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CHAPTER 1

Introduction

This presentation is concerned with the algorithmic symbolic treatment of integrals and sums
that appear in various fields like the theory of special functions, combinatorics, and mathematical
physics, and more generally with exact algebraic manipulations of systems of linear functional
equations, whether differential or of recurrence, and of their solutions. Our approach here is
almost always algorithmic, whether with the goal of enlarging the class of systems and functions
to which the approach applies, or with the goal of making the algorithms more efficient, as much as
possible with a provably better arithmetic complexity. At the same time, we endeavour to propose
a fair account on the context of the research in this domain, both ours and others’, so as to provide
a global and coherent view on it.

The choice here is to focus on a body of research that centers around the method of Cre-
ative Telescoping. This can be viewed as a common formalism for several possibly surprisingly
related operations on functions, series, and formal series. I shall present creative telescoping first
as a method to perform integration and summation of special functions, combinatorial sequences,
orthogonal polynomials, but its introduction in combinatorics was largely motivated by other oper-
ations like constant-coefficients extractions and the extraction of diagonals of generating functions
in combinatorics. It also found an application to the evaluation of certain scalar products in the
theory of the symmetric functions of combinatorics. This will be reviewed in the following text.

1. The Name “Creative Telescoping”

The phrase creative telescoping appears in an explanation by van der Poorten (1979, p. 211) of
Apéry’s irrationality proof of ζp3q. One of van der Poorten’s steps is to establish that the sum

bn �
ņ

k�0
bn,k, where bn,k �

�
n

k


2�
n� k

k


2
,

satisfies the same second-order linear recurrence equation as another binomial sum. He mentions
that, to get the recurrence explicitly, Cohen and Zagier “cleverly construct

(1.1) Bn,k � 4p2n� 1q�kp2k � 1q � p2n� 1q2�bn,k,
with the motive that

(1.2) Bn,k �Bn,k�1 � pn� 1q3bn�1,k � p34n3 � 51n2 � 27n� 5qbn,k � n3bn�1,k,”

so that summing over k from 0 to n� 1 results in the wanted recurrence,

(1.3) 0 � pn� 1q3bn�1 � p34n3 � 51n2 � 27n� 5qbn � n3bn�1.

Here, the series whose general term is the right-hand side of (1.2) reduces to the sum over k of the
termBn,k�Bn,k�1, which telescopes, giving the name to the method. Works by Zeilberger to design
algorithms for obtaining analogues of the key relation (1.2) for general summands popularised the
approach (Zeilberger, 1982, 1990a, 1991).

The method has a differential analogue, which Almkvist and Zeilberger name the method of dif-
ferentiating under the integral sign (1990), but this highlights only one aspect of the computation.
For concreteness and to motivate my statement, I reproduce an example by Zeilberger (1982),
which he borrowed from a classical textbook on integration: to evaluate the parametrised integral

fpbq �
» �8

�8

e�x
2

cos 2bx dx,
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first perform differentiation w.r.t. b under the integral sign, followed by integration by parts w.r.t. x,
to get the relation

f 1pbq �
» �8

�8

�2xe�x
2

sin 2bx dx �
�
e�x

2
sin 2bx

�x��8
x��8

�
» �8

�8

�2be�x
2

cos 2bx dx � �2b fpbq.

Solving the induced ODE requires to know an initial condition, fp0q, which amounts to getting an
explicit form for the integral at b � 0. In the end, this results in the explicit form fpbq � ?

π e�b
2 .

This calculation with integrals can be reconsidered on the level of integrands: after introducing
fpb, xq � e�x

2 cos 2bx, the integration by parts above is a consequence of the relations
df

db
pb, xq � d

dx

�
e�x

2
sin 2bx

�� 2b fpb, xq � d

dx

�
� 1

2x
df

db
pb, xq



� 2b fpb, xq.

Reorganising terms delivers the following analogue of (1.1)–(1.2), with self-explanatory notation:

(1.4) dF

dx
pb, xq � df

db
pb, xq � 2b fpb, xq for F pb, xq � � 1

2x
df

db
pb, xq.

In view of the strong formal analogy between the recurrence case (1.2) and the differential
case (1.4), and because “differentiating under the integral sign” is only one aspect of the approach,
Salvy and I have started to use the same phrase “creative telescoping” in (Chyzak and Salvy, 1998)
to denote these two similar situations, and specifically for the task of obtaining (1.2) or (1.4) in
an algorithmic way.

As I will describe in the historical context below, creative telescoping is related to an elimination
theory applied to a (non-commutative) polynomial representation of linear differential/difference
operators. The absence of algorithms for linear operators in the early 1980s—or at least their
relative immaturity—explains the difficult start of the creative-telescoping theory developed by
Zeilberger.

2. Linear Operators

It has proved very fruitful in the works that will be developed in this text to represent the linear
differential equations and linear recurrences under consideration as linear differential/difference
“operators.” The following notation and conventions will be used throughout the whole text.

I shall constantly consider functions of (continuous) variables x, y, etc., and sequences of
(discrete) variables n, k, etc., and more often than not variations like sequences of functions,
parametrised families of functions, etc. All such objects will collectively be called “functions,” un-
less disambiguation is needed, and will be subject to respective derivation operators denoted Dx,
Dy, etc., and (forward) shift operators denoted Sn, Sk, etc. When needed, a backward shift oper-
ator will be denoted as an inverse: S�1

n , S�1
k , etc. Composition will be denoted just by products

and powers, so that, for example, D5
xS

�1
n S3

k acts on a “function” f by the rule:�
D5
xS

�1
n S3

kf
� pn, k, xq � B5f

Bx5 pn� 1, k � 3, xq.
These operators combine with operators of multiplication by a variable to generate more general

operators. Operators of multiplication will be denoted by the variable itself, so as to enforce rules
like:

pxfqpn, xq � xfpn, xq, pnfqpn, xq � nfpn, xq.
It follows from the Leibniz rule and just the effect of substitution that

Dxxf � pDxxqf �
�
Dxpxfq

� � xDxf � f � pxDx � 1qf,
Snnf � pSnnqf �

�
Snpnfq

� � pn� 1qSnf,
where the operator 1 denotes an identity operator. These formal rules lead us to expect the
following algebraic relations between non-commutative polynomials:

Dxx � xDx � 1, Snn � pn� 1qSn.
A theory to make sense of such commutations has been developed in algebra, starting with Ore’s
work in the 1930s. Since “operators” are considered in the present document for their algebraic
properties, and not for any topological or analytic one, I will at times more properly speak of skew
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polynomials for the objects originally studied by Ore. In the literature, they are also known as
Ore polynomials, Ore operators, pseudo-linear transformations, and pseudo-linear operators.

The theory of skew polynomials started with Ore’s work on polynomials in a single derivation
or shift operator: mainly with (1933), in which Ore developed a theory of one-sided gcd for skew
polynomials, but also with (1931), in which he considered matrices of skew polynomials. Skew
polynomials were later considered by (Jacobson, 1937) under the name pseudo-linear transforma-
tions, and algorithms for gcd and factorisation for general skew polynomials were discussed in
(Bronstein and Petkovšek, 1994, 1996).

Ore’s construction produces rings of operators, a.k.a. skew polynomial rings. We thus have, for
example: the ring QpxqxDxy of linear differential operators with coefficients in the rational-function
fieldQpxq; the ringQpnqxSny of linear recurrence operators with coefficients in the rational-function
field Qpnq; analogues QrxsxDxy and QrnsxSny when we are interested in operators with polynomial
coefficients only; an analogue QpnqxS�1

n y when considering backward shifts instead of forward
shifts.

When several derivation/shift operators are needed in the same algebraic setting, Ore’s con-
struction could be iterated abstractly, which introduces the possibility of derivations and shifts that
do not commute with one another. We viewed this as a drawback in the work coauthored with
Salvy (1998), as we would have lost good finiteness and algorithmic properties. In that article, we
therefore developed a theory of so-called Ore algebras, in which derivations and shifts commute,
while they need not commute with the coefficients. Coming back to the example of D5

xS
�1
n S3

k,
this lives for example in the algebra Qpn, k, xqxSn, S�1

n , Sk, Sn, Dxy, where Sn, S�1
n , Sk, and Dx

commute pairwise, while none of them commutes with all elements from Qpn, k, xq.

In the present document, I chose to present neither Ore’s theory nor our theory of Ore algebras
and to refrain from using the corresponding more heavy notation, QpxqrB;σ, δs.

3. Important Classes of Functions and Sequences

A few specific classes of functions and sequences appear constantly in the present text, namely
hypergeometric sequences, hyperexponential functions, D-finite functions, and B-finite functions,
which are all solutions of linear functional operators. The distinction between those classes is
based on the type of operators considered and the order of the equations that the functions solve.

Sequences of the index n (over N or Z) that solve a first-order linear recurrence equation
with coefficients that are polynomial functions of n are called hypergeometric. Equivalently, a
sequence u � punq is hypergeometric if there exists a rational function Rpnq such that the ratio
un�1{un is equal to Rpnq, except maybe for finitely many values of n. In this case, I shall consider
that Sn�Rpnq annihilates u, disregarding the finite exceptions. This generalises to sequences u �
pun1,...,nr q of several indices by requiring that there exist for each i a rational functionRipn1, . . . , nrq
such that u is annihilated by each first-order operator Sni � Ri. Exemples of hypergeometric
sequences are given by the terms 2n, n!, pn1 � n2q!, 1{pn1 � n2q!, 1{pn1 � n2q, and

�
n1
n2

�
. Rational

functions of the indices are hypergeometric, as well as products of hypergeometric sequences.
The situation in analogous in the differential case, where a hyperexponential function is defined

as a function f of continuous variables x1, . . . , xr whose r logarithmic derivatives are rational func-
tions of the r variables. Hyperexponential functions solve systems of first-order linear differential
equations with coefficients that are polynomial functions of the x’s. Examples include rational
functions, exponentials of rational functions, powers of rational functions to rational and transcen-
dental constants. In addition, products of hyperexponential functions are hyperexponential.

