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Abstract

The treatment of combinatorial expressions and special functions

by linear operators is amenable to Gr�obner basis methods. In this

tutorial, we illustrate the applications of Gr�obner bases to symbolic

summation and integration.

Introduction

In the late 1960's, Risch (1969, 1970) developed an algorithm for symbolic

inde�nite integration. The approach followed there consists in computing a

tower of di�erential extensions in order to determine if an inde�nite integral

can be expressed in terms of elementary functions. Risch's algorithm became

very popular and is now at the heart of the integration routines of many

computer algebra systems. In the early 1980's, Karr (1981, 1985) appealed to

similar ideas, namely di�erence extensions, in order to develop an algorithm

for symbolic inde�nite summation. Despite its indisputable algorithmic inter-

est, Karr's algorithm has unfortunately not received as much attention as it

deserves yet, due to its complexity and the di�culty to implement it.

In the early 1990's, Zeilberger (1990b) initiated a di�erent approach to

symbolic summation and integration. As opposed to the approach by dif-

ferential or di�erence extensions, Zeilberger studies the action of algebras of

di�erential or di�erence linear operators in order to compute special operators

that determine the sum or integral under consideration. The method is based

on the theory of holonomy (Bernstein 1971, 1972; Bj�ork 1979; Coutinho 1995;

Ehlers 1987; Kashiwara 1978). Since then, Zeilberger has improved his �rst

approach so much that his \fast algorithm" is the basis for the de�nite sum-

mation routines of many computer algebra systems (Petkov�sek et al. 1996;

Wilf and Zeilberger 1992a, 1992b; Zeilberger 1990a).

More speci�cally, the starting point of the operator approach is to consider

which linear operators annihilate a given function or sequence. A function,

respectively a sequence, is then described by a set of annihilating operators.
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For example, the binomial coe�cients

�

n

j

�

satisfy linear recurrence equations.

Let S

n

denote the operator of shift with respect to n: this operator acts on

a function f by (S

n

� f)(n) = f(n+ 1). Shifts with respect to other variables

are denoted analogously. Identifying a rational function r in (n; j) with the

linear operator of multiplication by r, we get a non-commutative algebra

whose product denotes the composition of operators. With this notation, the

binomial coe�cients are annihilated by each operator of the system

(n+ 1� j)S

n

� (n+ 1); (j + 1)S

j

� (n� j): (0.1)

These operators correspond to the vertical and horizontal recurrences in Pas-

cal's triangle. Summation is then recast into a di�erent form: informally, the

left ideal spanned by the previous operator system encodes all the linear

equations with rational function coe�cients satis�ed by the binomial coef-

�cients; summation then reduces to deducing an operator of a special form

starting from the description (0.1) of the ideal. More precisely, the summa-

tion over j requires an operator which does not involve j, i.e., an operator

in n, S

n

and S

j

only. For instance, deriving Pascal's triangle rule, as en-

coded by the operator P = S

n

S

j

� S

j

� 1, su�ces to perform the summation

over j. This derivation is based on the elimination of j, for which methods

are detailed in the main sections of this tutorial. A rewritten form for P

is (S

j

� 1)(S

n

� 1) + (S

n

� 2), which applied to

�

n

j

�

yields

g

n;j+1

� g

n;j

+ [(S

n

� 2) � f ](n; j) = 0

for f

n;j

=

�

n

j

�

and g

n;j

=

j

n+1�j

�

n

j

�

. Then, summing over j in Z yields that

the operator S

n

� 2 annihilates the sum

P

n

j=0

�

n

j

�

. This method of creative

telescoping will be described in x2.1. Solving the corresponding recurrence,

we deduce that

P

n

j=0

�

n

j

�

= 2

n

. More generally, the algorithms described in

this tutorial input and output linear systems. Typically, the input is a partial

di�erential or recurrence system, while the output is an ordinary di�erential

or recurrence equation, whose resolution is left as a post-processing.

As another example, the Appell F

4

bivariate hypergeometric function

F

4

(a; b; c; d; x; y) =

1

X

m;n=0

(a)

m+n

(b)

m+n

m!n!(c)

m

(d)

n

x

m

y

n

; (0.2)

where (x)

n

denotes the Pochhammer symbol �(x + n)=�(x), satis�es linear

di�erential equations (Erd�elyi 1981). LetD

x

denote the operator of derivation

with respect to x: this operator acts on a function f by (D

x

� f)(x) = f

0

(x).

Denoting derivations with respect to other variables in analogously, the Ap-

pell F

4

function is annihilated by

(

xD

x

(xD

x

+ c� 1)� x(xD

x

+ yD

y

+ a)(xD

x

+ yD

y

+ b);

yD

y

(yD

y

+ d� 1)� y(xD

x

+ yD

y

+ a)(xD

x

+ yD

y

+ b);

(0.3)
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with a similar identi�cation for rational functions in (x; y) as in the previous

example. Here, determining an operator which does not involve y, i.e., in x,

D

x

and D

y

only, is enough to obtain an ordinary di�erential equation satis�ed

by an integral of the Appell function.

More generally, the operator approach applies to mixed di�erence-differen-

tial systems. For example, the Jacobi orthogonal polynomials P

(a;b)

n

(z), viewed

as a function P in (n; a; b; z), is annihilated by the classical linear di�erence-

di�erential system (Erd�elyi 1981)

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(1� z

2

)D

2

z

+ (b� a� (a+ b + 2)z)D

z

+ n(n+ a + b+ 1);

(2n+ a+ b + 2)(1� z

2

)S

n

D

z

� (n+ 1)(a� b� (2n+ a+ b + 2)z)S

n

� 2(n+ a+ 1)(n+ b + 1);

2(n+ 2)(n+ a + b+ 2)(2n+ a+ b + 2)S

2

n

�(2n+ a + b+ 3)

[(2n+ a+ b + 2)(2n+ a+ b + 4)z + (a

2

� b

2

)]S

n

+2(n+ a+ 1)(n+ b + 1)(2n+ a+ b + 4);

(2n+ a+ b + 2)(1� z)S

a

� 2(n+ a+ 1) + 2(n+ 1)S

n

;

(2n+ a+ b + 2)(1 + z)S

b

� 2(n+ b + 1)� 2(n+ 1)S

n

:

(0.4)

Again, deriving an operator that does not involve z su�ces to perform inte-

grations of P .

An abstract framework for linear operators is given by Ore algebras, which

provide a unifying viewpoint on shift and derivation operators (Chyzak and

Salvy 1996). They also provide a polynomial representation for the opera-

tors under consideration, generalizing the polynomial representation of the

systems (0.1), (0.3) and (0.4). It turns out that the theory of Gr�obner bases

developed for commutative algebras of polynomials extends to this non-com-

mutative setting. Early work in this area is due to Galligo (1985) in the

di�erential case. Takayama (1989) used an analogous technique for di�erence-

di�erential algebras. A general setting was introduced by Kandri-Rody and

Weispfenning (1990) and Kredel (1993), and later adapted to Ore algebras

(Chyzak and Salvy 1996). In this tutorial, we illustrate applications of non-

commutative Gr�obner bases to symbolic summation and integration. Only

simple facts of the theory of commutative Gr�obner bases will be required, for

which we refer to (Buchberger 1998) and (Cox et al. 1992).

Gr�obner bases are used for various purposes in the context of the symbolic

manipulation of linear operators. First, by providing normal forms modulo

an ideal, they are crucial to algorithms which compute in �nite-dimensional

quotient rings. This applies in particular to the algorithm for inde�nite sum-

mation and integration which we present in Section 1, after setting up the

algebraic framework of Ore algebras and recalling how Gr�obner bases can be

computed there. Next, the use of Gr�obner bases for elimination purposes is

the keystone of a general method of de�nite summation and integration called



4 F. Chyzak

creative telescoping. An algorithm is presented in Section 2, together with an

extension to multiple summations and integrations. A more e�cient version

in the case of natural boundaries is obtained by appealing to Gr�obner bases

for modules. We end the section by applying the algorithm of Section 1 to

the de�nite case. In Section 3, we turn again to the use of Gr�obner bases for

computing normal forms and obtain algorithms for various other operations.

We also present a second method for the inde�nite case. Finally, Gr�obner

bases allow the calculation of ideal dimensions. This concept is related to

the theory of holonomy, which we allude to in Section 4, and is used to ex-

plain the success of the various methods and to decide the termination of the

corresponding algorithms.

