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Abstract. We extend Zeilberger's fast algorithm for de�nite hypergeometric sum-

mation to non-hypergeometric holonomic sequences. The algorithm generalizes to

di�erential and q-cases as well. Its theoretical justi�cation is based on a description

by linear operators and on the theory of holonomy.

R

�

esum

�

e. Nous �etendons l'algorithme rapide de Zeilberger pour la sommation hy-

perg�eom�etrique d�e�nie aux suites holonomes non-hyperg�eom�etriques. L'algorithme se

g�en�eralise aussi au cas di��erentiel et du q-calcul. Sa justi�cation th�eorique se fonde

sur une description par op�erateurs lin�eaires et sur la th�eorie de l'holonomie.

Introduction

In [28], D. Zeilberger initiated an algorithmic treatment of special functions that led to

e�cient algorithms for summation and integration [21]. In this approach, he considered

a large class of functions and sequences that enjoys numerous closure properties, the

class of holonomic functions. Simple de�nitions of holonomy in the continuous and

discrete cases are as follows: a function f(x

1

; : : : ; x

n

) is called holonomic when its

derivatives span a �nite-dimensional vector space over the �eld of rational functions in

the x

i

's; a sequence is then de�ned to be holonomic when its multivariate generating

function is holonomic. We use holonomic function to refer to either case.

Algorithms for sums of holonomic sequences rely on the method of creative telescop-

ing [29]. Given a bivariate sequence (u

n;k

), this method computes a linear recurrence

satis�ed by the de�nite sum U

n

=

P

k2Z

u

n;k

. The calculation is as follows: assume

that another sequence (v

n;k

) and rational functions �

i

in n only satisfy the identity

L

X

i=0

�

i

(n)u

n+i;k

= v

n;k+1

� v

n;k

;(1)

summing over k and considering technical assumptions on v then yields a linear recur-

rence satis�ed by U

n

. The method extends to di�erential and q-cases [5, 19, 20, 22].

A univariate sequence (u

n

) such that u

n+1

=u

n

is a rational function in n is called

hypergeometric. Similarly in the multivariate case, a hypergeometric sequence is a

sequence (u

n

1

;:::;n

r

) such that each u

n

1

;:::;n

i

+1;:::;n

r

=u

n

1

;:::;n

r

is a rational functions in

the n

i

's. Equivalently, hypergeometric sequences are de�ned by linear �rst order equa-

tions. Hypergeometry does not imply holonomy, as exempli�ed by the sequence u given

by u

n;k

= 1=(n

2

+ k

2

) (see [25]).

To solve the elimination problem of determining an equation like (1), Zeilberger �rst

gave a general but theoretical algorithm based on a skew Euclidean algorithm [28]. He
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himself called this algorithm the slow algorithm, and proposed his fast algorithm [27] for

a restricted class of sequences: this algorithm is guaranteed to terminate on sequences

which are simultaneously hypergeometric and holonomic. Such sequences are called

holonomic hypergeometric. Zeilberger's theory extends to multiple summations of holo-

nomic hypergeometric sequences, with counterparts for (possibly multiple) integrals

and their q-analogues [25, 26]. As an example of application, Zeilberger's algorithm

computes the following sum in closed form

2n

X

k=0

(�1)

k

�

2n

k

��

2k

k

��

4n� 2k

2n� k

�

=

�

2n

n

�

2

:

In [12], we described uni�ed but rather slow algorithms based on skew Gr�obner basis

calculations to perform creative telescoping in general classes of functions and sequences,

including the class of holonomic functions. This can be viewed as a generalization of

Zeilberger's slow algorithm. Our main contribution in the present article is to extend

Zeilberger's fast algorithm to a class of @-�nite functions, i.e., functions de�ned by

linear equations of any order, in the uni�ed setting of Ore operators.

For instance, our algorithm rediscovers identities like

1

X

n=0

P

n

(x)y

n

=

1

1� 2xy + y

2

;

1

X

n=0

J

2n+1=2

(x) =

Z

x

0

cos t

p

2�t

dt;

where the P

n

(x) are the Legendre polynomials and the J

�

(x) are the Bessel functions of

the �rst kind. In each case, we start from a description of the summand in the left-hand

side in terms of linear operators at which it vanishes and we compute the right-hand

side by summation. Note that in each case, the summand is not a hypergeometric term.

