 2 hlt(G r fgg)i. Then G r fgg is also a Gr�obner basis of I.

We get rid of the problem of redundany mentioned in the last example with the following

de�nitions.

De�nition 4.14. A minimal Gr�obner basis of an ideal I is a Gr�obner basis G of I suh that for

all g in G,

(i) l(g) = 1,

(ii) lt(g) 62 hlt(G r fgg)i.

De�nition 4.15. A redued Gr�obner basis of an ideal I is a Gr�obner basis G of I suh that for

all g in G,

(i) l(g) = 1,

(ii) no monomial of g lies in hlt(G r fgg)i.

Note that any redued Gr�obner basis is a minimal Gr�obner basis.

The following proposition answers the question of uniqueness.

Proposition 4.16. One the ambient polynomial algebra has been equipped with a given term order,

any ideal possess a single redued Gr�obner basis.
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Example. The (only) redued Gr�obner basis of

I = hx

5

� y

4

+ 1; y

4

� z

3

; z

3

� t

2

; t

2

� 1i

with respet to the total degree order is

G = fx

5

; y

4

� 1; z

3

� 1; t

2

� 1g:

The set G is also the redued Gr�obner basis of I with respet to the lexiographi order suh

that x � y � z � t. It is lear that the redutions under onsideration in the example of the

beginning of the setion are performed in less steps with G than with the initial basis.

The point is now to be able to transform a given Gr�obner basis into a redued Gr�obner basis.

Algorithm 4 performs this transformation.

# Given a set E of polynomials generating an ideal,

# return a redued set generating the same ideal

funtion RedueSet(E)

# First, remove any redundant element

R = E

# Put generators that inrease the ideal one after another

# Thus begin with none

P = ?

# Test eah element of the input set one after another

while R 6= ? f

h = SeletPoly(R)

R = R r fhg

h = FullyRedue(h; P )

# Do not use it unless it inreases the ideal

if h 6= 0 then f

Q = fq 2 P j lt(h) divides lt(q)g

R = R [Q

P = (P rQ) [ fhg

g

g

# Ensure eah element is redued modulo the others

E

0

= ?

foreah h 2 P f

h = FullyRedue(h; P r fhg)

E

0

= E

0

[ fhg

g

return E

0

Algorithm 4. Inter-redution

This algorithm works in two steps.

First, the input polynomials are tested to keep only a subset that generates the same ideal:

polynomials that are ombinations of the others are not kept. Moreover, the seleted polynomials

are redued in terms of the ones previously seleted. For this stage, the role of the SeletPoly

proedure is to hoose polynomials that will not need a lot of work to be inter-redued afterwards.

The result of this phase is a minimal Gr�obner basis.

The seond phase does an inter-redution of the seleted polynomials. Thus, the �nal polynomials

onsist of linear ombinations of the lowest possible monomials needed to generate the ideal.

It suÆes now to all RedueSet at the end of Gr�obnerBasis to get a redued Gr�obner basis.
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4.4. Improvements of Buhberger's algorithm. A �rst remark on the omplexity of the al-

gorithm is that it is intrinsially high. More preisely, if n is the number of indeterminates and d

is the maximum degree of the input, the omplexity of the algorithm is d

O(n

2

)

, although it drops

to d

O(n)

with some assumptions on the input and on the implementation (see [17, Setion 6℄). These

exponential omplexities apply both in time and spae, beause they are related to the size of the

result. (The output is uniquely determined by the input, in the most interesting ase of the redued

Gr�obner bases.) Therefore, a large part of the lassial improvements of the algorithm take plae

in the way the syzygies to be redued are hosen.

Another point is that the ost in time for a full redution of a syzygy beomes very important

as the algorithm progresses and as the polynomials under onsideration grow. In the meantime,

lots of these redutions lead to a null result, that auses the syzygy to be thrown away without any

bene�t.

Thus, the best diretion for improvement is to �nd a way to determine very quikly whether

the syzygy under onsideration will lead to a null result; this leads to Buhberger's old \normal

strategy" and to the \sugar strategy".

4.4.1. Normal strategy. The interest of this strategy is that more re�ned strategies use several ideas

of it as their starting point. This strategy an be viewed as \loally optimal": the hoies made to

redue are intended to optimize one redution after another, without using information about the

whole ideal.

We �rst reall Buhberger's results for the ommutative ase, before extending them to admissible

Ore algebras.

Commutative ase. Two riteria allow us to easily rejet uninteresting syzygies.

We �rst reall two propositions that justify these riteria from [13, Chapter 10℄. (The results are

also proved in [7, Chapter 2℄.)

Proposition 4.17. For any pair of polynomials (p; q),

lm(lt(p); lt(q)) = lt(p) lt(q)) Spoly(p; q)

�

!

fp;qg

0:

Proof. Let p and q be suh that

lm(lt(p); lt(q)) = lt(p) lt(q):(36)

Then,

Spoly(p; q) = l(q)

lm(lt(p); lt(q))

lt(p)

p� l(p)

lm(lt(p); lt(q))

lt(q)

q

= l(q) lt(q)p� l(p) lt(p)q

= lm(q) (p� lm(p))� lm(p) (q � lm(q)):

(37)

The hypothesis (36) implies that lm(p) and lm(q) do not have the same indeterminates and

there is no anellation between the terms of the last di�erene. Then, lm(Spoly(p; q)) is ei-

ther lm(q) lm(p� lm(p)) or lm(p) lm(q � lm(q)).

Suppose, without loss of generality, that we are in the �rst ase. Then

lm(q)!

q

lm(q)� q

yields

lm(q) (p� lm(p))!

q

(lm(q)� q) (p� lm(p)):

Similarly,

lm(p) (q � lm(q))!

p

(lm(p)� p) (q � lm(q)):
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Finally, summing both results yields

Spoly(p; q)

�

!

fp;qg

0:

�

Proposition 4.18. A set of polynomial G is a Gr�obner basis if and only if for all (p; q) 2 G

2

(i) either

Spoly(p; q)

�

!

G

0;

(ii) or there exists h 2 G distint from p and q suh that

lt(h) j lm(lt(p); lt(q)) ^ Spoly(p; h)

�

!

G

0 ^ Spoly(q; h)

�

!

G

0:

These propositions are onverted into riteria as follows.

Criterion 1. A syzygy (G

i

; G

j

) under onsideration during Buhberger's algorithm may be skipped

as soon as

lm(lt(G

i

); lt(G

j

)) = lt(G

i

) lt(G

j

):

Criterion 2. A syzygy (G

i

; G

j

) under onsideration during Buhberger's algorithm may be skipped

as soon as there exists a k suh that

lt(G

k

) j lm(lt(G

i

); lt(G

j

));

where both syzygies (G

i

; G

k

) and (G

k

; G

j

) have already been dealt with.

Algorithm 5 implements Buhberger's algorithm to ompute redued Gr�obner bases and skips a

syzygy when either riterion is satis�ed.

The funtions Criterion1 and Criterion2 return true if the orresponding riterion is satis�ed,

false otherwise. They test whether the syzygy under onsideration may be skipped.

Besides, one has to hoose with whih syzygy one should deal �rst. This is the goal of the

funtion SeletPair. Buhberger and Winkler showed in [6℄ that a good seletion is to deal with the

pair of lowest lm of its leading terms �rst. This seletion inreases the frequeny of rejetion a priori

thanks to the riteria.

The use of both riteria in onjuntion with seletion sheme is known as Buhberger's normal

strategy.

Finally, note that the pre-redution ould optionally be forgotten.

Case of admissible Ore algebras. We have shown that the onept of redution exists in admissible

Ore algebras. Algorithms 4 and 5 annot be implemented as they are in suh a non-ommutative

ase, sine some of the results they rely on make ruial use of the ommutativity. We proeed to

show how to generalise them to make this implementation possible.

First, we prove on an example that Criterion 1 is wrong in the non-ommutative ase|at least

with no other hypothesis.

Example. Let p = x and q = D

x

in the Ore algebra K hx;D

x

i on whih we hoose the lexiographi

term order suh that D

x

� x. Then, the syzygy Spoly(p; q) equals D

x

p�xq = 1 whih is irreduible,

but not zero. The pair (x;D

x

) is then a ounter-example of Criterion 1 in the non-ommutative

ase.

When analysing the proof of Criterion 1, it appears that the equality (37) holds only if the

leading terms lt(p) and lt(q) ommute. An idea is therefore to add the hypothesis that the leading

monomials of p and q should ommute. This leads to the following example.
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# Given a set of polynomials P

# return a redued Gr�obner basis G generating the same ideal

funtion ReduedGr�obnerBasis(P )

# Eah generator from P will be in G

G = RedueSet(P )

k = length(G)

# Initialise the set of syzygies still to be dealt with

B = f(G

i

; G

j

) j 1 � i < j � kg

# Work until all syzygies have been redued

while B 6= ? f

(G

i

; G

j

) = SeletPair(B;G)

B = B r f(G

i

; G

j

)g

if Criterion1(B;G) or Criterion2((G

i

; G

j

); B;G) then f

h = FullyRedue(Spoly(G

i

; G

j

); G)

# The S-polynomial is kept iff it adds another

# irreduible monomial

if h 6= 0 then f

G = G [ fhg

k = k + 1

# Do not forget to add the orresponding syzygies

B = B [ f(G

i

; G

k

) j 1 � i < kg

g

g

g

# Disard redundant elements and inter-redue

R = fg 2 G j R

g;G

r fgg 6= ?g

return RedueSet(G rR)

Algorithm 5. Redued Gr�obner basis

Example. Let p = M + x and q = N + D

x

in an Ore algebra built on a set of indeterminates

inluding amongst others x and D

x

. We assume that M and N are the leading monomials of p

and q respetively and that they ommute. We assume also that neither x nor D

x

appears in these

leading terms. (This is possible for instane in K hx; y; z; D

x

;D

y

;D

z

i with p = y+x and q = z+D

x

and an adequate term order.) Then, Spoly(p; q) = N (M + x) �M (N +D

x

) = xN �MD

x

, and

there is no simpli�ation in this polynomial.

Now, Spoly(p; q)!

p

xN + xD

x

+ 1!

q

1, whih is irreduible but not zero.

Besides, Spoly(p; q)!

q

�xD

x

�MD

x

!

p

1, whih is irreduible but not zero. The pair (M+x;N+

D

x

) is then another ounter-example of Criterion 1 in the non-ommutative ase.

Therefore, it seems that there is no hope of generalising Criterion 1 exept when every indeter-

minate in p ommutes with every indeterminate in q.

Proposition 4.19. When every indeterminate in p ommutes with every indeterminate in q,

lm(lt(p); lt(q)) = lt(p) lt(q)) Spoly(p; q)

�

!

fp;qg

0:

Proof. As in the ommutative ase, there is no anellation between the terms of Spoly(p; q).