1 Inde�nite Summation and Integration

The algorithms which we illustrate simultaneously apply to summation and

integration. Indeed, they share an interpretation in terms of Ore operators

which generalize both derivation and di�erence operators. This algorithmi-

cally important fact stems from the essential property of Ore operators to

satisfy a skew Leibnitz rule (see (1.1) below) which encompasses both the

classical Leibnitz rule for derivations,

(fg)

0

(x) = f(x)g

0

(x) + f

0

(x)g(x);

and the skew Leibnitz rule for the �nite di�erence operator �,

�(fg)(x) = f(x+ 1)�g(x) + (�f(x))g(x);

where �f(x) = f(x + 1) � f(x). Furthermore, Ore operators have a repre-

sentation in special algebras, namely Ore algebras, which can be regarded as

algebras of skew polynomials. Due to the nice properties of these polynomials,

a theory of Gr�obner bases is available in Ore algebras. To end the section,

we present an algorithm for the inde�nite case, which will be used for the

de�nite case in x2.4.

1.1 Ore Operators, Ore Algebras, Annihilating Ideals

The purpose of this section is to provide a representation of linear operators

which is suitable for symbolic manipulations, and in particular for Gr�obner

basis calculations. This encoding is in terms of skew polynomials, which en-

capsulate the di�erence and di�erential cases in a single algebraic framework

(Cohn 1971). Considering the polynomial form of the operators in (0.1), (0.3)

and (0.4), we introduce a generic indeterminate @ which may either represent

a derivation operator, a shift operator, or more general Ore operators (Bron-

stein and Petkov�sek 1994; Ore 1933). This @ inherits the action on functions
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of the original operator. Introducing several indeterminates @

i

, we then de-

scribe multivariate cases. Imposing commutation on the @

i

's, we are led to

the de�nition of Ore algebras (Chyzak and Salvy 1996).

In view of the similarity between the treatments of functions and se-

quences, we henceforth indi�erently use the word \function" for functions

and sequences, and more generally for any object on which we apply linear

operators. Let F be an algebra of functions over a commutative �eld K and

denote the algebra of K -linear endomorphisms of F by End

K

F .

By analogy with the prime notation for derivations, we denote by f

�

the

action of � 2 End

K

F on f 2 F . An endomorphism � 2 End

K

F which satis�es

the Leibnitz law (fg)

�

= fg

�

+f

�

g for f; g 2 F is called a derivation or deriva-

tion operator. On the other hand, an algebra endomorphism � 2 End

K

F is

called a di�erence or di�erence operator. Each di�erence � induces an op-

erator � = � � 1 which satis�es the skew Leibnitz law (fg)

�

= f

�

g

�

+ f

�

g

for f; g 2 F . More generally, we are interested in pairs (�; �) of operators

which satisfy such a skew Leibnitz law. Given a di�erence � on F , an endo-

morphism � 2 End

K

F is called an Ore operator, or a �-derivation (Bronstein

and Petkov�sek 1994; Ore 1933), when

(fg)

�

= f

�

g

�

+ f

�

g for all f; g 2 F . (1.1)

This includes classical derivations �, in which case one considers the pair (1; �)

where 1 denotes the identity.

We now proceed to describe a representation of subalgebras of End

K

F

generated by �-derivations as skew polynomial rings. In order to allow linear

operators over various domains of coe�cients, we introduce a K -algebra A . In

practice, this will always be a polynomial ring A = K [x] or a rational function

�eld A = K (x). In addition, we require F to include A , so that A can also

be viewed as a subalgebra of End

K

F by the identi�cation of a 2 A with the

operator of multiplication by a. In view of the operators that appear in the

applications, we distinguish between the general case of a pair (�; �) and the

special case (�; �) for � = � � 1. In the general case, we put the emphasis on

the �-derivation �, and a polynomial representation is obtained by encoding �

through @�f = f

�

for f 2 F . When additionally � and � restrict to a di�erence

and a �-derivation on A , the skew polynomial ring S= A [@; �; �] is de�ned as

the set of polynomials in @ with coe�cients in A , with usual addition and a

product de�ned by associativity from the commutation rule

@a = a

�

@ + a

�

for a 2 A

(Cohn 1971). This is the quotient of the free associative algebra in @ modulo

the above relations. In the special case, the emphasis is put on the di�er-

ence � = �+1 through the action @ � f = f

�

for f 2 F . We then consider the

skew polynomial ring A [@; �; 0] governed by the commutation

@a = a

�

@ for a 2 A .
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We turn to the multivariate case. Given several pairs of operators (�

i

; �

i

)

on the same algebra F with the property that �

i

and �

j

commute for i 6= j,

we introduce indeterminates @

i

's so as to consider the quotient of the free

associative algebra in the @

i

's modulo the relations @

i

a = a

�

i

@

i

+a

�

i

for a 2 A

and i = 1; : : : ; r, and @

i

@

j

= @

j

@

i

for i; j = 1; : : : ; r. Such a skew poly-

nomial ring is called an Ore algebra, denoted A [@ ;�; �]. For convenience,

we often denote an Ore algebra A [@ ;�; �] by the abusive iterated nota-

tion A [@

1

; �

1

; �

1

] : : : [@

r

; �

r

; �

r

], which could be formalized. When A is of the

form K [x], we obtain the special case of polynomial Ore algebras K [x][@ ;�; �].

Consider the example of the C -algebra F = C (n; a; b)((z)) of formal Laurent

series. The operators (0.4) which annihilate the Jacobi polynomials can be

considered in the Ore algebra

O

r

= A [S

n

;S

n

; 0][S

a

;S

a

; 0][S

b

;S

b

; 0][D

z

; 1; D

z

] for A = C (n; a; b; z); (1.2)

but might as well be considered in the polynomial Ore algebra O

p

obtained

when A = C [n; a; b; z]. This distinction will be crucial to treatments by

Gr�obner bases: the elimination of the indeterminates n, a, b or z is amenable

to Gr�obner basis methods in O

p

but not in O

r

.

For a module F of functions over an Ore algebra O and a function f 2 F ,

the set of operators that annihilate the function f has the algebraic struc-

ture of a left ideal. It is classically called the annihilating ideal of f and is

denoted Ann

O

f . This algebraic structure is the basis for the application of

Gr�obner basis methods. Alternatively, the set O � f obtained by the action of

the Ore algebra O on the function f is a left O -module, in fact, a left submod-

ule of F . The structure of the module O � f keeps track of the dependencies

between the derivatives @

�

� f of f . More speci�cally, O � f ' O=Ann

O

f .

1.2 Gr�obner Bases in Ore Algebras

Due to the encoding of Ore operators as skew polynomials, the theory of

Gr�obner bases extends to Ore algebras. Under mild conditions, the leading

term of a product of skew polynomials is the product of the leading terms of

the factors. This nice feature avoids any problem of non-noetherianity. The

main result originates in works by Kandri-Rody and Weispfenning (1990)

and Kredel (1993), which were adapted to Ore algebras by Chyzak and Salvy

(1996). It states that polynomial Ore algebras O = K [x][@ ;�; �] such that @,

�, � and x satisfy relations of the type

@

i

x

j

= (a

i;j

x

j

+ b

i;j

)@

i

+ c

i;j

(x); 1 � i � r; 1 � j � s; (1.3)

with b

i;j

2 K , a

i;j

2 K nf0g and c

i;j

2 K [x], are left noetherian and that a non-

commutative version of Buchberger's algorithm terminates for term orders

with respect to which all the @

i

's are larger than the x

i

's. When additionally all

the c

i;j

's are of total degree at most 1 in x, Buchberger's algorithm terminates
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for any term order on x and @. In all cases of termination, Buchberger's

algorithm computes a Gr�obner basis with respect to the term order. Moreover,

the main tools of computational commutative algebra extend to the skew

setting as well, and calculations of Hilbert dimensions, polynomials and series,

and of Gr�obner bases for modules are also available in Ore algebras.

Contiguity Relations for the Appell F

4

Bivariate Hypergeometric

Function

As an example, we borrow from Takayama (1989) the calculation of conti-

guity relations for the Appell F

4

bivariate hypergeometric function de�ned

by Eq. (0.2). The method can be used to derive expressions for the shift and

reverse shifts of F

4

(a; b; c; d; x; y) with respect to its parameters a, b, c and d

in terms of its derivatives with respect to the variables x and y. Here, we get

a di�erential expression for F

4

(a� 1; b; c; d; x; y) which was �rst obtained by

Takayama.

Consider the action of the Ore algebra O = K (x; y)[D

x

; 1; D

x

][D

y

; 1; D

y

],

where K = Q(a; b; c; d), on the algebra F = K ((x; y)) of Laurent power series.

The Appell function is annihilated by the operators of (0.3). In fact, I =

Ann

O

F

4

is precisely the ideal spanned by these operators. Since

(a + 1)

m+n

(a)

m+n

=

(m+ n + a)

a

;

the operator H

a

= a

�1

(xD

x

+ yD

y

+ a) satis�es

(H

a

� F

4

)(a; b; c; d; x; y) = F

4

(a + 1; b; c; d; x; y);

for this reason, H

a

is called a step-up operator. We proceed to compute a

step-down operator B

a

, i.e., an operator such that B

a+1

H

a

= B

a

H

a�1

= 1.