Zeilberger's fast algorithm for de�nite hypergeometric summation is based on an al-

gorithm for inde�nite hypergeometric summation due to R. W. Gosper [15, 16]. For

sequences (u

k

) and (U

k

) such that U

k+1

� U

k

= u

k

, U is called an inde�nite sum of u.

Gosper's algorithm recognizes whether there exists a hypergeometric inde�nite sum U

of a hypergeometric sequence u, and if so computes such a U . When a solution is found,

the sum

P

k�1

j=0

u

j

is U

k

� U

0

. The sequences u and U are related by an equation of the

form U

k

= �(k)u

k

with � a rational function, so that the summation problem reduces

to computing �. It turns out that � satis�es a linear recurrence with polynomial coef-

�cients, which can be solved for rational solutions � by S. A. Abramov's algorithm [1].

Alternatively, Gosper's clever remark is that it su�ces to solve a derived equation for

polynomial solutions, which is done by a method of undetermined coe�cients. (See [3]

for a re�nement.) As an example of application, Gosper's algorithm proves

k

X

j=0

4

j

�

2j

j

�

=

2(k + 1)4

k

�

2k

k

�
+

1

3

:

If a positive integer L and rational functions �

i

were known to be such that the

left-hand side of Eq. (1) admits a hypergeometric inde�nite sum, Gosper's algorithm

would apply to solve (1) for it. Based on this observation, Zeilberger's fast algorithm

introduces undetermined coe�cients for the �

i

's and uses an extension of Gosper's

algorithm to solve for a hypergeometric inde�nite sum (v

k

) together with rational �

i

's.

This process in run with increased values of L until the inde�nite summation problem



becomes solvable. When u is a holonomic hypergeometric sequence, the termination of

the algorithm is guaranteed by holonomy. The algorithm then yields Eq. (1) from which

creative telescoping computes a linear recurrence satis�ed by the de�nite sum U

n

.

In this article, we generalize Zeilberger's algorithm to the case when the linear equa-

tions satis�ed by (u

n;k

) have orders larger than 1, and are not necessarily recurrences.

The de�nition of @-�nite functions [12] is recalled in the next section. Next, we extend

Abramov's alternative approach to Gosper's algorithm, then Zeilberger's algorithm to @-

�nite functions. We then detail how the normal forms for @-�nite functions used in those

algorithms are obtained by methods of Gr�obner bases. We �nally de�ne certi�cates and

companion identities in the context of @-�nite identities.

1. Algebras of operators and @-finite functions

A di�erential counterpart to Zeilberger's slow algorithm for sequences is available in

the case of functions and both versions extend to q-analogues [25]. All these algorithms

are very similar in their structures and behaviours, so that a uni�ed description is in

terms of linear operators. To this end, we introduced [12] a large class of operator alge-

bras which are well suited to accommodate linear di�erential and di�erence operators,

their q-analogues and numerous other generalized di�erential operators. Let A be a

ring endowed with a ring endomorphism �. Following [13], a �-derivation � on A is an

additive endomorphism such that (ab)

�

= a

�

b

�

+ a

�

b for all a; b 2 A . (We denote the

application of �'s and �'s by powers, referring to the prime notation for derivatives.)

Since the corresponding generalized di�erential operators are those of interest to our

study, we often call a �-derivation a derivation.

De�nition. Let K be a (possibly skew) �eld and @ = (@

1

; : : : ; @

r

) be a tuple of indeter-

minates that commute pairwise. We assume that the �eld K is endowed with injective

�eld endomorphisms �

i

's and additive endomorphisms �

i

's, one pair for each i = 1; : : : ; r,

such that each �

i

is a �

i

-derivation. We assume further that �

i

and �

j

, �

i

and �

j

, �

i

and �

j

commute for i 6= j. The Ore algebra K [@

1

; �

1

; �

1

] : : : [@

r

; �

r

; �

r

], which we also

denote K [@ ;�; �], is the ring of polynomials in @ with coe�cients in K , with usual

addition and a product de�ned by associativity from the commutation rules

@

i

a = a

�

i

@

i

+ a

�

i

between the @

i

's and elements a 2 K .

