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Chapter 1

Introduction

This memoir is concerned with the algorithmic symbolic treatment of integrals and sums that
appear in various fields like the theory of special functions, combinatorics, and mathematical
physics, and more generally with exact algebraic manipulations of systems of linear functional
equations, whether differential or of recurrence, and of their solutions. My approach here is
almost always algorithmic, whether with the goal of enlarging the class of systems and functions
to which the approach applies, or with the goal of making the algorithms more efficient, as much
as possible with a provably better arithmetic complexity. At the same time, we endeavour to
propose a fair account on the context of the research in this domain, both ours and others’, so
as to provide a global and coherent view on it.

As a memoir written to obtain the French degree of Habilitation à diriger des recherches, it
discusses my research contributions and is a picture of the scientific landscape I understand.
But composing a picture is a selective process that requires one to keep disturbing details out of
the view. My choice here is to focus on the part of my research concerned with the method of
Creative Telescoping. I shall thus not cover some parts of my research topics, like applications of
Gröbner bases to control theory, quasi-optimal complexity algorithms (power-series solutions of
differential systems, differential equations for algebraic functions, products of linear differential
operators), or my recent works on the Dynamic Dictionary of Mathematical Functions. As to
my starting works on the interaction between computer algebra and formal-proofs theory about
questions related to special functions and creative telescoping, this will only be alluded to in
the perspectives.

Creative telescoping can be viewed as a common formalism for several, possibly surprisingly
related, operations on functions, series, and formal series. I shall present creative telescoping
first as a method to perform integration and summation of special functions, combinatorial
sequences, orthogonal polynomials, but its introduction in combinatorics was largely motivated
by other operations on generating series like extractions of constant coefficients and diagonals. It
has also been applied to the evaluation of certain scalar products in the theory of the symmetric
functions of combinatorics. This will be reviewed in the following text.

1.1 The Name “Creative Telescoping”

The phrase creative telescoping appears in an explanation by van der Poorten (1979, p. 211) of
Apéry’s irrationality proof of ζ(3). One of van der Poorten’s steps is to establish that the sum

bn =

n
∑

k=0

bn,k, where bn,k =

(

n

k

)2(
n+ k

k

)2

, (1.1)
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4 CHAPTER 1. INTRODUCTION

satisfies the same second-order linear recurrence equation as another binomial sum. He men-
tions that, to get the recurrence explicitly, Cohen and Zagier “cleverly construct

Bn,k = 4 (2n+ 1)
(

k (2k+ 1) − (2n+ 1)2
)

bn,k, (1.2)

with the motive that

Bn,k −Bn,k−1 = (n+ 1)3bn+1,k − (34n3 + 51n2 + 27n+ 5)bn,k +n3bn−1,k”, (1.3)

so that summing over k from 0 to n+ 1 results in the wanted recurrence,

0 = (n+ 1)3bn+1 − (34n3 + 51n2 + 27n+ 5)bn +n3bn−1. (1.4)

Here, the series whose general term is the right-hand side of (1.3) reduces to the sum over k of
the term Bn,k −Bn,k−1, which telescopes, giving the name to the method. Works by Zeilberger
to design algorithms for obtaining analogues of the key relation (1.3) for general summands
popularised the approach (Zeilberger, 1982, 1990a, 1991).

The method has a differential analogue, which Almkvist and Zeilberger (1990) name the
method of differentiating under the integral sign, but this highlights only one aspect of the compu-
tation. For concreteness and to motivate my statement, I reproduce an example by Zeilberger
(1982), which he borrowed from a classical textbook on integration: to evaluate the parametrised
integral

f(b) =

∫+∞

−∞

e−x2
cos 2bx dx, (1.5)

first perform differentiation w.r.t. b under the integral sign, followed by integration by parts
w.r.t. x, to get the relation

f ′(b) =
∫+∞

−∞

−2xe−x2
sin 2bx dx =

[

e−x2
sin 2bx

]x=+∞

x=−∞

+

∫+∞

−∞

−2be−x2
cos 2bx dx = −2b f(b).

Solving the induced ODE requires to know an initial condition, f(0), which amounts to getting
an explicit form for the integral at b = 0. In the end, this results in the explicit form f(b) =√
π exp(−b2). This calculation with integrals can be reconsidered on the level of integrands:

after introducing f(b, x) = exp(−x2) cos 2bx, the integration by parts above is a consequence of
the relations

df

db
(b, x) =

d

dx

(

e−x2
sin 2bx

)

− 2b f(b, x) =
d

dx

(

−
1

2x

df

db
(b, x)

)

− 2b f(b, x).

Reorganising terms delivers the following analogue of (1.2)–(1.3), with self-explanatory notation:

dF

dx
(b, x) =

df

db
(b, x) + 2b f(b, x) with F(b, x) = −

1

2x

df

db
(b, x). (1.6)

In view of the strong formal analogy between the recurrence case (1.3) and the differential
case (1.6), and because “differentiating under the integral sign” is only one aspect of the ap-
proach, Salvy and I have started to use the same phrase “creative telescoping” in (Chyzak and
Salvy, 1998) to denote these two similar situations, and specifically for the task of obtaining (1.3)
or (1.6) in an algorithmic way.

As I shall describe in the historical context below, creative telescoping is related to an elim-
ination theory applied to a (non-commutative) polynomial representation of linear differen-
tial/difference operators. The absence of algorithms for linear operators in the early 1980s—or
at least their relative immaturity—may explain the slow start of the creative-telescoping theory
developed by Zeilberger.

I should note here that in the present memoir I shall only consider a kind of creative telescop-
ing where, like in (1.2) and (1.6), the auxiliary term derived from the summand or integrand is
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crafted in a linear way. By contrast, another line of research has been investigated, starting with
Schneider’s PhD thesis and after works by Karr (1981, 1985), by allowing non-linear expressions.
More recently, a differential analogue has been developed by Raab as a continuation of Risch’s
algorithm (1969; 1970). On this non-linear creative telescoping, I refer the reader to the recent
surveys (Raab, 2013; Schneider, 2013).

1.2 Linear Operators

It has proved very fruitful in the works that will be described in this memoir to represent
the linear differential equations and linear recurrences under consideration as linear differen-
tial/difference “operators”. The following notation and conventions will be used throughout
the whole text.

I shall constantly consider functions of (continuous) variables x, y, etc., and sequences of
(discrete) variables n, k, etc., as well as variations like sequences of functions, parametrised
families of functions, etc. All such objects will collectively be called “functions”, unless disam-
biguation is needed, and will be subject to respective derivation operators denoted by Dx, Dy,
etc., and (forward) shift operators denoted by Sn, Sk, etc. When needed, a backward shift oper-
ator will be denoted as an inverse: S−1

n , S−1
k , etc. Composition will be denoted just by products

and powers, so that, for example, D5
xS

−1
n S3k acts on a “function” f by the rule:

(

D5
xS

−1
n S3kf

)

(n, k, x) =
∂5f

∂x5
(n− 1, k+ 3, x).

These operators combine with operators of multiplication by a variable to generate more
general operators. Operators of multiplication will be denoted by the variable itself, so as to
enforce rules like:

(xf)(n, x) = xf(n, x), (nf)(n, x) = nf(n, x).

It follows from the Leibniz rule and just the effect of substitution that

Dxxf = (Dxx)f =
(

Dx(xf)
)

= xDxf+ f = (xDx + 1)f,

Snnf = (Snn)f =
(

Sn(nf)
)

= (n+ 1)Snf,

where the operator 1 denotes the identity operator. These formal rules lead us to expect the
following algebraic relations between non-commutative polynomials:

Dxx = xDx + 1, Snn = (n+ 1)Sn.

A theory to make sense of such commutations has been developed in algebra, starting with
Ore’s work in the 1930s. Since “operators” are considered in the present memoir for their
algebraic properties, and not for any topological or analytic one, I shall at times more properly
speak of skew polynomials for the objects originally studied by Ore. In the literature, they are also
known as Ore polynomials, Ore operators, pseudo-linear transformations, and pseudo-linear
operators.

The theory of skew polynomials started with Ore’s work on polynomials in a single deriva-
tion or shift operator: mainly with (1933), in which he developed a theory of one-sided gcd for
skew polynomials, but also with (1931), in which he considered matrices of skew polynomi-
als. Skew polynomials were later considered by Jacobson (1937) under the name pseudo-linear
transformations, and algorithms for gcd and factorisation for general skew polynomials were
discussed in (Bronstein and Petkovšek, 1994, 1996).

Ore’s construction produces rings of operators, a.k.a. skew polynomial rings. We thus have,
for example: the ring Q(x)〈Dx〉 of linear differential operators with coefficients in the rational-
function field Q(x); the ring Q(n)〈Sn〉 of linear recurrence operators with coefficients in the
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rational-function field Q(n); analogues Q[x]〈Dx〉 and Q[n]〈Sn〉 when we are interested in op-
erators with polynomial coefficients only; an analogue Q(n)〈S−1

n 〉 when considering backward
shifts instead of forward shifts.

When several derivation/shift operators are needed in the same algebraic setting, Ore’s
construction could be iterated abstractly, which introduces the possibility of derivations and
shifts that do not commute with one another. We viewed this as a drawback in the work
coauthored with Salvy (1998), as we would have lost finiteness properties crucial for good the
behaviour of algorithms. In that article, we therefore developed a theory of a kind of algebras
that we named Ore algebras, in which derivations and shifts necessarily commute, while they
need not commute with the coefficients. Coming back to the example of D5

xS
−1
n S3k, this lives

for example in the algebra Q(n, k, x)〈Sn, S−1
n , Sk, Sn,Dx〉, where Sn, S−1

n , Sk, and Dx commute
pairwise, while none of them commutes with all elements from Q(n, k, x).

In the present document, I chose to present neither Ore’s theory nor our theory of Ore
algebras and to refrain from using the corresponding more heavy notation, Q(x)[∂;σ, δ].

1.3 Important Classes of Functions and Sequences

A few specific classes of functions and sequences appear constantly in the present text, namely
hypergeometric sequences, hyperexponential functions, D-finite functions, and ∂-finite func-
tions, which are all solutions of linear functional operators. The distinction between those
classes is based on the type of operators considered and the order of the equations that the
functions solve. As creative-telescoping algorithms manipulate systems of defining equations
rather than functions explicitly represented by their names, the different classes lead to different
specialised algorithms, taking advantage of properties of the defining systems.

Sequences of the index n (over N or Z) that solve a first-order linear recurrence equation
with coefficients that are polynomial functions of n are called hypergeometric. Equivalently, a
sequence u = (un) is hypergeometric if there exists a rational function R(n) such that the
ratio un+1/un is equal to R(n), except maybe for finitely many values of n. In this case, I
shall consider that Sn − R(n) annihilates u, disregarding the finite number of exceptions. This
generalises to sequences u = (un1 ,...,nr) of several indices by requiring that there exist for each i
a rational function Ri(n1, . . . ,nr) such that u is annihilated by each first-order operator Sni

−Ri.
Examples of hypergeometric sequences are given by the terms 2n, n!, (n1 +n2)!, 1/(n1 −n2)!,
1/(n1 +n2), and

(

n1
n2

)

. Rational functions of the indices are hypergeometric, as well as products
of hypergeometric sequences.

The situation is analogous in the differential case, where a hyperexponential function is defined
as a function f of continuous variables x1, . . . , xr whose r logarithmic derivatives Dif/f are
rational functions of the r variables. Hyperexponential functions solve systems of first-order
linear differential equations with coefficients that are polynomial functions of the x’s. Examples
include rational functions, exponentials of rational functions, powers of rational functions to
rational and transcendental constants. In addition, products of hyperexponential functions are
hyperexponential.

The generalisation to D-finite and ∂-finite functions is best explained after introducing the
notion of annihilating ideals: indeed, the skew polynomials (with rational-function coefficients)
from some skew-polynomial algebra A = Q(x,y, . . . ,m,n, . . . )〈Dx,Dy, . . . , Sm, Sn, . . . 〉 that
cancel a given function f constitute a left ideal, denoted annA f, or more simply ann f when
no ambiguity can arise. When acting on f, skew polynomials can be viewed modulo ann f, since
the function Pf obtained for P ∈ A is equal to any (P +Z)f for Z ∈ ann f. So the Pf are actually
parametrised by classes P + ann f from the quotient module A/ ann f, and there is in fact an
isomorphism from A/ ann f to Af defined by mapping the class P+ ann f to Pf.

This leads to new definitions of hypergeometric and hyperexponential functions as func-
tions f whose corresponding quotient modules A/ ann f are vector spaces of dimension 1 over
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the rational-function field Q(x,y, . . . ,m,n, . . . ). The generalised notion of ∂-finite functions cor-
responds to finite-dimensional quotient modules of dimension possibly more than 1. In the
purely differential situation, such a function is simply called differentiably finite, in short, D-finite.
The special case of D-finite series was introduced and studied by Stanley (1980) in the univariate
case and by Lipshitz (1989) in the multivariate case; see also Chapter 6 in the textbook (Stanley,
1999). Salvy and I introduced the more general case of ∂-finite functions in our work (Chyzak
and Salvy, 1998), because ∂ is the symbol we used in that work to denote derivation operators
like Dx and shift operators like Sn in a unified way. Each class of functions is closed under
additions and products, and algorithms exist to produce a defining system for f+ g and fg from
defining systems for f and g; see the same references.

Now, a property of any D-finite function f is that all its (infinitely many) mixed partial
derivatives f, Dxf, Dyf, . . . , D2

xf, DxDyf, D2
yf, . . . , are so much linearly related that they span

a finite-dimensional vector space over Q(x,y, . . . ). The generalisation of this property to ∂-finite
functions is that all shifts of mixed partial derivatives span a finite-dimensional vector space
over Q(x,y, . . . ,m,n, . . . ). As a consequence, they also satisfy an ordinary differential equation
w.r.t. each derivation operator, and an ordinary difference equation w.r.t. each shift operator.

1.4 q-Analogues

Many functions of the classical world of sequences and functions, like counting numbers, spe-
cial functions, and orthogonal polynomials, find a generalisation commonly called q-analogues.
These are functions of an additional parameter q that specialise to the classical functions by
setting q = 1. A force of creative telescoping is that it can deal with these q-analogues just as it
does with the original, classical counterparts. Each of the classes of functions described in Sec-
tion 1.3 find a q-analogue counterpart. In this section, I briefly introduce the most fundamental
examples that will appear later in Section 1.5.

Just as many enumeration problems involve factorials and binomial terms, and thus lead to
recurrences that relate values at n with values at n+ 1, n+ 2, etc., using “additive shifts”, so
do refined enumeration problems in combinatorics, in statistical physics, and in the theory of
partitions involve recurrences that relate values at x with values at qx, q2x, etc., using “multi-
plicative shifts” w.r.t. some fixed base q. A change of variables to replace x with qn will bring
multiplicative shifts back to additive ones, but if the recurrences under considerations had coef-
ficients that were polynomials in x, the change of variables produces recurrences involving qn

in the coefficients.
The simplest examples of terms that admit a q-analogue are the classical Pochhammer sym-

bol, factorials, and binomial coefficients, which are related as follows: The Pochhammer sym-
bol (x)n is defined for x ∈ C and n ∈ Z by

(x)n =











x (x+ 1) · · · (x+n− 1) if n > 0,
1 if n = 0,
1/
(

(x− 1) · · · (x+n)
)

if n < 0,

provided the quotient is well defined. The factorial sequence is then defined by an evaluation
as

n! = (1)n ;

and, binomial coefficients are defined by the well known formula
(

n

k

)

=
n!

k! (n− k)!
.

Note that the Pochhammer symbol satisfies the two recurrences

(x+ 1)n =
x+n

x
(x)n and (x)n+1 = (x+n) (x)n,



8 CHAPTER 1. INTRODUCTION

from which recurrences can be derived for factorials and binomial coefficients. The q-Pochham-
mer symbol (x;q)n is defined for x ∈ C and n ∈ Z by

(x;q)n =



















(1− x) (1− qx) · · · (1− qn−1x) if n > 0,
1 if n = 0,
(

1−
x

q

)−1

· · ·
(

1−
x

qn

)−1

if n < 0;

(1.7)

it satisfies the two recurrences

(qx;q)n =
1− qnx

1− x
(x;q)n and (x;q)n+1 = (1− qn) (x;q)n.

This is not a q-analogue of (x)n, in the sense that setting q = 1 does not produce the classical
Pochhammer symbol, but the q-factorial defined as (q;q)n is a q-analogue:

(q;q)n

(1− q)n
= 1 · (1+ q) · · · · · (1+ q+ · · ·+ qn−1)

goes to n! when q tends to 1. By way of consequence, the q-binomial coefficient defined as
[

n

k

]

=
(q;q)n

(q;q)k (q;q)n−k

becomes
(

n
k

)

when q goes to 1. In the tradition, the base q is either a complex number with |q| <

1 or an indeterminate, whence the name of q-series for objects of the theory.
A nice introduction to q-analogues was written by Askey (1992), including examples of use

of q-analogue functions in identities that lift classical identities.

1.5 List of Examples

The primary goal of creative telescoping is the evaluation of integrals and sums involving com-
binatorial numbers and special functions, especially of hypergeometric/hyperexponential or D-
finite/∂-finite type, and the proof of identities involving such sums and integrals. This contains
and extends to:

• Binomial sums, as the equality

n
∑

k=0

(

n

k

)2(n+ k

k

)2

=

n
∑

k=0

(

n

k

)(

n+ k

k

) k
∑

j=0

(

k

j

)3

between binomial sums, which appears in connection to Apéry’s proof of the irrationality
of ζ(3) and has been proved by creative telescoping by Strehl (1994), or the evaluation
obtained by Blodgett, Andrews, Paule, and Peck (1990)

n
∑

i=0

n
∑

j=0

(

i+ j

i

)2(4n− 2i− 2j

2n− 2i

)

= (2n+ 1)

(

2n

n

)2

;

• Integrals of the theory of special functions, like the example of an integral
∫+∞

0

x J1(ax) I1(ax)Y0(x)K0(x)dx = −
ln(1− a4)
2πa2

involving the four types of Bessel functions and first considered by Glasser and Montaldi
(1994), or the double integral

∫

∞

0

∫

∞

0
J1(x) J1(y) J2(c

√
xy)

dxdy

ex+y
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which, if it cannot be put to explicit form, can be proved by creative telescoping to satisfy
the second-order linear ODE

(c2 − 8)(c2 + 8)(c2 + 4c+ 8)(c2 − 4c+ 8)c2y ′′(c)+

(5c8 − 32c6 − 256c4 − 2048c2 − 4096)cy ′(c)+

16(c6 − 16c4 − 320c2 + 1024)y(c) = 0;

• Extractions of coefficients, for instance by the Cauchy formula, like with the formula

1

2πi

∮ (1+ 2xy+ 4y2) exp
(

4x2y2

1+4y2

)

yn+1(1+ 4y2)
3
2

dy =
Hn(x)

⌊n/2⌋! ,

due to Doetsch (1930) and related to the Hermite orthogonal polynomials;

• Verifying identities in q-sums that appear in the combinatorial theory of partitions, like

n
∑

k=0

qk
2

(q;q)k(q;q)n−k
=

n
∑

k=−n

(−1)kq(5k
2−k)/2

(q;q)n−k(q;q)n+k
,

n
∑

j=0

n−j
∑

i=0

q(i+j)2+j2

(q;q)n−i−j(q;q)i(q;q)j
=

n
∑

k=−n

(−1)kq7/2k2+1/2k

(q;q)n+k(q;q)n−k
,

which are finite forms of the Rogers–Ramanujan identities and of a generalisation and
were respectively obtained by Andrews (1974) and Paule (1985);

• Computing explicit forms for scalar products w.r.t. various exponential/algebraic weights
and in relation to families of orthogonal polynomials or of other parametrised families of
functions, like the identities

∫+1

−1

e−pxTn(x)√
1− x2

dx = (−1)nπIn(p),

∫+∞

0

xe−px2
Jn(bx)In(cx)dx =

1

2p
exp

(

c2 − b2

4p

)

Jn

(

bc

2p

)

,

which involve Chebyshev orthogonal polynomials and Bessel functions;

• Scalar products that appear in the theory of symmetric functions, like

〈

exp
(

(p21 − p2)/2− p
2
2/4

)

∣

∣

∣ exp
(

t (p21 + p2)/2
)

〉

=
e−

1
4 t (t+2)

√
1− t

,

where p1 and p2 respectively denote the infinite symmetric power sums x1 + x2 + · · · and
x21+ x

2
2 + · · · and for the scalar product induced by the formula 〈mλ |hµ〉 = δλ,µ, in terms

of the other classical monomial and homogeneous bases (mλ)λ and (hµ)µ.