Computing a Gr�obner basis for the ideal I spanned by the operators (0.3)

in O with respect to a total degree order on D

x

and D

y

such that D

x

� D

y

,

we obtain

8

>

>

>

>

<

>

>

>

>

:

2xyD

x

D

y

+ (xy + y

2

� y)D

2

y

+ (a + b� c+ 1)xD

x

+ (dx+ (a + b+ 1)y � d)D

y

+ ab;

xD

2

x

� yD

2

y

+ cD

x

� dD

y

;

(2x

2

y

2

� 4xy

3

+ 2y

4

� 4xy

2

� 4y

3

+ 2y

2

)D

3

y

+A

0;2

D

2

y

+ A

1;0

D

x

+ A

0;1

D

y

+ A

0;0

;

(1.4)

where each A

i;j

is a large polynomial in x and y. It follows that the quo-

tient ring O=I is a Q(a; b; c; d; x; y)-vector space of dimension 4 which ad-

mits f1; D

x

; D

y

; D

2

y

g as a basis.

Thus, we set B

a+1

= c

0

+ c

1

D

x

+ c

2

D

y

+ c

3

D

2

y

with unknowns c

i

's. Re-

ducing B

a+1

H

a

� 1 by the Gr�obner basis (1.4) and identifying the coe�cients
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of 1, D

x

, D

y

and D

2

y

to zero yields a linear system in (c

0

; c

1

; c

2

; c

3

) which we

easily solve to obtain the step-down operator.

Note that in the previous calculation, I is not required to be Ann

O

f , but

only a subideal of it such that O=I be �nite-dimensional. In the present case,

one could prove that I = Ann

O

f . The problem of working with a subideal

of Ann

O

f is that the returned step-down operator could be of higher order.

We refer to (Sturmfels and Takayama 1998) for further results relating to

multivariate hypergeometric series.

1.3 @-Finite Functions

Many calculations described in this tutorial rely on a property of �niteness

satis�ed by the input of the algorithms. Informally, the requirement is that the

calculations performed by the algorithms take place in a �nite-dimensional

vector space.

For instance, the key fact that makes the calculations on the example of

the Appell function possible is that the quotient O=I is �nite-dimensional.

Such a situation is rather common. Consider for instance the Jacobi polyno-

mials P

(a;b)

n

(z) regarded as a function P 2 F((z)) for F = C (n; a; b) and the Ore

algebra O

r

de�ned by Eq. (1.2). It is obvious from (0.4) that the F(z)-vector

space O

r

� P is �nite-dimensional, and is generated by f1; S

n

; D

z

g. In fact,

computing a Gr�obner basis for the set of operators (0.4) with respect to a

total degree order on S

n

, S

a

, S

b

and D

z

such that D

z

� S

b

� S

a

� S

n

, we

get:

8

>

>

>

>

>

<

>

>

>

>

>

:

(n+ a + b+ 1)S

b

� (z � 1)D

z

� (n+ a+ b + 1);

(n+ a + b+ 1)S

a

� (z + 1)D

z

� (n + a+ b + 1);

2(n+ 1)(n+ a+ b + 1)S

n

� (z

2

� 1)(2n+ a+ b + 2)D

z

�(n + a+ b + 1)((2n+ a+ b+ 2)z + a� b);

(z

2

� 1)D

2

z

+ ((a+ b + 2)z + a� b)D

z

� n(n + a+ b + 1):

This proves that O

r

�P = F(z)P +F(z)(D

z

�P ) is a vector space of dimension

at most 2. From the theory of orthogonal polynomials (Erd�elyi 1981), we

know that P and D

z

� P cannot satisfy a linear dependency with rational

function coe�cients, so that the sum is indeed direct, O

r

�P has dimension 2

and Ann

O

r

P is spanned by the operators (0.4).

On the other hand, the function f = e

sin z

2 F is such that the module O �f

over O = C (z)[D

z

; 1; D

z

] is an in�nite-dimensional C (z)-vector space that

admits

�

(cos z)

k

f

	

k�0

as a basis. No algorithm of this tutorial applies to

functions like f .

Formalizing, a function f 2 F is called @-�nite with respect to an Ore

algebra O = F[@ ;�; �] over a �eld F when the vector space O �f ' O=Ann

O

f

is �nite-dimensional (Chyzak and Salvy 1996). In the phrasing \@-�nite", @ is
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merely a generic symbol and bears no relation to the actual @

i

's that appear

in O .

1.4 Inde�nite Summation and Integration

We present an algorithm which was introduced in (Chyzak 1997) to com-

pute inde�nite sums and integrals of @-�nite functions. More generally, the

algorithm searches for particular solutions of certain integro-di�erential prob-

lems. The technique is restricted to single summations and integrations, but

provides a fast algorithm in the de�nite case. This will be described in x2.4.

Consider functions in (x

0

;x); let O = K (x

0

;x)[@

0

; �

0

; �

0

][@;�; �] be an

Ore algebra and f be a @-�nite function with respect to this algebra. Given

operators P 2 O and � 2 K (x

0

)[@

0

; �

0

; �

0

], we look for a function F 2 O � f ,

if one exists, such that

�(x

0

; @

0

) � F = P (x

0

;x; @

0

;@) � f: (1.5)

The key idea of the algorithm is to write F in the form Q �f , and then to solve

for Q 2 O . A solution F found in this way is a @-�nite particular solution

of Eq. (1.5). In general, no such solution exists. In this case, the algorithm

returns a proof that no solution exists in O � f .

As a special case, when @

0

is a derivation operator and � = @

0

, we get

an algorithm for inde�nite integration. When @

0

is a shift operator and � =

@

0

�1, we get an algorithm for inde�nite summation. In both cases, either we

set P = 1 to integrate or sum the function f itself, or the algorithm applies

to any element of the module O � f . When � = @

0

� 1, r = 0, @

0

= S

n

,

O = Q(n)[S

n

;S

n

; 0], and O � f is of dimension 1, we get an algorithm for the

inde�nite summation of hypergeometric terms, that is based on Abramov's

classical algorithm (Abramov 1989a, 1989b, 1995; Abramov and Kvashenko

1991; Abramov et al. 1995); this algorithm is an alternative to Gosper's al-

gorithm (Gosper 1978).

Harmonic Summation

Harmonic summation identities like the inde�nite summation

n

X

k=1

�

k

m

�

H

k

=

�

n+ 1

m+ 1

��

H

n+1

�

1

m + 1

�

are classically proved by summation by parts or by techniques of generating

functions. Here, we prove the above identity following the operator approach.

Introducing f

n

=

�

n

m

�

H

n

, we show the equivalent form

n

X

k=1

f

k

=

(n+ 1)

2

(m + 1)

2

f

n

�

(n�m)(n�m+ 1)

(m+ 1)

2

f

n+1

: (1.6)
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First, f satis�es the linear recurrence

(n�m + 1)(n�m+ 2)f

n+2

� (2n+ 3)(n�m + 1)f

n+1

+(n + 1)

2

f

n

= 0;

(1.7)

which is obtained by homogenizing the relation

(n + 1�m)f

n+1

= (n+ 1)f

n

+ 1;

allowing rational function coe�cients in Q(n;m) only. In addition, one could

prove that f cannot satisfy any such homogeneous relation of lower order. It

follows that the sequence f is a @-�nite function with respect to the Ore

algebra O = Q (n;m)[S

n

;S

n

; 0]. We look for an inde�nite sum F in the

module O � f . Since the latter is a two-dimensional vector space with ba-

sis ff; S

n

� fg, we introduce a generic operator Q = �

n

+ �

n

S

n

such that F =

Q � f . We impose (S

n

� 1) � F = f , so that we compute Z = (S

n

� 1)Q � 1.

Our goal is to �nd rational functions � and � such that Z is zero. We have

Z = �

n+1

S

2

n

+ (�

n+1

� �

n

)S

n

� (�

n

+ 1);

which we reduce using Eq. (1.7). We obtain

Z =

�

�

n+1

+

(2n+ 3)�

n+1

n�m+ 2

� �

n

�

S

n

�

�

�

n

+

(n + 1)

2

�

n+1

(n�m + 1)(n�m+ 2)

+ 1

�

:

(1.8)

Setting both terms in parentheses to zero, next uncoupling the recurrence

system so as to get rid of �, yields the recurrence equation

(n+ 2)

2

�

n+2

� (2n+ 3)(n�m+ 3)�

n+1

+ (n�m+ 2)(n�m + 3)�

n

+ (n�m + 3)(n�m + 2) = 0;

(1.9)

which is solved for rational solutions by Abramov's algorithm (Abramov

1989a, 1989b, 1995; Abramov et al. 1995). In general, the uncoupling step

can be performed using specialized algorithms (Abramov and Zima 1996;

Barkatou 1993; Bronstein and Petkov�sek 1996), or by a Gr�obner basis calcu-

lation (see below). Substituting in the system and eliminating �

n+1

between

both equations yields an expression for �

n

. The expressions found are

�

n

=

(n + 1)

2

(m+ 1)

2

and �

n

= �

(n�m)(n�m+ 1)

(m + 1)

2

;

which proves Eq. (1.6).