An Ore algebra O is clearly a K -algebra. In order to view it as an algebra of linear

operators, we assume that we are given a commutative K -algebra F whose elements we

call functions, and we require F to be a left O -module containing K . For instance, in the

case of the Ore algebra O = K (z)[@; 1; d=dz] of linear di�erential operators, the algebra

of Laurent formal power series K ((z)) is a left O -module for the action (@ �f)(z) = f

0

(z)

and (z � f)(z) = zf(z); in the case of the Ore algebra O = K (n)[@;S

n

; 0] of linear

recurrence operators, the algebra K

N

of sequences for term-wise addition and product

is a left O -module for the action (@ � u)(n) = u

n+1

and (n � u)(n) = nu

n

.

When viewed as operators, elements of Ore algebras are called Ore operators. By a

derivative of a function f 2 F , we mean the result of the action of @

i

on f , which we

denote @

i

�f . More generally, any @

�

�f is also called a derivative. For a function f 2 F ,

the left ideal Ann f = fP 2 O j P � f = 0g describes much of the structure of the

derivatives of f . It is called the annihilating ideal of f and satis�es O=Ann f ' O � f .



Input: a basis B for the annihilating ideal of a @-�nite function f .

Output: a basis for all operators Q such that Q �f = @

�1

�f , or ?.

1. from B, compute a Gr�obner basis G and get the �nite basis

(@

�

)

�2I

of O=Ann f canonically associated to G;

2. introduce undetermined coe�cients �

�

and rewrite

@

P

�2I

�

�

@

�

� 1 in this basis by reduction by G;

3. solve the corresponding system of �rst order linear equations for

solutions �

�

2 K ;

4. if solvable, return Q =

P

�2I

�

�

@

�

; otherwise return ?.

Algorithm 1. inde�nite @-�nite summation

Of particular interest are @-�nite functions, which correspond in applications to func-

tions and sequences de�ned by a �nite number of equations and initial conditions.

De�nition. Let O = K [@ ;�; �] be an Ore algebra. A function f in a left O -module is

called @-�nite when its derivatives span a �nite-dimensional vector space O � f over K .

In this case, the left ideal Ann f = fP 2 O j P � f = 0g is also called a @-�nite ideal.

In the case of the Ore algebra O = C (x

1

; : : : ; x

n

)[@

1

; 1; d=dx

1

] : : : [@

n

; 1; d=dx

n

] built on

di�erential operators @

i

's, we recover the de�nition of holonomy [28], so that @-�niteness

extends holonomy of (continuous) functions.

2. Indefinite @-finite @

�1

For an Ore algebra O = K [@ ;�; �], let @ be any of the @

i

's and F be a left O -module

of functions. We call a function F 2 F an anti-derivative of f 2 F when @ � F = f .

Alternatively, we write @

�1

� f to denote any of those anti-derivatives. We develop an

algorithm to compute the anti-derivatives F = @

�1

� f of a @-�nite function f , when

there exists such an F in O � f . Moreover, the algorithm always terminates, detecting

when no such @

�1

� f exists in O � f and returning the special symbol ? in this case.

In the case of hypergeometric sequences (and Ore algebras built on shift or di�erence

operators), we recover the variant of Gosper's algorithm that solves the linear recurrence

for rational solutions by Abramov's algorithm.

2.1. Algorithm. We proceed to establish the following theorem.

Theorem. Assume that K admits a decision algorithm to solve linear equations L �f =

0 where L 2 K [@; �; �] for solutions in K . Then Algorithm 1 is a decision algorithm to

compute a basis of all the anti-derivatives of a @-�nite function f in O � f .

Note that the requirement that the input be the whole annihilating ideal of a @-�nite

function can be weakened: the algorithm terminates on any @-�nite subideal of the

annihilating ideal of a @-�nite function; however, it may fail to �nd anti-derivatives

with such an incomplete input. This change of ideal corresponds to a change of @-�nite

function f by introducing parasitic solutions.



The algorithm reduces the problem to that of solving a system of linear Ore oper-

ators for rational function solutions. Those rational functions are then viewed as the

coe�cients of the operator Q such that @

�1

� f = Q � f .