The generalisation to D-finite and B-finite functions is best explained after introducing the
notion of annihilating ideals: indeed, the skew polynomials (with rational-function coefficients)
from some skew-polynomial algebra A � Qpx, y, . . . ,m, n, . . . qxDx, Dy, . . . , Sm, Sn, . . .y that cancel
a given function f constitute a left ideal, denoted annA f , or more simply ann f when no ambiguity
can arise. When acting on f , skew polynomials can be viewed modulo ann f , as the function Pf
obtained for P P A is equal to any pP � Zqf for Z P ann f . So the Pf are actually described
by classes P � ann f from the quotient module A{ ann f , and there is in fact an isomorphism
from A{ ann f to Af defined by mapping the class P � ann f to Pf .
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This leads to new definitions of hypergeometric and hyperexponential functions as functions f
whose corresponding quotient modules A{ ann f are vector spaces of dimension 1 over the rational-
function field Qpx, y, . . . ,m, n, . . . q. The generalised notion of B-finite functions corresponds to
finite-dimensional quotient modules of dimension possibly more than 1. In the purely differential
situation, such a function is simply called differentiably finite, in short, D-finite. The special case of
D-finite series was introduced and studied by Stanley (1980) in the univariate case and by Lipshitz
(1989) in the multivariate case; see also Chapter 6 in the textbook (Stanley, 1999). I introduced
the more general case of B-finite functions in my work (1998) with Salvy, as B is the symbol we used
in that work to denote derivation operators like Dx and shift operators like Sn in a unified way.
Each class of functions is closed under additions and products, and algorithms exist to produce a
defining system for f � g and fg from defining systems for f and g; see the same references.

Now, a property of D-finite is that all its (infinitely-many) cross derivatives f , Dxf , Dyf ,
. . . , D2

xf , DxDyf , D2
yf , . . . , are so much linearly related that they span a finite-dimensional

vector space over Qpx, y, . . . q. The similar property for B-finite functions is that all shifts of cross
derivatives span a finite-dimensional vector space over Qpx, y, . . . ,m, n, . . . q. As a consequence,
they also satisfy a (higher-order) purely differential equation for each derivation operator, and a
(higher-order) purely difference equation for each shift operator.

4. q-Analogues

Just as many enumeration problems involve factorials and binomial terms, and thus lead to
recurrences that relate values at n with values at n� 1, n� 2, etc., using “additive shifts,” so do
refined enumeration problems in combinatorics, in statistical physics, and in the theory of partitions
involve recurrences that relate values at x with values at qx, q2x, etc., using “multiplicative shifts”
w.r.t. some fixed base q. A change of variables to replace x with qn will bring multiplicative
shifts back to additive ones, but if the recurrences under considerations had coefficients that were
polynomials in x, the change of variables produces recurrences involving qn in the coefficients.

Many functions of the “classical” world, like counting numbers, special functions, and orthogonal
polynomials, find a so-called q-analogue generalisation that recovers them at q � 1. In the tradition,
the base q is either a complex number with |q|   1 or an indeterminate, whence the name of q-series
for objects of the theory.

The simplest examples of terms that admit a q-analogue are the classical Pochhammer symbol,
factorials, and binomial coefficients, which are related as follows: the Pochhammer symbol pxqn is
defined for x P C and n P Z by

pxqn �

$'&
'%
x px� 1q � � � px� n� 1q if n>0,
1 if n=0,
1{�px� 1q � � � px� nq� if n<0,

provided the quotient is well defined; the factorial sequence is then obtained by evaluation as

n! � p1qn;

finally, binomial coefficients are obtained by the well known formula�
n

k



� n!
k! pn� kq! .

Note that the Pochhammer symbol satisfies the two recurrences

px� 1qn � x� n

x
pxqn and pxqn�1 � px� nq pxqn,

from which recurrences can be derived for factorials and binomial coefficients. The q-Pochhammer
symbol px; qqn is defined for x P C and n P Z by

px; qqn �

$''&
''%
p1 � xq p1 � qxq � � � p1 � qn�1xq if n>0,
1 if n=0,�
p1 � x

q q � � � p1 � x
qn q

	�1
if n<0;
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it satisfies the two recurrences

pqx; qqn � 1 � qnx

1 � x
px; qqn and px; qqn�1 � p1 � qnq px; qqn.

This is not a q-analogue of pxqn, in the sense that setting q � 1 does not produce the classical
Pochhammer symbol, but the q-factorial defined as pq; qqn is a q-analogue:

pq; qqn
p1 � qqn � 1 � p1 � qq � � � � � p1 � q � � � � � qn�1q

goes to n! when q tends to 1. By way of consequence, the q-binomial coefficient defined as�
n

k

�
� pq; qqn

pq; qqk pq; qqn�k
becomes

�
n
k

�
when q goes to 1.

A nice introduction on q-analogues was written by Askey (1992), including examples of use of
q-analogue functions in identities that lift classical identities.

5. List of Examples

The primary goal of creative telescoping is the evaluation of integrals and sums involving com-
binatorial numbers and special functions, especially of hypergeometric/hyperexponential or D-
finite/B-finite type, and the proof of identities involving such sums and integrals. This contains
and extends to:

 Binomial sums, as the equality
ņ

k�0

�
n

k


2�
n� k

k


2
�

ņ

k�0

�
n

k


�
n� k

k


 ķ

j�0

�
k

j


3
,

between sums, which appears in connection to Apéry’s proof of the irrationality of ζp3q
and has been proved by creative telescoping by Strehl (1994), or the evaluation proposed
by Blodgelt (1990)

ņ

i�0

ņ

j�0

�
i� j

i


2�4n� 2i� 2j
2n� 2i



� p2n� 1q

�
2n
n


2
;

 Integrals of the theory of special functions, like the example of an integral» �8

0
xJ1paxq I1paxqY0pxqK0pxq dx � � lnp1 � a4q

2πa2

involving the four types of Bessel functions and first considered by Glasser and Montaldi
(1994), or the double integral» 8

0

» 8

0
J1pxq J1pyq J2pc?xyq dx dy

ex�y

which, if it cannot be put to explicit form, can be proved by creative telescoping to satisfy
a second-order linear ODE;

 Extractions of coefficients, for instance by the Cauchy formula, like with the formula

1
2πi

¾ p1 � 2xy � 4y2q exp
�

4x2y2

1�4y2

	
yn�1p1 � 4y2q 3

2
dy � Hnpxq

tn{2u! ,

due to Doetsch (1930) and related to the Hermite orthogonal polynomials;
 Verifying identities in q-sums that appear in the combinatorial theory of partitions, like

ņ

k�0

qk
2

pq; qqkpq; qqn�k �
ņ

k��n

p�1qkqp5k2�kq{2

pq; qqn�kpq; qqn�k ,

ņ

j�0

n�j̧

i�0

qpi�jq
2�j2

pq; qqn�i�jpq; qqipq; qqj �
ņ

k��n

p�1qkq7{2k2�1{2k

pq; qqn�kpq; qqn�k ,
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which are finite forms of the Rogers–Ramanujan identities and of a generalisation and were
respectively obtained by Andrews in 1974 and Paule in 1985;

 Computing explicit forms for scalar products with respect to various exponential/algebraic
weights and in relation to families of orthogonal polynomials or of other parametrised
families of functions, like the identities» �1

�1

e�pxTnpxq?
1 � x2

dx � p�1qnπInppq,» �8

0
xe�px

2
JnpbxqInpcxq dx � 1

2p exp
�
c2 � b2

4p



Jn

�
bc

2p



,

which respectively involve Chebyshev orthogonal polynomials and Bessel functions;
 Scalar products that appear in the theory of symmetric functions, likeA

exp
�pp2

1 � p2q{2 � p2
2{4

� ��� exp
�
t pp2

1 � p2q{2
�E � e�

1
4 t pt�2q

?
1 � t

,

where p1 and p2 respectively denote the infinite symmetric power sums x1 � x2 � � � � and
x2

1 � x2
2 � � � � .

In all previous examples, the sequences and functions under consideration possess as many
independent linear, whether differential, difference, or more general functional, equations as their
number of variables. That is to say, they can be described as B-finite functions, by a set of linear
functional equations and finitely-many initial conditions. A recent extension of the approach,
and still promising further developments, allows to deal as well with functions that possess fewer
independent equations than variables; the general solutions of the linear functional systems that
describe them therefore demand an arbitrary function of at least one variable in its description in
explicit form. Examples include:

 Combinatorial identities involving: the graph-counting sequence kk�1, like
ņ

k�0

�
n

k



i pk � iqk�1pn� k � jqn�k � pn� i� jqn,

which is attributed to Abel; or Stirling numbers of the second kind and Eulerian numbers,
like

ņ

k�0
p�1qm�kk!

�
n� k

m� k


"
n� 1
k � 1

*
�

B
n

m

F
,

attributed to Frobenius; or Bernoulli numbers, like
m̧

k�0

�
m

k



Bn�k � p�1qm�n

ņ

k�0

�
n

k



Bm�k

to be found in (Gessel, 2003);
 Identities in more special functions, like Hurwitz’s zeta function, the beta function, poly-
logarithms, and the (upper) incomplete Gamma function, which appear in the following
evaluations: » 8

0
xk�1ζpn, α� βxq dx � β�kBpk, n� kq ζpn� k, αq,» 8

0
xα�1 Linp�xyq dx � π p�αqny�α

sinpαπq ,» 8

0
xs�1 exppxyqΓpa, xyq dx � πy�s

sin
�pa� sqπ� Γpsq

Γp1 � aq .

6. Notation

When discussing bounds, I shall most often consider asymptotic upper bounds, which I shall
denote using the big-O notation: for example, un P Opn3q means that the sequence u � punq does
not grow faster than a constant times the cubic function when n goes to infinity. On the other
hand, I shall at times use the big-Θ notation to denote that a sequence grows in proportion to
another: for example, vn P Θpn4q means that vn is asymptotically equivalent to κn4 for some fixed
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non-zero κ, as n goes to infinity. This stronger notion is crucial in two cases: to express that an
upper bound is tight and to express that, asymptotically, a sequence becomes strictly more than
another.

As is usual in combinatorics, for a non-negative integer `, the falling factorial n` denotes the
polynomial n pn� 1q � � � pn� `� 1q.
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CHAPTER 2

Early History of Creative Telescoping

Before the technical results in the next chapters, I provide a brief history of the research on
creative telescoping. My goal here is to highlight the flow of ideas, while providing context and
motivation to my past research orientations.