Gr�obner Bases, Symbolic Summation and Symbolic Integration 11

Particular Solutions

The classical method of variation of the constant to search for a particular

solution of a non-homogeneous ordinary di�erential equation returns an out-

put which involves an inde�nite integral and a division. On the other hand,

the method of the present section searches for explicit linear expressions in

the class of @-�nite functions.

As an example, let O be the Ore algebra Q(q; x)[D

x

; 1; D

x

] and consider

the equation:

�

D

2

x

+

1

x

D

x

� q

2

�

� F (x) = (1� x

2

)J

0

(qx)� 2q

2

xJ

1

(qx);

where J

�

is the Bessel function of the �rst kind and order � (Erd�elyi 1981).

This corresponds to the general setting for

f(x) = J

0

(qx); P = (1� x

2

)� 2qxD

x

and � = D

2

x

+ x

�1

D

x

� q

2

:

Once again O �f has dimension 2. Introducing Q = �(x)+�(x)D

x

and reduc-

ing Z = �Q�P yields a linear di�erential system, which, once uncoupled, is

solved by another algorithm of Abramov's (Abramov 1989a, 1989b; Abramov

and Kvashenko 1991). The solution is

�(x) =

2q � 1 + x

2

2q

2

and �(x) =

(1� q

3

)x

q

2

:

Denoting by I

�

and K

�

the modi�ed Bessel functions of the �rst and second

kind and of order � (Erd�elyi 1981), the general solution to the di�erential

equation above is:

2q � 1 + x

2

2q

2

J

0

(qx) +

(q

3

� 1)x

q

3

J

1

(qx) + C

1

I

0

(qx) + C

2

K

0

(qx);

since both I

0

(qx) and K

0

(qx) are annihilated by �.

Multivariate Extension

In other cases, we do not deal with a function f in a single variable x

0

, but in

variables (x

0

;x). We then consider the annihilating ideal of f with respect to

an Ore algebra O = K (x

0

;x)[@

0

; �

0

; �

0

][@;�; �]. Gr�obner bases are then used

for several purposes:

1. a Gr�obner basis of I = Ann

O

f yields a basis of the K -vector space O=I

and determines how many undetermined coe�cients have to be intro-

duced in the generic operator Q;

2. the reduction of �Q � P is then performed using the same Gr�obner

basis;
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3. the uncoupling step can be performed by computing the Gr�obner basis

of an O -module.

Let us detail the last point. Assume that N undetermined coe�cients �

i

,

for i = 1; : : :N , have been introduced in Q; in other words, we assume that O �

f has dimension N . We then introduce the free moduleM =

L

N

i=0

O � e

i

over

new indeterminates e

i

and interpret any linear expression in the �

i

's and their

derivatives as an element of M by mapping �

i

onto e

i

and making the non-

homogeneous terms act on e

0

. For instance, in the example of the harmonic

summation above, we use e

1

and e

2

to keep track of the operators that act on �

and �, respectively. An expression U ��+V �+r for U; V 2 O and r 2 Q(n;m)

is then encoded by r � e

0

+ U � e

1

+ V � e

2

.

In particular, any linear relation between the �

i

's and their derivatives has

its counterpart in the O -moduleM. We encode the set of all such equations as

the submodule N of M spanned by the polynomials obtained after encoding

the coe�cients of the reduced form of Z = �Q � P with respect to (@

0

;@).

In order to uncouple the system corresponding to Z, we compute a Gr�obner

basis for N with respect to a term order that sorts the e

i

's lexicographically.

We get a triangularized system, as required. Following up the example of the

uncoupling step in the harmonic summation above, the expression Z that is

de�ned by Eq. (1.8) is encoded by

(

(n�m+ 2)S

n

� e

1

+ [(2n+ 3)S

n

� (n�m + 2)] � e

2

;

(n�m+ 1)(n�m+ 2) � (e

0

+ e

1

) + (n+ 1)

2

S

n

� e

2

;

which generates a submodule N ofM =

L

2

i=0

O � e

i

. We compute a Gr�obner

basis for N with respect to a term order that satis�es e

2

� e

1

� e

0

. This

eliminates e

2

and we obtain

�

(n+ 2)

2

S

2

n

� (2n+ 3)(n�m+ 3)S

n

+ (n�m + 2)(n�m + 3)

�

� e

1

+(n�m+ 3)(n�m+ 2) � e

0

;

which represents Eq. (1.9).

2 De�nite Summation and Integration

A simple algorithm for de�nite summation and integration is based on a

brute-force elimination by a Gr�obner basis calculation and appeals to the

method of creative telescoping (x2.1). Since several indeterminates can be

eliminated simultaneously, this general method applies to multiple summa-

tions and integrations as well (x2.2). However, a partial elimination is always

preferable. When in addition certain analytical conditions are satis�ed, more

speci�cally in the case of so-called natural boundaries, a partial elimination

is made possible by the calculation of Gr�obner basis for modules (x2.3). The
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corresponding algorithm also deals with the case of multiple summations and

integrations. We �nish the section with an algorithm that does not appeal to

elimination by Gr�obner bases, but is based on the algorithm of x1.4. It is also

faster than the brute-force method, but restricted to single summations and

integrations (x2.4).

2.1 Creative Telescoping and Elimination by Gr�obner

Bases

In this section, we turn to the problem of de�nite summation and integra-

tion by a method based on elimination (Almkvist and Zeilberger 1990). We

exemplify the method by the integration of the function f de�ned by

f

n

(x) =

e

�px

T

n

(x)

p

1� x

2

; where T

n

(x) =

n

2

bn=2c

X

k=0

(�1)

k

(n� k � 1)!

k!(n� 2k)!

(2x)

n�2k

denotes the Chebyshev orthogonal polynomials of the �rst kind (Erd�elyi

1981). More speci�cally, we proceed to prove (Prudnikov et al. 1986: x2.18.1,

Eq. (10)),

Z

+1

�1

e

�px

T

n

(x)

p

1� x

2

dx = �(�1)

n

I

n

(p): (2.1)

This identity appears for example in the study of the fundamental modes of

vibration of a drum membrane in interaction with a mallet (Joly and Rhaouti

1997).

The most basic algorithm works as follows. We view f as a member

of F = C (p; n)((x)) and make the algebra O

r

= C (p; n; x)[D

x

; 1; D

x

][S

n

;S

n

; 0]

act on F . Then, f is annihilated by the special operator

D

x

(S

2

n

� 1) + pS

2

n

� 2(n+ 1)S

n

� p; (2.2)

and this operator su�ces to obtain integrals of f with respect to x, as ex-

plained below. The peculiarity of the previous operator is that it does not

involve the variable x of integration in its coe�cients. Moreover, one can

show within the theory of holonomy that such an eliminated operator exists

and can be computed for a large class of functions (Zeilberger 1990b); see also

Section 4. A similar phenomenon is exploited for creative telescoping in the

summation case, where a special operator that does not involve the index of

summation in its coe�cients su�ces to perform summation (Zeilberger 1991).

Indeed, applying the operator (2.2) to f and integrating between u and v

yields the non-homogeneous recurrence

�

(S

2

n

� 1) � f

�

v

u

+ (pS

2

n

� 2(n+ 1)S

n

� p) �

Z

v

u

f

n

(x)dx = 0: (2.3)
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A series expansion indicates that the left term tends to 0 for any n when x

goes to �1, so that for u = �1 and v = +1, the integral satis�es a ho-

mogeneous recurrence. Note that this recurrence could have been obtained

directly by setting D

x

= 0 in (2.2), if we had predicted the cancellation of

the left term in Eq. (2.3) beforehand. Solving the second order recurrence can

be done automatically. This yields two C -independent solutions, (�1)

n

I

n

(p)

and (�1)

n

K

n

(p). To complete the proof of Eq. (2.1), one needs to determine

which solution of the two-dimensional vector space of solution the integral is.

This is achieved by considering initial conditions at n = 0 and n = 1.