The key point is to make the action of the di�erentiation operator @ on the �nite-

dimensional vector space O �f explicit. Let F be any function in O �f . We �x a K -basis

of O � f of the form (@

�

� f)

�2I

for a �nite set I of indices. Then F = Q � f where Q 2

O=Ann f can be written Q =

P

�2I

�

�

(x)@

�

. With the assumption F = @

�1

� f , i.e.,

@ � F = f , we have @Q = 1 mod Ann f . In other words:

@Q =

X

�2I

�

�

�

(x)@

�

@ +

X

�2I

�

�

�

(x)@

�

= 1:(2)

Now, 1 and each @

�

@ in this equation can be rewritten in the basis (@

�

)

�2I

. From the

computational point of view, this rewriting is performed by methods of Gr�obner basis

and for a particular choice of basis of O � f . For the sake of clarity, we postpone the

description of these two ingredients to Section 4.

Next, for each � 2 I, extracting the coe�cients in @

�

yields an equation

X

�2I

�

�;�

(x)�

�

�

(x) + �

�

�

(x) = �

�

(x);(3)

where the �

�;�

and �

�

are rational functions in x. Denoting vectors and matrices by

capital letters, we get the following linear di�erential system

�(x)�

�

(x) + �

�

(x) =M(x):(4)

We next solve this system in a way which depends on the algebra of operators under

consideration. Either the system is solvable, and each Q yields an anti-derivative Q � f

in O � f ; or it is not solvable, and no anti-derivative can be found in O � f .

Let us detail how to solve Eq. (4). Each equation of the system may involve several

unknown functions. We do not know of algorithms to solve this kind of linear system

directly; the �rst step is therefore to uncouple the system so as to get equations in a

single unknown function. This can be achieved for any Ore operator @ by appealing to

Abramov's and Zima's algorithm [4]. Indeed, introduce the new Ore algebra K [@

0

; �

0

; �

0

]

where �

0

= �

�1

and @

0

= �

0

= ��

�1

� on K . Applying �

�1

to Eq. (4) yields the system

�

�

�1

(x)�(x)� @

0

� �(x) =M

�

�1

(x);

where �

�

�1

(x) and M

�

�1

(x) are known and �(x) is the unknown. This is exactly the

input form of the algorithm in [4]. Once the system has been uncoupled, we have to

solve several linear equations in a single unknown function for rational solutions �

�

.

This resolution in turn depends on the operator @

0

.

The case of (ordinary or q-) recurrences. This is an instance of the more general

case when @ = � = � � 1 (where 1 is the identity). We then usually work with the �

operator of (ordinary or q-) shift instead of the � operator of (ordinary or q-) di�erence,

because both operator algebras K [�; �; �] and K [�; �; 0] are equal when � = ��1. After

the uncoupling step described above, we are led to linear equations in the shift or q-shift

operator. In each case, an algorithm of Abramov's applies [2, 1].

The case of (ordinary) di�erential equations. In this case, � is the identity, so

that the change of Ore operators in the uncoupling step above is trivial (@

0

= @). We

next solve each uncoupled di�erential equation by Abramov's algorithm [1].



Finally, note that the value 1 in the right-hand side of Eq. (2) was inessential. Chang-

ing (2) into the more general equation

@Q =

X

�2I

�

�

�

(x)@

�

@ +

X

�2I

�

�

�

(x)@

�

= H;(5)

where H is any element of O=Ann f makes it possible to detect if H � f has an anti-

derivative in O � f . This only a�ects the vector M in Eq. (4) in a linear way. This fact

will be used in our fast algorithm for creative telescoping in the next section.

2.2. Example: Harmonic summation. Harmonic summation identities like

n

X

k=1

�

k

m

�

H

k

=

�

n+ 1

m+ 1

��

H

n+1

�

1

m+ 1

�

;

where H

n

denotes the harmonic number

P

n

k=1

k

�1

, can be proved using our algorithm.

