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Let Tn denote the set of unrooted labelled trees of size n and let M be a particular (finite,

unlabelled) tree. Assuming that every tree of Tn is equally likely, it is shown that the limiting

distribution as n goes to infinity of the number of occurrences of M is asymptotically normal

with mean value and variance asymptotically equivalent to µn and σ2n, respectively, where

the constants µ > 0 and σ � 0 are computable.

1. Introduction

In this paper we consider unrooted labelled trees and analyse the number of occurrences

of a given tree pattern. More precisely, let Tn denote the probability space of all unrooted

labelled trees of size n with uniform distribution, that is, every tree in Tn is equally

likely. It is, for example, well known that a typical tree in Tn has about µk n nodes

of degree k, where µk = 1/e(k − 1)!. Moreover, for any fixed k the average number of

nodes of degree k in trees in Tn satisfies a central limit theorem with mean and variance

asymptotically equivalent to µkn and σ2
kn (for a specific constant σk > 0). See [5], where

Drmota and Gittenberger explored this phenomenon for unrooted labelled trees and other

types of trees.

† This research was supported by the Austrian Science Foundation FWF, grants S8302 and S9604, and by the

European Amadeus project.
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A node of degree k is an occurrence of what can be called a star with k edges. In this

paper we continue this idea. We consider a pattern M, a given finite tree, and compute

the limiting distribution of the number of occurrences of M in a random member of Tn

as n → ∞. In this context we say that a pattern M ‘occurs’ in a tree T , if M is a subtree of

T with the additional property that the node degrees of all internal nodes of M coincide

with the corresponding node degrees of T . Note also that there can be overlaps of two

or more copies of M, which we intend to count as separate occurrences.

Our main result in this paper is as follows.

Theorem 1.1. Let M be a given finite tree. Then the limiting distribution of the number of

occurrences of M in a random tree of Tn is asymptotically normal with mean and variance

asymptotically equivalent to µn and σ2n, respectively, where µ > 0 and σ2 � 0 depend on

the pattern M and can be computed explicitly and algorithmically and can be represented

as polynomials (with rational coefficients) in 1/e.

We consider here a random variable X as Gaussian if its characteristic function is

given by E eitX = eiµt−σ2t2/2, that is, the case of zero variance σ2 = 0 is included here. For

example, if M consists just of one edge (and two nodes), then the number of occurrences

of M in Tn is n − 1 and thus constant. So in that particular case we have µ = 1 and

σ2 = 0. Nevertheless we conjecture that σ2 > 0 in all other cases.

As already mentioned, the case of stars (or nodes of given degree) has been discussed

in [5] for various classes of trees. Some previous work for unlabelled trees is due to

Robinson and Schwenk [16]. Patterns in (rooted planar) trees have also been considered

by Dershowitz and Zaks [6] under the limitation that patterns start at the root. In a

work on patterns in random binary search trees, Flajolet, Gourdon and Martı́nez [7]

obtained a central limit theorem. Flajolet and Steyaert also analysed an algorithm for

pattern matchings in trees [9, 10, 18]. Further, Ruciński [17] established conditions for

when the number of occurrences of a given subgraph in random graphs follows a normal

distribution.

The plan of the paper is as follows. In Section 2 we give a short introduction to counting

trees with generating functions, and also expand this to two variables for counting stars

(nodes of specific degree k) in trees. In Section 3 we expand this framework to the counting

of patterns in trees. The resulting asymptotics are presented in Section 4, concluding the

proof of Theorem 1.1. Technical details for this as well as explicit algorithms can be found

in the appendix. In fact, the algorithmic aspect is one of the driving forces of this paper.

2. Counting trees and counting stars in trees

In this section we introduce a three-step program to count the number of trees in Tn and

in the same fashion the number of occurrences of nodes of degree k of a random tree

in Tn. While redundant and probably heavy in this simplistic situation, this procedure

was crucial to the derivation in [5] for counting stars and will generalize well to our

setting of general tree patterns. We also mention the forthcoming book [8] by Flajolet
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and Sedgewick as a general reference for combinatorical constructions of that kind and

for the singularity analysis of the corresponding generating functions.