It remains to explain how an operator like (2.2) can be obtained. First,

the polynomials T

n

(x) are @-�nite; the following operators vanishing at f are

variations on classical equations satis�ed by T

n

(x) (Erd�elyi 1981), obtained

by the change of function T

n

(x) =

p

1� x

2

e

px

f

n

(x):

(

(x

2

� 1)D

2

x

+ (2px

2

+ 3x� 2p)D

x

+ p

2

x

2

+ 3px� n

2

� p

2

+ 1;

(x

2

� 1)D

x

S

n

+ (px

2

� nx� p)S

n

+ n+ 1; S

2

n

� 2xS

n

+ 1:

(2.4)

We could prove that these operators span the ideal Ann

O

r

f . To get an opera-

tor that is free from x, we would like to compute the intersection of this ideal

with the subalgebra C (p; n)[D

x

][S

n

;S

n

; 0] of O

r

. To this end, it seems natural

to perform this elimination by computing a Gr�obner basis for a suitable term

order. However, such an elimination is tractable by Gr�obner basis calculations

only if x appears in a polynomial way in the algebra. We therefore compute

the Gr�obner basis of the ideal spanned by the system (2.4) in the polynomial

Ore algebra O

p

= C (p)[n; x][D

x

; 1; D

x

][S

n

;S

n

; 0] for a term order on n, x, D

x

and S

n

that sets x lexicographically greater than the other indeterminates

(i.e., x � n

i

D

j

x

S

k

n

for any i, j and k) and breaks ties by a total degree order

such that S

n

� D

x

� n. This yields

(

S

2

n

D

x

�D

x

� 2S

n

� 2nS

n

+ pS

2

n

� p;

xD

x

� S

n

D

x

+ px� pS

n

+ n + 1; 2xS

n

� S

2

n

� 1:

The operator (2.2) is obtained as the only operator which does not involve x.

2.2 Multiple Summations and Integrations

The previous method by brute-force elimination also applies to multiple sum-

mations and integrations. For instance, we compute

1

X

k=0

1

X

`=0

(2k + 2`+ n +m)!

(k + n)!(` +m)!k!`!

�

x

4

�

k+`

(2.5)

and prove that this double sum admits the (in�nite) single sum representation

n!

(n�m)!m!

4

F

3

 

n+m

2

+ 1;

n+m

2

+ 1;

n+m+1

2

;

n+m+1

2

n+m + 1; n+ 1; m+ 1

�

�

�

�

�

4x

!

; (2.6)
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in terms of the hypergeometric

4

F

3

function. The double sum describes the

probability of reaching the point (n;m) by a random walk on the integer

lattice N

2

starting from the origin, with probability x=4 to proceed in any of

the four directions and probability 1� x to stop the walk at each step (Trigg

1996).

Considering the Ore algebra K (k; `; x)[S

k

;S

k

; 0][S

`

;S

`

; 0][D

x

; 1; D

x

] over

the �eld K = Q(n;m), the following system of operators describes the sum-

mand s as a @-�nite function:

8

>

>

>

>

<

>

>

>

>

:

xD

x

� (k + `);

4(k + 1)(k + 1 + n)S

k

� x(2(k + `) + n+m+ 1)(2(k + `+ 1) + n+m);

4(`+ 1)(`+ 1 +m)S

`

� x(2(k + `) + n+m+ 1)(2(k + `+ 1) + n+m):

(2.7)

These operators are obtained by computing normal forms for (D

x

� s)=s,

(S

k

� s)=s and (S

`

� s)=s respectively, which turn out to be rational functions

in K (k; `; x).

In view of the creative telescoping, we compute a Gr�obner basis for the

ideal spanned by (2.7) in the polynomial Ore algebra

K (x)[k; `][S

k

;S

k

; 0][S

`

;S

`

; 0][D

x

; 1; D

x

]:

To perform the elimination, we use a term order on the �ve polynomial in-

determinates of the algebra so that k and ` are lexicographically greater

than S

k

, S

`

and D

x

. Ties are broken by a total degree order on k and ` such

that k � ` on the one hand, and by a total degree order on S

k

, S

`

and D

x

such that S

k

� S

`

� D

x

on the other hand. The Gr�obner basis found has the

following shape:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

D

5

x

S

2

k

S

2

`

+ h307 l.o.t.i; D

4

x

S

3

k

S

3

`

+ h511 l.o.t.i;

k + `� xD

x

; kS

2

k

S

2

`

+ h192 l.o.t.i;

kS

k

S

`

+ h27 l.o.t.i; kD

2

x

S

k

+ h72 l.o.t.i;

kS

k

S

3

`

+ h467 l.o.t.i; kD

2

x

S

2

`

+ h103 l.o.t.i;

k

2

S

`

+ h15 l.o.t.i; k

2

S

k

+ h14 l.o.t.i

(2.8)

where \p l.o.t." stands for \p lower order terms", and where each polynomial

has been made monic. Both operators of the �rst line contain neither k nor `.

It has been noted in the previous section that a recurrence for the integral of

Eq. (2.1) is obtained by setting D

x

= 0 in the eliminated operator (2.2). In the

present case, summing over k and ` in (0;1) corresponds to setting S

k

= 1

and S

`

= 1 in the �rst two operators of (2.8). This yields two operators

of K (x)[D

x

; 1; D

x

] of degree 4 and 5 in D

x

, respectively. Computing a Gr�obner

basis with respect to a term order on D

x

, we get their right gcd, namely the
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following operator of degree 4:

4x

3

(1� 4x)D

4

x

+ 8x

2

((s+ 3)� 2(2s+ 9)x)D

3

x

+ 4x((s

2

+ p + 6s+ 7)� (6s

2

+ 42s+ 77)x)D

2

x

+ 4((p+ s+ 1)(s+ 1)� (2s+ 5)(s

2

+ 5s+ 7)x)D

x

� (s+ 1)

2

(s+ 2)

2

for s = n+m and p = nm. The previous calculation reduces in fact to a skew

Euclidean algorithm (Bronstein and Petkov�sek 1996; Chyzak and Salvy 1996;

Ore 1933). Solving the corresponding di�erential equation and taking into

account four initial values at 0 yields the hypergeometric series representation

of (2.6) for the double sum.

Following an approach that is not based on Gr�obner bases, Wegschaider

(1997) obtained a fast algorithm tailored for the calculation of binomial mul-

tiple sums like (2.5).

2.3 Takayama's Algorithm and Gr�obner Bases of Mod-

ules

We proceed to describe how under certain analytical conditions, the brute-

force elimination of the previous algorithms can be replaced by a moderated

elimination.

Consider a function f in (x

0

;x) to be summed or integrated with respect

to x

0

, and let O

e

be the Ore algebra K (x)[x

0

][@

0

; �

0

; �

0

][@;�; �] that would

be used by the algorithms of the previous sections. The key ingredient of the

method is an annihilating operator like (2.2), of the form

@

0

Q(x; @

0

;@) + P (x;@) (2.9)

where x

0

|the variable of integration when @

0

= D

x

0

; the index of summation

when @

0

= S

x

0

� 1|neither appears in P nor in Q. It was observed by

Almkvist and Zeilberger (1990) that the elimination of x

0

is more than needed.

In fact, an annihilating operator of the form

@

0

Q(x

0

;x; @

0

;@) + P (x;@) (2.10)

su�ces for the next steps of creative telescoping. On the other hand, the

term in Q results in a variational term [Q � f ]

x

0

=v

x

0

=u

, like in Eq. (2.3). Cases

where this term can be predicted to evaluate to zero are called summation

and integration over natural boundaries. We then only need to compute P .

An algorithm to deal with this case in a di�erential framework is given

in (Takayama 1990a, 1990b), and was further elaborated to accommodate

di�erence operators in (Chyzak and Salvy 1996). The key idea is that the
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annihilating operators of the form (2.10) may be multiplied by x, @

0

and @,

but not by x

0

, and thus constitute a module over the algebra

O

m

= K (x)[@

0

; �

0

; �

0

][@;�; �]:

The annihilating ideal I = Ann

O

e

f of O

e

is then viewed as an O

m

-module.

As such, it is of in�nite type and is generated by the products of the (�nitely

many) generators of I with the (in�nitely many) powers of x

0

. The algorithm

then proceeds by truncation of the module with respect to the degree in x

0

:

one computes an elimination Gr�obner basis for the O

m

-module spanned by

all operators up to a given degree in x

0

; if an operator of the type (2.10) is

found, the algorithm returns the corresponding P ; otherwise the maximum

degree in x

0

is increased. The discussion of the termination of this algorithm

is based on the concept of holonomy and ideal dimension, and is postponed

until Section 4.

The algorithm also generalizes to multiple summations and integrations;

in this case, one introduces an algebra O

e

is of the form

K (x)[x

0

; : : : ; x

s

][@

0

; �

0

; �

0

] : : : [@

s

; �

s

; �

s

][@;�; �]

to sum or integrate over x

0

; : : : ; x

s

simultaneously. The form of the crucial

operator (2.10) to look for then becomes

@

0

Q

0

(x

0

;x; @

0

; : : : ; @

s

;@) + � � �+ @

s

Q

s

(x

s

;x; @

0

; : : : ; @

s

;@) + P (x;@): (2.11)

We now proceed to exemplify the algorithm with a double summation.