Identities of this kind are classically proved by summation by parts or by techniques of

generating functions. (See also M. Karr's general algorithm [17, 18].) Introducing f

n

=

�

n

m

�

H

n

, we show the equivalent form

n

X

k=1

f

k

=

(n + 1)

2

(m+ 1)

2

f

n

�

(n�m)(n�m + 1)

(m+ 1)

2

f

n+1

:(6)

First, f satis�es the following linear recurrence:

(n�m+ 1)(n�m+ 2)f

n+2

� (2n+ 3)(n�m+ 1)f

n+1

+ (n + 1)

2

f

n

= 0:

Such an equation is obtained by simplifying f

n+1

and f

n+2

by the relation

(n + 1� k)f

n+1

= (n+ 1)f

n

+ 1

and searching for a linear dependency. Thus, the sequence f is a @-�nite function with

respect to the Ore algebra O = Q(n;m)[S

n

;S

n

; 0], where S

n

is the shift operator with

respect to n. Since O � f is a two-dimensional vector space with basis (f; S

n

� f), we

introduce a generic operator Q = �

n

+ �

n

S

n

and compute @Q� 1. Then, Eq. (4) takes

the form

8

>

>

>

>

>

<

>

>

>

>

>

:

�(n�m + 1)(n�m + 2)�

n

+ (n+ 1)(n�m+ 2)�

n+1

� (n+ 1)(n�m + 2)�

n

+ (n+ 1)(n+ 2)�

n+1

= (n+ 1)(n�m+ 2);

�(n�m + 1)(n�m + 2)�

n

+ (2n+ 1)(n+ 2�m)�

n+1

� (2n+ 1)(n�m+ 2)�

n

+ (3n

2

+ 6n+ 2)�

n+1

= (2n+ 1)(n�m + 2):

Uncoupling this system so as to get rid of � yields the recurrence

�(n + 2)

2

�

n+2

+ (2n+ 3)(n�m + 3)�

n+1

� (n�m+ 2)(n�m+ 3)�

n

= (n�m + 3)(n�m + 2);

which is solved for rational solutions by Abramov's algorithm. Replacing in the system

and eliminating �

n+1

between both equations, we �nd

�

n

=

(n+ 1)

2

(m+ 1)

2

and �

n

= �

(n�m)(n�m + 1)

(m+ 1)

2

;

which yields the right-hand side of Eq. (6).



Input: a basis B for the annihilating ideal of a @-�nite function f .

Output: a pair of operators (P;Q) satisfying (7).

1. from B, compute a Gr�obner basis G and get the �nite basis

(@

�

)

�2I

of O=Ann f canonically associated to G;

2. for L = 0; 1; : : : :

(a) introduce undetermined coe�cients �

i

and �

�

and rewrite

@

0

P

�2I

�

�

@

�

�

P

L

i=0

�

i

@

i

in this basis by reduction by G;

(b) solve the corresponding system of �rst order linear equations

for solutions �

i

2 K and �

�

2 K (u);

(c) if solvable, return the solution

�

P

L

i=0

�

i

@

i

;

P

�2I

�

�

@

�

�

;

otherwise loop.

Algorithm 2. de�nite @-�nite summation

3. Fast definite @-finite @

�1

j




For an Ore algebra O = K [@ ;�; �], let @ be any of the @

i

's and F be a left O -module of

functions. To extend the case of de�nite summation and integration operators like

P

b

k=a

and

R

b

a

dx, we assume there is an operator @

�1

j




de�ned on F such that @@

�1

j




= 0.

(In [12], we used a less general de�nition for @

�1

j




, requiring that @

�1

j




@ also be 0.

This corresponds to analytical assumptions on F which are irrelevant here.) In this

section, we build on Algorithm 1 to perform the elimination step of creative telescoping

on @-�nite functions. In other terms, we solve Eq. (1). This in turn allows us to perform

de�nite (q-)summation or (q-)integration of a (q-)holonomic function, or more generally

the problem of computing a de�nite anti-derivative of a @-�nite function, as described

in [12].

Zeilberger's fast algorithm is guaranteed to terminate on holonomic hypergeometric

sequences only. In the case of di�erential and di�erence operators, we similarly call

a simultaneously @-�nite and holonomic function holonomic @-�nite. Our algorithm

inputs a description of the annihilating ideal of a @-�nite function and we prove its

termination for holonomic @-�nite functions.