In all previous examples, the sequences and functions under consideration possess as many
independent linear equations, whether differential, difference, or more general functional, as
their number of variables. That is to say, they can be described as ∂-finite functions, by a set
of linear functional equations and finitely-many initial conditions. A recent extension of the
approach (Chyzak, Kauers, and Salvy, 2009) allows to deal as well with functions that possess
fewer independent equations than variables. Given a linear functional system of this type, the
description in explicit form of the general solutions necessarily involves an arbitrary function of
at least one variable. Examples of applications of this extension include:
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• Combinatorial identities involving: the graph-counting sequence kk−1, like

n
∑

k=0

(

n

k

)

i (k+ i)k−1(n− k+ j)n−k = (n+ i+ j)n,

which is attributed to Abel; or Stirling numbers of the second kind and Eulerian numbers,
like

n
∑

k=0

(−1)m−kk!

(

n− k

m− k

){

n+ 1

k+ 1

}

=

〈

n

m

〉

,

attributed to Frobenius; or Bernoulli numbers, like

m
∑

k=0

(

m

k

)

Bn+k = (−1)m+n
n
∑

k=0

(

n

k

)

Bm+k

to be found in (Gessel, 2003);

• Identities in more special functions, like Hurwitz’s zeta function, the beta function, poly-
logarithms, and the (upper) incomplete Gamma function, which appear in the following
evaluations:

∫

∞

0

xk−1ζ(n,α+βx)dx = β−kB(k,n− k) ζ(n− k,α),
∫

∞

0

xα−1 Lin(−xy)dx =
π (−α)ny−α

sin(απ)
,

∫

∞

0

xs−1 exp(xy) Γ(a, xy)dx =
πy−s

sin
(

(a+ s)π
)

Γ(s)

Γ(1− a)
.

Let us also mention that a very great deal of identities amenable to creative telescoping
can be found in the series of books (Prudnikov, Brychkov, and Marichev, 1992) on identities
involving elementary and special functions, and on Laplace transforms.

Different kinds of identities do not provide closed-form evaluations but are established by
creative telescoping as a crucial step in the proof of a mathematical result. I refer readers to
Koutschan’s recent survey (2013) for a list.

1.6 Notation

When discussing bounds, whether on various mathematical parameters (degrees, number of
terms, . . . ) or on the complexity of algorithms, I shall most often consider asymptotic upper
bounds, which will be denoted using the big-O notation: for example, un ∈ O(n3) means that
the sequence u = (un) does not grow faster than a constant times the cubic function when
n goes to infinity. When stating an upper bound by a big-O notation would involve logarithmic
factors that are inessential to understanding the described phenomenon, I shall use the soft-O
notation: for example, un ∈ Õ(n) instead of un ∈ O(n log2 n). On the other hand, I shall
at times use the big-Θ notation to denote that a sequence grows in proportion to another: for
example, vn ∈ Θ(n4) means that vn is asymptotically equivalent to κn4 for some fixed non-
zero κ, as n goes to infinity. This stronger notion is crucial in two cases: to express that an
upper bound is tight and to express that, asymptotically, a sequence becomes strictly greater
than another.

As is usual in combinatorics, for a non-negative integer ℓ, the falling factorial nℓ denotes the
polynomial n (n− 1) · · · (n− ℓ+ 1).



Chapter 2

Early History of Creative Telescoping

Before the algorithmic results in the next chapters, I provide a brief history of the research
that led to creative telescoping. My goal here is to highlight the flow of ideas, while provid-
ing context and motivation to some of the creative-telescoping techniques and to my research
orientations.

2.1 From Zeilberger’s Early Attempt to his “Holonomic-Systems Approach”

Zeilberger (1982) made the first attempt in the literature at giving generality to Cohen and
Zagier’s derivation (1.2)–(1.4) of Apéry’s recurrence, by exploiting a technique of Fasenmyer
(1945, 1949). Although this work of Zeilberger’s makes good observations that have been used
in later literature, it is flawed in several ways that make its main claims wrong. On the positive
side, Zeilberger’s observation is that, given a hypergeometric summand hn,k, his variant of
Fasenmyer’s technique provides, if it succeeds, a relation of the form

r
∑

i=0

s
∑

j=0

ci,j(n)hn+i,k+j = 0 (2.1)

from which an equation playing the role of (1.3) can be derived. As this equation does not
involve the variable k intended for summation, it is called a k-free recurrence. In fact, Fasen-
myer elaborated her original technique for hypergeometric series described in the form hn(x) =
∑

k hn,kx
k. She used an analogue of (2.1) that involves shifts in n only, together with powers

of x:
r

∑

i=0

s
∑

j=0

ci,j(n) x
jhn+i(x) = 0. (2.2)

Fasenmyer’s technique was later described by Rainville (1960), who also slightly generalised it
to sums of the form hn(x) =

∑

k hn,kTk(x), involving the kth Chebyshev polynomial Tk(x). It
was also used by Verbaeten, a name that will appear again in Section 3.3, for the quadrature of
an integral problem parametrised by a Chebyshev series (Piessens and Verbaeten, 1973). In his
paper, Zeilberger additionally observes that the approach generalises to sums of q-analogues
and integrals of functions satisfying systems of first-order equations, and to all possible cases
mixing these forms of operators.

It took Zeilberger a few more years before developing his seminal paper “A holonomic
systems approach to special functions identities” (1990b), in which he introduced the proper
definitions to prevent degenerate cases from occurring and ensure the existence of non-trivial
(that is, non-zero) equations (1.3) and (2.1). This important paper bases on results of the the-
ory of holonomic D-modules that had been developed in the 1970s (Bernšteı̆n, 1971, 1972; Kashi-
wara, 1978). What is decisive here is to consider the set of all linear differential/difference

11
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equations that a given summand or integrand satisfies. Viewing these equations as linear dif-
ferential/difference operators results in (non-commutative) polynomials that constitute a (left)
ideal in a non-commutative polynomial ring Ap = Q[x,y, . . . ,m,n, . . . ]〈Dx,Dy, . . . , Sm, Sn, . . . 〉
(in finitely many generators). This representation is now amenable to a theory of polynomial
elimination, which was studied in depth in D-module theory.

Conceptually, however, a subtle distinction has to be done between the ideal of operators
with rational-function coefficients in Ar = Q(x,y, . . . ,m,n, . . . )〈Dx,Dy, . . . , Sm, Sn, . . . 〉 and
the ideal of operators with polynomial coefficients in Ap: the polynomial-elimination theory
takes place in Ap, not in Ar. However, while the ideal of all operators in Ar that annihilate a
given function is usually easily presented by finitely many explicit generators in applications
involving special functions, the related ideal in Ap is not so easily described explicitly; in par-
ticular, generators in Ar cannot be used directly in Ap, even after renormalisation to remove
denominators. A simple illustration of the problem is given by the polynomial f = x3 in the or-
dinary differential case. It is annihilated by xDx − 3, and any annihilator in Ar is a left multiple
of the form L(xDx − 3), with L from Ar. But just restricting the cofactor L to Ap does not gen-
erate all annihilators from Ap: for example, D4

x cancels f, but D4
x factors as (x−1D3

x)(xDx − 3),
requiring a denominator x in the cofactor. This phenomenon is part of the cause for the prob-
lems in (Zeilberger, 1982), and was not completely clarified even in (Zeilberger, 1990b). In the
differential case, algorithms for obtaining generators of the ideal with polynomial coefficients
from generators of the ideal with rational coefficients were given by Tsai, first in the ordinary
differential case (2000), then in the partial differential case (2002). This process was named Weyl
closure. On the other hand, no “Ore closure” algorithm is known yet for other types of operators
in the multivariate case.

2.2 Other Early Elimination Approaches: Constant Terms and Diagonals

It is worth noting that the polynomial notation for operators had already been used for combi-
natorial matters and in connection to a polynomial elimination problem. Let me mention two
works.

First, Zeilberger had already studied in (1980) means to derive difference equations satisfied
by the constant term of products of powers with symbolic exponents of multivariate Laurent
polynomials. An example (simple, but of pedagogical nature) is the constant term w.r.t. x1, x2,
and x3 and viewed as a function of a, b, and c, of

F(a,b, c, x1, x2, x3) =
((

1−
x1
x2

)(

1−
x2
x1

))a ((

1−
x1
x3

)(

1−
x3
x1

))b ((

1−
x2
x3

)(

1−
x3
x2

))c

,

which turns out to be
(2a)! (2b)! (2c)! (a+ b+ c)!

a!b! c! (a+ b)! (a+ c)! (b+ c)!
. (2.3)

Zeilberger’s approach was to consider the two-term first-order difference equation

F(a+ 1,b, c, x1, x2, x3) =
(

1−
x1
x2

)(

1−
x2
x1

)

F(a,b, c, x1, x2, x3),

or rather its normalised polynomial representation x1x2Sa + (x1 − x2)
2, together with its sib-

lings obtained by shifting b or c instead of a. Then, eliminating x1, x2, and x3 by successive
runs of the fraction-free Euclidean algorithm in Q[Sa, Sb, Sc][x1, x2, x3] yields the annihilator

SaSbSc + S
2
a + S2b + S2c − 2(SaSb + SbSc + SaSc)

of the constant term, from which checking that (2.3) is the constant term is easy. It is of interest
that Zeilberger observed that the classical elimination theory for commutative polynomials can
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be applied to the case of partial difference operators with coefficients independent of the vari-
ables (a, b, and c above), but dependent of extra parameters (x1, x2, and x3 above). In contrast,
algorithms by creative telescoping would represent the constant term by the Cauchy integral

1

(2πi)3

∮ ∮ ∮

F(a,b, c, x1, x2, x3)
dx1
x1

dx2
x2

dx3
x3

,

then consider as well equations that are differential in x1, x2, and x3, and perform an algorith-
mic elimination of x1, x2, and x3 in Q(a,b, c)[x1, x2, x3]〈Sa, Sb, Sc,D1,D2,D3〉 (where Di de-
notes derivation w.r.t. xi). The approach of the present section prefigures Zeilberger’s “slow
algorithm” discussed in the next chapter.

A second work is the proof by Lipshitz (1988) that the diagonal of a D-finite power series is
D-finite. These notions require definitions: Given a multivariate formal power series

f =
∑

(n1 ,...,nr)∈Nr

cn1 ,...,nrx
n1
1 · · · xnr

r ∈ Q[[x1, . . . , xr]],

its diagonal is defined as the univariate series

∆f =
∑

n∈N

cn,...,nx
n.

The case studied by Lipshitz is that of a differentiably finite series, in short D-finite series, that
is, of a series f whose derivatives Dn1

1 · · ·Dnr
r f at all order (n1, . . . ,nr ≥ 0) generate a finite-

dimensional vector space over Q(x1, . . . , xr). (The power-series ring Q[[x1, . . . , xr]] can be em-
bedded into a Q(x1, . . . , xr)-vector space.) An equivalent definition is that such an f possesses
for each i between 1 and r an ordinary non-zero annihilator Li from Q(x1, . . . , xr)〈Di〉. Lip-
shitz’s approach does not appeal to any tool of D-modules theory, and remains on a very ele-
mentary level, but it bases on a counting argument that is at the heart of Bernstein’s dimension
theory for D-modules.

The derivation is as follows, after specialising to r = 2 for the sake of simplicity: The first
idea is to express the diagonal as a residue of a suitable transform of f, namely by

∆f = ress g where g =
1

s
f
(

s,
x

s

)

.

(Here, the residue ress φ of a function φ that can be expressed for some m ∈ Z as the sum
∑

(p,q)∈Z2, p+q≥mφp,qs
pxq is defined as the univariate series

∑

∞

q=m+1 φ−1,qx
q.) Note that

the diagonal could be expressed as a constant term or a Cauchy integral, as well. Then, Lipshitz
introduces the ordinary annihilators Li associated with g and he proves that s can be eliminated
from the family of the Li’s. To this end, he considers the expressions

xmDn
sD

o
xg subject to m+n+ o ≤ N. (2.4)

Then, he determines suitable integers a, b, and h ≥ 1, all three independent of N, and a suit-
able polynomial p to show that the expressions (2.4) all rewrite as linear combinations of terms
of the form (q/pN)Di

sD
j
xg, where 0 ≤ i < a, 0 ≤ j < b, and q(s, x) is a polynomial of to-

tal degree bounded by Nh. Now, the number of initial expressions is a multinomial number,
growing in proportion to N3, while the simplified expressions (2.4) live in a vector space of
dimension O

(

N2
)

over Q. Therefore, for large enough N there must be a Q-linear combina-
tion Z(x,Dx,Ds) of the xmDn

sD
o
x’s in (2.4) that rewrites to 0 (as the rewriting is a linear map).

He finally extracts the coefficient Z ′(x,Dx) of Z of lowest exponent w.r.t. Ds and proves that
Z ′ cancels the diagonal.



Chapter 3

Creative-Telescoping Algorithms for
Equations of the First Order

3.1 Zeilberger’s Fast Algorithm for Hypergeometric Sums and its Variants

Zeilberger made explicit with (1990b) what was implied by the earlier works: designing al-
gorithms based on the creative-telescoping approach for operations on integrals and series re-
quires algorithmic means for non-commutative polynomial elimination in operator algebras.
Earlier, Zeilberger (1980) had appealed to successive gcd computations by a sort of fraction-
free Euclidean algorithm, which is likely to introduce spurious factors in the coefficients. The
output (2.1) from Zeilberger’s modification (1982) of Fasenmyer’s technique is essentially an
operator from Q(n)〈Sn, Sk〉, and could be obtained by an elimination of k from annihilators
of hn,k, provided the Ore closure problem was solved algorithmically. A searching algorithm
by linear algebra is implied by Lipshitz’s proof (1988). For his part, Zeilberger (1990b) based
on a classical process to compute Sylvester’s resultant (1840), which he names “Sylvester’s dia-
lytic elimination”. This method was originally designed for univariate polynomials, but, despite
non-commutativity, Zeilberger generalises it to an elimination method for operators viewed as
bivariate polynomials in n and k with coefficients in Q[Sn, Sk]. However, he dodges the ques-
tion of Ore closure, which, in practice, becomes a large weakness of the method: one does not
know if it will terminate if one starts with indiscriminate annihilators.

In addition, all these methods are merely existence proofs turned into algorithms and tend
to be very slow in practice. Although no sufficient study of lower bounds for their complexity
is available yet, an explanation is that elimination constrains the output to be a polynomial in
high degrees, and in a form like (2.1) that is more restrictive than what is minimally required
for creative telescoping to work. Indeed, by way of comparison, representing Cohen and Za-
gier’s telescoping relation (1.3) as an operator results in an operator that involves k. Inspect
the last term in the left-hand side of the following identity and how it is transformed by the
commutation rule:

(n+ 1)3Sn − (34n3 + 51n2 + 27n+ 5) +n3S−1
n −

(

1− S−1
k

)

4(2n+ 1)
(

k(2k+ 1) − (2n+ 1)2
)

=

(n+ 1)3Sn − (34n3 + 51n2 + 27n+ 5) +n3S−1
n − 4(2n+ 1)

(

k(2k+ 1) − (2n+ 1)2
)

+ 4(2n+ 1)
(

(k− 1)(2k− 1) − (2n+ 1)2
)

S−1
k .

A further consequence is that the order of the outputs from these methods cannot be expected
to be minimal: when searching a fixed set of annihilators for elements of the form P(n, Sn) +
(Sk − 1)Q(n, k, Sn, Sk), the less constrained Q is, the more pairs (P,Q) will exist, and the lower
the minimal order of a possible output P is.

In view of this, Zeilberger called his algorithm in (1990b) his “slow algorithm”, and turned
his attention back to the more restricted class of inputs he had studied in (1982): the special

14
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class of hypergeometric sequences, that is sequences (hn,k) for which the two ratios

hn+1,k

hn,k
and

hn,k+1

hn,k

are given by two fixed rational functions in n and k. For them, he designed a “fast algo-
rithm” (Zeilberger, 1990a, 1991), which finally popularised the method of creative telescoping
as an algorithm. Zeilberger based his fast approach for definite summation on Gosper’s decision
algorithm for the indefinite summation of hypergeometric sequences (1978). Given a (univariate)
hypergeometric sequence (uk), Gosper’s interest is to find an indefinite sum (Uk) of (uk), that is,
a sequence satisfying Uk+1 −Uk = uk. He observed that any hypergeometric indefinite sum (Uk)

must be a multiple of the summand by a fixed rational function R of k: necessarily,

Uk = R(k)uk. (3.1)

This leads to an auxiliary linear recurrence equation on R, for which he developed a decision
procedure for solving. As a consequence, Gosper obtained an algorithm that decides whether
a given hypergeometric sequence possesses a hypergeometric indefinite sum, or whether its
sum is a non-trivial extension. Zeilberger realised that if the telescoper output from creative
telescoping was known beforehand, like (1.4) in the example about ζ(3), then the certificate (1.2)
could be obtained just by calling Gosper’s algorithm on the right-hand side of (1.3). To make this
into an algorithm, it was sufficient for Zeilberger to describe how to search at the same time for
the coefficients of the output and for the rational function implied by Gosper’s algorithm: this
amounts to a parametrised variant of Gosper’s calculation. Therefore, Zeilberger’s algorithm
proceeds by increasing a tentative order r of maximal shifts w.r.t. n for the right-hand side
of (1.3), trying to solve for R in

ηr(n)hn+r,k + · · ·+ η0(n)hn,k = R(k+ 1)hn,k+1 − R(k)hn,k (3.2)

at each order. If there exists a non-zero family {ηi(n)}
r
i=0 of univariate rational functions and a

bivariate rational function R(n, k) such that (3.2) holds, then the algorithm terminates. If so, it
obviously produces such an identity with least possible order r.