1. From Zeilberger’s Early Attempt to his “Holonomic-Systems Approach”

Zeilberger (1982) made the first attempt in the literature at giving generality to Cohen and
Zagier’s derivation (1.1)–(1.3), by exploiting a technique of Fasenmyer (1945, 1949). Although this
work of Zeilberger’s makes good observations that have been used in later literature, it is flawed
in several ways that make its main claims wrong. On the positive side, Zeilberger’s observation is
that, given a hypergeometric summand hn,k, his variant of Fasenmyer’s technique provides, if it
succeeds, a relation of the form

(1.1)
ŗ

i�0

ş

j�0
ci,jpnqhn�i,k�j � 0

from which an equation playing the role of (1.2) can be derived. In fact, Fasenmyer elaborated her
original technique for hypergeometric series described in the form hnpxq �

°
k hn,kx

k. She used
an analogue of (1.1) that involves shifts in n only, together with powers of x:

(1.2)
ŗ

i�0

ş

j�0
ci,jpnqxjhn�ipxq � 0.

Fasenmyer’s technique was later described by Rainville (1960), who also slightly generalised it to
sums of the form hnpxq �

°
k hn,kTkpxq, involving the kth Chebyshev polynomial Tkpxq. It was

also used by Verbaeten, a name that will appear again in what follows, for the quadrature of an
integral problem parametrised by a Chebyshev series (Piessens and Verbaeten, 1973). In his paper,
Zeilberger additionally observes that the approach generalises to sums of q-analogues and integrals
of functions satisfying systems of first-order equations, and to all possible cases mixing these forms
of operators.

It took Zeilberger a few more years before his seminal paper “A holonomic systems approach
to special functions identities” (1990b), in which he introduced the proper definitions to prevent
degenerate cases from occurring and ensure the existence of non-trivial (that is, non-zero) equa-
tions (1.2) and (1.1). This important paper bases on results of the theory of holonomic D-modules
that had been developed in the 1970s (Bernštĕın, 1971, 1972; Kashiwara, 1978). What is at sake
here is the consideration of all linear differential/difference equations that a given summand or
integrand satisfies. Viewing these equations as linear differential/difference operators results in
(non-commutative) polynomials that constitute a (left) ideal in a non-commutative polynomial
ring Ap � Qrx, y, . . . ,m, n, . . . sxDx, Dy, . . . , Sm, Sn, . . .y (in finitely many generators). This repre-
sentation is now amenable to a theory of polynomial elimination, which was studied in depth in
D-module theory.

Conceptually, however, a subtle distinction has to be done between the ideal of operators with
rational-function coefficients in Ar � Qpx, y, . . . ,m, n, . . . qxDx, Dy, . . . , Sm, Sn, . . .y and the ideal
of operators with polynomial coefficients in Ap: the polynomial-elimination theory takes place
in Ap, not in Ar. However, while the ideal of all operators in Ar that annihilate a given function
is usually easily presented by finitely many explicit generators in applications involving special
functions, the related ideal in Ap is not so easily described explicitly; in particular, generators
in Ar cannot be used directly in Ap, even after renormalisation to remove denominators. A simple
illustration of the problem is given by the polynomial f � x3 in the ordinary differential case. It is
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annihilated by xDx � 3, and any annihilator in Ar is a left multiple of the form LpxDx � 3q, with
L from Ar. But just restricting the cofactor L to Ap does not generate all annihilators from Ap:
for example, D4

x cancels f , but D4
x factors as px�1D3

xqpxDx � 3q, requiring a denominator x in
the cofactor. This phenomenon is part of the cause for the problems in (Zeilberger, 1982), and
was not completely clarified even in (Zeilberger, 1990b). In the differential case, first algorithms
for obtaining generators of the ideal with polynomial coefficients from generators of the ideal with
rational coefficients were given by Tsai in the ordinary differential case (2000), then in the partial
differential case (2002). This process was namedWeyl closure. On the other hand, no “Ore closure”
algorithm is known yet for other types of operators in the multivariate case.

2. Other Early Elimination Approaches: Constant Terms and Diagonals

It is worth noting that the polynomial notation for operators had already been used for com-
binatorial matters and in connexion to a polynomial elimination problem. Let me mention two
works.

First, Zeilberger was studying already in (1980) means to derive difference equations satisfied
by the constant term of products of powers with symbolic exponents of multivariate Laurent
polynomials. An example (simple, but of pedagogical nature) is the constant term with respect to
x1, x2, and x3 and viewed as a function of a, b, and c, of

F pa, b, c, x1, x2, x3q ���
1 � x1

x2


�
1 � x2

x1



a��
1 � x1

x3


�
1 � x3

x1



b��
1 � x2

x3


�
1 � x3

x2



c
,

which turns out to be

(2.1) p2aq! p2bq! p2cq! pa� b� cq!
a! b! c! pa� bq! pa� cq! pb� cq! .

Zeilberger’s approach was to consider the two-terms first-order difference equation

F pa� 1, b, c, x1, x2, x3q �
�

1 � x1

x2


�
1 � x2

x1



F pa, b, c, x1, x2, x3q,

or rather its normalised polynomial representation x1x2Sa � px1 � x2q2, together with its siblings
obtained by shifting b or c instead of a. Then, eliminating x1, x2, and x3 by successive runs of the
fraction-free Euclidean algorithm in QrSa, Sb, Scsrx1, x2, x3s yields the annihilator

SaSbSc � S2
a � S2

b � S2
c � 2pSaSb � SbSc � SaScq

of the constant term, from which checking that (2.1) is the constant term is easy. It is of interest
that Zeilberger observed that the classical elimination theory for commutative polynomials can be
applied to the case of partial difference operators with coefficients independent of the variables (a,
b, and c above), but dependent of extra parameters (x1, x2, and x3 above). In contrast, algorithms
by creative telescoping would represent the constant term by the Cauchy integral

1
p2πiq3

¾ ¾ ¾
F pa, b, c, x1, x2, x3q dx1 dx2 dx3,

then consider as well equations that are differential in x1, x2, and x3, and perform an algorithmic
elimination of x1, x2, and x3 in Qpa, b, cqrx1, x2, x3sxSa, Sb, Sc, D1, D2, D3y (where Di denotes
derivation w.r.t. xi).

A second work is the proof by Lipshitz that the diagonal of a D-finite power series is D-
finite (1988). These notions require definitions: Given a multivariate formal power series

f �
¸

n1,...,nrPN
cn1,...,nrx

n1
1 � � �xnrr P Qrrx1, . . . , xrss,

its diagonal is defined as the univariate series

∆f �
¸
nPN

cn,...,nx
n.
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The case studied by Lipshitz is that of a differentiably finite series, in short D-finite series, that
is, of a series f whose derivatives Dn1

1 � � �Dnr
r f at all order (n1, . . . , nr ¥ 0) generate a finite-

dimensional vector space over Qpx1, . . . , xrq. (The power-series ring Qrrx1, . . . , xrss can be included
into a Qpx1, . . . , xrq-vector space.) An equivalent definition is that such an f possesses for each i
between 1 and r an ordinary non-zero annihilator Li from Qpx1, . . . , xrqxDiy. Lipshitz’s approach
does not appeal to any tool of D-modules theory, and remains on a very elementary level, but it
bases on a counting argument that is at the heart of Bernstein’s dimension theory for D-modules.
(It is difficult for me to imagine that Lipshitz was not inspired by the D-module theory, but this is
pure speculation.) The derivation is as follows, after specialising to r � 2 for the sake of simplicity.
The first idea is to express the diagonal as a residue of a suitable transform of f , namely by

∆f � ress g where g � 1
s
f
�
s,
x

s

	
.

(Here, the residue ress φ of a function φ of the variables s and x that can be expressed as the sum°
pp,qqPZ2,p�q¥m φp,qs

pxq for some m P Z is just the univariate series
°8
q�m�1 φ�1,qx

q.) Note that
the diagonal could be expressed as a constant term or a Cauchy integral, as well. Then, Lipshitz
introduces the ordinary annihilators Li mentioned-above associated with g and proves that s can
be eliminated from the family of the Li’s. To this end, he considers the expressions
(2.2) xmDn

sD
o
xg subject to m� n� o ¤ N.

Then, he determines suitable integers a, b, and h ¥ 1, and a suitable polynomial p to show that
the expressions (2.2) all rewrite as linear combinations of terms of the form pq{pN qDi

sD
j
xg, where

0 ¤ i   a, 0 ¤ j   b, and qps, xq is a polynomial of total degree bounded by Nh. Now, the
number of initial expressions is a multinomial number, growing in proportion to N3, while the
simplified expressions (2.2) live in a vector space of dimension O

�
N2� over Q. Therefore, for large

enough N there must be a Q-linear combination Zpx,Dx, Dsq of the (2.2)’s that rewrites to 0 (as
the rewriting is a linear map). He finally extracts the coefficient Z 1px,Dxq of Z of lowest exponent
w.r.t. Ds and proves that Z 1 cancels the diagonal.
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CHAPTER 3

Creative-Telescoping Algorithms for Equations of the First
Order

1. Zeilberger’s Fast Algorithm for Hypergeometric Sums and its Variants

Zeilberger made explicit with (1990b) what was implied by the earlier works: designing algo-
rithms based on the creative-telescoping approach for operations on integrals and series requires al-
gorithmic means for non-commutative polynomial elimination in operator algebras. In (1980), Zeil-
berger had appealed to successive gcd computations by a sort of fraction-free Euclidean algorithm,
which is likely to introduce spurious factors in the coefficients. The output (1.1) from Zeilberger’s
modification of Fasenmyer’s technique in (1982) is essentially an operator from QpnqxSn, Sky, and
could be obtained by an elimination of k from annihilators of hn,k, provided the Ore closure prob-
lem was solved algorithmically. A searching algorithm by linear algebra is implied by the proof
in (Lipshitz, 1988). In (1990b), Zeilberger based on a calculation he names “Sylvester’s dialytic
elimination,” a classical process to compute Sylvester’s resultant (1840). This method is originally
for univariate polynomials, but, despite non-commutativity, Zeilberger generalises it to an elimina-
tion method for operators viewed as bivariate polynomials in n and k with coefficients in QrSn, Sks.
However, he dodges the question of Ore closure, which, in practice, becomes a large weakness of
the method: one does not know if it will terminate if one starts with indiscriminate annihilators.