Now, eah possible redution by p or q needs to multiply the polynomial under onsideration by a

monomial in indeterminates of the other one. Therefore, everything happens as in the ommutative

ase, where

Spoly(p; q)

�

!

fp;qg

0:
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�

Criterion 1'. A syzygy (G

i

; G

j

) under onsideration during Buhberger's algorithm may be skipped

as soon as every indeterminate in p ommutes with every indeterminate in q and

lm(lt(G

i

); lt(G

j

)) = lt(G

i

) lt(G

j

):

As far as Criterion 2 is onerned, the situation is di�erent: Proposition 4.18 is a general result

of rewriting theory, and it is still valid in any admissible Ore algebra, as well as Criterion 2. In

fat, the two riteria used in the ommutative ase have di�erent meanings:

{ Criterion 2 states that the pair (G

i

; G

j

) is a \useless" pair: its redution will return 0,

due to the ontext (both pairs (G

i

; G

k

) and (G

k

; G

j

) have already been redued), so this

redution would be a redundant alulation;

{ Criterion 1 states that the pair (G

i

; G

j

) is a \trivial" pair: its rest of the redution is not

deduile from the previous omputations, but the redution trivially yields 0.

4.4.2. Sugar strategy. The idea of the \sugar strategy" is to build the ideal of leading terms in an

global manner. Let I be an ideal in K [x

1

; : : : ; x

d

; y℄ and L

n

= lt(I) [ y

n

K [x

1

; : : : ; x

d

℄. Then lt(I) =

S

n�0

L

n

and (L

n

)

n2N

is an inreasing sequene of ideals. The \sugar strategy" tries to ompute

the ideals L

n

one after another, so that omputation made for L

0

to L

n

help that of L

n+1

.

Commutative ase. We reall here the strategy presented in [14℄. All syzygies waiting for treatment

are tagged with their \sugar"; so are the polynomials to redue with. This sugar more or less

represents the degree of an additional phantom indeterminate that would be used to homogenise the

polynomials. Redutions are performed on syzygies with lowest sugar �rst, and with polynomials of

lowest sugar as reduers. At the beginning of the algorithm, the sugar of eah polynomial is set to

its total degree. Then, the following rules are followed eah time an operation between polynomials

is performed:

s(pq) = s(p) + s(q)

s(p+ q) = max(s(p); s(q))

where s(p) is the sugar of p. (Note that if simpli�ation ours in a sum, it is not taken into aount

in the sugar: this represents a power of the phantom indeterminate.)

Case of admissible Ore algebras. We implemented the sugar strategy in the ontext of our ad-

missible Ore algebras. The same interpretation in terms of homogenised ideal is still valid in Ore

algebras, though it does not seem possible to use onnetion to projetive varieties, unlike in the

ommutative ase, and to get in this way a better understanding of the strategy.

5. Implementation of operations on holonomi funtions

We proeed to desribe our implementation of e�etive losure properties of holonomi funtions

and to give examples of omputation on them.

We �rst deal with simple losure operations as sum and produt in Setion 5.1. They are based

on redution and Gaussian elimination. The algorithms for these �rst simple holonomi losures

extend easily to funtions solutions of linear operators of any Ore algebra. The next losures,

however, are properties of holonomi funtions only. In Setion 5.2, we give algorithms to ompute

de�nite sums, de�nite integrals and generating funtions, that are based on Gr�obner elimination.

We also present there our implementation of the diagonal. It is based on Gaussian elimination, and

no algorithm based on Gr�obner-like elimination is known. The problem of �nding suh an algorithm

remains open. Next, we reall algorithms omputing oeÆients of a holonomi series, inde�nite

sums and inde�nite integrals. This algorithms are based on diagonal. Finally, in Setion 5.3, we give

an example of omputation in the admissible Ore algebra K he

x

;D

x

i showing that several algorithms
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presented in the traditional ase of holonomy extend to this ontext. This example omputes the

generating funtion e

e

x

�1

of the Bell numbers, whih is ertainly not D-�nite.

Some of the examples given in this setion lead to so-alled automati theorems. By this words, we

do not mean a theorem that has atually been fully proven with a omputer. The main part of eah

of the proofs of our automati theorems|�nding equations de�ning a vetor-spae of holonomi

funtions|has been performed on a omputer, but minor omputations that ould be automatised

have not. Still, we intend to implement the missing part|handling initial onditions|in order to

obtain fully automatised proofs of these theorems.

An important remark has to be done about the following algorithms. Taking advantage of

Proposition 1.2, the proess of these algorithms is to �nd operators in a single pseudo-di�erential

indeterminate vanishing in the holonomi funtion under onsideration. Therefore, no equation

involving ross-derivatives an be found with them, and information is lost by these algorithms.

As an example, assume that the user wants to ompute the sum of two funtions f and g. Ideally,

the user then inputs holonomi systems generating the ideals V

f

and V

g

as de�ned in Setion 2.

Then, the user asks for a holonomi system de�ning V

f+g

.

Still, beause of the intrinsi weakness of the algorithms that are involved in the sum, the holo-

nomi systems that the user reeives de�nes an ideal V that is smaller than V

f+g

, or equivalently,

or larger set of solutions. In other words, the algorithms used introdue parasiti funtions. How-

ever, provided suÆiently many initial onditions on f and g, the user an determine whih of the

solutions is f + g.

Finally, we reall that Takayama's system Kan is able to perform most of the operations desribed

in the sequel, although not in the generality of admissible Ore algebras. (See [28℄ and [29℄.)

5.1. Arithmetial operations. Sine most of the algorithms implement the proofs of Theo-

rem 1.3 and of Theorem 1.11, they need to �nd linear dependenies between (pseudo-)derivatives

of an expression. We �rst detail the algorithm to obtain suh dependenies in Setion 5.1.1. Fur-

thermore, the algorithms �nd these dependenies only beause all derivatives are redued modulo

the ideals de�ning the holonomi funtions involved in the original expression. In Setion 5.1.2,

we omment on an algorithm to ompute derivatives of an expression and redue them modulo

ideals de�ning holonomi funtions. In Setion 5.1.3, we then use the algorithm of Setion 5.1.2

to implement arithmetial operations on holonomi funtions and give examples of omputation.

We �nally present an algorithm omputing a holonomi system satis�ed by an algebrai funtion

in Setion 5.1.4. Although this algorithm is similar to the previous ones, it is not based on the

algorithms of Setion 5.1.2.

As suggested in the previous introdution, the algorithms to ompute sums or produts of holo-

nomi funtions desribed in this setion work in an Ore algebra K hx; �i extended by rational

frations, namely K (x)h�i, rather than in the Ore algebra itself. They mainly rely on the zero-

dimensionality of the annihilating ideals de�ning the funtions in the extended algebra. Therefore,

they extend to funtions de�ned by ideals of any Ore algebra.

5.1.1. Searhing for a linear dependeny. The algorithm inputs a list of polynomials and a list of

indeterminates, and searhes for a linear ombination of the polynomials that makes the indeter-

minates disappear.

Moreover, it uses only as many polynomials of the list as are neessary to get a dependeny. By

taking the polynomials in inreasing order, it is therefore possible to �nd a dependeny between

derivatives of an expression of smallest possible order.

The indeterminates given to the atual proedure are Maple expressions and the programme

performs elimination of expressions suh as f(s; x=s) and �

x

g(x; y) between the input polynomials

(in those \indeterminates"). As a matter of fat, given polynomials as desribed before, any linear

ombination of the inputs ontains only \monomials" that are produts of the \indeterminates" to

be eliminated.

The proess of the algorithm is:
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(i) add new indeterminates, one to eah input polynomial, suh as �

i

for the i

th

; these indeter-

minates are not to be eliminated, but tag the input polynomials to keep trak of the linear

ombinations performed on them;

(ii) reord all the \monomials" ourring in the input polynomials and substitute them by

new indeterminates, so that the problem is redued to linear elimination of these new

indeterminates;

(iii) perform a Gaussian elimination on the substituted polynomials �nding the pivots sues-

sively in the next polynomial of the list|without hanging the order of this list|until all

indeterminates have disappeared in one of the polynomials;

(iv) then, the last polynomial under onsideration is a linear ombination of the �

i

's whih

denotes a vanishing linear ombination of the input polynomials.

The proedure leaves the responsibility to add the onstants to the alling programme.

Its eÆieny ould be improved in (at least) two ways:

{ the proedure should reord the suessive pivots and redue the polynomials only when they

are onsidered to �nd a new pivot, instead of reduing them all; thus some omputation

would be spared when an elimination does not need all the input polynomials to �nd a

dependeny;

{ in ase of failure, the proedure should reord all intermediate pivots, in order to allow an

inremental elimination; the alling proedure should be able to ompute more polynomials

to add to the input list only when neessary instead of omputing an exessive number of

them.

5.1.2. Searhing for a linear dependeny modulo ideals de�ning holonomi funtions. The proe-

dure takes the initial expression as well as sets of generators of the annihilating ideals I

f

for the

funtions f that are known to be holonomi (or subideals of these I

f

).

The outline of the algorithm is:

(i) repeat steps (ii) to (iv) until all derivatives to be onsidered have been redued:

(ii) generate a new pseudo-derivative;

(iii) ollet from its expression any ourrene of a (pseudo-)derivative of the holonomi funtions

and redue them using the given relations;

(iv) replae in the expression the (pseudo-)derivatives by their redued form;

(v) the result an be sent to the previous algorithm to �nd a linear dependeny; to do so, it is

neessary to tag eah expression with a symboli onstant suh as �

�

dummy(x) and to ask

the previous proedure to eliminate all the pseudo-derivatives of the holonomi funtions.

In order not to perform repeatedly the same redutions, the list of all redutions already dealt

with is stored and only the new derivatives are redued. In this way, the algorithm beomes a

rewriting algorithm, sine after some iterations, all derivatives have been redued and are diretly

rewritten.

Moreover, sine for onveniene the derivatives under onsideration are suessive derivatives

with respet to the same variable, it is easy to ompute and redue them in an inremental way.

The following example involves very simple di�erential equations, whose solutions are expliitly

known, so that we an hek the results.

Example. We de�ne the funtions f and g by the two following di�erential equations:

{ 5f

00

(x) + f(x) = 0, whih has the generi solution � os

x

p

5

+ � sin

x

p

5

;

{ 3g

0

(x) + g(x) = 0, whih has the generi solution  exp

�x

3

.

The aim of the omputation is to �nd a di�erential equation satis�ed generially by:

h(x) = �f(x) + g(x) + f(x) g(x) = �(� os

x

p

5

+ � sin

x

p

5

) + e

�x

3

+ (� os

x

p

5

+ � sin

x

p

5

) e

�x

3

:
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The equation found by our pakage on this problem is the following:

675h

(5)

(x) + 675h

(4)

(x) + 495h

000

(x) + 205h

00

(x) + 72h

0

(x) + 14h(x) = 0:

We �rst load the pakage.

> with(Mgfun):

We �rst deal with a Weyl algebra in a single indeterminate; on this algebra, we onsider the

total degree term order on both indeterminates x and dx.

> A:=orealg([x,diff,dx℄):

T:=termorder(A,tdeg,max):

We introdue the equations.

> GL[f℄:=[5*dx*dx+1℄:

GL[g℄:=[3*dx+1℄:

dependeny(-f(x)+g(x)+f(x)*g(x),x,6,GL,T);

�675D

5

x

� 72D

x

� 205D

2

x

� 14 � 495D

3

x

� 675D

4

x

(Notie that we have had to suggest a maximum number of derivatives to be onsidered|namely 6,

inluding the initial funtion|sine the programme is neither able to guess it, nor to work in an

inremental way, yet.)