3.1. Algorithm. A (continuous) holonomic function f(x; y) is a @-�nite function with

respect to an Ore algebra O = K (x; y)[@

x

; 1; d=dx][@

y

; 1; d=dy] built on (ordinary) di�er-

ential operators. (Here, @

x

= �

x

= d=dx and @

y

= �

y

= d=dy.) The original de�nition

of holonomy in the framework of D-modules [7, 8] implies that there exists a non-zero

operator in Ann f \ K (x)[@ ; 1; �] [28, Lemma 4.1]. We refer the reader to [9, 14] for

textbooks on holonomy. As a result, there is a non-trivial identity of the form

L

X

i=0

�

i

(x)@

i

x

� f = @

y

� (Q(x; y; @

x

; @

y

) � f)

mimicking (1) for Q 2 O . This existence property transfers to the discrete case by

generating functions and similar results hold for q-analogues [23].



More generally, in the case of a @-�nite function f with respect to an Ore algebra O =

K (u

1

; : : : ; u

s

)[@; �; �][@

0

; �

0

; �

0

] such that @

0

commutes with elements of K but not with

the u

i

's, we look for solutions of

P (@) � f =

L

X

i=0

�

i

@

i

� f = @

0

� (Q(u; @; @

0

) � f) ;(7)

where P 6= 0 and the �

i

's do not depend on u.

We now summarize the result of this section in the following theorem.

Theorem. Assume that K (u) admits a decision algorithm to solve linear equations L �

f = 0 where L 2 K (u)[@

0

; �

0

; �

0

] for solutions in K (u). When there exists a pair (P;Q)

that satis�es (7), Algorithm 2 terminates and returns such a pair. This happens in

particular as soon as f is a holonomic @-�nite function.

As soon as we know an operator P that makes Eq. (7) solvable in Q, we can use our

inde�nite summation algorithm to get Q. Indeed, it was noted that the value of H in

Eq. (5) is inessential; letting H = P makes it possible (after reduction modulo Ann f) to

apply our inde�nite summation algorithm, the vector M in Eq. (4) depending linearly

on the �

i

's. However, we do not want to solve for Q uniformly in the parameters �

i

's;

we need to �nd for which values of the �

i

's the equation is solvable in Q. Therefore,

we use a variant of our inde�nite summation algorithm so that it solves Eq. (4) in �

and M simultaneously. This corresponds to classical re�nements of Abramov's algo-

rithms described in [29].

Thus, our algorithm proceeds like Zeilberger's fast algorithm: we make a choice for L,

introduce undetermined coe�cients �

i

's and apply our inde�nite summation algorithm;

if Eq. (4) is solvable, we have �nished, otherwise we increase L.

3.2. Example: Neumann's addition theorem. We illustrate the previous algo-

rithm with Neumann's addition theorem

1 = J

0

(z)

2

+ 2

1

X

k=1

J

k

(z)

2

for the Bessel functions of the �rst kind J

k

(z). The latter are de�ned as @-�nite functions

by the following operators

z

2

D

2

z

+ zD

z

+ z

2

� k

2

; zD

z

S

k

+ (k + 1)S

k

� z; zD

z

+ zS

k

� k;

in the Ore algebra O = K (k; z)[S

k

;S

k

; 0][D

z

; 1; D

z

]. It follows from an algorithm de-

scribed in [12] that the squares J

k

(z)

2

are also @-�nite and de�ned by the system

8

<

:

zD

2

z

+ (�2k + 1)D

z

� 2S

k

z + 2z;

zD

z

S

k

+ zD

z

+ (2k + 2)S

k

� 2k;

z

2

S

2

k

� 4(k + 1)

2

S

k

� 2z(k + 1)D

z

+ 4k(k + 1)� z

2

:

This system generates the ideal Ann J

k

(z)

2

in O . Thus, O=Ann J

k

(z)

2

is a three-dimen-

sional vector space, with basis (1; D

z

; S

k

), and we introduce a generic Q = u

k

+ v

k

S

k

+

w

k

D

z

. We let L = 1 and introduce two parameters �

0

(z) and �

1

(z) in Eq. (7) to get a

solution. Then, we get the following equations for the system (3)

u

k

=

k

z

�

1

(z); v

k

= 0; w

k

=

1

2

�

1

(z);



together with the constraint that �

0

= 0 (�

1

(z) is any rational function in z). We

set �

1

(z) to 1, so that P = D

z

and Q = k=z +D

z

=2. With these values for P and Q,

we have after creative telescoping:

P �

 

1

X

k=0

J

k

(z)

2

!