In addition, all these methods are merely existence proof turned into algorithms and tend to be
very slow in practice. Although no sufficient study of lower bounds for their complexity is available
yet, an explanation is that elimination constrains the output to be a polynomial in high degrees,
and in a form like (1.1) that is more restrictive than what is required for the creative telescoping
to work. Indeed, by way of comparison, representing (1.2) as an operator results in an operator
that involves k:

pn� 1q3Sn � p34n3 � 51n2 � 27n� 5q � n3S�1
n � �

1 � S�1
k

�
4p2n� 1q�kp2k � 1q � p2n� 1q2�.

A further consequence is that the order of the outputs from these methods cannot be expected to
be minimal: when searching a fixed set of annihilators for elements of the form P pn, Snq � pSk �
1qQpn, k, Sn, Skq, the less constrained Q is, the more pairs pP,Qq will exist, and the lower the
minimal order of a possible output P is.

In view of this, Zeilberger called his algorithm in (1990b) his “slow algorithm,” and turned his
attention back to the more restricted class of inputs he had studied in (1982): the special class of
hypergeometric sequences, that is sequences phn,kq for which the two ratios

hn�1,k

hn,k
and hn,k�1

hn,k

are given by two fixed rational functions in n and k. For them, he designed a “fast algo-
rithm” (1990a; 1991), which finally popularised the method of creative telescoping as an algorithm.
Zeilberger based his fast approach for definite summation on Gosper’s decision algorithm for the
indefinite summation of hypergeometric sequences (1978). Given a (univariate) hypergeometric se-
quence pukq, Gosper observed that any hypergeometric indefinite sum pUkq, that is, any sequence
satisfying Uk�1�Uk � uk, must be a multiple of the summand by a fixed rational function R of k:
necessarily,

(1.1) Uk � Rpkquk.
This leads to an auxiliary linear recurrence equation on R, for which he developed a decision
procedure for solving. As a consequence, Gosper obtained an algorithm that decides whether a
given hypergeometric sequence possesses a hypergeometric indefinite sum, or whether its sum is
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a non-trivial extension. Zeilberger realised that if the output from creative telescoping is known
beforehand, like (1.3) in the example about ζp3q, then the telescoping term (1.1) can be obtained
just by calling Gosper’s algorithm on the right-hand side of (1.2). To make this into an algorithm,
it was sufficient for Zeilberger to describe how to search at the same time for the coefficients of the
output and for the rational function implied by Gosper’s algorithm: this amounts to a parametrised
variant of Gosper’s calculation. Therefore, Zeilberger’s algorithm proceeds by increasing a tentative
order r of maximal shifts w.r.t. n for the right-hand side of (1.2), trying to solve for B at each
order. If there exists a non-zero family tηipnquri�1 of univariate rational functions and a bivariate
rational function Rpn, kq such that
(1.2) ηrpnqhn�r,k � � � � � η0pnqhn,k � Rpk � 1qhn,k�1 �Rpkqhn,k,
then the algorithm will terminate while producing such an identity with least possible order r.

At about the same time, Almkvist and Zeilberger (1990) gave a differential analogue of Zeil-
berger’s fast algorithm, which applies to so-called hyperexponential function, that is, functions h
of two variables x and y for which the two ratios

dh
dx px, yq
hpx, yq and

dh
dy px, yq
hpx, yq

are two fixed rational functions in x and y. To this end, they produced a differential analogue of
Gosper’s algorithm and replaced (1.2) with an ansatz of the form
(1.3) ηrpxqDr

xhpx, yq � � � � � η0pxqhpx, yq �
�
DyRpx, yq

�
hpx, yq �Rpx, yq �Dyhpx, yq

�
.

By the mid-1990s, Zeilberger had done a great job in popularising his theory, his fast algorithm,
and his Maple implementation of it. A great deal of application papers were published, by he,
admirers, and more often than not his computer whom he had named Shalosh B. Ekhad. The goal
was to demonstrate that hypergeometric summation had become routine. To list a few of such
papers: (Zeilberger, 1994; Ekhad and Zeilberger, 1994b,a, 1996; Prodinger, 1996). Still, there was
some confusion around Zeilberger’s articles, caused by some allusiveness in the presentation and
in algorithmic descriptions, especially in view of the many generalisations that were announced
but not formalised rigourously.

This motivated Koornwinder to work on a new Maple implementation of Zeilberger’s fast al-
gorithm as well as on a q-analogue; he wrote (1993) with the purpose to describe them in a very
rigourous way, to ensure that the outputs produced could be trusted. In the same vein, Paule and
Schorn (1995) provided a Mathematica implementation (for the classical case), with special empha-
sis on speed; in particular, they based on a notion of greatest falling factorial (GFF) from (Paule,
1995) to keep intermediate calculations in factored (therefore compact, efficient) form. The sim-
ilar work for the q-analogue algorithm was done by Paule and Riese (1997), with a q-analogue of
Gosper’s algorithm explained by a theory of q-GFFs; it was continued into a work on indefinite
bibasic hypergeometric summation (Riese, 1996), that is, for identities involving an operator B
such that

pBfqpx, yq � fpqx, pyq.
For a Maple counterpart, (Böing and Koepf, 1999) describes an analogue implementation of Zeil-
berger’s q-analogue fast algorithm and of Riese’s bibasic Gosper algorithm.

RISC: Lisonek et al. ? + (Riese, 2001): fine-tuning (substitution heuristics, based on symme-
tries, which the user can tentatively apply to avoid memory explosion)

2. Wilf and Zeilberger’s Approach to Multiple Sums and Integrals

After single hypergeometric/hyperexponential sums/integrals, there remained to understand on
what inputs the method would terminate with certainty and if it could be extended to multiple
sums and integrals. This was addressed to some extent by Wilf and Zeilberger (1992a); see also
the result announcement in (Wilf and Zeilberger, 1992b)). There, they introduced the notion of a
proper hypergeometric term, a special kind of hypergeometric term given as

(2.1) hn,k � P pn, kq ζnξk
L¹
`�1

Γpa`n� b`k � c`qε` ,
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where:
(1) the a`’s and b`’s are specific integers, and the ε`’s are �1;
(2) the c`’s, ζ, and ξ are constants independent from n and k;
(3) P is a polynomial in n and k.

(The original definition separates the factors with ε � �1 from those with ε � �1 and insists on
the c`’s being integers, but I prefer this more formal view for what follows. Also, the term ζn

was really introduced by Wegschaider (1997) only, but it alters what follows in no essential way.)
As a general hypergeometric term could be represented formally in the same way, but with a
rational function in place of the polynomial P , the wording proper emphasises that the factor P
is polynomial. As we shall see, the crucial consequence of the definition (2.1) is the behaviour of
its components under shifts: a term Γpan � bk � cq is multiplied by a rational function of degree
in k linear in the total shifts; the degree in k of P is unchanged under shifts; the exponentials ζn
and ξk are multiplied by constants.

A first contribution of Wilf and Zeilberger’s is to show the existence of a non-trivial relation of
the form (1.1) for any proper hypergeometric h, together with explicit bounds r and s in (1.1) to
ensure existence:

(2.2) r � B and s � pA� 1qB � degkpP q � 1,

where I have set

A �
Ļ

`�1
|a`| and B �

Ļ

`�1
|b`|.

The proof can be sketched as follows: Each hn�i,k�j in (1.1) involves terms of the form Γpa`n �
b`k � c` � uq for a shift u bounded in absolute value by σ` � |a`|r � |b`|s, that is, in a linear way.
Now, observe that both

(2.3) Γpa`n� b`k � c` � uq
Γpa`n� b`k � c` � σ`q and Γpa`n� b`k � c` � σ`q

Γpa`n� b`k � c` � uq
are polynomials in k of degree at most σ`; the former will be used if ε` � �1, the latter if ε` � �1.
Therefore, multiplying the hypergeometric relation (1.1) by the term

(2.4) Hn,k � ζ�nξ�k

�
L¹

`�1, ε`��1
Γpa`n� b`k � c` � σ`q

��1 � L¹
`�1, ε`��1

Γpa`n� b`k � c` � σ`q
�

results in an equivalent polynomial relation

(2.5)
ŗ

i�0

ş

j�0
ci,jpnq pHn,khn�i,k�jq � 0,

where each product Hn,khn�i,k�j is a polynomial of degree in k not more than a linear function
of r and s. The full analysis gives the degree bound

(2.6) degkpP q �
Ļ

`�1
σ` � degkpP q �Ar �Bs.

Therefore, the left-hand side of (2.5) is a polynomial in k of degree Opr � sq while it is the
combination of O

�pr � sq2� non-zero polynomials. For r and s large enough, there must be a
non-trivial relation (2.5). More specifically, it is sufficient to ensure

(2.7) pr � 1qps� 1q ¡ degkpP q �Ar �Bs� 1,

and choosing r � B immediately results in (2.2).
Of course, the formula should not be used blindly in an implementation. For instance, applying

it to the simple binomial term
�
n�k
k

�2�n
k

�2 results in A � 4, B � 8, r � 8, s � 25, and one has to
expand products of 50 terms of the form pn � k � uq2, leading to 650 integer coefficients . . . over
8 � 1038.

The second main contribution from (Wilf and Zeilberger, 1992a) is to show that the whole work
extends to multiple sums and integrals, providing an algorithm to compute an analogue of (1.1)
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when several k’s are involved. To this end, the notion of proper hypergeometric term extends to
terms depending on several k’s in a natural way:

hn,k1,...,km � P pn, k1, . . . , kmq ζnξk1
1 � � � ξkmm

L¹
`�1

Γpa`n� b`,1k1 � � � � � b`,mkm � c`qε` ,

with the obvious generalisation of the constraints on (2.1). In case of an m-fold sum, (1.1) takes
the form

(2.8)
ŗ

i�0

s1̧

j1�0
. . .

sm̧

jm�0
ci,j1,...,jmpnqhn�i,k1�j1,...,km�jm � 0.

The quantity A is defined as above while a sum Bi is associated with each ki. Inequality (2.7) is
transformed by considering total degrees w.r.t. k1, . . . , km, so as to compare the number of c’s in the
pm� 1q-dimensional sum (2.8) with the m-dimensional combinatorics of monomials in k1, . . . , km
of bounded total degree:

pr � 1qps1 � 1q � � � psm � 1q ¡
�

degkipP q �Ar �B1s1 � � � � �Bmsm �m

m



� 1.