So we have a proof that h is generially|that is for any (�; �; ) 2 C

3

|a solution of:

675h

(5)

(x) + 675h

(4)

(x) + 495h

000

(x) + 205h

00

(x) + 72h

0

(x) + 14h(x) = 0;

whih is easily heked:

> applyopr(",-(a*os(1/sqrt(5)*x)+b*sin(1/sqrt(5)*x))+

*exp(-x/3)+(a*os(1/sqrt(5)*x)+b*sin(1/sqrt(5)*x))*

*exp(-x/3),A);

expand(");

� 345

�

a

25

sin

�

1

5

p

5x

�

p

5�

b

25

os

�

1

5

p

5x

�

p

5

�

e

�1=3x

� 42

�

�

a

5

sin

�

1

5

p

5x

�

p

5 +

b

5

os

�

1

5

p

5x

�

p

5

�

e

�1=3x

+ 90

�

�

a

5

os

�

1

5

p

5x

�

�

b

5

sin

�

1

5

p

5x

��

e

�1=3x

+ 450

�

a

25

os

�

1

5

p

5x

�

+

b

25

sin

�

1

5

p

5x

��

e

�1=3x

� 675

�

�

a

125

sin

�

1

5

p

5x

�

p

5 +

b

125

os

�

1

5

p

5x

�

p

5

�

e

�1=3x

0

An extra subtlety of the algorithm has to be emphasised to explain this example: as already

mentioned, the proess of redution of an operator p by a list of operators q

1

; : : : ; q

r

does not lead

to an operator of the form (34), but to a multiple of suh a form in whih no fration ours.

Therefore, the algorithm has to take are of the denominators and the proedure of full redution

has to return both polynomials p and w

p

of equation (35).
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5.1.3. Sum, produt and symmetri power. Not muh remains to be said about these operations,

sine they happen to be only partiular ases of the above method to �nd a holonomi system

satis�ed by a given expression. In fat, the previous algorithms make it possible to ompute

diretly any polynomial P (x

1

; : : : ; x

d

; h

1

; : : : ; h

r

) that involves any holonomi funtions h

i

(or even

funtions de�ned by zero-dimensional ideals of any Ore algebra).

Speialised algorithms for sum and produt an be found in [27℄. They are somewhat simpler

than the one explained above beause they involve only one funtion at a time, and thus work

diretly on the pseudo-di�erential operators rather than on the derivatives.

The aw of suh algorithms that perform eah sum and produt in separate stages, is that they

indue a loss of eÆieny when omputing equations for a polynomial in some holonomi funtions.

The simplest example of this phenomenon is the omputation of equations for the symmetri power

of a holonomi funtion f(x): if the order of the di�erential equation satis�ed by �

i

f is !

i

, then

the iterative omputation of the r

th

symmetri power needs to redue (!

0

+ 1) + � � � + (!

r

+ 1)

derivatives, while the diret method redues only !

r

+ 1 derivatives.

For these simple operations, there are however theoretial bounds to the orders of the equations:

let f and g be two holonomi funtions in a single variable x, I

f

and I

g

being the assoiated ideals

of operators of an Ore algebra K hx; �i vanishing on these funtions. Sine f and g are holonomi,

both ideals are zero dimensional whih, by de�nition, means:

k(I

f

) = dim

K(x)

K (x)h�i=V

f

< +1 V

f

= K (x) I

f

k(I

g

) = dim

K(x)

K (x)h�i=V

g

< +1 V

g

= K (x) I

g

Then, as mentioned in [27℄, the orresponding quotient is at most of K (x)-dimension:

{ k(I

f

) + k(I

g

)� 1 for the sum;

{ k(I

f

) k(I

g

) for the produt.

These bounds are easily proved, when one thinks of the proof of Theorem 1.3 and of the �nite

dimension vetor spaes it involves.

5.1.4. Algebrai funtions, algebrai substitution. The algorithm omputing a holonomi system

satis�ed by an algebrai funtion given by its polynomial equation implements the proof of Theo-

rem 1.3:

(i) �rst rewrite the �rst derivative of the algebrai funtion f as a polynomial in f and redue

this polynomial with the polynomial P de�ning f as an algebrai funtion;

(ii) inrementally ompute the derivatives of f and rewrite them as a (redued) polynomial

in f ;

(iii) when suÆiently many derivatives have been dealt with, �nd a linear dependeny between

these polynomials of K [x℄[f ℄;

(iv) if there are several variables x

1

; : : : ; x

d

, deal with one after another so as to get a retangular

system (2) as suggested by Proposition 1.2.

Note that this algorithm is restrited to pure funtions and to Weyl algebras. A simple reason

is that algebrai sequenes|u

n

=

p

n for instane|annot be P -reursive in general.

Atually, for reasons of eÆieny, this algorithm is implemented in the Mgfun pakage so as to

avoid dealing with frations.

To do so, the extended gd algorithm is not used to prove �f 2 K (x)[f ℄, but to �nd N 2 K [x; f ℄

and D 2 K [x℄ suh that:

D(x) �f = N(x; f):(38)

Now, by an e�etive indution on k, di�erentiating the equation

D(x)

k

�

k

f = R

k

(x; f) 2 K [x; f ℄
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and using equation (38) yields

D(x)

k+1

�

k+1

f = D(x) (R

k

)

0

x

(x; f) + (R

k

)

0

f

(x:f)N(x; f)� k D

0

(x)R

k

(x; f);

whih makes it possible to ompute the sequene of the R

k

's iteratively.

After this stage, �nding a linear dependeny between the R

k

's gives by simple substitution a

linear dependeny between the D(x)

k

�

k

f 's, and then between the �

k

f 's.

Example. First, we reate a Weyl algebra of two indeterminates x and y and two orresponding

di�erential indeterminates. The term order used eliminates the derivatives of the funtions when

�nding dependenies.

> with(Mgfun):

A:=weylalg([x,dx℄,[y,dy℄):

T:=termorder(A,tdeg=[dx,dy℄,max):

The equations that desribe the algebrai funtions u (x

2

y)

1=3

with u

3

= 1 and v (xy

2

)

1=3

with v

3

= 1

as holonomi funtions are found in single alls:

> GL[f℄:=algtoholon(x*x*y-f^3,f,T);

GL[g℄:=algtoholon(x*y*y-f^3,f,T);

GL

f

:= [3yD

y

� 1; 3D

x

x� 2℄

GL

g

:= [3yD

y

� 2; 3D

x

x� 1℄

One heks that these are the minimal order equations satis�ed by f and g respetively.

These results enable us to give another example of the searh for di�erential equations satis�ed by

an expression onsisting of holonomi funtions: we ompute an equation satis�ed by �f + g+ fg,

whih equals in the urrent example

�(x

2

y)

1=3

+ (xy

2

)

1=3

+ xy:

The result found is

9x

3

D

3

x

+ 9x

2

D

2

x

+ 2xD

x

� 2:

The proedure to use is the same as in Setion 5.1.2:

> dependeny(-f(x,y)+g(x,y)+f(x,y)*g(x,y),x,3,GL,T);

9D

2

x

x

2

+ 2D

x

x+ 9D

3

x

x

3

� 2

One again, the result is easy to hek.

> applyopr(",-(x*x*y)^(1/3)+(x*y*y)^(1/3)+x*y,A);

numer(normal("));

9x

2

�

8

9

x

2

y

2

(x

2

y)

5=3

�

2

3

y

(x

2

y)

2=3

�

2

9

y

4

(xy

2

)

5=3

�

+ 9x

3

�

�

80

27

x

3

y

3

(x

2

y)

8=3

+

8

3

xy

2

(x

2

y)

5=3

+

10

27

y

6

(xy

2

)

8=3

�

+ 2(x

2

y)

1=3

� 2(xy

2

)

1=3

� 2xy + 2x

�

�

2

3

xy

(x

2

y)

2=3

+

1

3

y

2

(xy

2

)

2=3

+ y

�

0
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This algorithm ould be redesigned as a rewriting algorithm and merged with the algorithm

whih �nds a linear dependeny modulo zero dimensional ideals. Indeed, this algorithm rewrites

any ourrene of a ertain power of f|say f

r

|as well as �f , as polynomials in f of degree

stritly lower than r. One merged, the programme ould diretly deal with expressions involving

holonomi funtions desribed either as suh or as algebrai funtions. Thus, it ould also ompute

algebrai substitutions of the variables of a holonomi funtion.

To illustrate this point, onsider again the omputation desribed in the introdution.

Example. The funtion f =

1

p

1�z

is algebrai, hene holonomi, and the funtion g = os(z) is

holonomi. With our pakage Mgfun, omputing a di�erential equation satis�ed by the holonomi

funtion

h =

1

1� z

+

os z

p

1� z

= f (f + g)

needs to work in two separate steps:

(i) �rst ompute a holonomi presentation of f :

> with(Mgfun):

A:=weylalg([z,Dz℄):

T:=termorder(A,plex=[Dz℄,max):

GL[f℄:=algtoholon((1-z)*f^2-1,f,T);

GL[f ℄ := [2D

z

� 2zD

z

� 1℄

(ii) next ompute f (f + g):

> GL[g℄:=[Dz^2+1℄:

dependeny(f(z)*(f(z)+g(z)),z,3,GL,T):

ollet(",Dz);

(16z

5

� 80z

4

+ 172z

3

� 196z

2

+ 116z � 28)D

3

z

+(32z

4

� 128z

3

+ 240z

2

� 224z + 80)D

2

z

+(16z

5

� 80z

4

+ 168z

3

� 184z

2

+ 125z � 45)D

z

+(16z

4

� 64z

3

+ 136z

2

� 144z + 53);

It would be useful to work in a single step.

5.2. More omplex operations of losure. Most losure operations dealt with in this setion

need a more re�ned elimination than Gaussian elimination, namely, elimination based on Gr�obner

bases. We present them in a logial order: the last operations use the �rst ones.

An important point is that these operations are restrited to sublasses of holonomi funtions.

Though they an easily be used in as general settings as Ore algebras, it is neessary to prove

speial theory of the lass of funtions under onsideration|hypergeometri funtions of sequenes,

for instane|to guarantee that the elimination step on whih these algorithms are based does not

return 0.

5.2.1. De�nite sums and de�nite integrals. As another example of elimination by Gr�obner bases,

we give an algorithm omputing a holonomi system satis�ed by de�nite sums and de�nite integrals

of holonomi funtions. These algorithms are based the method of reative telesoping suggested

by Zeilberger in [34℄. On the ontrary to the previous algorithms, those to be desribed in this

setion require to take plae in an Ore algebra K hx; �i, and not in the orresponding extended

algebra K (x)h�i, beause they rely on the elimination of one of the x

i

's.