We make use, too, of the sets Rn of rooted labelled trees of size n and Pn of planted

labelled trees of size n. For rooted and unrooted trees, the size n counts the total number

of nodes, whether internal or at the leaves. On the other hand, a planted tree is just

a rooted tree where the root is adjoined an additional ‘phantom’ node which does not

contribute to the size of the tree, whereas the degree of the root is increased by one. Also,

one can think of a planted tree as a rooted tree with an additional edge having no end

vertex. The advantage of using planted trees, although it seems to add complexity, will

be explained below. Obviously |Pn| = |Rn| and |Tn| = |Rn|/n. It is also well known that

|Rn| = nn−1 and |Tn| = nn−2 (see [8]).

The three-step program is the following one. First, the generating function enumerating

planted trees is determined, then it is used to count rooted trees by deriving their generating

function, and finally the generating function counting unrooted trees is computed.

We define

p(x) =

∞∑
n=0

|Pn|x
n

n!
, r(x) =

∞∑
n=0

|Rn|x
n

n!
, t(x) =

∞∑
n=0

|Tn|
xn

n!

and proceed in the following way.

(1) Planted rooted trees. A planted tree is a planted root node with zero, one, two, . . .

planted subtrees of any order. In terms of the generating function this yields

p(x) =

∞∑
n=0

xp(x)n

n!
= xep(x).

(2) Rooted trees. For rooted trees we get the same (except for the phantom nodes which

are not present here), just a root with zero, one, two, . . . planted subtrees of any order

r(x) =

∞∑
n=0

xp(x)n

n!
= xep(x) = p(x).

(3) Unrooted trees. Finally, we have |Tn| = |Rn|/n, as already mentioned. However, we can

also express t(x) by a relation which follows from a natural bijection between rooted trees

on the one hand and unrooted trees and pairs of planted rooted trees (which are joined

by identifying the additional edges at their planted roots and discarding the phantom

nodes) on the other hand.1 This yields

t(x) = r(x) − 1

2
p(x)2.

The functional equation for p(x) can be used either to extract the explicit number

|Pn| = nn−1 via Lagrange inversion or to obtain the radius of convergence and asymptotic

1 Consider the class of rooted (labelled) trees. If the root is labelled by 1 then consider the tree as an unrooted

tree. If the root is not labelled by 1 then consider the first edge of the path between the root and 1 and cut

the tree into two planted rooted trees at this edge.
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expansions of the singular behaviour of this function. It is well known that x0 = 1/e is the

common radius of convergence of p(x), r(x), and t(x), and that the singularity at x = x0

is of square root type:

p(x) = r(x) = 1 −
√

2
√

1 − ex +
2

3
(1 − ex) + · · · ,

t(x) =
1

2
− (1 − ex) +

2
√

2

3
(1 − ex)3/2 + · · · .

This is reflected by the asymptotic expansions of the numbers

|Pn| = |Rn| = nn−1 ∼ n!√
2π

enn−3/2,

|Tn| = nn−2 ∼ n!√
2π

enn−5/2.

In order to demonstrate the usefulness of the three-step procedure above we repeat the

same steps for counting stars with k edges in trees, that is, the number of nodes of degree k,

a given fixed positive number. Let pn,m denote the number of planted trees of size n with

exactly m nodes of degree k. Furthermore, let rn,m and tn,m be the corresponding numbers

for rooted and unrooted trees and set

p(x, u) =

∞∑
n,m=0

pn,m
xnum

n!
, r(x, u) =

∞∑
n,m=0

rn,m
xnum

n!
, t(x, u) =

∞∑
n,m=0

tn,m
xnum

n!
.

Then we have the following (compare with [5]).

(1) Planted rooted trees.

p(x, u) =

∞∑
n=0

n�=k−1

xp(x, u)n

n!
+

xup(x, u)k−1

(k − 1)!
= xep(x,u) +

x(u − 1)p(x, u)k−1

(k − 1)!
.