Doing for instance r � s1 � � � � � sm and comparing exponents shows the existence of a solution;
Wilf and Zeilberger (1992a) give a formula, but it is much less explicit than in the case m � 1.

Wilf and Zeilberger’s method also has a q-analogue, for simple and multiple sums. They adapted
their definition to call proper q-hypergeometric a term of the form:

(2.9) hn,k � P pqn, qkq ζnξkqαn2�βnk�γk2�λpn2q�µpk2q
L¹
`�1

ppq; c`qa`n�b`kqε` ,

where, in addition to the constraints of the classical case:
(1) pq;xqN denotes the q-Pochhammer symbol, defined by pq;xq0 � 1 and, for N ¡ 0:

pq;xqN � p1 � xq p1 � qxq � � � p1 � qN�1xq and

pq;xq�N �
�

1 � x

q


�1 �
1 � x

q2


�1
� � �

�
1 � x

qN


�1
;

(2) the constants c`’s, ζ, and ξ, as well as the coefficients of P may now be rational functions
of q;

(3) α, β, γ, λ, and µ are all relative integers.
(Again, I have used here the generalised form by Riese (2003), with no essential change in what
follows.) As for the classical case, Wilf and Zeilberger (1992a) (resp. Riese (2003)) showed that a
non-trivial relation

(2.10)
ŗ

i�0

ş

j�0
ci,jpqnqhn�i,k�j � 0

always exist. Here, an additional difficulty over the classical case is that the analogues of the
factors (2.3) are no longer polynomial, but in general Laurent polynomials in qn and qk; this adds
a lot of technicalities. This all generalises to the case of multiple q-sums. Furthermore, under the
assumption m � P � ζ � 1 (single q-sums), Wilf and Zeilberger gave the bound

(2.11) |γ| �
Ļ

`�1
b2`

on r for a relation (2.10) to exist.
Another analogue of Wilf and Zeilberger’s approach was developped by Tefera (2000, 2002) for

the case of multiple integrals of functions that are (essentially) proper-hypergeometric w.r.t. one
discrete variable n and hyperexponential w.r.t. several continuous variables x1, . . . , xu. Written in
the case of a single continuous variable, the corresponding “proper terms” are of the form

hnpxq � P pn, xqeζ0pxqζ1pxqnζ2pxqd
L¹
`�1

Γpa`n� b`k � c`qε` ,
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where P is again a polynomial, and the ζ’s are now univariate rational functions, the c’s and d are
constant w.r.t. both n and x, and the a’s, b’s and ε’s are like before.

3. Verbaeten’s Completion and Non-k-Free Recurrences

Practical experimentation with theWZ-method soon revealed two shortcomings in formula (1.1),
both causing the need for too high upper bounds r and s of the double sum, and too high running
times in implementations.

Firstly, the support of the double sum being a rectangular box, as opposed to a more flexible
set of pairs pi, jq, it is an artificial hindrance to the satisfiability of inequality (2.7). A solution was
studied in the similar context of obtaining the so-called “pure recurrence relation” (1.2) by Ver-
baeten in his PhD thesis (1974; 1976). The idea consists in enlarging the support of the sum (1.1)
insofar as this does not increase the degree in k of (2.5), a process that is called Verbaeten’s com-
pletion. Incidentally, by considering special maximal sets of pairs, Verbaeten had already obtained
an existence proof for a relation (1.1), for a special case of proper hypergeometric terms: so-called
irreducible terms such that P in (2.1) is 1 and no two factors Γpan � bk � cq with opposite ε’s
have the same a’s and b’s, and c’s that differ by an integer. Verbaeten’s proof was later greatly
simplified by Hornegger (1992) and a sketch of it is available in (Wegschaider, 1997). It involves
a very fine analysis of the degree of polynomials in an equivalent of (2.5) where the rectangular
double sum is replaced with some convex polygon. The approach proceeds by counting the points
on the integer-lattice that lie in a convex polygon defined by extremal directions related to the a`’s
and b`’s. In addition, by thoroughly studying Verbaeten’s completion, Wegschaider was able in
his master’s thesis (1997) to fill a gap in the proof in (Wilf and Zeilberger, 1992a) of the existence
theorem of a recurrence in n for the sum

°
k hn,k in the case of a proper hypergeometric term that

is not necessarily irreducible.
Secondly, the way (1.1) is used to get a recurrence on the sum over k suggests that banning k

from the coefficients ci,j in an absolute way is not optimal, as is best explained by observing how
the recurrence (1.1) on the term hn,k is transformed into a recurrence

(3.1)
ρ̧

i�0
aipnqhn�i � 0 for hn �

β̧

k�α

hn,k.

This transformation proceeds by rewriting (1.1) by the relations

(3.2) hn�i,k�j � hn�i,k �
�
h
pjq
n�i,k � h

pjq
n�i,k�1

	
for h

pjq
n�i,k � hn�i,k � � � � � hn�i,k�j�1,

which results in a term gn,k satisfying

(3.3)
ŗ

i�0
cipnqhn�i,k � gn,k�1 � gn,k for cipnq �

ş

j�0
ci,jpnq.

Now, summation over k yields

(3.4)
ŗ

i�0
cipnqhn�i � gn,β�1 � gn,α.

In applications, either the right-hand side is zero by itself, or it can be canceled by applying a
linear recurrence operator. In the former case, the output recurrence (3.1) is just (3.4), with ρ � r
and ai � ci for each i. In the latter case, applying the proper operator to both sides of (3.4)
results in a new recurrence (of order ρ more than r), satisfied by phnq. In the derivation above,
the term gn,k is of the form Lfn,k for L P QrnsxSn, Sky, but this limitation on g is inessential
for the derivation. In particular, allowing L to be in the larger set Qrn, ksxSn, Sky should allow
“more” g’s to be tested, and “more” relations (3.4) to be found, with the hope of lower orders for
the final recurrences. Wilf and Zeilberger (1992a) attribute this observation to Gerdt Almkvist.
Wegschaider (1997, Sec. 3.5.1) developped a heuristic to allow L to involve k. To this end, he
considers the equation

(3.5)
ŗ

i�0

ş

j�0

ţ

`�0
ci,j,`pnq k`hn�i,k�j � 0
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in place of equation (1.1) and the following analogue for the transformations (3.2):

k`hn�i,k�j � pk � jq`hn�i,k �
�
h
pj,`q
n�i,k � h

pj,`q
n�i,k�1

	
for h

pjq
n�i,k � pk � jq`hn�i,k � � � � � pk � 1q`hn�i,k�j�1.

Using this in (3.5) before any calculations involving the actual value of h results in linear constraints
on the c’s for the ansatz to lead to a recurrence of the form (3.4), best expressed as the r� t linear
constraints that each polynomial

ş

j�0

ţ

`�0
ci,j,`pnq pk � jq`

should actually not involve k. As no study is available of what a suitable degree t should be,
Wegschaider’s implementation lets the user heuristically input a value for it; his manuscript shows
tremendous speed-ups by using this improvement.

The case of q-sums is amenable to the same two improvements, Verbaeten’s completion and the
reintroduction of the summation variable in the ansatz. This has been worked out thouroughly by
Riese (2003), both theoretically and in his implementation.

4. From Elimination to Equations on Sums and Integrals

In the recurrence case, creative telescoping crucially relies on transforming (1.1) to (3.3), and
on an analogue transformation in the differential case. In operator notation, this transformation
derives from an operator L free of the summation and integration variables an operator P that
involves exclusively the parameters of the sum/integral and the corresponding shifts and deriva-
tives. A cause of concern is that nothing guarantees a priori that (3.3) or its analogue is not a
tautology of the form 0 � 0, that is, that the transformed operator is non-zero. As a matter of
fact, the reader will only find handwaving in (Zeilberger, 1990b; Almkvist and Zeilberger, 1990),
and no proof attempt at all in either of (Zeilberger, 1991; Wilf and Zeilberger, 1992a).

To the best of my knowledge, this problem was fixed first by Wegschaider (1997) in the case of
recurrences. A similar idea works in the differential case. This late stage in the creative-telescoping
method is the topic of the current section.

The differential case is a bit less technical, so let us start with it. Creative telescoping for
the integration of a function f of variables x1, . . . , xr w.r.t. x2, . . . , xr first obtains a non-zero
skew polynomial L P Crx1sxD1, . . . , Dry that annihilates f . Then, to obtain P , it rewrites L by
successive divisions by D2, . . . , Dr on the left as

(4.1) L � P px1, D1q �D2Q2px1, D1, . . . , Drq � � � � �DrQrpx1, D1, . . . , Drq.
(There, the family ofQ’s is not uniquely defined). Upon application to f and integrating over px2, . . . , xrq
in some domain Ω, and under the assumption that the boundary terms (induced by the integration
of derivatives) vanish, we obtain the equation

P px1, D1qF px1q � 0 where F px1q �
»

Ω
fpx1, . . . , xrq dx2 � � � dxr.

This is a meaningful relation on the integral F provided the remainder P is not zero. In gen-
eral, a transformation is needed to ensure that P be non-zero. To this end, consider a mono-
mial Dv2

2 � � �Dvr
r that divides L on the left and that is maximal with this property (that is, in-

creasing any of the v’s would result in a monomial that is no left factor of L). Then, L can be
written as

L � Dv2
2 � � �Dvr

r

�
P̃ px1, D1q �D2Q̃2px1, D1, . . . , Drq � � � � �DrQ̃rpx1, D1, . . . , Drq

�
,

where, now, P̃ cannot be zero by maximality. By repeated use of the relation xiD`
i � D`

ixi�`D`�1
i

and using p�q to denote an expression that I do not want to write explicitly, we get:

(4.2) xv2
2 � � �xvrr L � p�1qv2�����vrv2! � � � vr! P̃ px1, D1q �D2 p�q � � � � �Dr p�q.

As this new operator also cancels f , P̃ is a non-zero operator that cancels the integral F (provided
the suitable boundary terms vanish). For future reference, note that the total degree of P̃ , and for
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that matter, of the p�q’s as well, is not more than twice the degree of L, while total and partial
degree in the Di’s are not increased.

The case of recurrences is more technical, although it is essentially the same idea. To mimic
the formula x`iD`

i � �`!�Di p�q, Wegschaider (1997) introduced the falling factorial pn� aq` (for
a constant a). Now, we have the identities

pn� aq`pSn � 1q � Snpn� a� 1q` � pn� aq` �
pSn � 1qpn� a� 1q` � �pn� aq` � pn� a� 1q`� �

pSn � 1qpn� a� 1q` � `pn� a� 1q`�1.