+

�

Q � J

k

(z)

2

�

k=1

k=0

= 0;

from which follows by linearity that

D

z

�

 

2

1

X

k=0

J

k

(z)

2

� J

0

(z)

2

� 1

!

= �D

z

� (J

0

(z)

2

+ 1)� 2

�

Q � J

k

(z)

2

�

k=1

k=0

= 0;

since lim

k!+1

J

k

(z) = lim

k!+1

J

0

k

(z) = 0. Thus 2

P

1

k=0

J

k

(z)

2

�J

0

(z)

2

�1 is a constant,

checked to be 0 when z = 0. This proves Neumann's theorem.

4. Effective calculations with @-finite ideals

In the algorithms for hypergeometric summation, an important role is played by the

relation of similarity. Two hypergeometric terms t

n

and t

0

n

are called similar when t

n

=t

0

n

is a non-zero rational function in n. When summing a hypergeometric term t

n

, Gosper's

algorithm therefore searches for an inde�nite sum similar to the summand; the algo-

rithm works in the one-dimensional vector space K (n) � t

n

, so that each sequence under

consideration can be represented by a single rational function.

In our extension to the case of @-�nite functions with respect to an Ore algebra O =

K [@ ;�; �], the role of K (n) � t

n

is undertaken by the �nite-dimensional vector space O �

f =

L

�2I

K @

�

�f for a �nite set I. Each function under consideration in the algorithm

can be represented by its rational coordinates �

�

2 K on the basis of the @

�

's. Two

problems arise naturally: one is to compute a set I which determines a basis; another is

to compute normal forms in O � f . In particular, when an operator P 2 O is applied on

a function

P

�2I

�

�

@

�

� f 2 O � f , we need to normalize the result

�

P

P

�2I

�

�

@

�

�

� f

in a form

P

�2I

 

�

@

�

� f .

Both problems are solved using methods of Gr�obner bases that are described in [12].

Any Gr�obner basis fG

1

; : : : ; G

`

g of the left ideal Ann f � O with respect to a term

order � (see de�nitions in [12]) determines a suitable set I in the following way.

Call h

i

= @

�

i

the head term of G

i

with respect to �. Then, consider the set of those

terms @

�

less than all the h

i

's and let I = f� j 8i @

�

� h

i

g. This set de�nes a ba-

sis (@

�

� f)

�2I

of O �f . We call it canonically associated to fG

1

; : : : ; G

`

g in Algorithms 1

and 2. Moreover, the procedure of reduction of operators in O with respect to � by

the Gr�obner basis provides us with a procedure of normal form in O=Ann f ' O � f .

5. Holonomic certificates and companion identities

In the case of de�nite hypergeometric summation, the certi�cate of an identity

L

X

i=0

�

i

(n)U

n+i

= 0 where U

n

=

X

k2Z

u

n;k

;

is de�ned [24, 26] as the tuple (R

n;k

; �

0

(n); : : : ; �

L

(n)), where R

n;k

= v

n;k

=u

n;k

for a

hypergeometric v in Eq. (1). In the case of an Ore algebra O = K (u)[@; �; �][@

0

; �

0

; �

0

],



we de�ne the certi�cate of an identity

P � F =

L

X

i=0

�

i

@

i

� F = 0 where F = @

�1

j




� f;(8)

as the tuple

�

(�

�

)

�2I

; �

0

; : : : ; �

L

�

, where the �

�

's are de�ned to satisfy Eq. (5) for H =

P . As in the hypergeometric case, this certi�cate alone allows the veri�cation of Eq. (8),

and a multivariate extension is possible.

Companion identities [24] are also found in our generalized setting. Starting from

Eq. (7), we write P = R + @S and apply @

�1

j




to get the companion identity

@

0

@

�1

j




Q � f + @

�1

j




R � f + @

�1

j




@S � f = 0:

Very often in applications, R = 0 or @

�1

j




@ = 0, which simpli�es the identity. (The

second case happens for instance when summing over natural boundaries.)