We �rst reall the algorithm omputing the de�nite sum of a holonomi sequene u

n

(x) = u(x; n)

determined by a set of pseudo-di�erential operators G of I

u

in K hx; n; �; S

n

i. Eliminating n between

the elements of G possibly leads to a non-empty set G

0

� K hx; �; S

n

i suh that g:u = 0 for all g

in G

0

. Sine S

n

= �

n

+ 1 and the elements of G

0

are polynomials in (x; �; S

n

), putting G

00

=
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fg(x; �;�

n

� 1)g

g2G

0

de�nes a set of polynomials that vanishes in u. Eah element g of G

00

is a

polynomial in �

n

; for eah g in G

00

, there is an equation of the form

g

0

:u+

d

g

X

k=1

�

k

n

:g

k

:u = 0:

Now, evaluating at (x; n; �;�

n

) and summing from an integer n

1

2 Z to another integer n

2

2 Z

yields

g

0

(x; y; �) :

n

2

X

n=n

1

u(x; n)

+

d

g

X

k=1

n

2

X

n=n

1

�

(�

k�1

n

g

k

(x; �):u)(x; n + 1)� (�

k�1

n

g

k

(x; �):u)(x; n)

�

= 0:

Sine the series telesopes,

g

0

(x; �):

n

2

X

n=n

1

u(x; n) +

d

g

X

k=1

�

(�

k�1

n

g

k

(x; �):u)(x; n)

�

n=n

2

+1

n=n

1

= 0;

as soon as n

2

� n

1

> 2n

d

.

Now, we need to assume that u tends to 0 when n! �1. Then, making n

1

! �1 and n

2

!

+1 yields g

0

(x; �):s(x) = 0, where s(x) =

P

n2N

u

n

(x).

We summarise this method of summing into the following algorithm:

(i) eliminate n between the elements of G; selet those polynomials in whih n does not appear

any longer;

(ii) evaluate at S

n

= 1.

The algorithm omputing a holonomi system satis�ed by a de�nite integral is totally similar to

the previous one: the operator D

n

is simply hanged into the orresponding one D

x

, in the ase of

a holonomi funtion f(x; y) determined by a set of pseudo-di�erential operators G in D

x

and �:

(i) eliminate x between the elements of G; selet those polynomials in whih x does not appear

any longer;

(ii) evaluate at D

x

= 0.

The only di�erene is that we require that suÆiently many �

r

x

f(x; y) tend to 0 when x! �1.

5.2.2. Taking the generating funtion of a holonomi funtion. Again, this algorithm follows the

method suggested by Zeilberger in [34℄: it reates telesoping series. We then give the example of

the generating funtion of the orthogonal Legendre polynomials. (See also the example of these

polynomials in Setion 4.1.)

Let u(x) be a holonomi funtion. We do not give the expliit dependane in x; it an be

either a dependane in a ontinuous indeterminate (u is a funtion) or a dependane in a disrete

indeterminate (u is a sequene). By de�nition, the generating funtion of u is

F (x; y) =

X

n2N

u

n

(x) y

n

:

It is the sum of the sequene of funtions f

n

(x; y) = u

n

(x) y

n

.

The operations on holonomi funtions already desribed in the previous setions enable us to

give the algorithm omputing a holonomi system satis�ed by the generating funtion of a holonomi

funtion:

(i) ompute a holonomi system de�ning the funtion y

n

as a funtion in (x; y; n);

(ii) ompute a holonomi system de�ning the funtions u

n

(x) as a funtion in (x; y; n);

(iii) ompute a holonomi system de�ning the produts f

n

(x; y);
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(iv) ompute a holonomi system satis�ed by the sum of the f

n

(x; y) by the algorithm given in

Setion 5.2.1.

We now give another algorithm to omputes a holonomi system satis�ed by the f

n

(x; y)'s. This

algorithm is preferable to the previous one sine it does not su�er from the intrinsi weakness of

the algorithm omputing a produt, that loses information.

Let P be a generi operator in K hx; n; �; S

n

i that vanishes on u. We have

(S

n

:f)(x; y; n) = u

n+1

(x) y

n+1

= (S

n

:u)(x) y

n

y:

Therefore,

P (x; n; �; y

�1

S

n

):f = (P (x; n; �; S

n

):u) v;

where v is de�ned by v(x; y; n) = y

n

. Now, P (x; n; �; y

�1

S

n

) 2 K ((y))hx; n; �; S

n

i and multiply-

ing P (x; n; �; y

�1

S

n

) by a power of y yields a polynomial P

0

2 K hx; y; n; �;D

y

; S

n

i that vanishes

in f .

Besides,

((yD

y

� n):f)(x; y; n) = yu

n

(x)ny

n�1

� nu

n

(x) y

n

= 0:

Let G be a set of generators of I

f

in K hx; n; �; S

n

i. Put G

0

= fg

0

g

g2G

[fyD

y

�ng, where g

0

is ob-

tained from g as explained previously for a generi P . This set G

0

is a subset of K hx; y; n; �;D

y

; S

n

i.

We now proeed as in the algorithm for the de�nite sums by reating telesoping: eliminating n

between the elements of G

0

possibly leads to a non-empty set G

0

� K hx; y; �;D

y

; S

n

i suh that g:f =

0 for all g in G

0

.

Sine S

n

= �

n

+1, puttingG

00

= fg(x; y; �;D

y

;�

n

�1)g

g2G

0

de�nes a set of polynomials vanishing

in f . Eah element g of G

00

is a polynomial in �

n

; for eah g in G

00

, we have an equation of the

form

g

0

:f +

d

g

X

k=1

�

k

n

:g

k

:f = 0:

Now, applying in (x; y; n; �;D

y

;�

n

) and summing from an integer n

1

2 Z to another integer n

2

2 Z

yields

g

0

(x; y; �;D

y

) :

n

2

X

n=n

1

f(x; y; n)

+

d

g

X

k=1

n

2

X

n=n

1

�

(�

k�1

n

g

k

(x; y; �;D

y

):f)(x; y; n+ k)

�(�

k�1

n

g

k

(x; y; �;D

y

):f)(x; y; n)

�

= 0:

Sine the series telesopes,

g

0

(x; y; �;D

y

):

n

2

X

n=n

1

f(x; y; n) +

d

g

X

k=1

�

(�

k�1

n

g

k

(x; y; �;D

y

):f)(x; y; n)

�

n=n

2

+1

n=n

1

= 0;

as soon as n

2

� n

1

> 2n

d

.

Now, an assumption on f similar to that suggested in the previous setion yields

g

0

(x; y; �;D

y

):F (x; y) = 0:

We summarise this method into the following algorithm that inputs a set G of operators vanishing

in u

n

(x) and outputs a set of operators vanishing in

P

n2N

u

n

(x) y

n

:

(i) substitute y

�1

S

n

to S

n

in eah element of G; multiply eah by an adequate power of y to

make them all polynomials;

(ii) add yD

y

� n to the set;

(iii) eliminate n; selet those polynomials in whih n does not appear any longer;
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(iv) evaluate at S

n

= 1.

We now give the example of omputation of the generating funtion of the orthogonal Legendre

polynomials. (See also the example given in Setion 4.1.)

Example. To begin with, we reall the de�nition of these polynomials, as well as some equations

that they satisfy (see [1, formul� (22.3.8, 22.6.13, 22.7.10, 22.8.5)℄):

P

n

(x) = 2

�n

bn=2

X

k=0

(�1)

k

 

n

k

! 

2 (n� k)

k

!

x

n�2k

;

(1� x

2

)P

00

n

(x)� 2xP

0

n

(x) + n(n+ 1)P

n

(x) = 0;

(n+ 2)P

n+2

(x)� (2n+ 3)xP

n+1

(x) + (n+ 1)P

n

(x) = 0;

(1� x

2

)P

0

n+1

(x) + (n+ 1)xP

n+1

(x)� (n+ 1)P

n

(x) = 0:

We �rst input these equations and make the substitution mentioned in the algorithm. We also

add the polynomial yD

y

� n.

> G:=map(expand,[

(1-x^2)*dx^2-2*x*dx+n*(n+1),

numer(normal(subs(Sn=Sn/y,(n+2)*Sn^2-(2*n+3)*x*Sn+(n+1)))),

numer(normal(subs(Sn=Sn/y,(1-x^2)*dx*Sn+(n+1)*x*Sn-(n+1)))),

y*dy-n

℄):

We reate the algebra K hx; y; n;D

x

;D

y

; S

n

i and an elimination term order that eliminates n.

> with(Mgfun):

AL:=orealg([n,shift,Sn℄,[x,diff,dx℄,[y,diff,dy℄):

TN:=termorder(AL,lexdeg=[[n℄,[x,dx,y,dy,Sn℄℄,max):

We perform the elimination and selet those polynomials in the result where n do not appear any

longer.

> GN:=gbasis(G,TN,rational):

SN:=selet((p,v)->not has(p,v),GN,n):

We evaluate the polynomials at S

n

= 1.

> ON:=subs(Sn=1,SN):

ON := [ � yD

x

D

y

+D

x

y

2

+D

x

y

3

D

y

+ y + yxD

x

+ 4y

2

D

y

+ 2y

3

D

2

y

;

� yD

x

D

y

+ y + 3y

2

D

y

+ y

3

D

2

y

+ yxD

x

+ y

2

xD

x

D

y

;

D

x

�D

x

x

2

� y + xyD

y

� y

2

D

y

;

D

2

x

�D

2

x

x

2

� 2xD

x

+ 2yD

y

+ y

2

D

2

y

;

� yD

y

� y

2

� y

3

D

y

+ yx+ 2y

2

xD

y

;

yD

x

+D

x

y

2

D

y

+ yD

y

� xD

x

yD

y

+ y

2

D

2

y

℄

This set of polynomials is too omplex. To simplify it, we work in the algebra K hx; y;D

x

;D

y

i.

> A:=weylalg([x,dx℄,[y,dy℄):

T:=termorder(A,tdeg=[dx,dy℄,max):

We separate the di�erentiations with respet to eah indeterminate.

> GL[f℄:=ON:

dependeny(f(x,y),x,2,GL,T):

dependeny(f(x,y),y,2,GL,T):

GF:=["","℄;
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GF := [�2yxD

x

+D

x

+D

x

y

2

� y;�2xyD

y

+D

y

+ y

2

D

y

+ y � x ℄

Now we hek the identity fg(x; y) = (1� 2xy + y

2

)

�1=2

.

> fg:=(1-2*x*y+y*y)^(-1/2):

map(applyopr,GF,fg,A):

map(normal,");

[0; 0℄

Otherwise, we use an ODE solver to ompute the generating funtion.

> applyopr(GF[1℄,f[y℄(x),A):

dsolve(",f[y℄(x)):

subs(_C1=(y),");

f

y

(x) =

(y)

p

1� 2yx+ y

2

applyopr(GF[2℄,op(2,"),A):

dsolve(",(y));

(y) = C1

Finally, using the initial ondition P

0

(x) = 1 yields C1 = 1, from whih the following automati

theorem follows.

Automati Theorem 1. The generating funtion of the orthogonal Legendre polynomials

P

n

(x) = 2

�n

bn=2

X

k=0

(�1)

k

 

n

k

! 

2 (n� k)

k

!

x

n�2k

is

1

p

1� 2xy � y

2

:

In other words, the following identity holds

1

X

n=0

2

�n

bn=2

X

k=0

(�1)

k

 

n

k

! 

2 (n� k)

k

!

x

n�2k

y

n

=

1

p

1� 2xy � y

2

:

5.2.3. Diagonal and Hadamard produt. We present these two operations together sine they are

related to one another by equations (8{9). Although we would like to �nd and implement an

algorithm to ompute Hadamard produts diretly, we only give an algorithm based on the imple-

mentation of the diagonal.