At about the same time, Almkvist and Zeilberger (1990) gave a differential analogue of
Zeilberger’s fast algorithm, which applies to functions called hyperexponential functions, that is,
functions h of two variables x and y for which the two ratios

dh
dx (x,y)
h(x,y)

and
dh
dy (x,y)

h(x,y)

are two fixed rational functions in x and y. To this end, they produced a differential analogue
of Gosper’s algorithm and replaced (3.2) with an ansatz of the form

ηr(x)D
r
xh(x,y) + · · ·+ η0(x)h(x,y) =

Dy (R(x,y)h(x,y)) =
(

DyR(x,y)
)

h(x,y) + R(x,y)
(

Dyh(x,y)
)

. (3.3)

By the mid-1990s, Zeilberger had done a great job in popularising his theory, his fast algo-
rithm, and his Maple implementation of it. A great deal of application papers were published,
by he, admirers, and more often than not his computer whom he had named Shalosh B. Ekhad.
The goal was to demonstrate that hypergeometric summation had become routine. To list a few
of such papers: (Zeilberger, 1994; Ekhad and Zeilberger, 1994b,a, 1996; Prodinger, 1996). In addi-
tion, Petkovšek, Wilf, and Zeilberger coauthored a whole book (1996) to popularise algorithms
for hypergeometric summation. Still, there was some confusion around Zeilberger’s articles,
caused by some allusiveness in the presentation and in algorithmic descriptions, especially in
view of the many generalisations that were announced but not formalised rigorously.
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This motivated Koornwinder to work on a new Maple implementation of Zeilberger’s fast
algorithm as well as on a q-analogue; he wrote (1993) with the purpose to describe them in a
very rigorous way, to ensure that the outputs produced could be trusted. In the same vein, Paule
and Schorn (1995) provided a Mathematica implementation (for the classical case), with special
emphasis on speed and robustness The similar work for the q-analogue algorithm was done
by Paule and Riese (1997); it was continued into a work on indefinite bibasic hypergeometric
summation (Riese, 1996), that is, for identities involving an operator B such that

(Bf)(x,y) = f(qx,py).

(Here, “bibasic” refers to p and q playing the role of two bases, to be compare with the single
base q for usual q-analogues.) For a Maple counterpart, (Böing and Koepf, 1999) describes
an analogue implementation of Zeilberger’s q-analogue fast algorithm and of Riese’s bibasic
Gosper algorithm.

3.2 Wilf and Zeilberger’s Approach to Multiple Sums and Integrals

After single hypergeometric/hyperexponential sums/integrals, there remained to understand
on what inputs the method would terminate with certainty and if it could be extended to
multiple sums and integrals. This was addressed to some extent by Wilf and Zeilberger (1992a);
see also the result announcement in (Wilf and Zeilberger, 1992b). There, they introduced the
notion of a proper hypergeometric term, a special kind of hypergeometric term given as

hn,k = P(n, k) ζnξk
L
∏

ℓ=1

Γ(aℓn+ bℓk+ cℓ)
ǫℓ , (3.4)

where:

1. the aℓ’s and bℓ’s are specific integers, and the ǫℓ’s are ±1;

2. the cℓ’s, ζ, and ξ are constants independent from n and k;

3. P is a polynomial in n and k.

(The original definition separates the factors with ǫ = +1 from those with ǫ = −1 and insists on
the cℓ’s being integers, but I prefer this more formal view for what follows. Also, the term ζn

was really introduced by Wegschaider (1997) only, but it alters what follows in no essential way.)
As a general hypergeometric term could be represented formally in the same way, but with a
rational function in place of the polynomial P, the wording proper emphasises that the factor P
is polynomial. As we shall see, the crucial consequence of the definition (3.4) is the behaviour of
its components under shifts: a term Γ(an+bk+ c) is multiplied by a rational function of degree
in k linear in the total number of unit shifts; the degree in k of P is unchanged under shifts; the
exponentials ζn and ξk are multiplied by constants.

A first contribution of Wilf and Zeilberger’s is to show the existence of a non-trivial k-free
relation of the form (2.1) for any proper hypergeometric h, together with explicit bounds r and s
in (2.1) to ensure existence:

r = B and s = (A− 1)B+ degk(P) + 1, (3.5)

where they could set

A =

L
∑

ℓ=1

|aℓ| and B =

L
∑

ℓ=1

|bℓ|.

The proof can be sketched as follows: Each hn+i,k+j in (2.1) involves terms of the form Γ(aℓn+

bℓk+ cℓ +u) for a shift u bounded in absolute value by σℓ = |aℓ|r+ |bℓ|s, that is, in a linear way.
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Now, observe that both

Γ(aℓn+ bℓk+ cℓ + u)

Γ(aℓn+ bℓk+ cℓ − σℓ)
and

Γ(aℓn+ bℓk+ cℓ + σℓ)

Γ(aℓn+ bℓk+ cℓ + u)
(3.6)

are polynomials in k of degree at most 2σℓ; the former will be used if ǫℓ = +1, the latter
if ǫℓ = −1. Therefore, multiplying the k-free ansatz (2.1) by the term

Hn,k = ζ−nξ−k





L
∏

ℓ=1, ǫℓ=+1

Γ(aℓn+ bℓk+ cℓ − σℓ)





−1



L
∏

ℓ=1, ǫℓ=−1

Γ(aℓn+ bℓk+ cℓ + σℓ)





(3.7)
results in an equivalent polynomial relation

r
∑

i=0

s
∑

j=0

ci,j(n) (Hn,khn+i,k+j) = 0, (3.8)

where each product Hn,khn+i,k+j is a polynomial of degree in k not more than a linear function
of r and s. The full analysis gives the degree bound

degk

(

Hn,khn+i,k+j

)

≤ degk(P) +

L
∑

ℓ=1

σℓ = degk(P) +Ar+Bs. (3.9)

Therefore, the left-hand side of (3.8) is a polynomial in k of degree O(r + s) while it is the
combination of Θ

(

(r + s)2
)

non-zero polynomials. For r and s large enough, there must be a
non-trivial relation (3.8). More specifically, it is sufficient to ensure

(r+ 1)(s+ 1) > degk(P) +Ar+Bs+ 1, (3.10)

and choosing r = B immediately results in (3.5).
Of course, the formula should not be used blindly in an implementation. For instance,

applying it to the simple binomial term
(

n+k
k

)

2
(

n
k

)

2 results in A = 4, B = 8, r = 8, s = 25,
and one has to expand products of 108 terms of the form (n± k+ u)2 or (k+ u)2, leading to a
linear-algebra system in dimension 217, involving integers greater than 3 · 10234 !

The second main contribution from (Wilf and Zeilberger, 1992a) is to show that the whole
work extends to multiple sums and integrals, providing an algorithm to compute an analogue
of (2.1) when several k’s are involved. To this end, the notion of proper hypergeometric term
extends to terms depending on several k’s in a natural way:

hn,k1,...,km
= P(n, k1, . . . , km) ζnξ

k1
1 · · · ξkm

m

L
∏

ℓ=1

Γ(aℓn+ bℓ,1k1 + · · ·+ bℓ,mkm + cℓ)
ǫℓ ,

with the obvious generalisation of the constraints on (3.4). In case of an m-fold sum, (2.1) takes
the form

r
∑

i=0

s1
∑

j1=0

· · ·
sm
∑

jm=0

ci,j1,...,jm(n)hn+i,k1+j1,...,km+jm = 0. (3.11)

The quantity A is defined as above while a sum Bi is associated with each ki. Inequality (3.10)
is transformed by considering total degrees w.r.t. k1, . . . , km, so as to compare the number of c’s
in the (m + 1)-dimensional sum (3.11) with the m-dimensional combinatorics of monomials
in k1, . . . , km of bounded total degree:

(r+ 1)(s1 + 1) · · · (sm + 1) >

(

degki
(P) +Ar+B1s1 + · · ·+Bmsm +m

m

)

+ 1.
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Choosing for instance r = s1 = · · · = sm and comparing exponents shows the existence of
a solution; Wilf and Zeilberger (1992a) give a formula, but it is much less explicit than in the
case m = 1.

Wilf and Zeilberger’s method also has a q-analogue, for simple and multiple sums. They
adapted their definition to call proper q-hypergeometric a term of the form:

hn,k = P(qn,qk) ζnξkqαn2+βnk+γk2+λ(n2)+µ(k2)
L
∏

ℓ=1

(

(q; cℓ)aℓn+bℓk

)ǫℓ , (3.12)

where (q; x)N denotes the q-Pochhammer symbol, defined by (1.7), and, in addition to the
constraints of the classical case:

1. the constants cℓ’s, ζ, and ξ, as well as the coefficients of P may now be rational functions
of q;

2. α, β, γ, λ, and µ are all relative integers.

(Again, I have used here the generalised form by Riese (2003), with no essential change in what
follows.) As for the classical case, Wilf and Zeilberger (1992a) (resp. Riese (2003)) showed that a
non-trivial relation

r
∑

i=0

s
∑

j=0

ci,j(q
n)hn+i,k+j = 0 (3.13)

always exist. Here, an additional difficulty over the classical case is that the analogues of the
factors (3.6) are no longer polynomials, but in general Laurent polynomials in qn and qk; this
adds a lot of technicalities. This all generalises to the case of multiple q-sums. Furthermore,
under the assumption m = P = ζ = 1 (single q-sums), Wilf and Zeilberger gave the bound

|γ|+

L
∑

ℓ=1

b2ℓ (3.14)

on r for a relation (3.13) to exist.

Another analogue of Wilf and Zeilberger’s approach was developed by Tefera (2000, 2002) for
the case of multiple integrals of functions that are (essentially) proper hypergeometric w.r.t. one
discrete variable n and hyperexponential w.r.t. several continuous variables x1, . . . , xu. Written
in the case of a single continuous variable, the corresponding “proper terms” are of the form

hn(x) = P(n, x)eζ0(x)ζ1(x)
nζ2(x)

d
L
∏

ℓ=1

Γ(aℓn+ bℓk+ cℓ)
ǫℓ ,

where P is again a polynomial, and the ζ’s are now univariate rational functions, the c’s and d
are constant w.r.t. both n and x, and the a’s, b’s and ǫ’s are like before.

3.3 Verbaeten’s Completion and Non-k-Free Recurrences

Practical experimentation with the WZ-method soon revealed two shortcomings in formula (2.1),
both causing the need for too high upper bounds r and s of the double sum, and too high run-
ning times in implementations.

Firstly, the support of the double sum being a rectangular box, as opposed to a more flexible
set of pairs (i, j), can become a non-intrinsic difficulty when solving, as it can unnecessarily
involve too many terms. A solution had already been studied in the similar context of obtaining
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what Verbaeten called called “pure recurrence relation” (2.2) in his PhD thesis (1974; 1976),
years before the works on Fasenmyer’s technique by Zeilberger (1982) and Wilf and Zeilberger
(1992a). The idea consists in enlarging the support of the sum (2.1) insofar as this does not
increase the degree in k of (3.8), a process that is called Verbaeten’s completion. This results in
transforming (2.1) into the form

∑

(i,j)∈S
ci,j(n)hn+i,k+j = 0 (3.15)

for some finite S ⊂ N2 that is not necessarily of the form [ 0, r ]× [ 0, s ]. Incidentally, by con-
sidering special maximal sets of pairs, Verbaeten had already obtained an existence proof for a
relation (2.1), for a special case of proper hypergeometric terms, later called irreducible: terms
such that P in (3.4) is 1 and no two factors Γ(an + bk + c) with opposite ǫ’s have the same
a’s and b’s, and c’s that differ by an integer. Verbaeten’s proof was later greatly simplified
by Hornegger (1992) and a sketch of it is available in (Wegschaider, 1997). It involves a very fine
analysis of the degree of polynomials in an equivalent of (3.8) where the rectangular support
of the double sum is replaced with the interior some convex polygon. The approach proceeds
by counting the points on the integer-lattice that lie in a convex polygon defined by extremal
directions related to the aℓ’s and bℓ’s. In addition, by thoroughly studying Verbaeten’s comple-
tion, Wegschaider was able in his master’s thesis (1997) to fill a gap in the proof in (Wilf and
Zeilberger, 1992a) of the existence theorem of a recurrence in n for the sum

∑

k hn,k in the case
of a proper hypergeometric term that is not necessarily irreducible.

Secondly, the way (2.1) is used to get a recurrence on the sum over k suggests that banning k
from the coefficients ci,j in an absolute way is not optimal, as is best explained by observing
how the recurrence (2.1) on the term hn,k is transformed into a recurrence

ρ
∑

i=0

ai(n)hn+i = 0 for hn =

β
∑

k=α

hn,k. (3.16)

This transformation proceeds by rewriting (2.1) by the relations

hn+i,k+j = hn+i,k −
(

h
(j)
n+i,k − h

(j)
n+i,k+1

)

for h
(j)
n+i,k = hn+i,k + · · ·+ hn+i,k+j−1, (3.17)

which results in a term gn,k satisfying

r
∑

i=0

ci(n)hn+i,k = gn,k+1 − gn,k for ci(n) =

s
∑

j=0

ci,j(n). (3.18)

Now, summation over k yields

r
∑

i=0

ci(n)hn+i = gn,β+1 − gn,α. (3.19)

In applications, either the right-hand side is zero by itself, or it can be cancelled by applying
a linear recurrence operator. In the former case, the output recurrence (3.16) is just (3.19),
with ρ = r and ai = ci for each i. In the latter case, applying the proper operator to both
sides of (3.19) results in a new recurrence (of order ρ greater than r), satisfied by (hn). In the
derivation above, the term gn,k is of the form Lfn,k for L ∈ Q[n]〈Sn, Sk〉, but this limitation on g
is inessential for the derivation. In particular, allowing L to be in the larger set Q[n, k]〈Sn, Sk〉
should allow “more” g’s to be tested, and “more” relations (3.19) to be found, with the hope of
lower orders for the final recurrences. Wilf and Zeilberger (1992a) attribute this observation to
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Gerdt Almkvist. Wegschaider (1997, Sec. 3.5.1) developed a heuristic to allow L to involve k. To
this end, he considers the equation

r
∑

i=0

s
∑

j=0

t
∑

ℓ=0

ci,j,ℓ(n)k
ℓhn+i,k+j = 0 (3.20)

in place of equation (2.1) and the following analogue for the transformations (3.17):

kℓhn+i,k+j = (k− j)ℓhn+i,k −
(

h
(j,ℓ)
n+i,k −h

(j,ℓ)
n+i,k+1

)

for h
(j)
n+i,k = (k− j)ℓhn+i,k + · · ·+ (k− 1)ℓhn+i,k+j−1.

Using this in (3.20) before any calculations involving the actual value of h results in linear
constraints on the c’s for the ansatz to lead to a recurrence of the form (3.19), best expressed by
the (r+ 1)× t linear constraints over Q(n) that each polynomial

s
∑

j=0

t
∑

ℓ=0

ci,j,ℓ(n) (k− j)
ℓ, for 0 ≤ i ≤ r,

of potential degree t in k, should actually not involve k. As no study is available of what a
suitable degree t should be, Wegschaider’s implementation lets the user heuristically input a
value for it; his manuscript shows tremendous speed-ups by using this improvement.

The case of q-sums is amenable to the same two improvements, Verbaeten’s completion
and the reintroduction of the summation variable in the ansatz. This has been worked out
thoroughly by Riese (2003), both theoretically and in his implementation.

3.4 From Elimination to Equations on Sums and Integrals

In the recurrence case, creative telescoping crucially relies on transforming (2.1) to (3.18), and
on an analogue transformation in the differential case. In operator notation, this transforma-
tion derives from an operator L free of the summation and integration variables an operator P
that involves exclusively the parameters of the sum/integral and the corresponding shifts and
derivatives. A cause of concern is that nothing guarantees a priori that (3.18) or its analogue
does not exhibit a zero left-hand side, which would make (3.19) provide no information on (hn).
As a matter of fact, the reader will only find handwaving in (Zeilberger, 1990b; Almkvist and
Zeilberger, 1990), and no proof attempt at all in either of (Zeilberger, 1991; Wilf and Zeilberger,
1992a).

To the best of my knowledge, this problem was fixed first by Wegschaider (1997) in the case
of recurrences. A similar idea works in the differential case. This late stage in the creative-
telescoping method is the topic of the current section.

The differential case is a bit less technical, so let us start with it. Creative telescoping for
the integration of a function f of variables x1, . . . , xr w.r.t. x2, . . . , xr first obtains a non-zero
skew polynomial L ∈ C[x1]〈D1, . . . ,Dr〉 that annihilates f. Then, to obtain P, it rewrites L by
successive divisions by D2, . . . , Dr on the left as

L = P(x1,D1) +D2Q2(x1,D1, . . . ,Dr) + · · ·+DrQr(x1,D1, . . . ,Dr). (3.21)

(There, the family of Q’s is not uniquely defined.) Upon application to f and integration
over (x2, . . . , xr) in some domain Ω, and under the assumption that the boundary terms (in-
duced by the integration of derivatives) vanish, we obtain the equation

P(x1,D1)F(x1) = 0 where F(x1) =

∫

Ω
f(x1, . . . , xr)dx2 · · ·dxr.
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This is a meaningful relation on the integral F provided the remainder P is not zero. In gen-
eral, a transformation is needed to ensure that P be non-zero. To this end, consider a mono-
mial Dv2

2 · · ·Dvr
r that makes it possible to write L with a non-zero P̃ as

L = D
v2
2 · · ·Dvr

r P̃(x1,D1) +D
v2+1
2 U2(x1,D1, . . . ,Dr) + · · ·+Dvr+1

r Ur(x1,D1, . . . ,Dr),

and such that (v2, . . . , vr) is maximal with this property (that is, increasing any of the v’s would
not result in a P̃ that is free of D2, . . . ,Dr). By repeated use of the relation xiDℓ

i = D
ℓ
ixi− ℓD

ℓ−1
i

and using (∗) to denote expressions whose explicit values are not needed, we get:

x
v2
2 · · · xvrr L = (−1)v2+···+vrv2! · · · vr! P̃(x1,D1) +D2 (∗) + · · ·+Dr (∗). (3.22)

As this new operator also cancels f, P̃ is a non-zero operator that cancels the integral F (provided
the suitable boundary terms vanish). As a final result, we conclude with the existence of an
annihilator of the form

L̃ = P̃(x1,D1) −D2Q̃2(x1, . . . , xr,D1, . . . ,Dr) − · · ·−DrQ̃r(x1, . . . , xr,D1, . . . ,Dr), (3.23)

with non-zero P̃.

The case of recurrences is more technical, although it is essentially the same idea, and it too
has a q-analogue. To mimic the formula xℓiD

ℓ
i = (−1)ℓℓ! +Di (∗), Wegschaider (1997, Sec. 3.2)

multiplied on the left by the falling factorial (n− a)ℓ (for a constant a), leading to the identities

(n− a)ℓ(Sn − 1) = Sn(n− a− 1)ℓ − (n− a)ℓ =

(Sn − 1)(n− a− 1)ℓ −
(

(n− a)ℓ − (n− a− 1)ℓ
)

=

(Sn − 1)(n− a− 1)ℓ − ℓ(n− a− 1)ℓ−1.

Their iterated use yields nℓ(Sn − 1)ℓ = (−1)ℓℓ! + (Sn − 1) (∗). The proof in the recurrence
case then proceeds in a way similar to the differential case, by using a left factor of the form
n
v2
2 · · ·nvrr instead of xv22 · · · xvrr .