Gordon's Generalization of the Rogers-Ramanujan Identities

An extension of the famous Rogers-Ramanujan identities (Rogers 1894) is

due to Gordon (1961) and yields multiple summations identities. Gordon's

theorem states that the partitions of n of the form (�

1

; : : : ; �

s

) where �

i

�

�

i+k�1

� 2 for each i and at most r�1 of the �

i

's equal 1 are equinumerous to

the partitions of n into parts that are not congruent to 0, r or �r modulo 2k+

1. We recover the Rogers-Ramanujan identities for k = r = 2 and k =

r + 1 = 2. They possess an in�nite analytic version due to Andrews (1974).

For instance for (k; r) = (3; 3), we have

1

X

j=0

1

X

i=0

q

(i+j)

2

+j

2

(q; q)

i

(q; q)

j

=

(q

3

; q

7

)

1

(q

4

; q

7

)

1

(q; q)

1

;

where (x; q)

n

denotes the q-Pochhammer symbol (1�x)(1�qx) : : : (1�q

n�1

x).

More generally, each instance of the theorem above for a �xed k yields a k-fold

summation identity which is in principle tractable by the algorithm of this
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section. Moreover, these identities can be obtained as a limiting case of a

�nite analytic version due to Paule (1985). For k = r = 3, the identity reads

n

X

j=0

n�j

X

i=0

q

(i+j)

2

+j

2

(q; q)

n�i�j

(q; q)

i

(q; q)

j

=

n

X

k=�n

(�1)

k

q

7=2k

2

+1=2k

(q; q)

n+k

(q; q)

n�k

: (2.12)

To prove this double summation identity, we consider the algebra F of se-

quences from N

3

to Q ((q)) indexed by (i; j; n) and view the summand f as

an element of F . We introduce the shift operators S

i

, S

j

and S

n

, together

with the operators of multiplication by q, q

i

, q

j

and q

n

. Those operators gen-

erate the algebra O = Q(q; q

i

; q

j

; q

n

)[S

i

;S

i

; 0][S

j

;S

j

; 0][S

n

;S

n

; 0] of Q -linear

operators on F . These are known as q-calculus operators, and satisfy the

commutations

S

i

q

i

= qq

i

S

i

; S

j

q

j

= qq

j

S

j

; S

n

q

n

= qq

n

S

n

:

Then, f is a @-�nite function since is vanishes at

(

(1� qq

i

)q

j

S

i

� qq

i

(q

i

q

j

� q

n

); (1� qq

j

)q

i

S

j

� qq

j

(q

j

q

i

� q

n

);

(q

i

q

j

� qq

n

)S

n

� q

i

q

j

:

(2.13)

This system is obtained by computing normal forms for the quotients

f

i+1;j;n

f

i;j;n

,

f

i;j+1;n

f

i;j;n

and

f

i;j;n+1

f

i;j;n

respectively, which turn out to be rational functions in q,

q

i

, q

j

and q

n

. We perform the algorithm described above. The ideal spanned

by (2.13) is precisely Ann

O

f (otherwise f would have to be a constant).

We compute the set of products of each operator p in (2.13) by (q

i

)

�

(q

j

)

�

for �+ � � 7� d, where d is the total degree of p in q

i

and q

j

. This yields 32

operators.

We then make S

i

and S

j

disappear from them. The point is that in the

present case, the eliminated operator (2.11) takes the form

(S

i

� 1)Q

0

(q

i

; q

j

; q

n

; S

i

; S

j

; S

n

) + (S

j

� 1)Q

1

(q

i

; q

j

; q

n

; S

i

; S

j

; S

n

) + P (q

n

; S

n

);

where we need not compute the Q

i

's, but only P . Furthermore, P can be

obtained from the previous eliminated operator after two Euclidean divisions

on the left by S

i

� 1 next by S

j

� 1. Performing these divisions before any

Gr�obner basis calculation, we are led to Gr�obner basis calculations in an alge-

bra over two indeterminates less, which speeds up calculations. The divisions

are easily performed by following the rule

(q

i

)

�

S

�

i

= (�1)

�

q

���

(q

i

)

�

;

which holds modulo the right ideal spanned by S

i

� 1. Next, a Gr�obner basis

is computed with respect to a term order on q

i

, q

j

and S

n

that eliminates q

i

and q

j

, but with no multiplication by q

i

and q

j

allowed. In fact, this calculation
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takes place in the Q(n)[S

n

;S

n

; 0]-module with the products (q

i

)

�

(q

j

)

�

's as a

basis, and with an ordering on this basis which makes q

i

and q

j

disappear.

We obtain the third-order operator

(q

3

q

n

� 1)S

3

n

+

�

q

10

(q

n

)

4

+ q � q

8

(q

n

)

3

+ q

6

(q

n

)

2

+ q

5

(q

n

)

2

� q

4

q

n

� q

3

q

n

+ q

2

+ 1

�

S

2

n

�q(1 + q

5

(q

n

)

2

+ q

4

(q

n

)

2

� q

3

q

n

+ q

2

+ q)S

n

+ q

3

:

Repeating the same process on the right-hand side, or using another sum-

mation algorithm (Paule and Riese 1997), we obtain the same operator. We

complete the proof of Eq. (2.12) by checking that both sides agree for n = 1,

2 and 3.

2.4 Zeilberger's Fast Algorithm and its @-Finite Exten-

sion

The algorithm described in x1.4 for inde�nite summation and integration

also applies to de�nite summation and integration via creative telescoping

(Chyzak 1997). Consider an Ore algebra O

r

= K (x

0

; x

1

)[@

0

; �

0

; �

0

][@

1

; �

1

; �

1

]

and let f be a @-�nite function with respect to O

r

. The method of creative

telescoping relies on the search for a function P �f in the module O

r

�f , which

admits an inde�nite sum or integral F = Q � f in the same module. This

search corresponds to the search for an eliminated operator (2.10). In view of

the summation or integration with respect to x

0

, the method also requires P

to be independent from (x

0

; @

0

). Assuming such a P is known, the algorithm

for the inde�nite case can be used to compute F = Q � f . The idea of the

algorithm in the de�nite case is therefore to introduce P in the undetermined

form P =

P

L

i=0

�

i

(x

1

)@

i

1

and to solve for Q and rational �

i

's simultaneously.

Either a solution is found, or one gets a proof that no solution exists with P

of degree L, in which case the search is repeated with a higher degree L of P .

The discussion of the termination of this algorithm is similar to that of the

algorithm of Section 2.3, and requires concepts to be introduced in Section 4.

Calkin's Curious Identity

Calkin (1994) proved the identity

n

X

k=0

 

k

X

j=0

�

n

j

�

!

3

=

n

2

8

n

+ 8

n

�

3n

4

2

n

�

2n

n

�

by manipulations of summation identities. This identity yields the expected

value of the maximum of three independent Bernoulli random variables. Com-

puting a closed form for such a left-hand side is now routine work for a com-

puter. We now sketch the computer proof obtained by the algorithm described

above.
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Recall from the introduction that the binomial coe�cients are annihilated

by (0.1). It turns out that (0.1) already is is a Gr�obner basis. Computing the

inner inde�nite sum by the algorithm of x3.2 yields the Gr�obner basis

(n+ 1� k)S

n

+ kS

k

+ k � 2(n+ 1); (k + 1)S

2

k

� (n + 1)S

k

+ n� k

of the annihilating ideal of

P

k

j=0

�

n

j

�

. Next, computing the cube of this sum

by the algorithm of x3.1 yields a Gr�obner basis of the following form:

S

n

S

k

+ h76 l.o.t.i; S

2

n

+ h249 l.o.t.i; S

3

k

+ h239 l.o.t.i (2.14)

where \p l.o.t." stands for \p lower order terms". We introduce undetermined

rational functions �

i

(k),  (k) and �

i

, each of which depends on n, and we set

P = �

0

+ �

1

S

n

+ �

2

S

2

n

; and Q = �

0

(k) + �

1

(k)S

k

+ �

2

(k)S

2

k

+  (k)S

n

:

Reducing (S

k

� 1)Q�P by the Gr�obner basis (2.14) and extracting the coef-

�cients of 1, S

n

, S

2

n

and S

k

yields a linear system of four �rst order recurrence

equations in the �

i

's and  . Uncoupling the system by any method suggested

in x1.4 yields a non-homogeneous linear recurrence of order 4 in  (k), in which

the �

i

's appear linearly in the non-homogeneous part. All the coe�cients of

this equation are (large) polynomials of degree 19 or 20 in k with polynomial

coe�cients in n. We then solve this equation by an extension of Abramov's

algorithm (Abramov 1989a, 1989b, 1995). This variant mimics the classical

extension of Gosper's algorithm described in (Zeilberger 1991), and corre-

sponds to searching for a rational solution  together with values of the �

i

's

which allow such a solution to exist. A solution is given by

(

�

0

= �4(2n+ 1); �

1

= �(7n + 12); �

2

= n+ 1;  (k) =

N(k)

D(k)

;

D(k) = (k � 2n� 1)(k

2

+ (1� 2n)k + 2(n

2

+ n+ 1))(k � n� 1)

3

;

where N(k) is a polynomial of degree 7 in k. Substituting back into the

remaining equations yields values for the �

i

(k)'s, each of which is a rational

function with denominatorD(k). At this point, summing for k over the integer

interval (0; r) yields

[(Q(n; k; S

n

; S

k

) � h)(n; k)]

k=r+1

k=0

+

r

X

k=0

(P (n; S

n

) � h)(n; k) = 0

where h

n;k

=

�

P

k

j=0

�

n

j

�

�

3

, provided that Q � h may be evaluated on (0; r).