Diagonal of a D-�nite funtion. The algorithm to �nd equations for the diagonal is somewhat

di�erent from those desribed so far: the proof given by Lipshitz in [18℄ that any diagonal of a

D-�nite power series is D-�nite suggests that we searh for a linear dependeny between derivatives

of the diagonal with respet to two indeterminates. The programme used so far is therefore not

suÆient to solve this problem.

However, a �rst part of the proof uses both the algorithm for full redution and the algorithm

to �nd a polynomial in one di�erential indeterminate. The algorithm desribed hereafter omputes

the diagonal diag

1;2

(f) of the funtion f(x

1

; : : : ; x

d

) with respet to the indeterminates x

1

and x

2

(see De�nition 1.4).
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(i) for eah i = s; 1; 3; : : : ; d, ompute a polynomial P

i

(�

i

) vanishing in

F (s; x

1

; x

3

; : : : ; x

d

) =

1

s

f(s;

x

1

s

; x

3

; : : : ; x

d

);

(ii) isolate the leading oeÆients of the P

i

(�

i

)'s for i = s; 1; 3; : : : ; d and ompute their lm L;

(iii) for eah i = s; 1; 3; : : : ; d:

{ for all indies suh that

P

�

i

+ � +  � !, redue

L

!

x

�

1

1

x

�

3

3

� � � x

�

d

d

�

�

s

�



1

modulo fP

s

; P

i

g;

{ �nd a linear dependeny between the redued polynomials|there ertainly is one

when ! is large enough;

{ the oeÆient of �

0

s

in this dependeny is an operator in �

i

whih vanishes on the

diagonal.

Example. Given the funtion

f(x; y) =

1

1� (x+ y)

;

we want to prove that its diagonal is:

g(x) =

1

p

1� 4x

:

We �rst load the pakage:

> with(Mgfun):

Then, we simply have to give equations de�ning f as a holonomi funtion, and all the right

proedure:

> A:=weylalg([x,dx℄,[y,dy℄):

T:=termorder(A,tdeg=[dx,dy℄,max):

denf:=1-x-y:G:=[expand(denf*dx-1),expand(denf*dy-1)℄;

hdiag(G,[x,y℄,1,3,T);

G := [D

x

�D

x

x�D

x

y � 1;D

y

�D

y

x�D

y

y � 1 ℄

�6D

x

+D

2

x

� 4xD

2

x

Of ourse, we hek the result:

> normal(applyopr(",(1-4*x)^(-1/2),A));

0

(Or we ould have used a solver to �nd that h is a solution.)

Finally, to prove the result that we announed, we need to hek diretly that suÆiently many

derivatives of h have the expeted value at 0:

f(x) =

X

n�k�0

 

n

k

!

x

k

y

n�k

so that its diagonal is:

X

n�0

 

2n

n

!

x

n

=

1

p

1� 4x

:

(We selet only those terms that satisfy k = n� k.) Sine the obtained equation is of the seond

order, only two terms have to be heked:

{ g(0) = 1 =

�

0

0

�

;
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{ g

0

(0) = 2 =

�

2

1

�

.

This last step of the algorithm ould easily be implemented|though we did not do it. Therefore,

we state the following automati theorem.

Automati Theorem 2. The diagonal of the funtion

1

1� (x+ y)

is

1

p

1� 4x

:

One ould also have obtained the equations of the diagonal by omputing the di�erent steps of

the algorithm one after the other:

{ �rst load the pakage and reate an algebra to work with:

> with(Mgfun):

A:=weylalg([x,dx℄,[y,dy℄,[s,ds℄):

T:=termorder(A,tdeg=[dx,dy℄,max):

{ then introdue the equations de�ning f :

> denf:=1-x-y:GL[f℄:=[expand(denf*dx-1),expand(denf*dy-1)℄;

GL

f

:= [D

x

�D

x

x�D

x

y � 1;D

y

�D

y

x�D

y

y � 1℄

{ ask manually for eah equation on f(s; x=s)=s:

> eq[s℄:=dependeny(f(s,x/s,0)/s,x,1,GL,T);

eq

s

:= D

x

s

2

�D

x

s

3

�D

x

sx� s

> eq[x℄:=expand(dependeny(f(s,x/s,0)/s,s,1,GL,T));

eq

x

:= s

3

D

s

� s

4

D

s

� s

2

D

s

x+ s

2

� 2s

3

{ and �nally ask for a dependeny between the (s

2

� s� x)

3

s

i

x

j

D

k

x

:

> AA:=weylalg([s,ds℄,[x,dx℄):

TT:=termorder(AA,tdeg=[ds,dx℄,max):

`Holonomy/diag`([eq[x℄,eq[s℄℄,3,TT);

�6D

x

+D

2

x

� 4xD

2

x

An interesting property is illustrated on this example: the diagonal of a rational funtion an

be a non-rational algebrai funtion. Similarly, the diagonal of an algebrai funtion an be a

non-algebrai funtion. The next example show this last property.

Example. Given the funtion

g(x + y) =

1

p

1� 4(x+ y)

;

we want to prove that its diagonal is

h(x) =

X

n2N

 

4n

2n

! 

2n

n

!

x

n

:

The omputation is similar to the one of the previous example and leads to an equation satis�ed

by the diagonal.



IMPLEMENTATION OF OPERATIONS ON HOLONOMIC FUNCTIONS 55

> r:=1-4*(x+y):

H:=map(expand,[r*dx-2,r*dy-2℄);

H := [D

x

� 4D

x

x� 4D

x

y � 2;D

y

� 4D

y

x� 4D

y

y � 2℄

> eq:=hdiag(H,[x,y℄,1,6,T);

eq := 64D

4

x

x

2

+ 384xD

3

x

+ 396D

2

x

� xD

4

x

� 3D

3

x

This equation has no trivial solution, so that we need to use a solver. The GfunMaple pakage,

that we have already mentioned in the introdution, enables us to hange this di�erential equation

into a reurrene equation satis�ed by the sequene of oeÆients of h.

> with(gfun):

diffeqtore(expand(applyopr(eq,h(x),A)),h(x),u(n));

(64n

2

+ 320n+ 396)u(n + 2) + (�n

2

� 6n� 9)u(n+ 3)

We get a reurrene equation of the �rst order, whih enables us to �nd a losed form for u

n

.

> ollet(expand(subs(n=n-3,")),{u(n-1),u(n)});

�u(n)n

2

+ (64n

2

� 64n+ 12)u(n � 1)

This proves the following automati theorem.

Automati Theorem 3. The diagonal of

1

p

1� 4(x+ y)

is

X

n2N

 

4n

2n

! 

2n

n

!

x

n

=

2

F

1

"

3

4

;

1

4

1

; 64x

#

:

Diagonal of a P -reursive sequene. The following algorithm omputes the diagonal of of P -reur-

sive sequene u

n;k

. It is based on the previous algorithm.

(i) ompute a holonomi system de�ning the generating funtion

f

n

(x) =

X

n2N

u

n;k

x

n

of u

n;k

with respet to n;

(ii) ompute a holonomi system de�ning the generating funtion

f(x; y) =

X

n2N;k2N

u

n;k

x

n

y

k

of f

n

with respet to k;

(iii) ompute a holonomi system de�ning the diagonal diag

x;y

f ;

(iv) ompute a holonomi system de�ning the sequene of oeÆients [x

n

℄ diag

x;y

f (see Se-

tion 5.2.4).

Hadamard produt. The following algorithm omputes a holonomi system de�ning the Hadamard

produt of two holonomi funtions f(x) and g(x).

(i) ompute a holonomi system de�ning the produt f(x) g(y);

(ii) ompute a holonomi system de�ning the diagonal diag

x;y

(f(x) g(y)).

This algorithm relies on the identity

f(x)� g(x) = diag

x;y

(f(x) g(y)):
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5.2.4. Finding the oeÆients of a holonomi series. The identity

[z

n

℄

X

n2N

u

n

z

n

=

 

X

n2N

u

n

z

n

� z

n

!

z=1

is straightforward, and yields the following algorithm omputing a holonomi system for the oef-

�ients of a given funtion f(z).

(i) ompute a holonomi system de�ning f(z)� z

n

;

(ii) keep only the remainders of the Eulidean divisions of eah polynomial of the system by D

z

;

(iii) evaluate eah polynomial at z = 1.

5.2.5. Inde�nite sums and inde�nite integrals. These two operators have the ommon property to

be the reiproal operators of the di�erene operator �

n

and of the di�erentiation operator D

z

respetively.

Inde�nite sums. The inde�nite sum of a holonomi sequene u

n

is the sequene

n 7!

n

X

k=0

u

k

:

The trivial identity

n

X

k=0

u

k

= [z

n

℄

 

n

X

k=0

u

k

z

k

1

1� z

!

yields the following algorithm.

(i) ompute a holonomi system de�ning the generating funtion of u;

(ii) ompute a holonomi system de�ning

P

n

k=0

u

k

z

k

1

1�z

;

(iii) ompute a holonomi system de�ning the oeÆient of z

n

in the previous expression.

Inde�nite integrals. The inde�nite integral of a holonomi funtion f(z) is the funtion

x 7!

Z

x

0

f(t) dt:

It satis�es the identity

Z

x

0

f(t) dt = diag

z;u

�

zf(z) log

1

1� u

�

= (zf(z))� log

1

1� z

:

Therefore, two algorithms are possible.

A �rst one is dedued from the �rst equality:

(i) ompute a holonomi system de�ning zf(z) as a funtion in (z; u);

(ii) ompute a holonomi system de�ning log

1

1�u

as a funtion in (z; u);

(iii) ompute a holonomi system de�ning the produt;

(iv) ompute a holonomi system de�ning the diagonal.

The seond algorithms derives from the seond equality:

(i) ompute a holonomi system de�ning zf(z);

(ii) ompute a holonomi system de�ning log

1

1�z

;

(iii) ompute a holonomi system de�ning the Hadamard produt.
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5.3. Computation in K he

x

;D

x

i. The algebra K he

x

;D

x

i is an admissible Ore algebra, sine it

an be de�ned as the Ore algebra K hy; �i by �(y) = Æ(y) = y. (This example of Ore algebra has

already been given in Setion 2.2. See Table 1.)

We proeed to show on a very simple example that our pakage works in this admissible Ore

algebra. Rather than proving a deep identity, we intend to prove that suh omputations are

possible with our programme. The following example omputes the generating funtion e

e

x

�1

of

the Bell numbers B

n

, de�ned as the number of partitions of a set of ardinality n.

Example. The Bell numbers are related to the Stirling numbers of the seond kind S

(n)

m

, whih

are the number of ways of partitioning a set of m elements into n non-empty subsets:

B

n

=

X

m2N

S

(n)

m

:

The Stirling numbers have the exponential generating funtion (see [1, formula 24.1.4 B℄)

1

X

m=n

S

(n)

m

x

m

m!

=

(e

x

� 1)

n

n!

:

Now, summing over n 2 N gives the exponential generating funtion of the Bell numbers

X

n2N

B

n

x

n

n!

= e

e

x

�1

:

We reprodue this sheme in Maple. To begin with, we work in K hy; n;D

x

; S

n

i, where y repre-

sents e

x

. We introdue expliitly the values for the funtions �(y) and Æ(y).