An iterated use of this identity yields n` � p�1qll!�pSn� 1q p�q. The proof in the recurrence case
then proceeds in a way similar to the differential case, by using a left factor of the form n

v2
2 � � �nvrr

instead of xv2
2 � � �xvrr . Again, the degree after transformation is not more than twice the degree

of L, and the transformation does not increase the expected order of the output recurrence.
This also has a q-analogue.
I end this section by a remark that can explain why the gap about the possible nullity of P

had long been overlooked in different works: The terms p�q in (4.2) denote skew polynomials
from Crx1, . . . , xrsxD1, . . . , Dry, so that the existence of an annihilator of the form (4.1) implies
the existence of an annihilator of the form
(4.3) L̃ � P̃ px1, D1q �D2Q̃2px1, . . . , xr, D1, . . . , Drq � � � � �DrQ̃rpx1, . . . , xr, D1, . . . , Drq,
with non-zero P̃ . The point is that Zeilberger promoted his fast algorithm for the case r � 2, which
implicitly searches directly for a relation similar to the form (4.3). As was remarked above, the
order bound for a non-zero telescoper is not higher than the order bound for a k-free recurrence,
and so, calculations and just order considerations could not detect the problem in the proof.
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CHAPTER 4

Termination Questions: Criteria and Bounds

Zeilberger’s fast algorithm and its variants and extensions all perform an exhaustive search of
an analogue of (3.4) in some suitable space of equations, in relation to the annihilator of the input
summand or integrand. Thus described, the approach is only a heuristic, as no argument justifies
its termination, especially in the non-purely differential situations. This has motivated a number
of works to prove termination properties, which I shall separate in two main bodies.

First, a series of works endeavour to determine a criteria that is able to decide, before any
complicated calculation, whether Zeilberger’s approach will be successful. Such results give no
hint as to the order of the outputs from the method.

Second, for certain classes of inputs, a bound on the output order has been developed, which
is based on degrees and other arithmetic parameters of the input. The bounds (2.2) already
mentioned for proper hypergeometric terms are of this type, as any order bound for Wilf and
Zeilberger’s approach is a bound for Zeilberger’s fast algorithm. When they exist, bounds can
hopefully be reused in estimating the complexity of some summation or integration algorithm.

1. Consequence of Holonomy

In this section, I recall the notions of holonomic functions and sequences, and the sufficient
condition of holonomy for the existence of (3.4) or its differential variant. These notions are
adapted from the notion of holonomic module, itself borrowed from D-module theory.

A series f , possibly of Taylor kind or a formal power series, or more generally a function, of
variables x1, . . . , xr is called holonomic when the functions xα1

1 � � �xαrr Dβ1
1 � � �Dβr

r f obtained by
multiplying monomials in the variables and higher-order derivatives of f subject to the constraint
α1 � � � � � αr � β1 � � � � � βr ¤ N span a vector space VN pfq whose dimension over C grows
like OpNrq. For comparison sake, note that the number of generator for this vector space grows
like ΘpN2rq. Even the vector space of elements from Crx1sxD1, . . . , Dry with total degree not
more than N grows “faster” than the VN pfq’s, with a dimension ΘpNr�1q. As a consequence,
there must exist for large enough N a non-zero skew polynomial L that maps f to 0. The implied
identity Lf � 0 is a differential analogue to (1.1). This means that a differential analogue of Wilf
and Zeilberger’s approach will always terminate. After all, this was Lipshitz’s argument in (1988).

Furthermore, L can be put in the form (4.1) and transformed into (4.3) for a non-zero P̃ px1, D1q.
This means that the differential analogue of Zeilberger’s fast algorithm (Almkvist and Zeilberger,
1990) will always terminate.

A sequence u � pun1,...,nr qn1,...,nr¥0 is often called holonomic when its generating function

Upx1, . . . , xrq �
¸

n1,...,nr¥0
un1,...,nrx

n1
1 � � �xnrr

is holonomic in the original sense. I shall show the existence of an equation of the form (2.8)
for h � u, but, for the sake of presentation, I shall give the idea in the bivariate case, with x1
and xr respectively denoted x and y. By the same type of reasoning as above, there exists a
non-zero L P Crx, ysxDxy that annihilates U . We proceed to make the relation LU � 0 explicit on
the coefficient level. To this end, remark that L rewrites as a (Laurent) polynomial Λpx, y, θxq P
Crx, x�1, ysxθxy, where θx is the Euler derivative xDx. Next, for any sum V of the form

V px, yq �
¸

n¥0,k¥0
vn,kx

nyk,

we have the formulas
θbxV �

¸
n¥0,k¥0

nbvn,kx
nyk and xaybV �

¸
n¥a,k¥b

vn�a,k�bx
nyk,
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for any a P Z and b P N. Write Λ more explicitly as a sum

Λ �
¸

pa,bqPS

xayb λa,bpθxq,

where S is a finite set of pairs pa, bq satisfying a P Z and b P N. Denote by A and B the partial
degrees in x and y, respectively. Applying Λ to U results in

ΛU �
¸

pa,bqPS

¸
n¥a,k¥b

λa,bpn� aqun�a,k�bxnyk.

Extracting the coefficient of xnyk proves that the relation¸
pa,bqPS

λa,bpn� aqun�a,k�b � 0

holds for all n ¥ A and all k ¥ B. This is a non-trivial k-free recurrence.
As in the differential case, this means that Wilf and Zeilberger’s approach and Zeilberger’s fast

algorithm both terminate on holonomic inputs.

2. Termination of Zeilberger’s Fast Algorithm

(Ore, 1929, 1930; Sato, 1990; Gel’fand, Graev, and Retakh, 1992) (Abramov, 2002, 2003; Chen,
Hou, and Mu, 2005)

rational case: (Abramov and Le, 2000; Le, 2001; Abramov and Le, 2002)
Wilf and Zeilberger’s conjecture: (Abramov and Petkovšek, 2002; Hou, 2004)
(voir aussi la thèse de Hou en 2001 (réferences dans (Abramov and Petkovšek, 2002), qui fait

la conjecture dans le cas bivarié, en parallèle de AbPe (autres réfs))
rq : ici, holonome est défini comme P-récursif de Stanley ; il faudrait montrer/rappeler l’équivalence

2.1. Termination Criteria for Hypergeometric-Hyperexponential Terms. The criteria in
(Chen, 2011) are also valid for non-proper terms. This will be the topic of (Chen, Chyzak, Feng,
and Li, 2011).

3. Proving Identities by Numerical Evaluations

An application of creative telescoping is to decide—prove or disprove—a conjectured identity
of the form

(3.1)
b̧

k�a

un,k � Upnq.

Performing creative telescoping, either in the form of Zeilberger’s fast algorithm or of Wilf and
Zeilberger’s approach, produces a k-free recurrence from which a recurrence for the sum is derived.
The identity is decided by:

 verifying that U satisfies the computed recurrence;
 specialising (3.1) on sufficiently many values of n and observing equality or mismatch.

Indeed, if the recurrence is of order r and expressed as
a0pnqwn � � � � � arpnqwn�r � 0,

and if n0 is defined as the maximal integer root of a0pnq if it has one, or 0 if it has none, the values
of wn at n0, . . . , n0 � pr � 1q define uniquely the values at n ¡ n0.

This is the starting point of a strategy, initiated by Yen (1993, 1996, 1997), for deciding identities
of the form (3.1) by numerical evaluations. Yen’s approach is to rewrite the relation (3.3) predicted
by Wilf and Zeilberger’s theory as

a0pnqun,k � � � � � arpnqun�r,k � Rpn, kqun,k �Rpn, k � 1qun,k�1

for a rational function R. The approach in section 2, and especially the bounds (2.2) and (2.6),
allow to bound the degree β in k of the numerator c0pnq�� � ��cβpnq kβ of R, then to view the ai’s
and ci’s as solutions of a linear system of size pδ�1q�pr�β�2q, where δ is the value of (2.6). Then,
expressing the unknown a’s and c’s by Cramer’s rules and using Hadamard-type bounds allows to
derive bounds on the degrees and heights of those polynomials that are polynomial functions in
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parameters of the input (degrees of P , heights of P , A, B, L, in (2.1)–(2.2)), then an exponential
bound on the maximal integer root of a0pnq.

The exponential nature of the bound makes it absolutely impractical: the simplest possible
example of the sum

°
k

�
n
k

� � 2n would be proved by checking the identity on a number of
consecutive integers that is much more than . . . 1038000, according to the formula in (Yen, 1993)!

Yen’s evaluation was later refined dramatically by Zhang (2003) and (Guo, Hou, and Sun,
2008). There, no explicit lower bound is provided: rather, an algorithm to produce a lower bound
is developed, which experimentally provides dramatically lower values: for the same simple sum of
the binomial coefficients, the bound goes down to . . . just 4 by the method in (Guo et al., 2008)!
I shall give details about the latter work only.

At the time of writing, I must confess that I cannot say if the possibility of the simultaneous
cancellation of all the ci’s in (3.3) has been integrated in either of the works mentioned above.
However, Wegschaider’s transformation presented in section 4 does not increase degrees and heights
by much, which should not drastically change the results.

4. Bounds related to First-Order Equations

A series of works has produced sharper and sharper bounds on the minimal order of a telescoper
that can be obtained for a proper, respectively q-proper, hypergeometric term by Wilf and Zeil-
berger’s approach and by Zeilberger’s fast algorithm. However, bound improvements seemingly
require a genericity assumption of some kind.

Wilf and Zeilberger (1992a) formulated the linear bound (2.2), that is

r ¤
Ļ

`�1
|b`|,

for a proper hypergeometric term, together with a quadratic bound (2.11) for q-analogues. This
was refined by Yen (1993), who produced the bound

r ¤
Ļ

`�1,ε��1
b�` �

Ļ

`�1,ε��1
p�b`q� �

�
�

Ļ

`�1,ε��1
εb`


�

,

where the notation x� denotes maxp0, xq; this bound relies on distinguishing terms that are facto-
rials and terms that are inverses of factorials. An even sharper bound can be obtained by further
collecting the terms according to the signs of the b’s in (2.1), respectively in (2.9). Under presen-
tation and genericity hypotheses, specifically that all a’s are non-negative and that the polynomial
part P pn, kq has maximal degree, Mohammed and Zeilberger (2005) derived the better bound

max
� ¸
ε��1,b`¥0

b` �
¸

ε��1,b`¤0
b`,�

¸
ε��1,b`¤0

b` �
¸

ε��1,b`¥0
b`

�
.