3.5 Telescoper, Certificates, Natural Boundaries

The model of (3.2)–(3.3) is so pervasive in the work on creative telescoping that some terminol-
ogy is welcome here: the skew polynomial P constructed on the η’s, whether

P = ηr(n)S
r
n + · · ·+ η0(n)

in the recurrence case or
P = ηr(x)D

r
x + · · ·+ η0(x)

in the differential case, is called a telescoper or telescoping operator for the sequence or function h.
The corresponding rational function R is the (rational-function) certificate for h and P. The mo-
tivation for this terminology is that, in certain kinds of applications that are named over natural
boundaries in the literature, the telescoper P by itself encodes a linear differential/difference
equation on the sum or integral of h. This was the case for both examples (1.1) and (1.5) when
we discussed the wording “creative telescoping” in Section 1.1. In this situation, the certificate R
“certifies” that the telescoper P is well associated with h, by enabling a cancellation property
on h of the form

P(n, Sn)h = (Sn − 1)
(

R(n, k)h
)

, respectively P(x,Dx)h = Dy

(

R(x,y)h
)

, (3.24)

or, in terms of annihilating ideals

P(n, Sn) − (Sn − 1)R(n, k) ∈ annh, respectively P(x,Dx) −Dy R(x,y) ∈ annh.
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To be more explicit, the situation of natural boundaries is when it can be predicted that the
right-hand sides in (3.24) go to 0 when summed w.r.t. k or integrated w.r.t. y. This is so for
example when a summand hn,k and all its shifts have finite support for each n, as bn,k in (1.1),
or when an integrand h(x,y) and all its derivatives have exponential decrease at the boundaries
of integration, as in the integral (1.5).

The annihilator L̃ of f in (3.23), too, can be interpreted in terms of telescoper and certificate
by generalising (3.24). To this end, introduce R2 = f−1Q̃2f, . . . , Rr = f−1Q̃rf, so that

P̃ −D2R2 − · · ·−DrRr ∈ ann f.

Here again, P̃ is called a telescoper for f and the rational functions R2, . . . , Rr are the (rational)
certificates for f and P̃. For that matter, the operators Q̃2, . . . , Q̃r are also at times called
certificates.



Chapter 4

Termination Questions: Criteria and Bounds

Zeilberger’s fast algorithm and its variants and extensions all perform an exhaustive search of
an analogue of (3.19) in some suitable space of equations, in relation to the annihilator of the
input summand or integrand. Thus described, when no guarantee of existence of a telescoper,
the approach is only a heuristic, as no argument justifies its termination, especially in the non-
purely differential situations. This has motivated a number of works to prove termination
properties, which I shall separate in two main bodies.

First, a series of works endeavour to determine a criteria that is able to decide, before any
complicated calculation, whether Zeilberger’s approach will be successful. Such results give no
hint as to the order of the outputs from the method.

Second, for certain classes of inputs, a bound on the output order has been developed, which
depends on degrees and other arithmetic parameters of the input. The bounds (3.5) already
mentioned for proper hypergeometric terms are of this type, as is any order bound for Wilf and
Zeilberger’s approach is a bound for Zeilberger’s fast algorithm. When they exist, bounds can
hopefully be reused in estimating the complexity of some summation or integration algorithm.

4.1 Consequence of Holonomy

In this section, I recall the notions of holonomic functions and sequences, and the sufficient
condition of holonomy for the existence of (3.19) or its differential variant. These notions are
adapted from the notion of holonomic module, itself borrowed from D-module theory.

A series f, possibly of Taylor kind or a formal power series, or more generally a func-
tion of variables x1, . . . , xr, or even a distribution, is called holonomic when the functions
x
α1
1 · · · xαr

r D
β1
1 · · ·Dβr

r f obtained by multiplying monomials in the variables and higher-order
derivatives of f subject to the constraint α1 + · · · + αr + β1 + · · · + βr ≤ N span a vector
space VN(f) whose dimension over C grows like O(Nr). For comparison sake, note that the
number of monomials under consideration to describe VN(f) grows like Θ(N2r). Even the vec-
tor space of elements from C[x1]〈D1, . . . ,Dr〉 with total degree not more than N grows “faster”
than the VN(f)’s, with a dimension Θ(Nr+1). As a consequence, there must exist for large
enough N a non-zero skew polynomial L that maps f to 0. The implied identity Lf = 0 is a
differential analogue to (2.1). This means that a differential analogue of Wilf and Zeilberger’s
approach will always terminate. After all, this was Lipshitz’s argument (1988), which I sum-
marised in Section 2.2.

Furthermore, L can be put in the form (3.21) and transformed into (3.23) for a non-zero
P̃(x1,D1). This implies that the differential analogue (Almkvist and Zeilberger, 1990) of Zeil-
berger’s fast algorithm will always terminate.

A sequence u = (un1 ,...,nr)n1 ,...,nr≥0 is commonly called holonomic when its generating

23
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series
U(x1, . . . , xr) =

∑

n1 ,...,nr≥0

un1 ,...,nrx
n1
1 · · · xnr

r

is holonomic in the original sense. I shall show the existence of an equation of the form (3.11)
for h = u, but, for the sake of presentation, I shall give the idea in the bivariate case, with x1
and x2 respectively denoted by x and y. By the same type of reasoning as above, there exists a
non-zero L ∈ C[x,y]〈Dx〉 that annihilates U. We proceed to make the relation LU = 0 explicit on
the coefficient level. To this end, remark that L rewrites as a (Laurent) polynomial Λ(x,y, θx) ∈
C[x, x−1,y]〈θx〉, where θx is Euler’s derivative xDx. Next, for any sum V of the form

V(x,y) =
∑

n≥0,k≥0

vn,kx
nyk,

we have the formulas

θbxV =
∑

n≥0,k≥0

nbvn,kx
nyk and xaybV =

∑

n≥a,k≥b

vn−a,k−bx
nyk,

for any a ∈ Z and b ∈ N. Write Λ more explicitly as a sum

Λ =
∑

(a,b)∈S
xayb λa,b(θx),

where S is a finite set of pairs (a,b) ∈ Z × N. Applying Λ to U results in

ΛU =
∑

(a,b)∈S

∑

n≥a,k≥b

λa,b(n− a)un−a,k−bx
nyk.

Extracting the coefficient of xnyk proves that the relation

∑

(a,b)∈S
λa,b(n− a)un−a,k−b = 0

holds for all n ≥ A and all k ≥ B, where A and B denote the partial degrees in x and y,
respectively. This is a non-trivial k-free recurrence.

As in the differential case, this means that Wilf and Zeilberger’s approach and Zeilberger’s
fast algorithm both terminate on holonomic inputs.

4.2 Termination of Zeilberger’s Fast Algorithm

In Section 3.2, proving the existence of bounds like (3.5) and (3.14) induces that Zeilberger’s
algorithm terminates on proper hypergeometric terms and on its q-analogues. Ten years lasted
before Abramov obtained a sort of a converse result, in the form of a criterion (Abramov, 2002,
2003) for deciding whether Zeilberger’s algorithm terminates on a given hypergeometric in-
put. This criterion was a continuation of similar studies for the termination in the rational
case (Abramov and Le, 2000, 2002) and it can be tested algorithmically by appealing to algo-
rithms in (Abramov and Petkovšek, 2002; Abramov and Le, 2002). Abramov’s criterion takes a
suitable remainder Rn,k modulo finite differences in what is called an additive decomposition of
the given summand, then tests if the denominator in a non-standard rational normal form of the
quotient Rn,k+1/Rn,k involves only linear factors of the form an+ bk+ c for integers a and b.
A similar criterion was also elaborated for q-analogues in (Le, 2001; Chen, Hou, and Mu, 2005).

It is clear that Zeilberger’s algorithm terminates on a hypergeometric term h if and only if
a telescoper for h exists. Another line of study was to relate the termination of Zeilberger’s
algorithm and the nature of h to be holonomic or not. Here, a sequence is called holonomic
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when its generating series H(x,y) =
∑

n,k≥0 hn,kx
nyk is holonomic, which is equivalent to

H being D-finite, or again to the fact that the sequence h satisfies a set of recurrences that relates
it and a suitable family of specialisations of it, making it P-recursive in the sense of (Lipshitz,
1989).

Wilf and Zeilberger’s conjecture is that every holonomic hypergeometric term is a proper
hypergeometric term. It was proved for the bivariate case independently in (Abramov and
Petkovšek, 2002) and in (Hou, 2004), modulo the identification of terms h that share the same
quotients hn+1,k/hn,k and hn,k+1/hn,k.

Technically, all those criteria commonly base on or partially redevelop a structural study
that had been done seemingly independently by (Ore, 1929, 1930) and Sato (1990). (See also
(Gel’fand, Graev, and Retakh, 1992).) The essential result is that two first-order recurrences,
one w.r.t. n, another w.r.t. k, must satisfy some compatibility property to define a bivariate
hypergeometric sequence hn,k: the two rational functions hn+1,k/hn,k and hn,k+1/hn,k must
admit a very specific factorisation form involving integer coefficients.

A further natural step is to prolong this research to mixed-type (q-)hypergeometric-hyper-
exponential terms. A work was initiated during Chen’s PhD thesis and will be presented in the
forthcoming paper (Chen, Chyzak, Feng, and Li, 2013) (under revision at the time of writing):
this establishes a computational test for the existence of telescopers, by developing suitable
generalisations of additive decompositions and rational normal forms.

4.3 Proving Identities by Numerical Evaluations

An application of creative telescoping is to decide—prove or disprove—a conjectured identity
of the form

b
∑

k=a

un,k = U(n). (4.1)

Performing creative telescoping, either in the form of Zeilberger’s fast algorithm or of Wilf and
Zeilberger’s approach, produces a k-free recurrence from which a recurrence for the sum is
derived. The identity is decided by:

• verifying that U satisfies the computed recurrence;

• specialising (4.1) on sufficiently many values of n and observing equality or mismatch.

Indeed, if the recurrence is of order r and expressed as

a0(n)wn + · · ·+ ar(n)wn−r = 0,

and if n0 is defined as the maximal integer root of a0(n) if it has one, or 0 if it has none, the
values of wn at n0, . . . , n0 − (r− 1) define the values at n > n0 uniquely.

This is the starting point of a strategy, initiated by Yen (1993, 1996, 1997), for deciding iden-
tities of the form (4.1) by numerical evaluations. Yen’s approach is to rewrite the relation (3.18)
predicted by Wilf and Zeilberger’s theory as

a0(n)un,k + · · ·+ ar(n)un−r,k = R(n, k)un,k − R(n, k− 1)un,k−1

for a rational function R. The approach in Section 3.2, and especially the bounds (3.5) and (3.9),
allow to bound the degree β in k of the numerator c0(n) + · · · + cβ(n)kβ of R, then to view
the ai’s and ci’s as solutions of a linear system of size (δ + 1) × (r + β + 2), where δ is the
upper bound in (3.9). Then, expressing the unknown a’s and c’s by Cramer’s rules and using
Hadamard-type bounds allows to derive bounds on the degrees and heights of those polyno-
mials. These bounds are polynomial functions in parameters of the input (degrees of P, heights
of P, A, B, L, in (3.4)–(3.5)); they induce an exponential bound on the maximal integer root
of a0(n).
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The exponential nature of the bound makes it absolutely impractical: the simplest possible
example of the sum

∑

k

(

n
k

)

= 2n would be proved by checking the identity on a number of
consecutive integers that is much more than . . . 1038000 , according to the formula in (Yen, 1993)!

Yen’s evaluation was later refined by Zhang (2003) and (Guo, Hou, and Sun, 2008). There,
no explicit bound is provided: rather, an algorithm to produce a bound is developed, which
experimentally provides dramatically lower values: for the same simple sum of the binomial
coefficients, the bound goes down to . . . just 4 by the method in (Guo, Hou, and Sun, 2008)!

At the time of writing, I cannot say if the possibility of the simultaneous cancellation of
all the ci’s in (3.18) has been integrated in either of the works mentioned above. However,
Wegschaider’s transformation presented in Section 3.4 does not increase degrees and heights by
much, which should not drastically change the results.

4.4 Bounds related to First-Order Equations

A series of works has produced sharper and sharper bounds on the minimal order of a tele-
scoper that can be obtained for a proper, respectively q-proper, hypergeometric term by Wilf
and Zeilberger’s approach and by Zeilberger’s fast algorithm. However, bound improvements
seemingly require a genericity assumption of some kind.

Wilf and Zeilberger (1992a) formulated the linear bound (3.5), that is

r ≤
L
∑

ℓ=1

|bℓ|,

for a proper hypergeometric term, together with a quadratic bound (3.14) for q-analogues. This
was refined by Yen (1993), who produced the bound

r ≤
L
∑

ℓ=1,ǫ=+1

b+ℓ +

L
∑

ℓ=1,ǫ=−1

(−bℓ)
+ +

(

−

L
∑

ℓ=1,ǫ=±1

ǫbℓ

)+

,

where the notation x+ denotes max(0, x); this bound relies on distinguishing terms that are
factorials and terms that are inverses of factorials. An even sharper bound can be obtained
by further collecting the terms according to the signs of the b’s in (3.4), respectively in (3.12).
Under presentation and genericity hypotheses, specifically that all a’s are non-negative and that
the polynomial part P(n, k) has maximal degree, Mohammed and Zeilberger (2005) derived the
better bound

max





∑

ǫ=+1,bℓ≥0

bℓ −
∑

ǫ=−1,bℓ≤0

bℓ,−
∑

ǫ=+1,bℓ≤0

bℓ +
∑

ǫ=−1,bℓ≥0

bℓ



 .

Apagodu (after Mohammed changed his name to this) and Zeilberger (Apagodu, 2006;
Apagodu and Zeilberger, 2006) obtained similar bounds for various classes of hyperexponential
functions, for mixed hypergeometric-hyperexponential functions, for q-analogues, and for mul-
tiple summations and integrations. For example, for the class of non-rational hyperexponential
functions of the form

H(x,y) = p(x,y) exp
(

a(x,y)
b(x,y)

)

∏

s∈S
s(x,y)αs , (4.2)

where

• p, a, and b are polynomial such that a/b is a non-constant function of y,

• the s’s are polynomials with no non-trivial content w.r.t. y,
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• the α’s are transcendental constants,

the bound is given as

degy(b) + max
(

degy(a), degy(b)
)

+

(

∑

s∈S
degy(s)

)

− 1. (4.3)

(The choice of hypotheses in (Apagodu and Zeilberger, 2006) for their proof to be valid is not
cautious, so I chose here a combination that makes the proof work with no additional idea.)

An improvement over this bound can be found in my recent joint work (Bostan, Chen,
Chyzak, Li, and Xin, 2013). There, we developed a bound for any bivariate hyperexponential
function, whether presented in the form (4.2) or not. In particular, the proofs in our work does
not require the α’s to be transcendental constants. The bouding process starts by a decomposi-
tion of the logarithmic derivative DyH/H in the form

DyH

H
= K+

DyS

S

with some technical conditions: the kernel K and shell S need to have coprime denominators and,
after writing the kernel in the form K = k1/k2, the polynomials k2 and k1 − ℓDyk2 must be
coprime for any ℓ ∈ Z. Kernel and shell can be obtained by a simple algorithm. After setting β
to the squarefree part of the denominator of the shell, our bound reads

degy β+ max
(

degy k1, degy k2 − 1
)

. (4.4)

In addition, we proved in (Bostan, Chen, Chyzak, Li, and Xin, 2013) that our bound (4.4) is at
most Apagodu and Zeilberger’s bound (4.3) on their class of more special functions.

Beside bounds on the output order, (Wilf and Zeilberger, 1992a; Yen, 1993) provide bounds
on the degree of the output that are, informally speaking, quadratic in the quantities that appear
in the order bound. In contrast, no degree bound can be found in (Mohammed and Zeilberger,
2005). However, this discussion means nothing as to the degree of the telescoper of minimal
order. It may well be that (Apagodu and Zeilberger, 2006) describes the generic case, with
polynomial order and degree for the minimal-order telescoper, but that degenerate cases require
non-polynomial degrees, as suggested by the encoding of these degrees as roots of a resultant
in (Almkvist and Zeilberger, 1990).



Chapter 5

Creative Telescoping Algorithms for
Equations of Arbitrary Order

The algorithms and considerations of Chapters 3 and 4 all discuss how to obtain a k-free relation
like (2.1), a differential variant, or a non-k-free generalisation like (3.20). In each case, the
calculation can be viewed as some sort of skew-polynomial elimination of the summation index
or integration variable, possibly modulo derivatives like in (3.23) or modulo finite differences
like in (3.19). In each case, too, the application of operators to a function f can be expressed very
explicitly, owing to the assumption on the hypergeometric-hyperexponential nature of f, as an
explicit rational function times f.

Both aspects lose their simplicity in presence of higher-order equations, and a common
understanding lies in an algorithmic theory for skew-polynomial elimination, which was mod-
elled after the classical commutative theory of Gröbner bases. This is why the present chapter
begins with an account on a non-commutative analogue for the theory of Gröbner bases that is
well adapted to the skew algebras under consideration. In relation to (non-commutative) ideal
theory, many termination arguments or arguments that some calculation returns a non-trivial
output more often than not rely on a non-commutative analogue of the dimension theory of al-
gebraic geometry. Dimension is a quantity that, on an intuitive level, distinguishes between the
infinite vector-space dimensions over Q of Q[x], Q[x,y], Q[x,y, z], etc., and is able to capture
such notions as ∂-finiteness and holonomy.

Algorithms in the later sections all rely on this Gröbner-basis theory in a way or another,
although they not necessarily base on the direct computation of a Gröbner basis.

5.1 Skew Gröbner Bases and a Dimension Theory

As Galligo (1985) and Takayama (1989) noticed, respectively in the differential and in the dif-
ferential-difference cases, and as was developed by Kandri-Rody and Weispfenning in the more
general setting of polynomial rings of solvable type (1990), Buchberger’s algorithm for Gröbner
bases can be adapted to our non-commutative context: whether with rational-function coeffi-
cients as in Q(x,y, . . . ,m,n, . . . )〈Dx,Dy, . . . , Sm, Sn, . . . 〉, or with polynomial coefficients as in
Q[x,y, . . . ,m,n, . . . ]〈Dx,Dy, . . . , Sm, Sn, . . . 〉, or in any intermediate situation. Denoting any
such non-commutative ring by A, this theory provides:

• a procedure for putting the presentation of an ideal of A in normal form: two ideals given
by sets of generators can be compared for equality by testing equality of the normalised
sets, and additionally, inclusion of ideals can be tested easily;

• a procedure for division of an element of A by an ideal I ⊂ A with unique remainder, or,
equivalently, for normal forms in the quotient module A/I;

28
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• a procedure for (skew-)polynomial elimination: for a sub-algebra B of A given by a subset
of the generators ofA (theDx,Dy, . . . , Sm, Sn, . . . , and possibly the x,y, . . . ,m,n, . . . in the
variant with polynomial coefficients), a Gröbner-basis calculation results in a presentation
of the intersection ideal I ∩ B.

✲

✻

g1

g2

g3
g4

g5

f1

f2

f3

∂1

∂2

Figure 5.1: The stairs of a
typical ideal

✲

✻
δ(I) = 0

Figure 5.2: Binomial coeffi-
cients

(

n
k

)

w.r.t. Sn, Sk; hy-
pergeometric sequences

✲

✻
δ(I) = 0

Figure 5.3: Bessel Jν(x) w.r.t.
Sν,Dx; orthogonal polyno-
mials w.r.t. Sn,Dx

✲

✻
δ(I) = 1

Figure 5.4: Stirling numbers
w.r.t. Sn, Sk

δ(I) = 2

✲

✻

⊗
✲

✻

Figure 5.5: Abel-type se-
quences w.r.t. Sm, Sk, Sr, Ss

As in the commutative case, these notions are parametrised by a monomial ordering on the
variables of the problem: Dx,Dy, . . . , Sm, Sn, . . . in the case of rational-function coefficients,
x,y, . . . ,m,n, . . . ,Dx,Dy, . . . , Sm, Sn, . . . in the case of polynomial-function coefficients. In each
situation, this designates a leading exponent of each non-zero (skew) polynomial: the maximal
one with non-zero coefficient, w.r.t. the ordering. Given an ideal I generated in A by a collection
of generators f1, f2, f3, . . . as in Figure 5.1, the combinatorial problem solved by Gröbner bases
is to describe the set S(I) of monomials obtained as leading monomials of elements of I. Such
monomials are usually depicted as points on a lattice as in the figure. The data of the fi’s
directly induces that the doubly-hatched zone is part of S(I). These are the monomial that are
multiples of the leading monomials of the fi’s. But it generally happens that combinations of
the fi’s with coefficients in A can produce more leading monomials, as depicted by the simply
hatched zone for S(I). The corners of this stair-shaped hatched zone correspond to elements gi
of the ideal I, which collectively constitute a Gröbner basis. Buchberger’s algorithm really is
an algorithm to compute the (finite) collection of the gi’s from the (finite) collection of the fi’s.
As a consequence, only the monomials under the stairs can be involved in the remainder of a
polynomial under division by I; they constitute a vector basis of the classes in A/I.