> with(Mgfun):

A:=orealg([y,user=[p->p,p->y*diff(p,y)℄,Dx℄,[n,shift,Sn℄):

We introdue a term order to eliminate n.

> T:=termorder(A,lexdeg=[[n℄,[y,Dx,Sn℄℄,max):

We perform this elimination between simple equations satis�ed by the exponential generating fun-

tion

(e

x

�1)

n

n!

of the Stirling numbers of the seond kind.

> G:=map(expand,[(y-1)*Dx-n*y,(n+1)*Sn-(y-1)℄):

GB:=gbasis(G,T,rational);

GB := [D

x

y �D

x

� ny; S

n

n+ S

n

� y + 1; yS

n

D

x

� S

n

D

x

� y

2

+ y ℄

We �nish as usually in the ase of a sum: we evaluate at S

n

= 1.

> map(fator,[seq(subs(Sn=1,i),i=GB)℄);

[D

x

y �D

x

� ny; n+ 2� y;�(y � 1)(y �D

x

) ℄

The initial onditions yield the following automati theorem.

Automati Theorem 4. The exponential generating funtion of the Bell numbers is

e

e

x

�1

:

Conlusions

In onlusion, here are some ideas for further developments of our pakage,

Algebrai substitution. We have not implemented the algebrai substitution in holonomi funtions

and sequenes. This should be done to extend the toolbox on holonomi systems.
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Pro�ling. The implementation of Buhberger's algorithm an still be optimised. The use of pro�ler

available inMaple should enable us to gain some more speed, so as to be totally ompetitive with

the grobner pakage of Maple. However, we do not expet any dramati drop unless we totally

hange the algorithm. (For instane, we ould generalise the FGLM algorithm based on linear

algebra|see [10, 11℄|to ompute a Gr�obner basis for pure lexiographi order or elimination

order from the Gr�obner basis for total degree order. The theory extends straightforwardly in the

non-ommutative ase.)

Finding dependenies. The algorithms to �nd linear dependenies between the derivatives of holo-

nomi funtions an be improved in several ways.

First, as already mentioned, Gaussian elimination as implemented is not optimal. It should be

rewritten in order to ompute only the eliminations that are needed in ase of suess, and to be

able to reenter the proedure without omputing again the eliminations already dealt with in ase

of failure.

Besides, the dependenies omputed by the programme are only dependenies between suessive

derivatives with respet to the same indeterminates. This way, the ideals returned by the proedures

that ompute arithmetial operations on holonomi funtions may be smaller than the expeted

ones. (We get fewer equations than the number we would like to.) The ideals are zero dimensional,

but ontain less information than the theoretial result. When used for further omputation,

like automati identity proving, this leads to a loss of eÆieny and to longer exeution times.

Therefore, an improvement would be to �nd other dependenies. The FGLM algorithm ould also

prove fruitful for this purpose: it searhes for all linear dependenies between terms after rewriting

into a normal form, so that it should be possible to get more than retangular systems.

Finally, it has already been explained that the algorithm �nding dependenies is a rewriting

algorithm, and that the algorithm whih omputes generators de�ning an algebrai funtion an be

redesigned to be a rewriting algorithm too. Both algorithms ould therefore be merged to ompute

ideals de�ning expressions involving both algebrai and holonomi funtions at the same time.

Filtrations, assoiated graded algebras and Bernstein inequality. In the ase of the di�erentiation,

the lass of holonomi funtions is the Bernstein lass of funtions f suh that I

f

is of the low-

est possible Bernstein dimension allowed by Bernstein inequality. We would like to explore this

diretion, to know whether Bernstein inequality an be generalised to admissible Ore algebras.

Another point is that �ltrations other than the Bernstein �ltration might lead to a graded algebra

and to an equivalent of Bernstein inequality for non-admissible Ore algebras. In that ase, holonomy

ould be extended to other operators.

Di�erential algebra and elimination. We feel that the elimination needed to ompute a diagonal

ould be performed with Gr�obner-like elimination instead of Gaussian elimination.

However, it appeared on examples that it is not possible to use our pakage as it is. The reason

seems to be that some ruial steps of elimination are forbidden by the de�nition of redution.

More preisely, Lipshitz's algorithm implements a speial ase of elimination of x in an extended

Ore algebra K (x)h�i. This elimination is not possible with the extension of Buhberger's algorithm

that we presented|x an only be eliminated in the Ore algebra K hx; �i. The problem is that

we do not have any algorithm to ompute the ontrated ideal I = V \ K hx; �i for any given

ideal V � K (x)h�i. This problem of ontration seems to be related to that of omputing a

frational ideal 1=sI, where I is an ideal of a ommutative entire ring and s any element of this

ommutative ring. (The frational ideal 1=sI is the set of fration a=s for all a 2 I.) An extension

of this onept that ould prove useful is given by Ritt in the ase of di�erential algebra in [21℄.

The redution de�ned there gives a prominent role to what are alled initial of an operator. These

onepts may orrespond to what is missing in Buhberger's version to perform elimination in the

omputation of a diagonal.
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We ould also take advantage of omputing ontrated ideals in other losure operations: the

example of the binomial oeÆients in Setion 2.2 shows that the identity from Pasal's triangle is

hidden in a frational ideal.

Automati proof of identities. Using our pakage, we would like to implement an identity heker.

Given an identity, it would determine holonomi systems de�ning eah omponent of the equation,

and then hek whether suÆiently many initial onditions are satis�ed. In this way, we would

get a proedure proving or disproving an identity, provided that it is aptured by the theory of

holonomy.

Moreover, one a holonomi system satis�ed by an expression has been omputed, it is in some

ases easy to determine a solution (espeially an hypergeometri one). Thus, the implementation

of an identity heker would also provide us with an identity disovering proedure. In partiular,

some summations or integrals ould be solved by this proedure.

Initial onditions. Our pakage annot deal with the initial onditions of sequenes or funtions.

Indeed, they deal only with germs of sequenes and funtions. They are therefore unable to deal

with P -reursive sequenes, stritly speaking, sine no data struture enapsulates the P -reursive-

ness of the k-setion of a P -reursive sequene, as de�ned in De�nition 1.9.

Beause of that, it is neither possible to pass from equations on a P -reursive sequene to

equations on the assoiatedD-�nite funtion, nor onversely from aD-�nite funtion to the P -reur-

sive sequene de�ning its generating series. However, this hange of representation is very useful

in proving identities (see a simple example in [12℄), so that it has to be implemented in view of

implementing an identity solver.

Ground �eld. All the equations dealt with are equations with polynomial oeÆients. It would

be interesting to study to what extent the theory extends if we hange the base �eld of rational

frations in x by a �eld of rational funtions in additional indeterminates, suh as e

x

for example.

In partiular, although the losure under sum and produt ertainly holds in this framework, there

is no losure under diagonal.

As far as programming is onerned, we would have to generalise our Mgfun pakage so that

it deals with several indeterminates sensitive to the same di�erentiation, aording to di�erent

ommutation rules. As an example, we would like to hange the base �eld to K hx; e

x

; �i with both

ommutation rules �x = x� + 1 and �e

x

= e

x

� + e

x

. (Note that it is already possible to ompute

in K he

x

; �i. See the example in Setion 5.3.)

The point that makes this approah interesting is that the theory of Gr�obner bases is known in

suh a framework: Buhberger's algorithm has been extended by Kandri-Rody and Weispfenning

to algebras like K hx; e

x

;D

x

i, namely polynomial rings of solvable type (see [15℄). An interesting

open problem is to �nd an analogue to Zeilberger's reative telesoping.

q-alulus. Another diretion of investigation is the q-alulus. The pseudo-di�erential opera-

tor H

(q)

of q-dilation de�ned by the ommutation rule H

(q)

x = qxH

(q)

an be used to generate

an Ore algebra K hx;H

(q)

i. Wilf and Zeilberger showed in [31℄ how it is possible to implement

hypergeometri q-alulus by speialised algorithms and to prove multi-sum or integral identities

in this ontext. Sine in the ordinary alulus, many multi-sum or integral identities are aptured

by the holonomi theory, we hope to be able to prove some q-alulus identities with the help of

our pakage.

Hypergeometri ase. Moreover, Zeilberger|and others|implemented the algorithms desribed

in [31℄. We would like to ompare their programmes and our pakage in the ase of hypergeometri

funtions in order to �nd points that ould be improved in our implementation, in partiular if

there are methods that an be generalised to the lass of holonomi funtions.
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Takayama's Kan system. Takayama's Kan system performs algebrai manipulations on the poly-

nomial ring K [x

1

; : : : ; x

n

℄, on the Weyl algebra K hx

1

; : : : ; x

n

;D

1

; : : : ;D

n

i, on the di�erene Weyl

algebra K hx

1

; : : : ; x

n

;�

1

; : : : ;�

n

i and on the q-di�erene Weyl algebra K hx

1

; : : : ; x

n

;�

(q)

1

; : : : ;�

(q)

n

i,

when K is Q or Z=pZ (see [28, 29℄). When R is one of the algebras listed above, the system provides

us with arithmeti in R

m

, with omputation of Gr�obner bases of left ideals of R and with a test

of membership for left submodules of R

m

. The proedures are in C and an be interfaed with C

programmes.

Notwithstanding the fat that our pakage are in Maple, there would be muh interest in

omparing them with Kan from the point of view of the lass of funtion and sequenes that both

systems deal with, and from the point of view of eÆieny.
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Set of polynomials grobner[gbasis℄ Mgfun[gbasis℄ Mgfun[gbasis℄ Mgfun[gbasis℄

(tdeg) Maple release V.3 May '95 De '94 Jun '94

Steiner1 7.883 1.716 5.016

Steiner1e 7.983 1.716 4.700

Steiner2 2.333 1.116 2.433

Steiner2e 2.416 1.133 2.433

Gerdt1 130.549 719.466

Gerdt2 2.816 1.250 5.383 5.500

CyliRoots3 0.216 0.166 0.283 0.283

CyliRoots3h 0.266 0.149 0.300 0.283

CyliRoots4 1.050 0.766 1.800 1.966

CyliRoots4h 1.116 0.833 1.850 2.116

CyliRoots5 43.699 136.266 270.150

CyliRoots5h 70.633 96.033 255.116

ParamCurve 4.283 7.783 33.666 32.316

Integer1 8.250 10.183 21.616

Set of polynomials grobner[gbasis℄ Mgfun[gbasis℄ Mgfun[gbasis℄ Mgfun[gbasis℄

(plex) Maple release V.3 May '95 De '94 Jun '94

Gerdt1 58.083 46.983

Gerdt2 128.466 56.616 121.450 134.116

CyliRoots3 0.216 0.166 0.150 0.183

CyliRoots3h 0.200 0.183 0.183 0.183

CyliRoots4 1.016 0.933 1.516 1.966

CyliRoots4h 1.700 1.033 1.783 2.100

ParamCurve 240.966 29.233 422.716 648.750

Table 2. Compared timings of Gr�obner bases omputations with our Mgfun pak-

age and with the grobner pakage

Appendix A. Exeution times for Gr

�

obner bases omputations

We �rst ompare our Mgfun pakage withMaple's grobner pakage in the ase of ommutative

algebras. This omparison shows that our pakage is ompetitive. Next, we give timings for non-

ommutative omputations of binomial sums. These examples should be ompared to Zeilberger's

approah (see [34℄).