Apagodu (after Mohammed changed his name to this) and Zeilberger (Apagodu, 2006; Apagodu
and Zeilberger, 2006) obtained similar bounds for various classes of hyperexponential functions, for
mixed hypergeometric-hyperexponential functions, for q-analogues, and for multiple summations
and integrations. For example, for the class of non-rational hyperexponential functions of the form

ppx, yq exp
�
apx, yq
bpx, yq


¹
sPS

spx, yqαs ,

where
 p, a, and b are polynomial such that a{b is a non-constant function of y,
 the s’s are polynomials with no non-trivial content w.r.t. y,
 the α’s are transcendental constants,

the bound is given as

degypbq � max
�
degypaq,degypbq

�� �¸
sPS

degypsq


� 1.

(The choice of hypotheses in (Apagodu and Zeilberger, 2006) for their proof to be valid is not
cautious, so I chose here a combination that makes the proof work with no additional idea.)
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Beside bounds on the output order, (Wilf and Zeilberger, 1992a; Yen, 1993) provide bounds on
the degree of the output that are, informally speaking, quadratic in the quantities that appear in
the order bound. In contrast, no degree bound can be found in (Mohammed and Zeilberger, 2005),
but the polynomial bound in the differential analogue, to be found in the ongoing work (Bostan,
Chyzak, and Lairez, 2011), makes me expect that degrees have the same polynomial behaviour.
However, this discussion means nothing as to the degree of the telescoper of minimal order. It may
well be that (Apagodu and Zeilberger, 2006) describes the generic case, with polynomial order and
degree for the minimal-order telescoper, but that degenerate cases require non-polynomial degrees,
as suggested by the encoding of these degrees as roots of a resultant in (Almkvist and Zeilberger,
1990).
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CHAPTER 5

Creative Telescoping Algorithms for Equations of Arbitrary
Order

The algorithms and considerations of Chapters 3 and 4 all discuss how to obtain a k-free
relation like (1.1), a differential variant, or a non-k-free generalisation like (3.5). In each case, the
calculation can be viewed as some sort of skew-polynomial elimination of the summation index
or integration variable, possibly modulo derivatives like in (4.3) or modulo finite differences like
in (3.4). In each case, too, the application of operators to a function f can be expressed very
explicitly, owing to the assumption on the hypergeometric-hyperexponential nature of f , as an
explicit rational function times f .

Both aspects lose their simplicity in presence of higher-order equations, and a common solution
lies in an algorithmic theory for skew-polynomial elimination, which was modeled after the classical
commutative theory of Gröbner bases. This is why the present chapter begins with an account
on a non-commutative analogue for the theory of Gröbner bases that is well adapted to the skew
algebras under consideration. In relation to (non-commutative) ideal theory, many termination
arguments or arguments that some calculation returns a non-trivial output more often than not
rely on a non-commutative analogue of the dimension theory of algebraic geometry. Dimension is
a quantity that, on an intuitive level, distinguishes between the infinite vector space dimensions
over Q of Qrxs, Qrx, ys, Qrx, y, zs, etc., and is able to captures such notions as B-finiteness and
holonomy.

Algorithms in the later sections all rely on this Gröbner-basis theory in a way or another.

1. Skew Gröbner Bases and a Dimension Theory

As Galligo and Takayama noticed, respectively, in the differential case (1985) and in the
differential-difference case (1989), and as was developed by Kandri-Rody and Weispfenning in the
more general setting of polynomial rings of solvable type (1990), Buchberger’s algorithm for Gröb-
ner bases can be adapted to our non-commutative context: whetherQpx, y, . . . ,m, n, . . . qxDx, Dy, . . . , Sm, Sn, . . .y
(rational coefficients) or Qrx, y, . . . ,m, n, . . . sxDx, Dy, . . . , Sm, Sn, . . .y (polynomial coefficients), or
any intermediate situation. This theory provides:

 a procedure for putting the presentation of an ideal in normal form: two ideals given by
sets of generators can be compared for equality by testing equality of the normalised sets,
and additionally, inclusion of ideals can be tested easily;

 a procedure for division of an element of A by an ideal I � A with unique remainder, or,
equivalently, for normal forms in the quotient module A{I;

 a procedure for (skew-)polynomial elimination: for a sub-algebra B of A given by a subset
of the generators of A (the Dx, Dy, . . . , Sm, Sn, . . . , and possibly the x, y, . . . ,m, n, . . . in
the variant with polynomial coefficients), a Gröbner-basis calculation results in a presen-
tation of the intersection ideal I XB.

2. Elimination Based on Gröbner Bases

This section is just a summary, due to lack of time. I should discuss:
 algorithms by plain elimination of the summation/integration variable (Takayama, 1992;
Chyzak, 1998b,a);

 Takayama’s algorithm by truncation of ideals and module Gröbner bases (1990b; 1990a),
the variant of it I developed with Salvy in (Chyzak and Salvy, 1998), its extension to
systems of non-homogeneous equations (Nakayama and Nishiyama, 2010);
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 algorithms by homogenisation of the algebra (Sturmfels and Takayama, 1998; Saito, Sturm-
fels, and Takayama, 2000) or by Oaku’s homogenisation of the ideal (Oaku, 1997; Oaku
and Takayama, 1998; Oaku, Takayama, and Walther, 2000; Oaku and Takayama, 2001;
Saito et al., 2000; Oaku, 2011).

3. Summation and Integration of B-Finite Functions

Zeilberger’s fast algorithm for definite hypergeometric sums of the form

Un �
b̧

k�a

un,k

and the differential analogue by Almkvist and Zeilberger for definite hyperexponential integrals of
the form

Upnq �
» b
a

upx, yq dy

are dedicated to hypergeometric/hyperexponential terms by their choice of an ansatz,

P pn, Snqu � pSk � 1q�Rpn, kqu� for P P CpnqxSny and R P Cpn, kq
in the discrete case and

(3.1) P px,Dxqu � Dy

�
Rpx, yqu� for P P CpxqxDxy and R P Cpx, yq

in the continuous case. In each case, the rationale to ask for a term of the form Ru, for a rational
function R, is that the expression Qu for a skew polynomial Q P Cpn, kqxSn, Sky, respectively
Q P Cpx, yqxDx, Dyy, is just a rational multiple of u when u is hypergeometric, respectively hyper-
exponential.

But more general classes of functions u require more general terms to take the role of Ru. With
the motivation of section (4), which, in the (differential) holonomic case, guarantees the existence
of a non-zero P px,Dxq and of some Qpx, y,Dx, Dyq P Crx, ysxDx, Dyy such that

(3.2) P px,Dxqu � Dyv for v � Qpx, y,Dx, Dyqu,
it is just natural to replace Ru with an expression that can represent all the possible Qu’s. I realised
in (Chyzak, 2000) that a nice solution is available for a D-finite u, which is the topic of the present
section.

3.1. Chyzak’s algorithm in basic form. Indeed, given that there exists a finite basis
 
vi
(
,

indexed by 1 ¤ i ¤ d, for the vector space V over Cpx, yq generated by all the derivatives Da
xD

b
yu

at any orders, the ansatz (3.2) in the unknown operator Q can be replaced with the ansatz

(3.3) P px,Dxqu � Dyv for v �
ḑ

i�1
φivi

in the unknown bivariate rational functions φi’s from Cpx, yq. Now, expanding Dyv results in an
expression that is linear in the vi and Dyvi, on the one hand, and linear in the φi and the Dyφi,
on the other hand. As the Dyvi’s are also in V , the derivative Dyv can be rewritten in the form

(3.4) Dyv �
ḑ

j�1
pDyφjq vj �

ḑ

i,j�1
φiai,jvj

for explicit rational functions ai,j P Cpx, yq. As in the case of (1.3) for hyperexponential functions
(that is, when d � 1), an ansatz P � ηrpxqDr

x � � � � � η0pxq is made, and leads to writing Pu as a
linear combination of the vj with coefficients that are linear in the η’s:

Pu �
ḑ

j�1

ŗ

i�0
ηibi,jvj
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for explicit rational functions bi,j P Cpx, yq. For each i between 1 and d, extracting from (3.3)
the coefficients w.r.t. the basis element vj results in a non-homogeneous linear differential relation
between Dyφj and the φj ’s, with non-homogeneous part involving the ηi’s:

(3.5)

777777 Dyφj �
ḑ

i�1
ai,jφi �

ŗ

i�0
bi,jηi p1 ¤ j ¤ dq.

This system is solved by eliminating all φi’s but one (say, ψ � φd), which results in a non-
homogeneous higher-order linear differential equation in ψpx, yq, with derivations w.r.t. y only and
a non-homogeneous part this is linear in the ηipxq. This can be solved by a non-homogeneous vari-
ant of Abramov’s decision algorithm for rational solutions of a linear ODE in (1991). Then,
if Abramov’s algorithm proves the absence of solutions, there is provably no solution to the
ansatz (3.3) for the current value of r. Else, putting the solution ψ back into the system (3.5)
results in a similar system in fewer unknown φ’s, which can in turn be examined for solutions.

The algorithm I formulated in (2000) applies to general operators in place of just the derivations
Dx and Dy, as long as the same kind of finiteness as with D-finite functions is preserved. This is
why I presented my algorithm for B-finite functions. This includes sequences defined by recurrences
or q-recurrences, functions defined by mixed differential-difference equations. What varies with
the nature of operators is how Dyv is changed in (3.3) and the exact form it takes in the analogue
of (3.4). Still, the induced system that plays the role of (3.5) can each time be solved by resorting
to a variant of Abramov’s algorithms for rational solutions in (1991; 1995).

In practice, one takes for the vi’s a family of derivatives
 
Dai
x D

bi
y u

(
1¤i¤d with good properties

with respect to derivation, and the matrix pai,jq is rather sparse. Such a family is obtained naturally
when manipulating the B-finite function in an algorithmic way. A B-finite function f is given by
a family operators P1, . . . , Ps that generate the annihilating ideal ann f w.r.t. a skew-polynomial
algebra A � Qpx, y, . . . ,m, n, . . . qxDx, Dy, . . . , Sm, Sn, . . .y. But most often, as the result of a
preceding calculation, the P ’s constitute moreover a Gröbner basis of ann f w.r.t. some monomial
order. So there is a natural family of derivatives that are reduced with respect to the P ’s, that is,
that are equal to their remainder after division by the P ’s.