Functions that are ∂-finite (in the sense of Section 1.3) correspond to quotient modules A/I
that are finite-dimensional vector spaces over Q(x,y, . . . ,m,n, . . . ). This situation corresponds
to special shapes of stairs that touch all axes, like on Figures 5.2 and 5.3. Given ∂-finite functions
f1, . . . , fs, described by (Gröbner bases for) respective ideals I1, . . . , Is w.r.t. the same algebra A,
the normal-form procedures in the quotient modules A/Ik provide a means to normalise any
polynomial expression h = P(f1, . . . , fs, . . . ) in the fj’s and their shifts and derivatives.

This leads to an algorithm to compute a system of operators for h and a proof that h is
∂-finite too. The computation is as follows: Each of the successive derivatives Di

xh of the
composed function are normalised as linear combinations of a fixed, finite set F (independent
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of i) of monomials in the fj’s and their shifts and derivatives. (More specifically, for each j,
these monomials involve only those shifts and derivatives of fj that cannot be simplified by the
normal-form procedure w.r.t. Ij; these are the monomials under the stairs associated to Ij.) This
normalisation can be written Di

xh =
∑

f∈F ci,ff for rational functions ci,f. By the finiteness of F,
for large enough N, the family {h, . . . ,DN

x h} is linearly dependent, and a linear-algebra solver
can be used to find the kernel of the matrix (ci,f). Any non-trivial kernel element encodes a
differential equation satisfied by h. This process is then reproduced for other derivations Dy,
. . . , as well as for shifts Sm, Sn, . . . , resulting in a system that describes h as ∂-finite. A natural
refinement of the algorithm is to consider families that involve partial shifts and derivatives
of h (Chyzak and Salvy, 1998).

Often in applications, like in the case of the examples in Section 1.5, a sum or integral to be
evaluated involves an expression like h above. As the summation/integration method of the
next section inputs a system for h, the algorithmic closure of the present section has to be used
to prepare the encoding of h.

The discussion of non-∂-finite functions requires the introduction of a notion of ideal di-
mension δ(I), not to be confused with the vector-space dimension discussed above for the quo-
tient A/I viewed as a vector space. The finite dimension of A/I for ∂-finite functions (Figures
5.2 and 5.3) corresponds to ideals of dimension zero: δ(I) = 0. Higher values of the ideal dimen-
sion δ(I) refine the classification by distinguishing between different ideals I for which A/I is of
infinite vectorial dimension. Figures 5.1 and 5.4 depict ideals of dimension 1; Figure 5.5 depicts
an ideal of dimension 2, for sequences of the form h(m, k)r(k+ r)k−1(m− k+ s)m−k involving
a hypergeometric sequence h (and called of Abel type in the literature).

Very importantly, the notion of ideal dimension is related to (skew-)polynomial elimination:
the lower the dimension, the more variables can be eliminated. In terms of the algebras A and B
in the discussion at the beginning of the section, the lower the dimension of the ideal, the fewer
generators B needs to have in order that there exists a non-trivial polynomial in I∩B: in fact, as
few as δ(I) + 1. Under suitable choices of A, this relates to the possibility to perform multiple
summations and integrations w.r.t. more variables when the dimension is low. For an explicit
formula, let us denote by g the number of generators x,y, . . . ,m,n, . . . ,Dx,Dy, . . . , Sm, Sn, . . .
of A. Then, skew-polynomial elimination can eliminate e = g−

(

δ(I)+ 1
)

generators simultane-
ously. Thus, creative telescoping can be used to perform up to e simultaneous summations and
integrations.

5.2 Elimination Based on Gröbner Bases

The relation (2.1) can be rephrased by saying that the skew polynomial

r
∑

i=0

s
∑

j=0

ci,j(n)S
i
nS

j
k

is in the annihilating ideal w.r.t. Q(n)[k]〈Sn, Sk〉 of the hypergeometric term h. Similarly in the
differential case, the Q-linear combination Z(x,Dx,Ds) of the xmDn

sD
o
x’s obtained from (2.4)

is also a skew polynomial in an annihilating ideal: that w.r.t. Q[x, s]〈Dx,Ds〉 of the D-finite
power series g. Likewise, the skew polynomial L in Section 3.4 is in the annihilating ideal w.r.t.
C[x1, . . . , xr]〈D1, . . . ,Dr〉 of f. In each case, (at least) one generator of the skew-polynomial alge-
bra is not involved in the annihilator under consideration, respectively: (i) k; (ii) s; (iii) x2, . . . , xr.
These examples motivate the study of creative telescoping from the point of view of skew-
polynomial elimination via Gröbner-bases computations. Algorithms that follow can be viewed
as an algorithmic continuation of the research on D-modules by Bernstein and Kashiwara in the
1970s.

To the best of my knowledge, the first published study in this spirit was on integration
by Takayama (1990b,a), a topic continued in (Takayama, 1992). More specifically, Takayama
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(1990b) considers elimination monomial orderings in C[x1, x2, . . . , xr]〈D1, . . . ,Dr〉: to perform
integration w.r.t. x2, . . . , xr, a monomial ordering is chosen such that any of x2, . . . , xr is lexico-
graphically higher than any of x1, D1, . . . , Dr (and ties are broken in some way). As, intuitively
speaking, a Gröbner-basis calculation looks for (skew) polynomials with small monomials, for
that ordering it will try to find polynomials free of x2, . . . , xr. For a given function f of variables
x and y, to be integrated w.r.t. y, after choosing an ordering that eliminates y, it will compute
generators for

annWx,y f∩Wx[Dy], (5.1)

where, for this discussion, we write Wx,y for C[x,y]〈Dx,Dy〉 and Wx for C[x]〈Dx〉. Telescopers
are then obtained by setting Dy = 0 in the result, or by more cautiously following the procedure
in Section 3.4.

As in the case of usual (commutative) polynomial rings, this type of elimination procedure is
too slow in practice. (And algorithms for efficient computation via change of orderings (Faugère,
Gianni, Lazard, and Mora, 1993; Collart, Kalkbrener, and Mall, 1997) had not been discovered
yet, even in the simpler commutative case.) So Takayama suggested another approach (1990a),
which computes telescopers from the (polynomial) telescoper ideal defined as

(

annWx,y f+DyWx,y
)

∩Wx. (5.2)

Here, note that the parenthesis is the sum of a left ideal and a right ideal. It does not have
any ideal structure: it is stable under multiplications on the left by elements of Wx[Dy], but
not by multiplications by y, because y and Dy do not commute. In fact, Takayama’s algorithm
computes only an approximation of the telescoper ideal: it views annWx,y f as a left Wx[Dy]-
module, which, as such, has an infinite Gröbner basis, and then works by truncation. Givenm ∈
N and a (finite) Gröbner basis {g1, . . . , gs} of annWx,y f, Takayama’s algorithm will introduce all
products yigj and Dyy

i of degree in y bounded by m, before running a module Gröbner-basis
calculation to eliminate y and provide

(

annWx,y f+DyWx,y
)

≤m
∩Wx[Dy], (5.3)

where the subscript “≤ m” denotes truncation. Telescopers are then obtained by setting Dy = 0

in the result, or again by the procedure in Section 3.4. Takayama’s method is faster in prac-
tice than the previous plain elimination, which motivated Salvy and I to generalise it to non-
differential operators and to optimise it by discarding Dy earlier in the calculations (Chyzak
and Salvy, 1998).

A specific weakness of Takayama’s approach is that it stops as soon as it gets a non-zero ele-
ment of Wx, but nothing excludes that a lower-order operator could not be found for higher m.
This question of a bound on m to get all telescopers was solved by Oaku’s algorithm (1997b)
for the computation of b-functions. In its simplest variant, the b-function represents the ob-
struction to expressing a backward shift operator as a differential operator: the b-function of a
polynomial λ(x1, . . . , xr) is the monic polynomial b(s) ∈ C[s] of minimal degree for which there
exists an operator P(s, x1, . . . , xr,D1, . . . ,Dr) ∈ C[s, x1, x2, . . . , xr]〈D1, . . . ,Dr〉 satisfying

P(s, x1, . . . , xr,D1, . . . ,Dr) λ
s+1 = b(s) λs.

The notion extends to a notion of the b-function of a D-module. It is sometimes called indicial
polynomial of a D-module, as it plays the role of a multivariate indicial polynomial with respect
to multivariate series solutions of a given differential system, in the sense that it provides with
constraints on the minimal (weighted) degrees that appear in the solutions (Saito, Sturmfels,
and Takayama, 2000). The article (Oaku, 1997b) essentially gave an algorithm for computing all
telescopers by determining the largest integer root of a suitable b-function, before using it as
an appropriate bound for m in (5.3) to call Takayama’s algorithm. This was later extended in
(Oaku and Takayama, 2001).
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Two points may obfuscate the discussion of this matter in the literature. First, Oaku’s al-
gorithm was not intended for integration, but rather for its dual operation of restriction, that
is, the computation of annihilating operators for the specialisation of the function f at y = 0.
This is taken into account in the algorithms by exchanging the roles of y and Dy by means of
a transformation named Fourier transform. Second, several sub-tasks of the algorithms require
computing Gröbner bases in Wx,y for orderings that are not well-orders, that is, for which some
variable is less than the monomial 1. This situation would lead to non-terminating procedures
without amendment of the Gröbner-basis theory. To this end, two options are available, which
both use homogenisation to ensure termination of reductions during Gröbner-basis calculations:

• a homogenisation of each generator of the annihilator by an additional variable x0 so
as to work with homogeneous polynomials in Wx,y[x0]; this was introduced by (Oaku,
1997a; Oaku and Takayama, 2001) in algorithms for the computation of b-functions and
restrictions;

• a homogenisation of the whole algebra Wx,y by introducing a slack variable h and an
algebra with new commutation rules: Dxx = xDx + h2 and Dyy = yDy + h2; this was
introduced by Sturmfels and Takayama (1998); Saito, Sturmfels, and Takayama (2000) for
the computation of the integral of a module, that is, the Wx-module M/DyM obtained from
a Wx,y-module M.

In addition, it has to be noted that all methods require a sufficient description of annWx,y f

for (5.1) or (5.3) to be certainly non-trivial. What is at sake here is that a generating family
for annWx,y f need not be easy to find in practice: applications usually provide with annihi-
lators w.r.t. the algebra Rx,y of differential operators with rational-function coefficients, that
is, C(x,y)〈Dx,Dy〉, not w.r.t. Wx,y. And a generating set for annRx,y f is not a generating set
for annWx,y f, even after clearing denominators. This is the problem of Weyl closure already
mentioned in Section 2.1. In other words, one easily has generators of a sub-ideal of annWx,y f

only. Although an algorithm for Weyl closure exists (Tsai, 2002), the only implementation of
it and the related algorithms that is available in a mainstream computer-algebra system is for
Singular, by Andres, Levandovskyy, and Martín-Morales. This may be caused by their apparent
intricateness. Indeed, at least in its first presentation, the algorithm for Weyl closure is based
on a localisation algorithm for D-modules (Oaku, Takayama, and Walther, 2000), which in turn
uses the two different homogenised Gröbner-basis theories mentioned above for sub-tasks.

Recently, Oaku’s algorithm has been extended to compute certificates after obtaining tele-
scopers (Nakayama and Nishiyama, 2010). Another recent article (Oaku, 2013) develops sim-
ilar algorithms for integrals over a domain defined by polynomial inequalities by restricting
the domain of the function via the Heaviside function. In the context of recurrences, Kauers,
Koutschan, and Zeilberger (2009) have used Takayama’s approach in dual form, to compute
recurrences for the specialisation of some sequence fn,i,j at i = j = 0.

5.3 Summation and Integration of ∂-Finite Functions

Zeilberger’s fast algorithm for definite hypergeometric sums of the form

Un =

b
∑

k=a

un,k

and the differential analogue by Almkvist and Zeilberger for definite hyperexponential integrals
of the form

U(x) =

∫b

a
u(x,y)dy
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are dedicated to hypergeometric/hyperexponential terms by their choice of an ansatz,

P(n, Sn)u = (Sk − 1)
(

R(n, k)u
)

for P ∈ C(n)〈Sn〉 and R ∈ C(n, k)

in the discrete case and

P(x,Dx)u = Dy

(

R(x,y)u
)

for P ∈ C(x)〈Dx〉 and R ∈ C(x,y) (5.4)

in the continuous case. In each case, the rationale to ask for a term of the form Ru, for a rational
function R, is that the evaluation of Qu for a skew polynomial Q ∈ C(n, k)〈Sn, Sk〉, respec-
tively Q ∈ C(x,y)〈Dx,Dy〉, simply leads to a rational multiple of u when u is hypergeometric,
respectively hyperexponential.

But more general classes of functions u require more general terms to take the role of Ru.
With the motivation of section (3.4), which, in the (differential) holonomic case, guarantees the
existence of a non-zero P(x,Dx) and of some Q(x,y,Dx,Dy) ∈ C[x,y]〈Dx,Dy〉 such that

P(x,Dx)u = Dyv for v = Q(x,y,Dx,Dy)u, (5.5)

it is just natural to replace Ru with an expression that can represent all the possible Qu’s.
I realised in (Chyzak, 2000) that a nice solution is available for a D-finite u, which is the topic of
the present section.

5.3.1 Chyzak’s algorithm in basic form

Indeed, given that there exists a finite basis
{

vi
}

, indexed by 1 ≤ i ≤ d, for the vector space V
over C(x,y) generated by all the derivatives Da

xD
b
yu at any orders, the ansatz (5.5) in the un-

known operator Q can be replaced with the ansatz

P(x,Dx)u = Dyv for v =

d
∑

i=1

φivi (5.6)

in terms of unknown bivariate rational functions φi’s from C(x,y). Now, expandingDyv results
in an equation that is linear in the vi and Dyvi, on the one hand, and linear in the φi and
the Dyφi, on the other hand. As the Dyvi’s are also in V , the derivative Dyv can be rewritten
in the form

Dyv =

d
∑

j=1

(Dyφj) vj +

d
∑

i,j=1

φiai,jvj (5.7)

for explicit rational functions ai,j ∈ C(x,y) that depend only on the choice of the basis
{

vi
}

.
As in the case of (3.3) for hyperexponential functions (that is, when d = 1), an ansatz P =

ηr(x)D
r
x + · · ·+ η0(x) is made, and leads to writing Pu as a linear combination of the vj with

coefficients that are linear in the η’s:

Pu =

d
∑

j=1

r
∑

i=0

ηibi,jvj (5.8)

for explicit rational functions bi,j ∈ C(x,y). For each j between 1 and d, extracting from (5.6) the
coefficients w.r.t. the basis element vj results in a non-homogeneous linear differential relation
between Dyφj and the φi’s, with non-homogeneous part involving the ηi’s:

Dyφj +

d
∑

i=1

ai,jφi =

r
∑

i=0

bi,jηi (1 ≤ j ≤ d). (5.9)

This system is solved by eliminating all φj’s but one, say, ψ = φd, which results in a non-
homogeneous higher-order linear differential equation in ψ(x,y), with derivations w.r.t. y only
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and a non-homogeneous part that is linear in the ηi(x)’s. This can be solved by a non-homo-
geneous variant of Abramov’s decision algorithm for rational solutions of a linear ODE (1991).
Then, if Abramov’s algorithm proves the absence of solutions, there is provably no solution to
the ansatz (5.6) for the current value of r. Else, putting the solution ψ back into the system (5.9)
results in a similar system in fewer unknown φ’s, which can in turn be examined for solutions.

The algorithm I formulated in (2000) applies to general operators in place of just the deriva-
tions Dx and Dy, as long as the same kind of finiteness as with D-finite functions is preserved.
This is why I presented my algorithm for ∂-finite functions. This includes sequences defined
by recurrences or q-recurrences, functions defined by mixed differential-difference equations.
What varies with the nature of operators is how Dyv is changed in (5.6) and the exact form it
takes in the analogue of (5.7). Still, the induced system that plays the role of (5.9) can each time
be solved by resorting to a variant of Abramov’s algorithms for rational solutions (1991; 1995).

In practice, one takes for the vi’s a family of derivatives
{

D
ai
x D

bi
y u

}

1≤i≤d
with good prop-

erties w.r.t. derivation, and the matrix (ai,j) is rather sparse. Such a family is obtained naturally
when manipulating the ∂-finite function in an algorithmic way. A ∂-finite function f is given by
a family operators P1, . . . , Ps that generate the annihilating ideal ann f w.r.t. a skew-polynomial
algebra A = Q(x,y, . . . ,m,n, . . . )〈Dx,Dy, . . . , Sm, Sn, . . . 〉. But most often, as the result of a
preceding calculation, the P’s constitute moreover a Gröbner basis of ann f w.r.t. some mono-
mial order. So there is a natural family of derivatives that are reduced w.r.t. the P’s, that is, that
are equal to their remainder after division by the P’s.

5.3.2 Iterated integrals and sums

Multiple summations and integrations can also be computed by the same approach as in the pre-
vious section, as I explained in the case of natural boundaries in (2000) and as we later extended
to non-natural boundaries in (Bostan, Chyzak, van Hoeij, and Pech, 2011). For presentation
sake, I shall only present the case of double integration w.r.t. y and z of a hyperexponential
function u of variables x, y, and z.

The case of double integrals leads to generalising (5.4) into a form

P(x,Dx)u = Dy

(

R1(x,y, z)u
)

+Dz

(

R2(x,y, z)u
)

(5.10)

for P in C(x)〈Dx〉 and R1 and R2 in C(x,y, z), but the solving for R1 and R2 does not generalise
so smoothly: attempting reduces to a linear partial differential equation relating R1 and R2 with
DyR1 and DzR2. To the best of our knowledge, although this overdetermined linear partial
differential equation has a very specific form, no algorithm is available to solve it for its rational
solutions. (For comparison sake, the algorithmic problem of recognising whether a general
linear partial differential equations with polynomial coefficients has a rational-function solution
has recently been proved to be undecidable (Paramonov, 2013).)

Therefore, instead of a direct approach, I developed a cascading approach (2000) which
I shall now summarise. Noting that the dependency of P on a single derivation Dx in (5.4) is
inessential, the same approach is possible for the creative telescoping w.r.t. the (single) variable z
of a trivariate hyperexponential function u from Q(x,y, z). Indeed, setting P to the undetermined
form

P =
∑

0≤i+j≤r

ηi,j(x,y)Di
xD

j
y

for some tentative total order r and unknown rational functions ηi,j from Q(x,y), then perform-
ing the same solving as previously, now relying on linear algebra over Q(x,y), leads to a basis
of P(α)’s of total order at most r for which there exists a rational function φ(α)(x,y, z) satisfying

P(α) u = Dz

(

φ(α) u
)

.
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The theory (as developed, e.g., by Zeilberger (1990b)) guarantees that the set of P(α)’s obtained
for sufficiently large r describes a D-finite function û of x and y, and can therefore be used to
determine the finite set needed as an input to the algorithm in (Chyzak, 2000) and in (5.6).