As an example, we develop a companion identity obtained from a generating function

for the Bessel functions J

n

(z). We have

X

n2Z

J

n

(z)u

n

= e

uz

2

(

1�

1

u

2

)

;(9)

which can be proved using the algorithms of the previous sections. More precisely,

proving the identity obtained after dividing by the right-hand side with our algo-

rithms, we get operators P = 2uD

z

and Q = 2uD

z

+ S

n

+ u

2

in the Ore alge-

bra K (z; u; n)[D

z

; 1; D

z

][S

n

;S

n

; 0], that satisfy Eq. (7). A certi�cate for the identity (9)

could be derived from the pair (P;Q). Writing

f

n

= J

n

(z)u

n

e

�

uz

2

(

1�

1

u

2

)

;

we have P � f + (S

n

� 1)Q � f = 0. Summation of this equality over Z yields (9);

integration over (0;+1) yields

[2uf ]

+1

0

+ (S

n

� 1) �

Z

+1

0

(Q � f)dz = 0:

The left-hand term of the sum is zero when n � 1, so that the integral is constant

for n � 1. Evaluating it at n = 1, the companion identity takes the form

Z

1

0

u

n

e

�

uz

2

(

1�

1

u

2

)

�

(1 + 2nuz

�1

)J

n

(z)� uJ

n+1

(z)

�

dz = 2u:

Conclusions

The value of the left factor @ in Eq. (2) and Eq. (5) does not play an important role

in Algorithm 1, and can in fact be changed by any L 2 K [@; �; �]. As an application,

this yields an algorithm to compute particular solutions y

0

of a non-homogeneous linear

equation L � y = f for a @-�nite function f when a particular solution exists in O � f :

solve LQ = 1 mod Ann f by a clear extension of Algorithm 1 and set y

0

= Q � f . This

particular solution often has a nicer expression than that computed by the method of

variation of the constant. More generally, a problem solved by Algorithm 1 is that of

determining if the sum of a left ideal and a principal right ideal LO for L 2 K [@; �; �]

contains a given element of an Ore algebra. This problem of solving a mixed equation

is also close to questions related to the factorization of operators.



The crucial step of Algorithm 2 for de�nite summation and integration is the resolu-

tion of the linear system (4), which we perform by �rst uncoupling the system using an

algorithm in [4], before appealing to specialized algorithms [1, 2] to solve equations in

a single unknown function. Other uncoupling algorithms are available [6, 10], but we

emphasize the desire for an algorithm that works directly at the level of systems of Ore

operators. Indeed, from our �rst experiments, the uncoupling step is the computational

bottleneck of Algorithm 2, in relation to the dimension of the vector space O � f ; we

hope that avoiding it could allow calculations in vector spaces of higher dimensions.

In the case of a sequence (u

n;k

) with �nite support for each n, the operator Q in (7)

need not be computed to perform creative telescoping, since summing the right-hand

side of (7) clearly yields 0. More generally, we call de�nite @

�1

j




over natural boundaries

the case of de�nite @

�1

j




when the right-hand side of

P (@)@

0�1

j




� f = @

0�1

j




@

0

� (Q(u; @; @

0

) � f)

can be predicted to be 0. In [12], we built on ideas of N. Takayama's to develop an

algorithm which takes advantage of this situation to achieve e�ciency. When both sides

of Eq. (7) are needed, this algorithm from [12] used in conjunction to Algorithm 1 is an

alternative to the fast algorithm presented above: after computing P by our algorithm

from [12], the application of Algorithm 1 with H = P in Eq. (5) makes it possible to

compute Q from P . However, note that Algorithm 2 is more robust than this method

in the sense that it does not need more than a @-�nite description of the input to �nd

a solution (see [12] for further details).

Finally, we point out that our algorithms allowed us to prove the following identity

due to N. Calkin [11]

n

X

k=0

 

k

X

j=0

�

n

j

�

!

3

= n2

3n�1

+ 2

3n

� 3n2

n�2

�

2n

n

�

in only a few minutes of calculations. Using the multivariate extension of Zeilberger's

algorithm [26] would require a not so easy four-fold summation.
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