Our implementation of the sugar method lessens the omputation times: although we have not

made omparative tests between the normal and the sugar strategies, we gained an average fator

of 2 on several examples. A omparison with the gbasis funtion of the grobner pakage inMaple

lets us hope that, after some more optimisation of the ode, we ould ahieve faster times in all

examples with our pakage than with the grobner pakage; The exeution times of our tests an

be found in Table 2 and the orresponding sets of polynomials in Table 3. These tests have been

performed on a De Alpha 6000/400 with 64M of memory. The most astonishing result is that

the sugar strategy does not lead to the same speed-up, ompared to Maple's normal strategy,

aording to what the term order is:

{ with the pure lexiographi term order, our implementation of the sugar strategy is always

the best, with at least a speed-up of 10%; this on�rms Giovini, Mora, Niesi, Robbiano and

Traverso's results in [14℄;

{ with the total degree order, our implementation behaves better than the gbasis funtion of

Maple's grobner pakage with small examples, but takes longer times on bigger examples;

this is partiularly impressive in the ase of the Gerdt1, CyliRoots5 and CyliRoots5h

examples; we have not found any explanation for this, yet.
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Name Polynomials Indeterminates

Steiner1 fr

2

a

� (x+ a)

2

� y

2

; r

2

b

� (x� b)

2

� y

2

; r

2



� x

2

� (y � 1)

2

; r

a

; r

b

; r



; f; x; y

f � r

a

� r

b

� r



g

Steiner1e fr

2

a

� (x+ a)

2

+ y

2

; r

2

b

� (x� b)

2

+ y

2

; r

2



� x

2

+ (y � 1)

2

; r

a

; r

b

; r



; f; x; y

f � r

a

� r

b

� r



g

Steiner2 fr

2

a

� (x+ a)

2

� y

2

; r

2

b

� (x� b)

2

� y

2

; r

2



� x

2

� (y � 1)

2

; r

a

; r

b

; r



; f

f � r

a

� r

b

� r



g

Steiner2e fr

2

a

� (x+ a)

2

+ y

2

; r

2

b

� (x� b)

2

+ y

2

; r

2



� x

2

+ (y � 1)

2

; r

a

; r

b

; r



; f

f � r

a

� r

b

� r



g

Gerdt1 fyw � 1=2zw + tw;�2=7uw

2

+ 10=7vw

2

x; y; z; t; u; v; w

� 20=7w

3

+ tu� 5tv + 10tw;

2=7yw

2

� 2=7zw

2

+ 6=7tw

2

� yt+ zt� 3t

2

;

� 2v

3

+ 4uvw + 5v

2

w � 6uw

2

� 7vw

2

+ 15w

3

+ 42yv;

� 14zv � 63yw + 21zw � 42tw + 147x;

� 9=7uw

3

+ 45=7vw

3

� 135=7w

4

+ 2zv

2

� 2tv

2

� 4zuw + 10tuw

� 2zvw � 28tvw + 4zw

2

+ 86tw

2

� 42yz

+ 14z

2

+ 42yt� 14zt� 21xu+ 105xv � 315xw;

6=7yw

3

� 9=7zw

3

+ 36=7tw

3

� 2xv

2

� 4ytw + 6ztw � 24t

2

w + 4xuw

+ 2xvw � 4xw

2

+ 56xy � 35xz + 84xt;

2uvw � 6v

2

w � uw

2

+ 13vw

2

� 5w

3

+ 14yw � 28tw;

u

2

w � 3uvw + 5uw

2

+ 14yw � 28tw;

� 2zuw � 2tuw + 4yvw + 6zvw � 2tvw

� 16yw

2

� 10zw

2

+ 22tw

2

+ 42xw;

28=3yuw + 8=3zuw � 20=3tuw � 88=3yvw

� 8zvw + 68=3tvw + 52yw

2

+ 40=3zw

2

� 44tw

2

� 84xw;

� 4yzw + 10ytw + 8ztw � 20t

2

w

+ 12xuw � 30xvw + 15xw

2

;

� y

2

w + 1=2yzw + ytw � ztw + 2t

2

w

� 3xuw + 6xvw � 3xw

2

;

8xyw � 4xzw + 8xtw

Gerdt2 f35y

2

� 30xy

2

� 210y

2

z + 3x

2

+ 30xz x; y; z; t; u; v

� 105z

2

+ 140yt� 21u;

5xy

3

� 140y

3

z � 3x

2

y + 45xyz � 420yz

2

+ 210y

2

t� 25xt+ 70zt+ 126yug

CyliRoots3 fx+ y + z; xy + yz + zx; xyz � 1g x; y; z

CyliRoots3h fx+ y + z; xy + yz + zx; xyz � h

3

g x; y; z; h

CyliRoots4 fx+ y + z + t; xy + yz + zt+ tx; x; y; z; t

xyz + yzt+ ztx+ txy; xyzt� 1g

CyliRoots4h fx+ y + z + t; xy + yz + zt+ tx; x; y; z; t; h

xyz + yzt+ ztx+ txy; xyzt� h

4

g

CyliRoots5 fx+ y + z + t+ u; xy + yz + zt+ tu+ ux; x; y; z; t; u

xyz + yzt+ ztu+ tux+ uxy;

xyzt+ yztu+ ztux+ tuxy + uxyz; xyztu� 1g

CyliRoots5h fx+ y + z + t+ u; xy + yz + zt+ tu+ ux; x; y; z; t; u; h

xyz + yzt+ ztu+ tux+ uxy;

xyzt+ yztu+ ztux+ tuxy + uxyz; xyztu� h

5

g

ParamCurve fx

31

� x

6

� x� y; x

8

� z; x

10

� tg x; y; z

Integer1 fx

2

yz

4

� t; x

5

y

7

� z

2

u;�x

3

zv + y

2

;�z

5

w + xy

3

g x; y; z; t; u; v; w

Table 3. Polynomials used for the tests
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Summand Mgfun[gbasis℄

 

n

k

!

0.383

 

n

k

!

2

1.116

 

n

k

! 

n+ k

k

!

0.766

 

n

k

!

3

5.683

(�1)

k

 

n

k

!

3

5.083

 

n

k

!

2

 

n+ k

k

!

2

68.550

(�1)

k

 

2n

n+ k

!

3

3769.316

(�1)

k

 

2n

n+ k

! 

n

k

!

2

1

Table 4. Timings for hypergeometri summations

Moreover, the ratios of times between a set of polynomials in total degree order and the same set

in pure lexiographi order, as well as the ratios of times between two sets in the same term order

are di�erent from what was found in [14℄. One again, we do not have any explanation.

As expeted, the times in plex|pure lexiographi term order|are muh longer than those

in tdeg|total degree order (exept for the troubling ase of Gerdt1). The other result that was

to be waited for is that the series of examples dealing with yli roots is more and more diÆult,

while the number of indeterminates inreases.

We give examples of non-ommutative omputations in Table 4. All these examples ompute an

operator that vanishes in the de�nite sum of the summand under onsideration. (The sum is over Z.)

They use Gr�obner bases to perform elimination of the summation index (see Setion 5.2.1 for a

disussion of reative telesoping). We also tried to perform this elimination using the alternative of

Eulidean division (sine in all ases, a single indeterminate is eliminated from a pair of operators).

At �rst, we expeted better timings with this seond approah. However, the ase of Ap�ery numbers

(the sum of the

�

n

k

�

2

�

n+k

k

�

2

over k 2 Z) astonishingly shows that the Gr�obner bases approah an

be more eÆient, though we do not have a omplete explanation.

As side produts, some of these non-ommutative eliminations give simple enough operators to

prove the following automati theorems.

Automati Theorem 5. The following identity holds

X

k2Z

 

n

k

!

= 2

n

:
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Automati Theorem 6. The following identity holds

X

k2Z

 

n

k

!

2

=

 

2n

n

!

:

The other eliminations introdue too many parasiti solutions to straightforwardly lead to a

losed form for the sum. However, it is sometimes possible to derive a minimal equation (without

any parasiti solutions left), as is desribed on the example of Ap�ery numbers, in Appendix B.

Appendix B. A new holonomi proof of Ap

�

ery's reurrene

We proeed to show on an example how holonomi losures an be applied to the proof of

identities. In this setion, we fous on reurrene equations and holonomi sequenes.

The example dealt with here is related to Ap�ery's original proof that the number

�(3) =

+1

X

n=1

1

n

3

is irrational. This proof makes ruial use of the following reurrene

(n+ 2)

3

a

n+2

� ((n+ 2)

3

+ (n+ 1)

3

+ 4(2n+ 3)

3

) a

n+1

+ n

3

a

n

= 0(39)

between the famous Ap�ery numbers

a

n

=

n

X

k=0

 

n

k

!

2

 

n+ k

k

!

2

:(40)

In order to prove equation (39), we follow Strehl's presentation in [24℄ and introdue the Franel

numbers

f

n

=

n

X

k=0

 

n

k

!

3

:

(See also van der Poorten's presentation of Ap�ery's proof in [30℄.)

We make equation (39) rely on the following identity between Ap�ery and Franel numbers

n

X

k=0

 

n

k

!

2

 

n+ k

k

!

2

=

n

X

k=0

 

n

k

! 

n+ k

k

!

k

X

j=0

 

k

j

!

3

:(41)

Proving this identity is motivated by the values of initial terms: eah side of it have the ommon

following �rst values

1; 5;73; 1445; 33001; 819005; 21460825; 584307365; 16367912425;

468690849005; 13657436403073:

To prove the identity, we proeed by omputing atomi subexpressions �rst, then by omputing

bigger and bigger subexpressions until we get both sides of the identity.

Example. We now prove identities (39) and (41) by means of our pakage Mgfun. We �rst load

the pakage.

> with(Mgfun):

To ompute the Franel numbers f

k

=

P

k

j=0

�

k

j

�

3

, we �rst introdue the summand

�

k

j

�

3

along with

orresponding operators in the Ore algebra K hn; k; S

n

; S

k

i.

> A:=orealg([k,shift,Sk℄,[j,shift,Sj℄):

G:=map((w,h,a)->numer(expand(applyopr(args)/h-w)),

[Sk,Sj℄,binomial(k,j)^3,A);
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h

k

3

+ 3k

2

+ 3k + 1� k

3

S

k

� 3k

2

S

k

+ 3k

2

jS

k

� 3kS

k

+ 6kjS

k

� 3kj

2

S

k

� S

k

+ 3jS

k

� 3j

2

S

k

+ j

3

S

k

;

k

3

� 3k

2

j + 3kj

2

� j

3

� j

3

S

j

� 3j

2

S

j

� 3jS

j

� S

j

i

The next step is to perform elimination of j to get the Franel numbers by reative telesoping (see

Setion 5.2.1).