Finally, a double integration algorithm is obtained by continuing the approach used for
natural boundaries in (Chyzak, 2000) (Stages A and B below) by a suitable recombination of
the outputs (Stage C below). The resulting treatment of multiple integrals over non-natural
boundaries is an extension over (Chyzak, 2000), and the corresponding algorithm is as follows:

• Stage A: First iteration of creative telescoping. Using the univariate algorithm for trivariate
hyperexponential functions in variables (x,y, z) delivers identities

P(α)(x,y,Dx,Dy)u = Dz

(

φ(α)(x,y, z)u
)

. (5.11)

• Stage B: Second iteration of creative telescoping. Considering a function û of (x,y) that is an-
nihilated by all P(α) and using the univariate algorithm for D-finite functions in variables
(x,y) delivers an identity

P(x,Dx) û = Dy

(

Q(x,y,Dx,Dy) û
)

. (5.12)

• Stage C: Recombination. By the theory of linear-differential-operators ideals, the calculations
of the algorithm can be interpreted as a proof of existence of operators L(α)(x,y,Dx,Dy)

satisfying

P(x,Dx) −DyQ(x,y,Dx,Dy) =
∑

α

L(α)(x,y,Dx,Dy)P
(α)(x,y,Dx,Dy). (5.13)

These L(α) can effectively be obtained either by following the calculations step by step
or (less efficiently) by a postprocessing (non-commutative multivariate division). Hence,
defining

R1 = u−1
(

Q(x,y,Dx,Dy)u
)

and R2 = u−1
∑

α

L(α)(x,y,Dx,Dy)
(

φ(α)(x,y, z)u
)

delivers a solution (P,R1,R2) of (5.10).

Note that this two-stage process inherently introduces a dissymmetry in the treatment of the
variables y and z: the output from the first iteration tends to be larger than its input; in turn,
the output from the second is larger than the output from the first. As a consequence, the order
we deal with the variables may have an impact on the running time.

5.3.3 Koutschan’s heuristics

Mainly two aspects of the algorithms for ∂-finite functions make them slow in practice. Firstly,
solving of (5.9) by uncoupling is sub-optimal. Although algorithms for direct solving of a
system exist in the ordinary differential/difference case, they have never been tested in creative-
telescoping implementations. Instead, Chyzak’s algorithm proceeds by uncoupling, which
turns out to be a bottleneck. Secondly, even if no algorithm is known to solve (5.10) as an
overdetermined linear partial differential equation, patterns in the orders of poles emerge by
experimentation. Having no algorithm remains an obstruction to the direct multiple summa-
tion/integration by creative telescoping in Chyzak’s algorithm. This has motivated Koutschan
(2010) to develop heuristics to guess the exponents in the denominators, which have allowed
to solve difficult problems in sizes that can so far not be attacked by the complete algorithmic
approaches (Koutschan, Kauers, and Zeilberger, 2011).

Koutschan proceeds with a refined ansatz to solve (5.6), where, owing to the remark at the
end of Section 5.3.1, the φi’s have to be thought of as low-order derivatives Dai

x D
bi
y u. Once
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the (tentative) order r of P is fixed, the left-hand side Pu rewrites according to the differen-
tial/recurrence equations satisfied by u by introducing denominators involving y, as introduced
by the bi,j’s in (5.8). Koutschan adjusts heuristic denominators of the φi’s to match those ob-
tained for the left-hand side via the formula (5.7) for the right-hand side. Then, he fixes heuristic
(possibly large) partial degrees for the numerators of the φi’s. To test quickly whether (5.6) is
solvable for the current choices of r, denominators, and supports of the numerators, he then
proceeds modulo specialisation of x and modulo a large prime. This is more subtle than it first
looks like: one has to work around non-commutativity, but performing all non-commutative
multiplications before specialisations. Once a modular image proves that the right order r has
been found, the same modular process is used to minimise the orders of poles in the denomina-
tors and the numerator supports before proceeding with the final non-modular (exact) solving.

It is of interest to compare the way Koutschan’s algorithm optimises the shape of numerators
and denominators by fast homomorphic computations with Verbaeten’s approach for hyperge-
ometric terms in Section 3.3. There, a theoretical study describes the set S of shifts of interest
for a relation (3.15) to exist and, starting from a possibly too small S, a completed S is obtained,
which does not enlarge denominators and numerators. In contrast, Koutschan’s strategy tends
to first overestimate the denominators and numerators, then uses fast heuristics to reduce and
fit them exactly to the minimal needed.

5.4 Beyond Holonomy

Another direction of extension concerns functions or sequences that cannot be defined by a
∂-finite ideal. Majewicz (1996, 1997) has given an algorithm that is able to produce Abel’s
summation identity

n
∑

k=0

(

n

k

)

i(k+ i)k−1(n− k+ j)n−k = (n+ i+ j)n

automatically and to find similar new identities. (Here, the reader will easily believe that a
term like kk makes such summand unable to enjoy a recurrence with polynomial coefficients
in k.) Kauers (2007) has suggested a summation algorithm applicable to sums involving Stirling
numbers and similar sequences defined by triangular recurrence equations (and infinitely many
initial conditions). This algorithm finds, for instance, the identity

n
∑

k=0

(−1)m−kk!

(

n− k

m− k

)

S2(n+ 1, k+ 1) = E1(n,m),

where S2 and E1 refer to the Stirling numbers of second kind and the Eulerian numbers of first
kind, respectively. A summation algorithm of Chen and Sun (2009) is able to discover certain
summation identities involving Bernoulli numbers Bn or similar quantities, for example

m
∑

k=0

(

m

k

)

Bn+k = (−1)m+n
n
∑

k=0

(

n

k

)

Bm+k.

None of the quantities covered by these algorithms admits a definition via a ∂-finite ideal, but all
three algorithms are based on principles that resemble those employed for holonomic systems
and ∂-finite ideals. In each case, it turns out that the differential/difference equations defining
the integrand/summand are of a form that permits to prove the existence of at least one non-
trivial differential/difference equation for the integral/sum by a counting argument that can be
compared with Lipshitz’s proof for diagonals in Section 2.2.

In (Chyzak, Kauers, and Salvy, 2009), we have given algorithms dealing with functions
described by ideals of linear functional operators that are not ∂-finite. They generalise the
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algorithms known for the ∂-finite case and cover the extensions to non-holonomic functions
discussed in the beginning of the present section. Holonomy being lost, it is not always the
case that creative telescoping can succeed—whatever the algorithm. However, holonomy being
only a sufficient condition, it is shown that by considering more generally the dimension of
the ideals (as discussed in Section 5.1) and another quantity that Kauers, Salvy, and I have
called polynomial growth, it is possible to predict termination of a generalisation of Chyzak’s
generalisation of Zeilberger’s fast algorithm.

To state it in a nutshell, the lower the dimension of the annihilating ideal of a function, the
more variables can be summed and integrated by creative telescoping. (See the formula at the
end of Section 5.1.) It is therefore natural to try and bound the dimension related to a multiple
sum/integral in terms of the dimension of the summand/integrand. In doing this, the bound
we could find is parametrised by the new notion of possible growth.

The notion of polynomial growth originates in observing how the “common denomina-
tor” Hn,k could be chosen in Wilf and Zeilberger’s treatment of proper hypergeometric sums, in
contrast to the behaviour of the same approach if confronted with the non-proper input 1/(n2 +
k2). In the former case, the common denominator has a number of factors that is linear
w.r.t. r+ s; in the latter case, it has to be chosen as

r
∏

i=0

s
∏

j=0

(

(n+ i)2 + (k+ j)2
)

and thus has a quadratic number of factors. The same difference in behaviours—linear versus
quadratic—occurs for the numerators. Intuitively speaking, the exponent in this polynomial
growth of the degree is our notion of polynomial growth.

To make this formal, let us distinguish between variables x1, . . . , xξ that are parameters of
the integral/sum and variables t1, . . . , tτ that are integration/summation variables. That is, we
consider a multiple integral/sum of the form

F(x1, . . . , xξ) =
∫

f(x1, . . . , xξ, t1, . . . , tτ)dt1 · · ·dtτ,

or
F(x1, . . . , xξ) =

∑

(t1,...,tτ)∈I
f(x1, . . . , xξ, t1, . . . , tτ),

viewed as a sequence with indices x1, . . . , xξ, or some mixed case of integrations and sum-
mations. In the work (Chyzak, Kauers, and Salvy, 2009), we managed to have a complete
description in terms of operators with rational-function coefficients. Therefore, let us introduce
Ax,t = Q(x1, . . . , xξ, t1, . . . , tτ)〈∂x1

, . . . , ∂xξ
, ∂t1 , . . . , ∂tτ〉 and Ax = Q(x1, . . . , xξ)〈∂x1

, . . . , ∂xξ
〉,

where ∂xi
denotes either Dxi

or Sxi
, according to the case, and similarly for ∂ti .

As creative telescoping has to do with the elimination of the t’s, we consider how reduc-
tion modulo (a fixed Gröbner basis for) the ideal I = annAx,t f lets the degrees in the t’s grow.
For any given integer s ≥ 0, there exists a polynomial Ps(x1, . . . , xξ, t1, . . . , tτ) such that each
of the Ps(x1, . . . , xξ, t1, . . . , tτ)∂

α1
x1

· · · ∂αξ
xξ
∂
β1
t1

· · · ∂βτ
tτ

has a remainder modulo I that is a linear
combination of monomials in the ∂’s with coefficients in Q(x1, . . . , xξ)[t1, . . . , tτ]: such a poly-
nomial Ps can be found as a common denominator, for instance. When, additionally, there is an
integer π ∈ N such that the coefficients in Q(x1, . . . , xξ)[t1, . . . , tτ] have total degree in the t’s
bounded by O(sπ), then the annihilating ideal of f is said to have polynomial growth π.

The main result of (Chyzak, Kauers, and Salvy, 2009) is to bound the dimension of the ideal
of annihilators that can be obtained by creative telescoping, respectively

(

I+

τ
∑

i=1

DtiAx,t

)

∩Ax and

(

I+

τ
∑

i=1

(Sti − 1)Ax,t

)

∩Ax (5.14)

in the integration and in the summation cases, where we have set Ax,t = Q(x)[t]〈∂x, ∂t〉 and
Ax = Q(x)〈∂x〉. These (rational) telescoping ideals play a role similar to (5.2) in Takayama’s
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and Oaku’s algorithms in Section 5.2. Under natural technical assumptions, this bound can be
expressed in terms of the dimension δ(I) and polynomial growth π(I): the dimension (w.r.t. Ax)
of the output (5.14) is bounded by

δ(I) +
(

π(I) − 1
)

τ.

In particular, when this bound is smaller than ξ, then non-trivial annihilators exist in Ax for the
sum/integral, as a consequence of the remarks at the end of Section 5.1. This explains why the
case π(I) = 1 is particularly pleasant in applications.

∂x
1

∂x
2

∂t

Figure 5.6: Non-∂-finite algorithm: relation to the stairs of the annihilating ideal

Several nice cases correspond to polynomial growth π(I) = 1:

• Functions in the purely differential situation. Intuitively speaking, taking a derivative in-
creases the order of finite poles by 1, while not increasing the order at infinity, and this
enables the polynomial growth to be 1. The situation that is described here is very analo-
gous to and should be compared with the proofs on diagonals in Section 2.2.

The set of the singularities t of the elements of Ax,tf (with the x’s viewed as parameters)
is given as the zero set of a single polynomial p ∈ Q[x, t]. A suitable polynomial p can
be obtained as the lcm of the coefficients of the leading monomials of the elements of
Gröbner basis for I, written without denominators. Even more, this polynomial p =

p(x1, . . . , xξ, t1, . . . , tτ) is such that, for any function g = Lf given by L ∈ Ax,t, each of
the derivatives Dxi

g, for 1 ≤ i ≤ ξ, and Dtjg, for 1 ≤ j ≤ τ, can be written in the form
p−1L ′f for L ′ ∈ Ax,t, where the total degree of L ′ w.r.t. the t’s is not more than that of L
augmented by the degree of p. Therefore, Ps can be taken to be ps, with π = 1.

In this case, starting with a ∂-finite function f results in an integral that is ∂-finite as well.

• Proper hypergeometric terms. The ideas have been provided already in Section 3.2. The main
difference is that we now want to bound the total shift order, instead of each partial shift
order as in (2.1). We provide the idea in the bivariate case for simplicity.

Indeed, for h as in Section 3.2, each hn+i,k+j for 0 ≤ i + j ≤ s involves terms of the
form Γ(aℓn+bℓk+ cℓ +u) for a shift u bounded in absolute value by σ ′

ℓ = max(|aℓ|, |bℓ|) s,
that is, in a linear way w.r.t. s. Now, observe that

(

Γ(aℓn+ bℓk+ cℓ + u)/Γ(aℓn+ bℓk+
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cℓ)
)ǫℓ has a denominator bounded by

Bℓ =















Γ(aℓn+ bℓk+ cℓ)

Γ(aℓn+ bℓk+ cℓ − σ
′
ℓ)

when ǫℓ = +1,

Γ(aℓn+ bℓk+ cℓ + σ
′
ℓ)

Γ(aℓn+ bℓk+ cℓ)
when ǫℓ = −1.

Both Bℓ and the polynomial

Bℓ

(

Γ(aℓn+ bℓk+ cℓ + u)

Γ(aℓn+ bℓk+ cℓ)

)ǫℓ

have a degree at most 2σ ′
ℓ in k. For a common denominator, we therefore take Ps =

P(n, k)B1 · · ·Bs, and we find π = 1.

• Abel-type sequences. An Abel-type sequence is a sequence of the form

hn,k(k+ r)
k−1(n− k+ s)n−kr

where hn,k is a proper hypergeometric term. In (Chyzak, Kauers, and Salvy, 2009), it was
shown that a suitable common denominator is

Ps = P(n, k)
( L
∏

ℓ=1

Bℓ

)( s
∏

j=−s

(k+ r+ j)(n− k+ j)

)

,

leading to π = 1 again.

• More examples considered in (Chyzak, Kauers, and Salvy, 2009) include certain products
of Stirling numbers or Bernoulli numbers with hypergeometric terms, or more types of
special functions, as listed at the end of Section 1.5.



Chapter 6

Efficiency and Complexity Issues

Until recently, little was known about the theoretical complexity of Zeilberger’s fast algorithm
and about that of creative telescoping in general. Indeed, most of the studies that investigated
efficiency issues in creative-telescoping algorithms were more concerned with heuristics to re-
cast a summation problem in to another sum with same value, either by using a symmetry of
the summand w.r.t. the summation range (“creative symmetrising”, (Paule, 1994)), or by other
changes of the form of the sum (“creative subtituting”, (Riese, 2002)). An exception seems to be
the optimisation in (Lisoněk, Paule, and Strehl, 1993) for rational summation, which presents a
very detailed analysis of the degree of a polynomial to be solved for in Zeilberger’s fast algo-
rithm, namely the numerator of the rational function R in (3.1).

Yet, experimenting had soon indicated that the arithmetic size of the rational certificate,
whether R(k) in (3.2) or the collection of the φi’s in (5.6), is a limiting factor, as it is in prac-
tice much larger than the size of the corresponding telescoper, whether ηr(n)Srn + · · ·+ η0(n)
or P(x,Dx). Complexity study has to take the certificate size into account. In fact, several
phenomena occur:

• Algorithms that operate on linear differential or recurrence equations with polynomial
equations are sensitive to a quantity N that governs the arithmetic size of their solutions
and that is in the worst case exponential in the binary size of the input equation. In
particular, the degrees in the rational certificates are governed by such an N, which is
often much larger than the order of the telescoper.

• The total binary size of the coefficients of rational certificates tends to grow quadratically
in their degrees, making the binary complexity of any algorithm that writes the φ’s in
expanded form at least Θ(N2).

• Additionally, rational certificates typically involve more variables than the corresponding
telescopers, entailing a combinatorial blow-up of the number of monomials in their dense
representation.

To solve both questions of the theoretical complexity of creative telescoping and of the prac-
tical efficiency of its algorithms, two directions of research have emerged in the last years:

• First, it was observed that the rational certificates can be represented in condensed form,
by keeping denominators factored and viewing numerator coefficients as produced by re-
currences. This led to two works: (Bostan, Cluzeau, and Salvy, 2005) for the differential
case, then (Bostan, Chyzak, Cluzeau, and Salvy, 2006), in which I participated, for the
difference case. The main contribution there is to explain how non-homogeneous linear
differential or difference equations can be solved for rational-function solutions with lesser
size explosion of intermediate computations, so as to achieve algorithms with complex-
ity Õ(N).

40
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• Second, it has to be noticed that rational certificates are typically not needed in expanded
normal form in applications: often, they are not needed at all (integration over a closed
contour or other type of “natural boundaries”); even when they are needed, they are first
specialised at end points of the summation or integration range, resulting in much smaller
expressions that can more easily be normalised than the original rational certificates. This
point of view led to the design of parametrised extensions of Hermite reduction in another
series of articles, mostly for the integration of rational functions (Bostan, Chen, Chyzak,
and Li, 2010; Bostan, Lairez, and Salvy, 2013), but also for the integration of hyperexpo-
nential functions (Bostan, Chen, Chyzak, Li, and Xin, 2013).

6.1 Compact Forms

Section 5.3.1 has shown how Chyzak’s creative-telescoping algorithm reduces to solving linear
ordinary differential or difference equations for their rational-function solutions, which consti-
tute the rational certificates of the telescopers obtained by the algorithm. In my introductory
discussion, I suggested that computing these rational functions—in normal form as is done
in Abramov’s algorithms—is the bottleneck in Chyzak’s algorithm. The situation was similar
for Zeilberger’s and Almkvist and Zeilberger’s algorithms in Section 3.1, although a more di-
rect approach is classically used to find the denominator, then the numerator, of the rational
certificates.

Very simple examples show that the degrees appearing in rational solutions can be exponen-
tial in the binary size of the equation: for any explicit integer value of the parameter N,

(x+ 1)(x+ 2)u ′ +Nu = 0 and n(n+ 1/2−N)u(n+ 1) − (n−N)(n+ 1/2)u(n) = 0 (6.1)

have respective solutions (x+ 2)N/(x+ 1)N and
(

n−1/2
N

)

/
(

n−1
N

)

, which are rational functions
with numerators and denominators of degree N. In addition, expanding the numerators and
denominators of these rational functions in the monomial bases introduces integers with a total
binary size Θ(N2). For instance,

(

N
i

)

appears in the denominator of the first example, whose
binary size is proportional to i for 0 ≤ i ≤ N/2: summing over i leads to the quadratic bound.

So, any way of accelerating these solving algorithms to a complexity less than quadratic has
to base on a way to avoid representing numerators and denominators in expanded normal form.
For denominators, this is obtained by keeping them factored. For numerators, this is obtained
by a more drastic change of representations: the coefficients of the numerators in a suitable
basis are governed by a (compact) recurrence, which permits to represent the numerator by a
recurrence and initial conditions.