Actually, the previous equation holds for r � n�3 only, due to the singularity

in n � k � 1 in the denominator D of Q. We thus set r = n � 3 to get the

non-homogeneous recurrence equation

(P (n; S

n

) �H)(n) =

2

X

i=0

�

i

(n)

n+i

X

k=n�2

h

n+i;k

� [(Q(n; k; S

n

; S

k

) � h)(n; k)]

k=n�2

k=0
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where H

n

is the sum

P

n

k=0

h

n;k

for which we are looking for a closed form.

One easily evaluates the non-homogeneous term since h

n;n+i

= (2

n

)

3

for i � 0

and h

n;n�i

= (2

n

� 1� � � � �

�

n

n�i

�

)

3

for small i � 0. This yields the following

equation on the sum:

(n + 1)H

n+2

� (7n+ 12)H

n+1

� 4(2n+ 1)H

n

+ 2(10� 9n)8

n

= 0:

Finally, solving the previous recurrence by Petkov�sek's algorithm (Petkov�sek

1992) computes the announced closed form evaluation as a linear combination

of hypergeometric terms.

3 Closure Properties

The summands and integrands under consideration in the examples of xx1.4,

2.1 and 2.4 are products of @-�nite functions. An important point is the

possibility to generate the systems which de�ne these functions as @-�nite

from a database of \elementary" @-�nite functions. We begin the section by

explaining how this can be performed via the closure properties of @-�nite

functions. To this end, we appeal once again to Gr�obner bases to compute

normal forms in quotient rings, and adapt the fglm algorithm commonly

used in the theory of commutative Gr�obner bases (Faug�ere et al. 1993). Next,

we illustrate another method for inde�nite summation and integration based

on a complete elimination and a Gr�obner basis calculation for modules.

3.1 Addition, Product and Derivation of @-Finite Func-

tions by the fglm Algorithm

A nice property of @-�nite functions|in fact, one of the main reasons for their

introduction in (Chyzak and Salvy 1996)|is their closure under addition,

product and derivation. More speci�cally, assume f and g to be two @-�nite

functions with respect to an Ore algebra O = F[@ ;�; �]. Then O � f and O � g

are two �nite-dimensional F-vector spaces which admit �nite bases fb

i

g

i=1;:::;N

and fc

i

g

i=1;:::;M

, respectively. Then, the derivatives of the sum f + g can be

reduced on the generating set constituted of the b

i

's and the c

i

's. The sum f+g

is thus @-�nite. Similarly, the derivatives of the product fg can be reduced

on the generating set constituted of the c

i

b

j

's. This entails that the product

is also @-�nite. Finally, each derivative @

k

� f is @-�nite, as follows from the

reduction of its derivatives on the basis of the b

i

's.

Computationally, one usually chooses basis elements of the form @

�

, and

uses an extension of the fglm algorithm (Faug�ere et al. 1993) to take mixed

derivatives into account. This extension is described in (Chyzak and Salvy

1996), from which the following example is borrowed.
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We compute annihilators for the sum of the exponential function f(x; y) =

exp(�x+�y) and of the product of Bessel functions g(x; y) = J

�

(x)J

�

(y). The

functions f and g are de�ned by the systems

(

f

x

� �f = 0;

f

y

� �f = 0

and

(

x

2

g

x;x

+ xg

x

+ (x

2

� �

2

)g = 0;

y

2

g

y;y

+ yg

y

+ (y

2

� �

2

)g = 0

respectively (indices denoting di�erentiation). First, the algorithm reduces 1,

D

y

, D

x

,D

2

y

, D

x

D

y

and detects that they are independent. Then D

2

x

is reduced

and found to satisfy a linear relation with the previous ones, expressed by the

following operator:

p

1

= �(x

2

� �

2

+ x

2

�

2

+ �x)y

2

D

2

y

+ x

2

(y

2

� �

2

+ y

2

�

2

+ �y)D

2

x

�(x

2

� �

2

+ x

2

�

2

+ �x)yD

y

+ x(y

2

� �

2

+ y

2

�

2

+ �y)D

x

��

2

y

2

�

2

+ x

2

�y + x

2

y

2

�

2

� x

2

�

2

y

2

+ x

2

�

2

�

2

� �xy

2

+ �x�

2

� �

2

�y:

Next, the algorithm continues by reducing D

3

y

and �nds another relation

p

2

=y

2

(y

2

� �

2

+ �y + y

2

�

2

)D

3

y

� y(y

3

� + y

3

�

3

� y

2

� 2�y � �

3

y + 3�

2

)D

2

y

+ (y

4

+ y

4

�

2

� y

3

�

3

� y

2

� y

2

�

4

� 4y

2

�

2

� �

2

+ �

4

)D

y

+ �(�y

4

� y

4

�

2

+ y

2

� �

4

+ 2y

2

�

2

+ �

2

+ y

2

�

4

� y

3

� + 3�

3

y):

Finally, the reduction of D

x

D

2

y

produces the operator

p

3

= y

2

D

x

D

2

y

� �y

2

D

2

y

+ yD

x

D

y

� �yD

y

+ (y

2

� �

2

)D

x

� �(y

2

� �

2

):

The system fp

1

; p

2

; p

3

g makes it possible to rewrite any derivative of the

sum f + g as a linear combination of 5 derivatives.

3.2 Inde�nite Summation and Integration by Gr�obner

Bases

In x1.4, we looked for the inde�nite sum or integral of a function in the module

spanned by this function. More speci�cally, for a @-�nite function f with

respect to an Ore algebra O , the method either returns an explicit inde�nite

sum or integral F in the form F = Q � f for Q 2 O or a proof that no such F

exists. In the present section, we turn to the unfavorable case. We no longer

search for an explicit form for F , but for a system of operators that describes F

as a @-�nite function. This is performed by Gr�obner basis calculations, as

exempli�ed by the following example borrowed from (Chyzak and Salvy 1996).

Informally, the idea is to apply creative telescoping by regarding an inde�nite

sum or integral as a de�nite one.

Let f(x; y) = (1 + xy + y

2

)

�2

. We look for a speci�cation of its inde�nite

integral F (x; y) = �

R

+1

y

f(x; t) dt, which is de�ned for any x. Working in the
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Ore algebra O = C (x; y)[D

x

; 1; D

x

][D

y

; 1; D

y

], the algorithm of x1.4 returns a

proof that no inde�nite integral exists in O �f = C (x; y). We thus try another

method. The function f is annihilated by both operators

p

x

= (1 + xy + y

2

)D

x

+ 2y and p

y

= (1 + xy + y

2

)D

y

+ 2x+ 2y;

from which trivially follows that p

x

D

y

and p

y

D

y

annihilate the inde�nite

integral F . Our goal is to �nd other operators that annihilate F , so as to

achieve a @-�nite description. The elimination of y between the polynomials p

x

and p

y

in C (x)[y][D

x

; 1; D

x

][D

y

; 1; D

y

] yields

P = AD

y

+B where

(

A = x(x� 2)(x+ 2)D

x

+ xD

y

+ 2(x

2

+ 1);

B = �x(x � 2)(x + 2)D

2

x

� 4(x

2

+ 1)D

x

:

Creative telescoping in the de�nite case would go on by the integration of

the identity P � f = 0. Similarly, h = P � F is an inde�nite integral of P � f

and we immediately have D

y

� h = 0, so that h is constant with respect

to y. Since F and all its cross-derivatives tend to 0 when y tends to +1,

so does h. Thus h = 0, i.e., A � f + B � F = 0. It then su�ces to �nd a left

annihilator for A modulo Ann

O

f to get an operator that annihilates F . To

compute those C such that CA = 0 modulo the ideal generated by p

x

and p

y

in O , we adapt a method used in the commutative case for the calculation of

ideal quotients and based on the calculation of modules of syzygies (Becker

and Weispfenning 1993: Algorithm idealdiv1). More precisely, we introduce

new commutative indeterminates t, u, v and w, and eliminate t between the

polynomials u � tA, v � tp

x

and w � tp

y

, by computing a Gr�obner basis

in the algebra C (x; y; u; v; w)[t][D

x

; 1; D

x

][D

y

; 1; D

y

]. In this Gr�obner basis,

those polynomials which do not involve t are of the form uU + vV + wW ,

where U , V and W are polynomials in O such that UA + V p

x

+Wp

y

= 0.