(2) Rooted trees.

r(x, u) =

∞∑
n=0
n�=k

xp(x, u)n

n!
+

xup(x, u)k

k!
= xep(x,u) +

x(u − 1)p(x, u)k

k!
.

(3) Unrooted trees. In a similar way to the above we have tn,m = rn,m/n, which is sufficient

for our purposes. However, as above, it is also possible to express t(x, u) by

t(x, u) = r(x, u) − 1

2
p(x, u)2.

Note that the use of the notion of planted trees is crucial in order to keep track of the

nodes of degree k by means of the recursive structure of planted trees. In [5] this approach

was used to show that the asymptotic distribution of the number of nodes of degree k in

trees of size n is normal, with expectation and variance proportional to n.
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Figure 1. Example pattern.

3. Counting patterns in trees

We now generalize the counting procedure of Section 2 to more complicated patterns. For

our purpose, a pattern is a given (finite unrooted unlabelled) tree M. To ease explanations,

we will use as M the example graph in Figure 1.

Recall that we say that a specific pattern M occurs in a tree T if M occurs in T as

a subtree in the sense that the node degrees for the internal (filled) nodes in the pattern

match the degrees of the corresponding nodes in T , while the external (empty) nodes

match nodes of arbitrary degree.2 Because the results for the patterns consisting of only

one node or two nodes and one edge are trivial, we now concentrate on patterns with at

least three nodes.

Our first aim is to get relations for the generating functions which count the number of

occurrences of a specific pattern M. Let pn,m denote the number of planted rooted trees

with n nodes and exactly m occurrences of the pattern M and let

p = p(x, u) =

∞∑
n,m=0

pn,m
xnum

n!

be the corresponding generating function.

3.1. Generating functions for planted rooted trees

Proposition 3.1. (Planted rooted trees) Let M be a pattern. Then there exists a certain

number L + 1 of auxiliary functions aj(x, u) (0 � j � L) with

p(x, u) =

L∑
j=0

aj(x, u)

and polynomials Pj(y0, . . . , yL, u) (1 � j � L) with non-negative coefficients such that

a0(x, u) = xea0(x,u)+···+aL(x,u) − x

L∑
j=1

Pj(a0(x, u), . . . , aL(x, u), 1)

a1(x, u) = x · P1(a0(x, u), . . . , aL(x, u), u)

...

aL(x, u) = x · PL(a0(x, u), . . . , aL(x, u), u).

(3.1)

2 More generally, we could also consider pattern-matching problems for patterns in which some degrees of

certain possibly external ‘filled’ nodes must match exactly while the degrees of the other, possibly internal

‘empty’ nodes might be different. But then the situation is more involved: see Section 5.
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A B C

Figure 2. Planted pattern matching.

Furthermore,

L∑
j=1

Pj(y0, . . . , yL, 1) �c e
y0+···+yL ,

where f �c g means that all Taylor coefficients of the left-hand side are smaller than or

equal to the corresponding coefficients of the right-hand side. Moreover, the dependency

graph of this system is strongly connected.3

The proof of this proposition is in fact the core of the paper. In order to make the

arguments more transparent we will demonstrate them with the help of the example

pattern in Figure 1. At each step of the proof we will also indicate how to make all

constructions explicit so that it is possible to generate system (3.1) effectively.

In a first step we introduce the notion of a planted pattern. A planted pattern Mp is just

a planted rooted tree where we again distinguish between internal (filled) and external

(empty) nodes. It matches a planted rooted tree from Tn if Mp occurs as a proper subtree

starting from the (planted) root, that is, the branch structure and node degrees of the

filled nodes match. Two occurrences may overlap. For example, in Figure 2 the planted

pattern Mp on the left matches the planted tree A twice (following the left, resp. the right

edge from the root), but B not at all. Also remark that, notwithstanding the symmetry of C ,

the pattern Mp really matches C twice, as we are interested in matches in labelled trees.

We now construct a planted pattern for each internal (filled) node of our pattern M
which is adjacent to an external (empty) node. The internal (filled) node is considered

as the planted root and one of the free attached leaves as the plant. In our example we

obtain the two graphs in Figure 3.