The goal in (Bostan, Cluzeau, and Salvy, 2005; Bostan, Chyzak, Cluzeau, and Salvy, 2006)
is to reduce the binary complexity from Õ(N2) for naive algorithms to Õ(N). Still, if the cer-
tificates were needed in expanded form, expanding would cost Θ̃(N2). In the articles, related
probabilistic algorithms are introduced for testing existence of rational solutions in binary com-
plexity Õ(N1/2). The precise complexity estimates are derived in the articles. For simplicity,
I more informally use here the wording “huge”, respectively “small”, to indicate quantities
whose (arithmetic) size or value are exponential, respectively polynomial, in the binary size of
the input.

6.1.1 Abramov algorithms for rational solutions

To understand how to control sizes in and the complexity of rational solving, let us examine
how Abramov’s algorithms work. A problem of integration w.r.t. y, parametrised by x, leads to
a differential equation

ar(x,y)
drφ

dyr
(x,y) + · · ·+ a0(x,y)φ(x,y) = b(x,y), (6.2)



42 CHAPTER 6. EFFICIENCY AND COMPLEXITY ISSUES

while a problem of summation w.r.t. k, parametrised by n, leads to a recurrence

ar(n, k)φ(n, k+ r) + · · ·+ a0(n, k)φ(n, k) = b(n, k), (6.3)

in both cases for polynomials ai’s and b in C(x)[y] or C(n)[k]. Owing to the role of x and n as
parameters only in what follows, we now drop the dependency in them in the notation. A first
step of the algorithm is to find a denominator bound, that is, a polynomial D that is a multiple
of the denominator of any rational solution. Then, after a change of unknowns by φ = ψ/D
and clearing denominators, a new equation of the same form is obtained, whose polynomial
solutions parametrise the solutions of the original problem. To solve the new problem, one
simply determines a degree bound δ on polynomial solutions before proceeding by undeter-
mined coefficients, which amounts to solving a linear system. For fast solving, it was observed
in (Abramov, Bronstein, and Petkovšek, 1995) that expressing polynomials in the usual mono-
mial basis

(

ym
)

m∈N
is sufficient to obtain a sparse system in the differential case, while ob-

taining a sparse system in the recurrence case requires expanding polynomials in the binomial
basis

((

y
m

))

m∈N
.

For its part, the polynomial D is obtained by a local analysis of the possible singularities of
solutions at finite singular points, first studying their potential location before bounding pole
orders in a way that is similar in spirit to the degree bounding for polynomial solutions: One
first observes that potential singular points are given by zeroes of the leading coefficient ar(y)
in the differential case and by the gcd g(k) of suitable shifts of the leading and trailing coeffi-
cients, namely pr(k− r) and p0(k), in the recurrence case. After this, the denominator bound is
expected in the form

D(y) =

λ
∏

ℓ=1

dℓ(y)
mℓ (6.4)

for factors dℓ(y) of ar(y) in the differential case, and in the form

D(k) =

λ
∏

ℓ=1

d(k) · · ·d(k+mℓ − 1) =

λ
∏

ℓ=1

dℓ(k+mℓ − 1)
mℓ (6.5)

for factors dℓ(k) of g(k) in the recurrence case.
In both types of equations, the mℓ’s and the degree bound δ are obtained as maximal integer

zeroes of polynomial equations called indicial equations. Indicial equations for δ, as well as for
the mℓ’s in the differential case, are constructed by reading off their coefficients after simple
transformations of the original equation (6.2). In the recurrence case, the indicial equation for
the mℓ’s is obtained from (6.3) as the resultant

R(h) = Resh
(

p0(k+ h),pr(k− r)
)

.

This provides an exponential upper bound on the mℓ’s, and thus on the degrees that appear in
rational solutions. The examples (6.1) show that these bounds are met. The quantity N of the
introduction is the maximum of δ and the mℓ’s.

6.1.2 Keeping the denominator bound compact

A scrutiny of Abramov’s classical algorithms shows that, even if the denominator bound is
obtained in factored form (6.4) or (6.5) in a first step of the algorithm, it is immediately expanded
by the next step when realising the change of unknown φ = ψ/D in the equation.

To explain how to improve on this situation, I shall focus on the recurrence case that we
dealt with in (Bostan, Chyzak, Cluzeau, and Salvy, 2006). The key observation is that, even if
D in (6.5) is “huge”, the quotient ρ(k) := D(k)/D(k + 1) is “small”. This makes it possible to
transform the recurrence for φ into one for ψ without expanding D. Indeed, the quotient is

ρ(k) =
D(k)

D(k+ 1)
=

λ
∏

ℓ=1

dℓ(0)

dℓ(k+mℓ)
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and has degrees not more than that of ar. After observing, for j ≥ 0,

φ(k+ j) = ρ(k+ j− 1) · · · ρ(k)D(k)−1 ψ(k+ j),

changing unknowns in (6.3) and multiplying by D(k) lead to the equivalent formulation

ar(k)ρ(k+ r− 1) · · · ρ(k)φ(k+ r) + · · ·+ a1(k)ρ(k)φ(k + 1) + a0(k)φ(k) = D(k)b(k).

Here, observe that the left-hand side is “small”, as it involves only “small” products of “small”
rational functions. However, the right-hand side has grown to a “huge” degree. To avoid this,
we first prepare (6.3) by forcing b = 0: recombining the equation with its shift, with cofactors
−b(k+ 1) and b(k), results in a homogeneous recurrence. This requires to perform polynomial
operations in “small” degrees only, that is, in not more than linear in the original degrees.

After these transformations, (6.3) is turned into a homogeneous analogue,

ãr+1(k)ψ(k+ r+ 1) + · · ·+ ã0(k)ψ(k) = 0, (6.6)

with new polynomial coefficients ãi’s of degrees not more than polynomial in the original
degrees and order, and with b = 0. A similar technique for obtaining

ãr+1(y)
dr+1ψ

dyr+1
(y) + · · ·+ ã0(y)ψ(y) = 0, (6.7)

with same constraint on the ai’s, is available for (6.2) in the differential case.

6.1.3 Numerators as recurrences

It is classical that, if a solution ψ(y) of (6.7) can be expanded as a Taylor or formal series
ψ(y) =

∑

∞

j=0 cjy
j, its coefficients satisfy a linear recurrence

ās(j)cj+s + · · ·+ ā0(j)cj = 0 (6.8)

with polynomial coefficients āi’s. Then, a polynomial solution ψ(y) is reflected as a sequence (cj)

with finite support, that is, such that cj is 0 for all sufficiently large j’s. Obtaining (6.8) from (6.7)
can be done by substituting

∑

∞

j=0 cjy
j for ψ(y) in the latter, before extracting the coefficient

of yj. However, the formal expression for this coefficient involves backward shifts of c, which
are not defined for too small values of j. This explains why j has to be restricted to be larger
than some j0 ≥ 0. Alternatively, write P(y,Dy) for the operator underlying the left-hand side
of (6.7) and, for and ℓ and m in N, note the formula

yℓDm
y

∞
∑

j=0

cjy
j =

∞
∑

j=max(0,ℓ−m)

(j+ 1− ℓ) · · · (j+m− ℓ) cj+m−ℓy
j =

∞
∑

j=max(0,ℓ−m)

c ′jy
j, (6.9)

where c ′ = (j+ 1− ℓ) · · · (j+m− ℓ)Sm−ℓ
j c. This can be viewed as the result of composing sim-

pler formulas for ψ ′ and yψ. By linearity, (6.7) results in the relation (Rc)(j) = 0 for the result R
of the non-commutative evaluation of P(S−1

j , (j+ 1)Sj). This relation is valid provided j is not
less than zero and the maximum of the ℓ−m over monomials xℓDm

x with non-zero coefficients
in P. As it is written, R may involve the shift Sj with negative exponent. Multiplying R with
a suitable power Sαj of Sj to force all exponents to be positive results in an operator Sαj R that
expresses (6.6) and in the corresponding lower bound j0.

It is less known that polynomial solutions ψ(k) of a recurrence (6.6) can be dealt with in
essentially the same manner, after representing ψ(k) in the binomial basis, in the form ψ(k) =
∑

∞

j=0 cj
(

k
j

)

. Indeed, a (less explicit) analogue of formula (6.9) can be obtained by composing

Skψ(k) =

∞
∑

j=0

(cj + cj+1)

(

k

j

)

and kψ(k) =

∞
∑

j=1

j (cj + cj−1)

(

k

j

)

.
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Again, an alternative is to introduce the operator P(k, Sk) underlying the left-hand side of (6.6)
and to perform the non-commutative evaluation of P

(

j (1+ S−1
j ), Sj + 1

)

, which requires to be
multiplied by Sαj , where α is the degree of P in k, so as to force only non-negative exponents in
powers of Sj. This also makes the recurrence valid from some j0 on only.

In both the differential and recurrence case, polynomial solutions of the original equation,
whether (6.7) or (6.6), are in bijection after one of the previous encodings with the finitely sup-
ported sequences that are solutions of a recurrence of the form (6.8). Denote δ the maximal
index j such that a finitely supported solution c satisfies cδ 6= 0 and cj = 0 for j > δ; set-
ting j = δ in (6.8) results in the indicial equation ā0(δ) = 0. Of course, not all initial conditions
C = (c0, . . . , cs−1) lead to a finitely supported solution, but, as C ′ = (cδ+1, . . . , cδ+s) depends
linearly on C, determining all finitely supported solutions reduces to linear algebra, after one
has computed a matrix M such that C ′ = CM.

To make the matrix M explicit, it is classical to introduce a matrix equivalent of (6.8): setting
Cj = (cj, . . . , cj−1) results in a companion matrix Mj with coefficients in C(j) such that Cj+1 =

CjMj; after setting v = ās, we find a polynomial matrix U(j) to write Mj = v(j)
−1U(j). In view

of C = C0 and C ′ = Cδ+1, we have

C ′ = CM for M =
1

v(0) · · · v(δ)U(0) · · ·U(δ).

At this stage, evaluating the product U(0) · · ·U(δ) consists in δ matrix products in size s. The
arithmetic complexity of this operation is clearly polynomial in s and δ, and, owing to the
companion structure of U, in O(δs2). Evaluating the matrices for j between 0 and δ can be done
simply in O(dδs2) operations, where d denotes the maximal degree in (6.8).

Here, the potentially “huge” parameter is δ: it contributes to N. Ensuring that the binary
complexity is quasi-linear in N, and not quadratic, requires a final algorithmic idea. Interme-
diate products U(0) · · ·U(i) are a kind of generalisation of the factorial, and like i!, they have a
binary size in Õ(i), a bound that is most often matched in practice. So, computing all these prod-
ucts iteratively results in data of size Θ(N2), which is too large for the desired linear complexity.
Instead, it is now classical to perform binary splitting: after introducing F(i, j) = U(i) · · ·U(j), the
relevant matrix M = F(0, δ) is computed by the recursion:

F(a,b) =











F(a,m) F(m+ 1,b) for m = ⌊a+b
2 ⌋ if b ≥ a+ 2,

U(a)U(a+ 1) if b = a+ 1,
U(a) if b = a.

This scheme balances binary sizes in multiplications, as F(a,b) can be proved to have a binary
size in Õ(b− a); this also results in a total memory used for the whole calculation bounded
by Õ(N), and the complexity study shows the wanted quasi-linear overall binary complexity.

6.2 The Bivariate Rational Case (and Beyond?)

As it proved too involved to try and tackle the problem of the complexity of creative telescoping
as a whole, a line of research endeavours to address simpler classes of integrals. The case
of rational-function integration was initiated by the PhD of Shaoshi Chen, which led to the
joint work (Bostan, Chen, Chyzak, and Li, 2010). This has continued with trivariate rational
functions and a class of bivariate algebraic functions in (Chen, Kauers, and Singer, 2012) leading
to faster implementations but no complexity study. Then, in (Bostan, Lairez, and Salvy, 2013),
an algorithm was given for a class of rational functions in any number of indeterminates, with
a complexity result, but with practical interest only under a regularity condition. In parallel,
similar ideas have led to a faster algorithm for the integration of bivariate hyperexponential
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functions (Bostan, Chen, Chyzak, Li, and Xin, 2013), with no complexity result yet. In the
present text, I shall focus on the initial work (Bostan, Chen, Chyzak, and Li, 2010).

In a way or another, creative telescoping boils down to obtaining the intersection in (5.14),
whether solely, represented as a set of telescopers P in (5.6), or augmented by the correspond-
ing φi’s. This can be viewed as a sort of skew-polynomial elimination modulo Dy on the left,
respectively modulo the Dti ’s or (Sti − 1)’s on the left. In the context of rational-function in-
tegration, Hermite introduced a reduction that was named by his name: given a (univariate)
rational function R(t) ∈ Q(t), Hermite reduction returns another rational function H(t) ∈ Q(t)

such that H is a normal form for R in a certain sense and R−H is the derivative of a rational
function. The similarity of situations suggested that a bivariate extension of Hermite reduction
could be used for creative telescoping.

Given a rational function f = P/Q ∈ Q(x,y), the bivariate Hermite reduction, that is, Her-
mite reduction w.r.t. y for coefficients taken in Q(x), computes a reduced form [f] such that f−[f]

is a derivative w.r.t. y of a rational function. A crucial point is now that taking the reduced form
commutes with multiplication by any rational function in x only. So, we compute in turn the
normal forms

[

f
]

,
[

Dxf
]

,
[

D2
xf
]

, . . . , and stop when there is a linear dependency

α0(x)
[

f
]

+ · · ·+αr(x)
[

Dr
xf
]

= 0.

This implies that
α0(x) f+ · · ·+αr(x)Dr

xf

has zero as its normal form, hence is the derivative w.r.t. y of some rational function. This makes
∑r

i=0 αiD
i
x a telescoper for f. As we can prove that any telescoper can be obtained in this way,

the same procedure as in Zeilberger’s algorithm, that is, dealing with increasing values of r,
ensures to discover the telescopers of minimal order if starting with r = 0. This procedure is the
algorithm we called HermiteCT in (Bostan, Chen, Chyzak, and Li, 2010).

With regard to complexity, both creative-telescoping algorithms based on finding rational
solutions and the algorithm to be described in this section ultimately resort to linear-algebra
solving. But Hermite reduction leads to more manageable dimensions, in relation to the fact
that the normal forms obtained by the method lie in a vector space of small dimension.

6.2.1 Hermite reduction

In the classical case, Hermite reduction rewrites a rational function f = p/q ∈ Q(y) in the form

f =
p

q
= Dyg+

a

b

where: (i) g is another rational function; (ii) a and b are polynomials in Q[y] such that dega <
degb; (iii) and b is squarefree, that is, b can be divided (exactly) by the square of no non-
constant polynomial. When n is the maximum of the degree of p and q, it is classical that
the decomposition (6.2.1) can be obtained in Õ(n) operations in Q. The same applies to other
computational fields of characteristic 0 in place of Q. This is so for example for Q(x), but then
the complexity does not reflect the reality on the computer, owing to a growth of the degrees
in x in the calculations.

Considering polynomials P and Q from Q[x,y] and viewing them in Q(x)[y], Hermite re-
duction results in

f =
P

Q
= Dy

A

Q−
+
a

Q∗ , (6.10)

where A, a,Q−, andQ∗ are in Q(x)[y], and, more specifically, Q∗ is the squarefree part ofQ and
Q− is Q/Q∗. In other words, if an irreducible factor u appears with positive exponent exactly e
in f, then it appears with exponent 1 in Q∗ and e − 1 in Q−. Coefficient extraction w.r.t. y
results in a linear system with coefficients in Q[x] for the coefficients of A and a. Determining
bounds on the degrees in x in (6.10) is more easily done by avoiding coefficients in Q(x): to this
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Method ordL degx L sizeL degx g degy g sizeg Complexity
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Õ
(

n9
)

HermiteCT O
(

n
)

O
(

n3
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O
(

n3
)

O
(

n2
)

O
(

n5
)

Õ
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)

Lipshitz O
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O
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O
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O
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O
(
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O
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)

Figure 6.1: Degrees and sizes of telescopers L and certificates g, and complexity of the algorithms
HermiteCT and RatAZ for minimal order, Lipshitz and CubicSize for non-minimal order

end, Cramer rules provide a determinant δ ∈ Q[x] that is guaranteed to be a multiple of the
denominators in A and a, so as to rewrite (6.10) as

f =
P

Q
= Dy

B

δQ−
+

b

δQ∗ , (6.11)

where B = δA and b = δa. Let n denote a bound on the partial degrees w.r.t. x and y of P
and Q. Interpreting Cramer rules provides degree bounds on δ and the coefficients of B and b:
the system has size O(n) and involves polynomial coefficients of degrees O(n), with the result
that the solutions of the system have degrees O(n2) w.r.t. x. This bounds the arithmetic size of
B and b by O(n3).

After getting a cubic bound, a fast algorithm is obtained by the now classical technique of
evaluation and interpolation, w.r.t. the variable x. The idea is to compute sufficiently many
specialisations of (6.11), in the form

f(x0,y) =
P(x0,y)
Q(x0,y)

= Dy
B(x0,y)

δ(x0)Q−(x0,y)
+

b(x0,y)
δ(x0)Q∗(x0,y)

, (6.12)

so as to be able to reconstruct (6.11). This approach bases on the possibility to evaluate a
polynomial of degree n at N ≫ n consecutive integers in complexity Õ(N), and to reconstruct
a polynomial of degree less than N from evaluations of it at N consecutive integers in the same
complexity Õ(N). The problem is that, for specific x0’s, (6.12) need not be well defined or have
the same monomial structure as for generic x. Technically, such unlucky points are defined
to be those x0 for which the degree w.r.t. y of Q(x0,y) is less than the degree of Q(x,y), or
for which the degree w.r.t. y of gcd

(

Q(x0,y),DyQ(x0,y)
)

is less than the degree of Q− =

gcd
(

Q(x,y),DyQ(x,y)
)

. This can be tested from the specialisations in complexity Õ(n). A
technical lemma shows that there are not more than O(n2) unlucky points, so that it is sufficient
to test O(n2) points to get O(n2) consecutive lucky points, for a total complexity of Õ(n3). As
computing the Hermite reduction of P(x0,y)/Q(x0,y) has complexity Õ(n), getting all the
quadratically many specialisations (6.12) is done in complexity Õ(n3). Finally, reconstructing
each of δ(x) and the O(n) coefficients w.r.t. y of B and b in degree O(n2) w.r.t. x fits in the same
complexity, leading to an algorithm for bivariate Hermite reduction in complexity Õ(n3).

As a remark, the case when Q = (Q∗)2 permits some level of optimisation. This motivates
an improvement of the algorithm algorithm of creative telescoping by Hermite reduction to
compute each

[

Di+1
x f

]

as
[

Dx

[

Di
xf
]]

, keeping denominators with exponents two after the initial
reduction [f].

6.2.2 Minimal-order telescopers

Almkvist and Zeilberger’s now classical algorithm (1990) was described for general hyperex-
ponential terms. Specialising it to rational inputs results in an algorithm that we called RatAZ
in (Bostan, Chen, Chyzak, and Li, 2010). Interestingly enough, the complexity analysis that
resulted in the estimates in Figure 6.1 shows a subtle interplay between the analysis of both al-
gorithms, based on the fact that both algorithms search for minimal-order telescopers and thus
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return essentially the same outputs. First, the analysis of HermiteCT provides degyQ
∗ ≤ n as

an order bound, resulting in quartic bounds for the degrees w.r.t. x of both the obtained tele-
scoper L and the corresponding certificate, and a quadratic bound for the degree w.r.t. y of the
certificate. A technical step in Almkvist and Zeilberger’s algorithm is the determination of a
specific normal form for the rational function (DyLf)/(Lf), which requires the computation of
a resultant. This is frightening from the complexity viewpoint, owing to the generic size of such
resultants. However, the rational situation is sufficiently explicit that the algorithm RatAZ can
be simplified so as to predict the form of (DyLf)/(Lf) at smaller cost. Importing the tight order
bound on the telescoper from the analysis of HermiteCT makes it possible to show that RatAZ
finds a telescoper and a certificate of degrees w.r.t. x that are cubic in n. These bound therefore
apply to HermiteCT as well, leading to the first columns in Figure 6.1.