Consider the U 's obtained in this way. Their right multiplication by B yields

new operators that annihilate F :

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(y(x

3

y + 4x

2

+ 4 + 16xy + 4x

2

y

2

+ 4y

2

)

+ (1 + xy + y

2

)(x

2

y

2

+ y

2

+ 3xy + 1)D

y

)

� (4(x

2

+ 1)D

x

+ x(x� 2)(x+ 2)D

2

x

);

(32y

2

+ 32xy + 8 + 48x

2

y

2

+ 36xy

3

+ 12x

3

y

3

)D

x

+x(15y

4

+ 5x

2

y

4

+ 24xy

3

+ 8x

3

y

3

� 2y

2

+ 32x

2

y

2

+ 28xy + 7)D

2

x

+(x� 2)(x+ 2)(1 + xy + y

2

)(x

2

y

2

+ y

2

+ 3xy + 1)D

3

x

:

Computing a Gr�obner basis from those polynomials adjoined to the ones

known beforehand, namely p

x

D

y

and p

y

D

y

, �nally yields a basis of a subideal

of Ann

O

F constituted of p

x

D

y

, p

y

D

y

and a third polynomial

x(x

2

� 4)(1 + xy + y

2

)D

2

x

+ 4(x

2

+ 1)(1 + xy + y

2

)D

x

�(2x

2

y

2

+ 2y

2

+ 6xy + 2)D

y

:
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This yields a description of F as a @-�nite function.

Note that the method yields a subideal of I = Ann

O

F only. Due to the

intrinsic weakness in the elimination step of the algorithm, the method may

well fail to �nd the ideal I, and even a subideal of I which describes F

as @-�nite. Reasons for this weakness are discussed in the next section.

4 Dimension and Holonomy

Intentionally, we have not discussed the termination of the algorithms yet,

nor have we justi�ed their success in case of termination. More speci�cally,

all the algorithms for summation and integration in this tutorial are based

on the existence of an eliminated polynomial of the form (2.9) or (2.10), and

fail or loop forever if no such polynomial exists. In this concluding section,

we interpret this existence in terms of ideal dimension, and apply tools based

on Gr�obner bases to predict the termination of the algorithms, and in some

cases decide when to stop them.

The theory of ideal dimension in commutative polynomial algebras extends

to a similar theory in Ore algebras. This is the basis for the theory of holonomy

(Bernstein 1971, 1972; Bj�ork 1979; Coutinho 1995; Ehlers 1987; Kashiwara

1978) in the di�erential case. Let O be an Ore algebra K [x][@ ;�; �] which sat-

is�es Eq. (1.3) for c

i;j

's of total degree at most 1 in x. Let F

n

be the K -vector

space in O spanned by all terms x

�

@

�

with total degree j�j+ j�j at most n.

Then, for an ideal I � O , the Hilbert function h(n) = dim

K

(F

n

=I\F

n

) asymp-

totically agrees with a polynomial called Hilbert polynomial. The degree of this

polynomial is called the dimension of the ideal I. These invariants can be at-

tributed to the module O=I in view of the following generalization to any

module. Let M be an O -module with generating set U , and let �

n

= F

n

� U .

Then all previous invariants are de�ned starting from h(n) = dim

K

�

n

. In

the case of an ideal, U is the singleton consisting of the class of 1 modulo I,

and �

n

= F

n

=I \ F

n

. All the previous invariants can be computed from

a Gr�obner basis for I (Bayer and Stillman 1992; Becker and Weispfenning

1993).

In the di�erential case, the combinatorial description of the dimension of

a module has several algebraic and analytic interpretations and is ruled by

Bernstein's inequality: when the algebra is generated by r indeterminates x

i

and r derivation operators D

x

i

, Bernstein (1972) proved that the dimension d

of a non-zero module M satis�es d � r. A module over the polynomial al-

gebra O

p

= K [x][@ ;�; �] is called holonomic when its dimension is precisely

the number r of derivation operators in the algebra; a function f in x is

called holonomic when its annihilating ideal Ann

O

p

f is such that the mod-

ule O

p

=Ann

O

p

f ' O

p

� f is holonomic. Moreover, a holonomic function f

is @-�nite with respect to the Ore algebra O

r

= K (x)[@ ;�; �]. The converse

implication is a deep result due to Kashiwara (1978); see also (Takayama
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1992). For further use of Gr�obner bases in relation to holonomy, see (Sturm-

fels and Takayama 1998).

The motivation for appealing to the theory of holonomy in the context

of symbolic summation and integration is that an eliminated operator of the

form (2.9) exists as soon as the function is holonomic. More precisely, for any

choice of r� 1 indeterminates from the 2r indeterminates of the algebra, the

holonomy of an ideal I � O

p

ensures the existence of a non-zero operator

in I which does not involve these r � 1 indeterminates. It follows that the

multiple summation and integration of a holonomic function with respect

to r� 1 variables can be performed by a single elimination. See the examples

of xx2.2 and 2.3.

To illustrate the combinatorial invariants described above, consider the

example of the Appell F

4

bivariate hypergeometric function, which is obvi-

ously @-�nite in view of (0.3). Computing a Gr�obner basis for this set of op-

erators in the polynomial algebra O

p

= Q (a; b; c; d)[x; y][D

x

; 1; D

x

][D

y

; 1; D

y

]

with respect to a term order such that D

x

� D

y

� x � y yields a system

of 6 operators with respective leading terms xy

2

D

x

D

y

, x

2

yD

2

x

, x

3

D

2

x

, x

2

y

2

D

3

x

,

xy

3

D

4

y

and y

4

D

2

x

D

3

y

. Computing the Hilbert polynomial of the corresponding

ideal in O

p

yields

21

2

n

2

�

85

2

n+ 73. This entails that the module O

p

� F

4

is of

dimension 2, the number of derivation operators in the algebra. The module

is thus holonomic, and any of the integration algorithms presented in this

tutorial terminates on the input (0.3) computing an annihilating operator for

the corresponding integral.

As another example, recall from x1.3 that the function e

sin z

is not @-�nite

with respect to the algebra O

r

= C (z)[D

z

; 1; D

z

]. Correspondingly, the Hilbert

polynomial of the module O

p

�f over O

r

= C [z][D

z

; 1; D

z

] is

n

2

2

+

3n

2

+1 so that

the module is of dimension 2, in particular more than 1, and the function is not

holonomic. The integration of this function is therefore not directly tractable

by the algorithms of creative telescoping presented in this tutorial.

As a non-di�erential example, the function

�

n

k

�

viewed with respect to

the algebra O

p

= Q [n; k][S

n

;S

n

; 0][S

k

;S

k

; 0] has an annihilating ideal I with

Hilbert polynomial 2n + 1. The corresponding dimension is 1, which shows

that Bernstein's inequality does not hold in general in non-di�erential Ore

algebras. However, the summation of this function is amenable to creative

telescoping, provided a description of I is given. Indeed, such a summation is

always possible as soon as the dimension of the module O

p

=I is less than or

equal to 2.

From the examples of this tutorial, it might seem easy to integrate a func-

tion f as soon as it known to be holonomic. However, although a description

of f as a @-�nite function with respect to O

r

is computationally easy to

obtain, a holonomic ideal of annihilating operators in the polynomial Ore

algebra O

p

can be really hard to get. An example is provided by the func-

tion f = 1=(y

2

� y + x). Computing integrals of f with respect to y re-
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quires �nding an operator free from y in O

p

= Q [x; y][D

x

; 1; D

x

][D

y

; 1; D

y

].

The annihilating ideal of f in O

r

= Q(x; y)[D

x

; 1; D

x

][D

y

; 1; D

y

] is K =

O

r

P + O

r

Q where P = D

y

(y

2

� y + x) = (y

2

� y + x)D

y

+ (2y � 1)

and Q = D

x

(y

2

� y + x) = (y

2

� y + x)D

x

+ 1. Any larger ideal in O

r

is O

r

itself. The operator U = D

2

y

+(4x�1)D

2

x

+6D

x

annihilates f , so that U 2 K,

hence U 2 K \ O

p

. However, U is not an element of I = O

p

P + O

p

Q

in O

p

. It follows that the algorithm based on a simple elimination of x2.1

fails to compute any integral, as long as it is given I in input. Even worse,

the algorithm of x2.3 fails to terminate. However, if one adjoins the opera-

tor R = (y

2

� y + x)D

y

D

x

� 2D

y

2 K, the ideal O

p

P + O

p

Q + O

p

R � O

p

contains the operator U and both algorithms �nd it. A similar phenomenon

arises when integrating with respect to x. On the other hand, the algorithms

of x1.4 and x2.4 only require the @-�nite description and they succeed in

�nding the integrals.
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