3.2. Iterated integrals and sums. Multiple summation and integration can also be computed
by the same approach, as I explained in the case of natural boundaries in (2000) and as we
later extended to all kinds of boundaries in (Bostan, Chyzak, van Hoeij, and Pech, 2011). For
presentation sake, I shall only present the case of double integration with respect to y and z of a
hyperexponential function u of variables x, y, and z.

The case of double integrals leads to generalising (3.1) into a form
(3.6)
P px,Dxqu � Dy

�
R1px, y, zqu

��Dz

�
R2px, y, zqu

�
for P P CpxqxDxy and pR1, R2q P Cpx, y, zq2,

but the solving for R1 and R2 does not generalise so smoothly: an attempt yields a linear partial
differential equation relating R1 and R2 with DyR1 and DzR2. To the best of our knowledge,
although this overdetermined linear partial differential equation has a very specific form, no algo-
rithm is available to solve it for its rational solutions.

Therefore, instead of a direct approach, I developed in (2000) a cascading approach which I shall
now summarise. Noting that the dependency of P on a single derivation Dx in (3.1) is inessential,
the same approach is possible for the creative telescoping with respect to the (single) variable z of
a trivariate hyperexponential function u from Qpx, y, zq. Indeed, setting P to the undetermined
form

P �
¸

0¤i�j¤r
ηi,jpx, yqDi

xD
j
y

for some tentative total order r and unknown rational functions ηi,j from Qpx, yq and performing
the same solving as previously, now relying on linear algebra over Qpx, yq, leads to a basis of P pαq’s
of total order at most r for which there exists a rational function φpαqpx, y, zq satisfying

P pαq u � Dz

�
φpαq u

	
.
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The theory (as developed, e.g., by Zeilberger (1990b)) guarantees that the set of P pαq’s obtained
for sufficiently large r describes a D-finite function û of x and y, and can therefore be used to
determine the finite set needed as an input to the algorithm in (Chyzak, 2000) and in (3.3).

Finally, a double integration algorithm is obtained by continuing the approach used for natural
boundaries in (Chyzak, 2000) (Stages A and B below) by a suitable recombination of the outputs
(Stage C below). The resulting treatment of multiple integrals over non-natural boundaries is an
extension over (Chyzak, 2000), and the corresponding algorithm is as follows:

 Stage A: First iteration of creative telescoping. Using the univariate algorithm for trivariate
hyperexponential functions in variables px, y, zq delivers identities

(3.7) P pαqpx, y,Dx, Dyqu � Dz

�
φpαqpx, y, zqu�.

 Stage B: Second iteration of creative telescoping. Considering a function û of px, yq that is
annihilated by all P pαq and using the univariate algorithm for D-finite functions in variables
px, yq delivers an identity

(3.8) P px,Dxq û � Dy

�
Qpx, y,Dx, Dyq û

�
.

 Stage C: Recombination. By the theory of linear-differential-operators ideals, the calcula-
tions of the algorithm can be interpreted as a proof of existence of operators Lpαqpx, y,Dx, Dyq
satisfying

(3.9) P px,Dxq �DyQpx, y,Dx, Dyq �
¸
α

Lpαqpx, y,Dx, DyqP pαqpx, y,Dx, Dyq.

These Lpαq can effectively be obtained either by following the calculations step by step
or (less efficiently) by a postprocessing (non-commutative multivariate division). Hence,
defining

R1 � u�1 �Qpx, y,Dx, Dyqu
�

and R2 � u�1
¸
α

Lpαqpx, y,Dx, Dyq
�
φpαqpx, y, zqu�

leads to a solution pP,R1, R2q of (3.6).
Note that this two-stage process inherently introduces a dissymmetry in the treatment of the

variables y and z: the output from the first iteration tends to be larger than its input; in turn, the
output from the second is larger than the output from the first. As a consequence, the order we
deal with the variables may have an impact on the running time.

3.3. Koutschan’s heuristics. Mainly two aspects of the algorithms for B-finite functions make
them slow in practice. Firstly, solving of (3.5) by uncoupling is sub-optimal. Algorithms for direct
solving of a system exist in the ordinary differential/difference case, and should be used. Secondly,
even if no algorithm is known to solve (3.6) as an overdetermined linear partial differential equation,
patterns in the orders of poles emerge by experimentation. This all has motivated Koutschan
(2010) to develop heuristics to guess the exponents in the denominators, which have allowed to
solve difficult problems in sizes that can so far not be attacked by the algorithmic approaches.

4. Scalar Product of Symmetric Functions

Intriguingly enough, creative telescoping has been applied to functions—and equations—in in-
finitely many variables, for the calculation of a classical scalar product in the combinatorial theory
of symmetric functions. Mishna, Salvy, and I described algorithms in (2005).

5. Beyond Holonomy

Another direction of extension concerns functions or sequences that cannot be defined by a B-
finite ideal. Majewicz (1996, 1997) has given an algorithm that is able to produce Abel’s summation
identity

ņ

k�0

�
n

k



ipk � iqk�1pn� k � jqn�k � pn� i� jqn
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automatically and to find similar new identities. Kauers (2007) has suggested a summation algo-
rithm applicable to sums involving Stirling numbers and similar sequences defined by triangular
recurrence equations. This algorithm finds, for instance, the identity

ņ

k�0
p�1qm�kk!

�
n� k

m� k



S2pn� 1, k � 1q � E1pn,mq,

where S2 and E1 refer to the Stirling numbers of second kind and the Eulerian numbers of first
kind, respectively. A summation algorithm of Chen and Sun (2009) is able to discover certain
summation identities involving Bernoulli numbers Bn or similar quantities, for example

m̧

k�0

�
m

k



Bn�k � p�1qm�n

ņ

k�0

�
n

k



Bm�k.

None of the quantities covered by these algorithms admits a definition via a B-finite ideal, but
all three algorithms are based on principles that resemble those employed for holonomic systems
and B-finite ideals. In each case, it turns out that the differential/difference equations defining the
integrand/summand are of a form that permits to prove the existence of at least one non-trivial
differential/difference equation for the integral/sum by a counting argument.

In (Chyzak, Kauers, and Salvy, 2009), we have given algorithms dealing with functions described
by ideals of linear functional operators that are not B-finite. They generalize the algorithms known
for the B-finite case and cover the extensions to non-holonomic functions discussed so far. Holonomy
being lost, it is not always the case that creative telescoping can succeed—whatever the algorithm.
However, holonomy being only a sufficient condition, it is shown that by considering more generally
the dimension of the ideals and another quantity that we have called polynomial growth, it is
possible to predict termination of a generalisation of Chyzak’s generalisation of Zeilberger’s fast
algorithm.

To state it in a nutshell, the lower the dimension of the annihilating ideal of a function, the
more variables can be summed and integrated by creative telescoping. It is therefore natural to
try and bound the dimension related to a multiple sum/integral in terms of the dimension of the
summand/integrand. In doing this, the bound we could find is parametrised by the new notion of
possible growth.

The notion of polynomial growth originates in observing how the “common denominator” Hn,k

could be chosen in Wilf and Zeilberger’s treatment of proper hypergeometric sums, in contrast to
the behaviour of the approach confronted with the non-proper input 1{pn2 � k2q. In the former
case, the common denominator has a number of factors that is linear with respect to r� s; in the
latter case, it has to be chosen as

r¹
i�0

s¹
j�0

�pn� iq2 � pk � jq2�
and thus has a quadratic number of factors. The same difference in behaviours—linear versus
quadratic—occurs for the numerators. Intuitively speaking, the exponent in this polynomial
growth of the degree is our notion of polynomial growth.

To make this formal, let us distinguish between variables x1, . . . , xξ that are parameters of
the integral/sum and variables t1, . . . , tτ that are integration/summation variables. That is, we
consider a multiple integral/sum of the form

F px1, . . . , xξq �
»
fpx1, . . . , xξ, t1, . . . , tτ q dt1 � � � dtτ ,

or
F px1, . . . , xξq �

¸
pt1,...,tτ qPI

fpx1, . . . , xξ, t1, . . . , tτ q,

viewed as a sequence with indices x1, . . . , xξ, or some mixed case of integrations and summa-
tions. As creative telescoping has to do with the elimination of the t’s, we consider how re-
duction modulo (a fixed Gröbner basis for) the ideal ann f lets the degrees in the t’s grow. In
what follows, Bxi denotes either Dxi or Sxi , according to the case, and similarly for Bti . For
any given integer s ¥ 0, there exists a polynomial Pspx1, . . . , xξ, t1, . . . , tτ q such that each of the
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Pspx1, . . . , xξ, t1, . . . , tτ q Bα1
x1

� � � Bαξxξ Bβ1
t1 � � � Bβτtτ has a remainder that is a linear combination of mono-

mials in the B’s with coefficients in Qpx1, . . . , xξqrt1, . . . , tτ s: such a polynomial Ps can be found
as a common denominator, for instance. When, additionally, there is an integer p P N such that
the coefficients in Qpx1, . . . , xξqrt1, . . . , tτ s have total degree in the t’s bounded by Opspq, then the
annihilating ideal of f is said to have polynomial growth p.

The main result of (Chyzak et al., 2009) is to bound the dimension of the ideal of annihilators
that can be obtained by creative telescoping, respectively�

ann f �
τ̧

i�1
DtiAx,t

�
XAx and

�
ann f �

τ̧

i�1
pSti � 1qAx,t

�
XAx

in the integration and in the summation cases, where we have set Ax,y � QpxqrtsxBx, Bty and
Ax � QpxqxBxy. Under natural technical assumptions, this bound can be expressed in terms of the
dimension and polynomial growth of ann f (w.r.t. Ax,t): the dimension of the output (w.r.t. Ax)
is bounded by

d� pp� 1q τ.
Two nice cases correspond to polynomial growth p � 1: the case of functions considered only

with respect to differential operators and the the case of proper-hypergeometric terms. In both
cases, starting with a B-finite function results in a sum/integral that is B-finite as well.
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