> T:=termorder(A,lexdeg=[[j℄,[Sk,Sj℄℄,max):

GB:=gbasis(G,T,ratpoly(rational,[k,j℄)):

subs(Sj=1,selet((f,v)->not has(args),GB,j));

h

�56� 136k � 240S

k

+ 3k

3

S

3

k

� 104k

2

� 45k

3

S

k

� 240k

2

S

k

� 419kS

k

+ 51kS

3

k

+ 22k

2

S

3

k

� 24k

3

+ 36S

3

k

� 232kS

2

k

� 18k

3

S

2

k

� 114k

2

S

2

k

� 148S

2

k

i

This yields an operator in the algebra K hk; S

k

i. We then view the Franel numbers as a sequene

in the multi-index (n; k) and delare them to be independent of n.

> GL[sube℄:=["[1℄,Sn-1℄:

We then de�ne the produt of binomials

 

n

k

! 

n+ k

k

!

in the algebra K hn; k; S

n

; S

k

i:

> A:=orealg([n,shift,Sn℄,[k,shift,Sk℄):

GL[bin2℄:=map((w,h,a)->numer(expand(applyopr(args)/

h-w)),[Sn,Sk℄,binomial(n,k)*binomial(n+k,k),A);

h

n+ 1 + k � nS

n

� S

n

+ kS

n

; n

2

+ n� k � k

2

� k

2

S

k

� 2kS

k

� S

k

i

Multipliation with the Franel numbers yields the summand of the right-hand side of equation (41).

> T:=termorder(A,tdeg=[Sn,Sk℄,max):

hprod(GL[bin2℄,GL[sube℄,3,T):

One more reative telesoping (eliminating k) omputes the right-hand side:

T:=termorder(A,lexdeg=[[k℄,[Sn,Sk℄℄,max):

GB:=gbasis(G,T,ratpoly(rational,[k,n℄)):

subs(Sk=1,selet((f,v)->not has(args),GB,k)):

FRANEL:=ollet(op("),Sn,fator);
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FRANEL := (2n+ 7)(2n + 5)(2n+ 3)(3n+ 16)(n+ 6)(n+ 3)(n+ 7)

3

S

7

n

�(2n+ 13)(2n + 5)(2n+ 3)(n+ 6)(n+ 3)

�

93n

4

+ 2021n

3

+ 16187n

2

+ 56403n + 71744

�

S

6

n

�(2n+ 5)(2n + 3)(2n+ 11)

�

297n

6

+ 9294n

5

+ 119466n

4

+806264n

3

+ 3008333n

2

+ 5873514n + 4679744

�

S

5

n

�(2n+ 9)(2n + 3)(2n+ 13)

�

201n

6

+ 6418n

5

+ 79666n

4

+500380n

3

+ 1691885n

2

+ 2933642n + 2044000

�

S

4

n

+(2n+ 7)(2n + 3)(2n+ 13)

�

201n

6

+ 3230n

5

+ 15906n

4

�348n

3

� 236211n

2

� 702906n � 641200

�

S

3

n

+(2n+ 5)(2n + 13)(2n+ 11)

�

297n

6

+ 4962n

5

+ 32826n

4

+109768n

3

+ 195341n

2

+ 174950n + 61488

�

S

2

n

+(2n+ 13)(2n + 11)(2n + 3)(n+ 5)(n+ 2)

�

93n

4

+ 955n

3

+ 3395n

2

+ 5021n + 2664

�

S

n

�(3n+ 8)(2n + 13)(2n+ 11)(2n + 9)(n+ 5)(n+ 2)(n+ 1)

3

Note that this is a 7 order reurrene of degree 9.

The same proess applies to the produt of binomials

 

n

k

!

2

 

n+ k

k

!

2

that ours in the de�nition of Ap�ery numbers (40). However, reative telesoping returns two

operators and we have to perform extended gd omputation to get a (single) minimal operator:

� (2n+ 5)(2n + 3)(4n+ 13)(n+ 4)(n+ 5)

3

S

5

n

+ (2n+ 9)(2n + 3)(n+ 4)

�

140n

4

+ 2077n

3

+ 11351n

2

+ 27015n + 23577

�

S

4

n

� 2(2n+ 7)(2n+ 3)

�

68n

5

+ 1457n

4

+ 11990n

3

+ 47698n

2

+ 92110n + 69217

�

S

3

n

� 2(2n+ 9)(2n+ 5)

�

68n

5

+ 583n

4

+ 1502n

3

+ 290n

2

� 3554n � 3349

�

S

2

n

+ (2n+ 9)(2n + 3)(n+ 2)

�

140n

4

+ 1283n

3

+ 4205n

2

+ 5841n + 2931

�

S

n

� (4n+ 11)(2n + 9)(2n+ 7)(n+ 2)(n+ 1)

3

;

(n+ 2)(2n+ 3)(n+ 4)

3

S

4

n

� (2n+ 7)(2n + 3)

�

18n

3

+ 162n

2

+ 474n+ 445

�

S

3

n

+ (2n+ 5)

�

70n

4

+ 700n

3

+ 2558n

2

+ 4040n + 2313

�

S

2

n

� (2n+ 7)(2n + 3)

�

18n

3

+ 108n

2

+ 204n+ 125

�

S

n

+ (2n+ 7)(n+ 3)(n+ 1)

3

> A:=orealg([n,shift,Sn℄):

APERY:=skewgdex(",Sn,[n℄,A,

ratpoly(rational,[n℄))[1℄;
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APERY : = 21� 2625S

n

� 6848n

2

S

n

� 792n

4

S

n

+ 76n� 72n

5

S

n

� 3354n

3

S

n

+ 104n

2

� 72n

5

S

3

n

� 5514n

3

S

3

n

� 14662n

2

S

3

n

� 1008n

4

S

3

n

+ 11565S

2

n

� 6784nS

n

� 18854nS

3

n

+ 384S

4

n

+ 140n

5

S

2

n

+ 24826nS

2

n

+ 8616n

3

S

2

n

+ 1750n

4

S

2

n

+ 20870n

2

S

2

n

+ 19n

4

+ 66n

3

+ 2n

5

S

4

n

+ 186n

3

S

4

n

+ 536n

2

S

4

n

+ 31n

4

S

4

n

+ 736nS

4

n

� 9345S

3

n

+ 2n

5

Note that this is a 4 order reurrene of degree 5.

Now, the operator lm(APERY;FRANEL) anels both sides of identity (41) and Ore's theory

of skew polynomial rings (see [20℄) proves that the order of this lm is at most 7 + 4 � 1 = 10.

Thus, proving (or disproving) identity (41) redues to omparing the initial values of both sides

for n = 0; : : : ; 10, sine these �rst 11 values determine whih solution of the operator is being dealt

with|it an be shown that the leading oeÆient of the lm never vanishes on the non-negative

integers. We have already notied that the initial values oinide, so we proved the following

automati theorem.

Automati Theorem 7. The identity

n

X

k=0

 

n

k

!

2

 

n+ k

k

!

2

=

n

X

k=0

 

n

k

! 

n+ k

k

!

k

X

j=0

 

k

j

!

3

holds for any non-negative integer n.

Sine identity (41) is true, Ap�ery numbers de�ned by (40) satisfy both operators APERY

and FRANEL. Therefore, they satisfy the gd of these operators. This yields Ap�ery's seond

order reurrene:

> primpart(skewgdex(FRANEL,APERY,Sn,[n℄,A,ratpoly(rational,[n℄))[1℄,Sn);

(n+ 2)

3

S

2

n

� (2n+ 3)

�

17n

2

+ 51n+ 39

�

S

n

+ (n+ 1)

3

(This is another form of identity (39).) We have got another automati theorem.

Automati Theorem 8. The Ap�ery numbers

a

n

=

n

X

k=0

 

n

k

!

2

 

n+ k

k

!

2

satisfy the seond order reurrene equation

(n+ 2)

3

a

n+2

� ((n+ 2)

3

+ (n+ 1)

3

+ 4(2n+ 3)

3

) a

n+1

+ n

3

a

n

= 0:

The previous omputations have been performed in 3 minutes on a De 3000 (alpha).

Appendix C. Desription of our pakage

The Mgfun pakage onsists of three layers:

{ OreAlgebra, that performs simple arithmeti on Ore algebras;

{ OreGroebner, that omputes (pseudo-)di�erential Gr�obner bases;

{ Holonomi, that implements some losure properties of holonomi funtions.

Eah layer uses the funtionalities of the previous ones to implement its own algorithms. In the

following subsetions, we desribe the funtions of eah layer that are available to the user.



68 FORMAL MANIPULATIONS OF LINEAR OPERATORS

C.1. The OreAlgebra layer. The funtion orealg reates a new Ore algebra. It must be provided

with the names of indeterminates x

i

, the type of the orresponding operators �

i

that are applied on

eah of these indeterminates and the names of the orresponding pseudo-di�erential indeterminates.

Eah type is either a prede�ned one (di�erential, shift or di�erene) or one de�ned by the user. In

the former ase, the implementation uses orresponding de�nitions for the funtions �

i

and Æ

i

; in

the latter ase, the user must provide the system with them. A all to orealg returns a Maple

struture enapsulating a desription of the newly reated algebra. This desriptor has to be present

as last argument in any all of a funtion of the OreAlgebra layer.

The funtion weylalg is an simpler alternative to orealg to de�ne Weyl algebras.

The funtion ommalg reates a new ommutative algebra of polynomials. It is used to reover

the usual ommutative Buhberger algorithm.

The funtion opprod omputes the produt of two elements of a given Ore algebra.

The funtion oppower omputes the power of an element of a given Ore algebra.

The funtion randopr randomly generates an element of a given Ore algebra.

The funtion applyopr applies the operator assoiated to an element of an Ore algebra on a

funtion.

The funtion makeopr returns the operator assoiated to an element of an Ore algebra. This

operator an then be applied on a funtion.

The funtion annihilators omputes a non trivial linear ombination of two elements of an Ore

algebra (this gives lm's).

The funtion skewgdex is an extended gd omputation in Ore algebras.

The funtion skewelim eliminates an indeterminate between two elements of an Ore algebra by

means of the previous extended gd omputation.

C.2. The OreGroebner layer. The funtion termorder reates a new term order in a given Ore

algebra|that must have been de�ned using orealg. The term order is either a prede�ned one

(pure lexiographi order, total degree order or elimination order) or one de�ned by the user. A

all to termorder returns aMaple struture enapsulating a desription of the newly reated term

order. This desriptor has to be present as last argument in any all of a funtion of the OreGroebner

layer.

The funtion gbasis omputes the redued Gr�obner basis of a set of elements of an Ore algebra.

The funtion redue fully redues an element of an Ore algebra by a set of elements of the same

algebra.

The funtion reduelist inter-redues a list of elements of an Ore algebra.

The funtion reduesale does the same as redue, but returns

The funtion spoly omputes the S-polynomial (or syzygy) of two elements of an Ore algebra.

The funtion leadmon �nds the leading term and the leading oeÆient of an element of a given

Ore algebra.

The funtion testorder tests the order of two terms with respet to a given term order.

C.3. The Holonomi layer. The funtion hsum omputes the sum of two holonomi funtions.

The funtion hprod omputes the produt of two holonomi funtions.

The funtion hsympow omputes the power of a holonomi funtion.

The funtion dependeny searhes for a dependeny between (pseudo-)derivatives of an expres-

sion involving holonomi funtions.

The funtion algtoholon omputes (pseudo-)di�erential operators de�ning an algebrai funtion

as holonomi.

The funtion hdiag omputes the diagonal of a holonomi funtion.
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