The final difference in the complexity analysis is due to the size of the linear systems solved
in each algorithms. As RatAZ primarily looks for the certificate g, with the telescoper L obtained
as a side effect, it sets up a linear problem to find the coefficients w.r.t. y of g. This system has
size given by 1+ degy g ∈ O(n2), leading to the factor 2 in front of ω in the exponent. For its
part, HermiteCT focuses on obtaining L without computing g in expanded form. To this end, it
writes the derivatives of f as

Di
xf = Dy

Bi

δi+1δ ′iQ∗iQ−
+

bi

δi+1δ ′iQ∗ ,

where δ ′ is a technical variant of δ. It then sets up a linear problem to find the coefficients
w.r.t. Dx of L, which is obtained by equating to 0 a proper linear combination of the bi’s. This
leads to a linear problem in size bounded by n + 1, explaining the factor 1 in front of ω in
the exponent of complexity. Even setting ω = 3 results in HermiteCT beating RatAZ both with
regard to theoretical complexity and in practice.

6.2.3 Towards minimal-size telescopers

A line of research initiated in (Bostan, Chyzak, Lecerf, Salvy, and Schost, 2007) for the search
of a recurrence satisfied by the coefficients of an algebraic series relaxes the constraint of order
minimality on the wanted recurrence operator in order to look for an operator of smaller total
arithmetic size. In that article, one option was to encode the algebraic series as an integral and
to apply the creative-telescoping approach. This was continued for general integrals of bivariate
rational functions in (Bostan, Chen, Chyzak, and Li, 2010), proving the existence of a telescoper
of cubic size, as opposed to the quartic size obtained by either RatAZ or HermiteCT. The implied
algorithms are however not practical.

The method in (Bostan, Chyzak, Lecerf, Salvy, and Schost, 2007) is reminiscent of the ap-
proach by filtration in (Lipshitz, 1988), sketched in Section 2.2. Given a rational integrand f =
P/Q, it consists in studying the action of the derivations on rational functions of prescribed
form H/Qℓ so as to obtain bounds on the degrees w.r.t. x and y of the numerators Hi,j,k in

xiDj
xD

k
yf =

Hi,j,k

Qj+k+1
.

(Cf. (2.4) in Lipshitz’s treatment.) Next, these degree bounds are exploited to determine con-
straints on i, j, and k that are sufficient to impose a linear dependency between the xiDj

xD
k
yf’s.

A first choice, leading to the algorithm Lipshitz, is to follow Lipshitz’s work and use (Bernstein’s)
total-degree filtration, and set i+ j+ k ≤ ν; a better choice, leading to the algorithm CubicSize,
is to enforce i ≤ κ and j+ k ≤ ν. Both choices select a cubic number of (i, j, k) w.r.t. ν, and, after
normalisation over a common denominator Qν+1, results in bivariate numerators that live in a
vector space of dimension O(ν2). This approach provides the existence of smaller telescopers,
but is unfortunately only able to compute them as the kernel of a linear system over Q in size
in O(n6), respectively O(n4), leading to the coefficients 6 and 4 in front of ω in the complexity
estimates.



Chapter 7

Implementations

7.1 Existing Software

Several implementations of Zeilberger’s algorithm and of other creative-telescoping algorithms
started to be developed in the 1990s. After the first implementations of Zeilberger’s algorithm by
D. Zeilberger (EKHAD and qEKHAD for Maple) and T. Koornwinder (zeilb and qzeilb for Maple),
the Algorithmic Combinatorics group RISC, led by P. Paule, devoted much effort in packages
(fastZeil by P. Paule, M. Schorn, and A. Riese, for Mathematica; qZeil by A. Riese, for Mathemat-
ica; Zeilberger by F. Caruso, for Maxima). Wilf and Zeilberger’s approach was also implemented
in RISC (MultiSum by K. Wegschaider and A. Riese, for Mathematica; qMultiSum by A. Riese, for
Mathematica). Since several versions, Maple has been shipped with its own standard packages
(DEtools, SumTools, QDifferenceEquations), which to the best of my knowledge, stem from initial
works by W. Koepf and H. Le. For the list of Mathematica software maintained by the group at
RISC, readers are referred to http://www.risc.jku.at/research/combinat/software/.

For higher-order creative telescoping, only two implementations exist. My Maple package
Mgfun was the first to propose calculations of integration and summation of special functions,
as well as in in mixed differential-difference settings. It is still maintained and distributed as a
component of Algolib from the URL http://algo.inria.fr/libraries/. The part of it that im-
plements my algorithm in (Chyzak, 2000) was reimplemented by L. Pech (2009). It also contains
the recent developments on bivariate rational functions described in Section 6.2, implemented
by S. Chen and Z. Li. For Mathematica, HolonomicFunctions is a homologue package written by
C. Koutschan, which also contains the fast heuristics discussed in Section 5.3.3. It is available
from http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/.

Specifically for the algorithms based on Gröbner-bases calculations in the Weyl algebras
and discussed in Section 5.2, two dedicated softwares have been developed: a package Dmod-
ules is available for Macaulay2 (http://www.math.uiuc.edu/Macaulay2/), but is probably out-
dated; Risa/Asir (http://www.math.kobe-u.ac.jp/Asir/) is a computer-algebra system with a
Gröbner engine that is targeted to Weyl algebras. Packages implementing algorithms by Oaku,
Takayama, and Tsai are part of the distribution of Singular (http://www.singular.uni-kl.de/).

7.2 Working Out an Example on the Computer

Let me proceed to exemplify how the algorithms of Chapter 5 can be used on the computer in
practice. Here, I use my package Mgfun for Maple.

The following call loads the package and returns the list of exported functions:

> with(Mgfun);
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[MG_Internals, creative_telescoping, dfinite_expr_to_diffeq, dfinite_expr_to_rec,

dfinite_expr_to_sys, diag_of_sys, int_of_sys, pol_to_sys,

rational_creative_telescoping, sum_of_sys, sys*sys, sys+sys]

The main function that I shall exemplify here is creative_telescoping, the function to com-
pute equations like (1.3), (1.6), (3.18), and more generally (5.6) or (5.10). The functions dfi-
nite_expr_to_sys and related take a Maple expression and return a system (resp. a differential
equation or a recurrence) satisfied by it. The functions ‘sys+sys‘, ‘sys*sys‘, and related input
systems defining several functions and compute a system for the composed function by the
algorithms of Section 5.1.

Our interest is now to prove that the integrals

Im,n :=

∫+1

−1

C
(µ)
m (x)C

(ν)
n (x)(1− x2)ν−1/2 dx,

where C(α)
k (z) denotes the kth Gegenbauer polynomial, satisfy the recurrences

(n+ 1)(m− 2ν+ 2µ− 1−n)Im,n+1 = (2ν+n)(m+ 1−n)Im+1,n,

(m+ 2−n)(2+n+ 2ν+m)Im+2,n = (2µ+m+n)(2µ+m−n− 2ν)Im,n,

when ν > 1/2. Running the commands:

> f := GegenbauerC(m, mu, x) * GegenbauerC(n, nu, x) * (1 - x^2) ^ (nu - 1/2);

> ct := creative_telescoping(f, [m::shift, n::shift], x::diff);

performs the approach of Section 5.3.2 on the integrand fm,n(x), looking for a generalisation
of (5.6) (cf. (5.11)–(5.12)) in the form

P(m,n, Sm, Sn) f = Dx

(

Q(m,n, x, Sm, Sn,Dx) f
)

. (7.1)

The third argument of creative_telescoping encodes the summation/integration variable; here,
for an integration, it is qualified by “::diff”. Using “::shift” instead would apply to sum-
mation problems and would look for relations involving Sx − 1 in place of Dx. The second
argument to the call encodes the parameters that remain after summation/integration, and the
kind of dependency in those parameters; here, using “::shift” twice orders the function to
look for recurrences w.r.t. m and n (encoded by P). Using “::diff” would look for differential
relations. Not providing a qualification for a parameter is also possible and keeps the param-
eter as a constant of the problem, without trying to relate derivatives and shifts w.r.t. it. This
is mostly useful to avoid complicated computations for large problems, at the cost of returning
less information.

In our example, the output from creative_telescoping is a pair of pairs, encoded in Maple as
a list of lists. After some renormalisation, the first (inner) list is of the form:

> collect(ct, {_F, _f}, factor);
[

(n+ 1)(m− 2ν+ 2µ− 1−n) _F(m,n+ 1) − (2ν+n)(m+ 1−n) _F(m+ 1,n),

(2ν+n) _f(m,n, x) − x(n+ 1) _f(m,n+ 1, x) − (2ν+n)x _f(m+ 1,n, x) +

(n+ 1) _f(m+ 1,n+ 1, x)
]

This can be understood as follows (releases of Mgfun before release 15 of Maple had a different
notation). Upon integration between −1 and +1, (7.1) takes the form

P(m,n, Sm, Sn)
∫+1

−1

f dx =
[

Q(m,n, x, Sm, Sn,Dx) f
]+1

−1
. (7.2)
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The expression on the left-hand side is represented by the first component of the pair, with
_F denoting the integral of f; the inside of the brackets on the right-hand side is represented by
the second component of the pair, with _f denoting f.

Under our assumption ν > 1/2, the function f is continuous on [ −1,+1 ] and is zero at both
ends. This implies that the right-hand side of (7.2) is zero, therefore, that Im,n satisfies the first
announced recurrence. The reasoning is similar for the second recurrence, with an additional
consideration because the second component of the corresponding pair involves denominators.
By chance, the only denominator involved is m+ 2 and we do not need to consider the relations
when m = −2. Thus, the second recurrence on Im,n can be proved as well.

We fed the algorithm with a closed-form expression for f, but internally it had to represent
it by a linear functional system. To this end, Mgfun contains a database of systems for the basic
functions, together with implementations of algorithms to combine them. For example, one can
ask the package about its knowledge on the Gegenbauer polynomials in the following way:

> dfinite_expr_to_sys(GegenbauerC(k, alpha, z),

c(k::shift, alpha::shift, z::diff));
{

(−2α− k) c(k,α, z) + (zk+ z) c(k+ 1,α, z) + (−2αz2 + 2α) c(k,α+ 1, z),

(2α+ k) c(k,α, z) + z
dc

dz
(k,α, z) − 2αc(k,α+ 1, z),

(−2α− 4kα− 4α2 − k− k2) c(k,α, z) +

(4kα− 4kz2α− 4αz2 + 6α− 4α2z2 + 8α2) c(k,α+ 1, z) +

(4α2z2 − 4α2 + 4αz2 − 4α) c(k,α+ 2, z)
}

Here, each element of the set has to be viewed as equal to zero. Combining specialisations
of this system (more or less by the function ‘sys*sys‘), creative_telescoping starts by essentially
performing the following command to get a system for f:

> dfinite_expr_to_sys(f, c(m::shift, n::shift, x::diff));
{

(∗) c(m,n, x) + (∗) c(m,n+ 1, x) + (∗) c(m,n+ 2, x),

(∗) c(m,n, x) + (∗) c(m,n+ 1, x) + (∗) c(m+ 1,n, x) + (∗) dc
dx

(m,n, x),

(∗) c(m,n, x) + (∗) c(m,n+ 1, x) + (∗) dc
dx

(m,n, x) + (∗) d
2c

dx2
(m,n, x) + (∗) d

3c

dx3
(m,n, x),

(∗) c(m,n, x) + (∗) c(m,n+ 1, x) + (∗) dc
dx

(m,n+ 1, x) + (∗) dc
dx

(m,n, x) + (∗) d
2c

dx2
(m,n, x)

}

where we have abridged by (∗) coefficients that are polynomials of total degree up to 6 in m, n,
and x.
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Conclusions

8.1 Another Classification of Creative-Telescoping Algorithms

In the previous chapters, I have followed a more or less chronological ordering in my presenta-
tion, which at the same time corresponds to the development of algorithms for larger and larger
classes of inputs. Questions of efficiency also came after questions of feasibility for larger classes
of inputs, and led to other algorithmic paradigms (compact forms and Hermite reduction). But
at the present stage, I would like to propose another classification of algorithms, based on the
approach they follow:

• Algorithms based on computations of Gröbner bases. They have been developed mostly by
researchers in D-module theory, in relation with dedicated computer-algebra systems. A
limitation of this approach is that functions need to be described by means of ideals in an
algebra of operators with polynomial coefficients. On the positive side, multiple integra-
tions can be computed directly. It seems that research by this approach has focused on
hypergeometric series that are solutions of A-hypergeometric systems.

• Algorithms based on an ansatz (undetermined coefficients), whether constant, polynomial or ra-
tional. They have been applied to combinatorics in the summation case and to special
functions in the integration case. Their current limitation is that either heuristics have
to be used for multiple summations/integrations, or incremental algorithms, with worse
behaviour, have to be used.

• Algorithms based on some generalised Hermite reduction. This is the most recent family of
algorithms and the scope of application is so far more limited, as only the cases of rational
and algebraic functions have been studied. Additionally, at the time of writing, algorithms
will only terminate under regularity conditions. When applicable, the approach is much
faster by avoiding the computation of certificates, but whether an analogue of Hermite
reduction can be developed for larger (non-algebraic) classes of inputs is unclear.

At the time of writing, no complete algorithm has been described yet for difference analogues
of the Gröbner-based and Hermite-based approaches.

8.2 Perspectives

Several seemingly promising approaches remain untouched or not enough explored after a few
decades of algorithmic study on creative telescoping:

• Verbaeten’s completion for non-hypergeometric sequences. In the hypergeometric situation, Ver-
baeten’s approach has led to faster implementations. Although technical, the theoretical
structural study of the degrees that occur in shifts of a hypergeometric term is simplified
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by the hypergeometric nature of the sequence. It would be of interest to get a similar
gain in non-hypergeometric situations. A possible simple starting case for such a study is
that of ∂-finite functions with a (vector) dimension 2, like for example families of classical
orthogonal polynomials.

• Creative telescoping based on guessing. A practical method that has not been mentioned
in this memoir to obtain recurrences and differential equations for special functions in
applications are guessing heuristics: from sufficiently many evaluations of a sequence or
sufficiently large series expansion of a functions, equations can often be reconstructed.
The question becomes how to bound the number of evaluations or truncation order to get
a proof out of a guess. This is related to the research on proving identities by numerical
evaluations.

• Giving up the minimal order. Creative-telescoping algorithms tend to search for minimal-
order telescopers, as this seems to be the right mathematical object. But it is not clear that
searching directly for minimal-order telescopers is computationally favorable. Another
possible approach is to look for telescopers with larger order but smaller total arithmetic
size, which recombine to minimal-order telescopers. The approach was suggested by
(Bostan, Chyzak, Lecerf, Salvy, and Schost, 2007; Bostan, Chen, Chyzak, and Li, 2010) and
is now a very vivid line of research (Chen and Kauers, 2012b,a; Chen, Jaroschek, Kauers,
and Singer, 2013).

• Signature-based computations of skew Gröbner bases. It struck me while writing this memoir
that there has been only limited interaction (after the 1990s) between the lines of research
on Gröbner-based creative telescoping and ansatz-based creative telescoping. Possible
explanations can be the nature of inputs expected by the D-module algorithms (opera-
tors with polynomial coefficients) and the difficulty to control the speed of Gröbner-bases
computations with skew polynomials, both in practice and in theoretical complexity stud-
ies. However, recent results (Oaku, 2013) suggest that the Gröbner-based approach can
have advantages also for non-natural boundaries. Also, for sequences, it is after all detri-
mental to work with ∂-finite representations, as they cannot distinguish for example, the
sequence (δm,n)m,n∈N (ones on the diagonal) from the zero sequence. Such a situation
is however frequent in presence of orthogonal polynomials, for example. With the cur-
rent advent of (faster) signature-based algorithms for computing Gröbner bases, including
in algebras of skew polynomials, we can expect that creative telescoping will have to be
reconsidered in this light.

• Ansatz-based algorithms with no uncoupling. It seems that creative-telescoping algorithms
rely on uncoupling only for bad reasons: direct rational-solving algorithms exist for sys-
tems and should be tried. In particular, Barkatou (1999) gave an algorithm that includes
the case of parametrised non-homogeneous equations, which should do for the differen-
tial case. Beside the practical questions of getting implementations and their efficiency, a
comparison of the uncoupling and direct approaches from the point of view of complexity
would be of interest. In this direction, our recent result (Bostan, Chyzak, and de Panafieu,
2013) gives the complexity of uncoupling in the generic case. A more refined study is thus
needed, as the systems to be solved for creative telescoping may well be structured.

• Telescopers may be non-minimal annihilators. A weakness of creative telescoping has long
be observed: it need not produce the minimal-order annihilator for a sum or integral,
even if it produces a minimal-order telescoper. A classical example (Paule and Schorn,
1995) is given by the sums Fn =

∑n
k=0(−1)

kfn,k for fn,k =
(

n
k

)(

dk
n

)

, which evaluate
to Fn = (−d)n. Therefore, a minimal-order annihilator for F is Sn + d and has order 1, but
any algorithms that bases on the current definition of telescopers or telescoper ideals must
return a telescoper of order d+ 1. This is also reflected in the fact that the sum of (Sn +

d) fn,k, which is zero and thus admits the identity operator as an annihilator, can only
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be proved to have telescopers of order d by current algorithms. A theoretical explanation
is still missing and would be welcome in order to design algorithms for minimal-order
annihilators.

• Formal proofs by/of creative telescoping. It has long been declared in the literature that com-
puter proofs of identities involving special functions or hypergeometric sequences could
be considered routine. However, a blind appeal of creative-telescoping algorithms can be
misleading, as the use of computed telescoper and certificate to produce an equation for
a sum or integral often involves human reasoning and not just computation. For instance,
in the discrete case, it is not clear that the algebraic normalisation to check that a rational
certificate certifies a telescoper is valid for the whole range of summation; dealing with
summations over non-natural boundaries is very technical and error-prone; in the contin-
uous case, examples show that even if an integral to be computed is well defined, creative
telescoping can lead to auxiliary integrals that are divergent; another difficulty lies in cre-
ative telescoping producing certificates that have singularities on the integration interval.
But we naturally want to assert that the results of our computer-algebra calculations have
proved mathematical results. And in this vein in several application domains (combina-
torics, physics), there are examples where the only known proof are computer proofs,
using creative telescoping. This situation calls for a proper interaction between computer
algebra and formal-proofs theory, for a combination of computation and reasoning on the
computer. In the context of special functions and creative telescoping, this is a direction in
which I engaged recently. Besides producing computer proofs beyond reasonable doubt
of identities like those in the list of examples in Section 1.5, a goal is to endow proof assis-
tants with computer-algebra facilities providing them with reliable tools that they will be
inclined to reuse in other applications.
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Timelines
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Timeline for the Zeilberger/Chyzak/Koutschan approach:
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Timeline for various skew-polynomial-elimination approaches:
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Timeline for the complexity study and bounds on creative telescoping:
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