The next step is to partition all planted trees according to their degree distribution up

to some adequate level. To this end, let D denote the set of out-degrees that occur in the

planted patterns introduced above and let h be the maximal height of these patterns. In

our example we have D = {2} and h = 3. For obtaining a partition, we more precisely

consider all trees of height less than or equal to h with out-degrees in D. We distinguish

two types of leaves in these trees, depending on the depth at which they appear: leaves in

level h, denoted ‘◦’, and leaves at levels less than h, denoted ‘�’. For our example we get

11 different trees a0, a1, . . . , a10, depicted in Figure 4.

3 The notion of dependency graph is explained in Appendix B and, intuitively speaking, reflects the fact that

no subsystem can be solved before the whole system.
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Figure 3. Planted patterns for the pattern in Figure 1.

�p a0 a1

a2 a3 a4

a5 a6 a7

a8 a9 a10

Figure 4. Tree partition.

These trees induce a natural partition of all planted trees for the following interpretation

of the two types of leaves. We say that a tree T is contained in class4 aj if it matches the

finite tree (or pattern) aj in such a way that a node of type � has degree not in D, while a

node of type ◦ has any degree. For example, a0 corresponds to those planted trees where

the out-degree of the root is not in D.

It is easy to observe that these (obviously disjoint) classes of trees form a partition.

Indeed, take any rooted tree. For any path from the root to a leaf, consider the first node

with out-degree not in D, and replace the whole subtree at it with �. Then replace any

node at depth h with ◦. The tree obtained in this way is one in the list.

Furthermore, the classes above can be described recursively. To this end, it proves

convenient to introduce a formal notation to describe operations between classes of trees:

⊕ denotes the disjoint union of classes; \ denotes set difference; recursive descriptions of

4 By abuse of notation the tree class corresponding to the finite tree aj is denoted by the same symbol aj .
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tree classes are given in the form ai = xae1

j1
· · · ae�j� , to express that the class ai is constructed

by attaching e1 subtrees from the class aj1 , e2 subtrees from the class aj2 , etc., to a root

node that we denote x.

In our example we get the following relations:

a0 = p \
10⊕
i=1

ai = x ⊕ x

10⊕
i=0

ai ⊕ x

∞⊕
n=3

(
10⊕
i=0

ai

)n

,

a1 = xa2
0,

a2 = xa0a1,

a3 = xa0(a2 ⊕ a3 ⊕ a4),

a4 = xa0(a5 ⊕ a6 ⊕ a7 ⊕ a8 ⊕ a9 ⊕ a10),

a5 = xa2
1,

a6 = xa1(a2 ⊕ a3 ⊕ a4),

a7 = xa1(a5 ⊕ a6 ⊕ a7 ⊕ a8 ⊕ a9 ⊕ a10),

a8 = x(a2 ⊕ a3 ⊕ a4)
2,

a9 = x(a2 ⊕ a3 ⊕ a4)(a5 ⊕ a6 ⊕ a7 ⊕ a8 ⊕ a9 ⊕ a10),

a10 = x(a5 ⊕ a6 ⊕ a7 ⊕ a8 ⊕ a9 ⊕ a10)
2.

This is to be interpreted as follows. Trees in a1 consist of a (planted) root that is denoted

by x that has out-degree 2, and two children that are of out-degree distinct from 2, that

is, in a0. Similarly, trees in a3 consist of a root x with out-degree 2 and subject to the

following additional constraints: one subtree at the root is exactly of type a0; the other

subtree, call it T , is of out-degree 2, either with both subtrees of degree other than 2

(leading to T in a2), or with one subtree of degree 2 and the other of degree other

than 2 (leading to T in a3), or with both of its subtrees of degree 2 (leading to T in

class a4). Summarizing: a3 = xa0(a2 ⊕ a3 ⊕ a4). Of course this can also be interpreted as

a3 = xa0a2 ⊕ xa0a3 ⊕ xa0a4. Another more involved example corresponds to a8; here both

subtrees are of the form a2 ⊕ a3 ⊕ a4.

To show that the recursive description can be obtained easily in general, consider a

tree aj obtained from some planted pattern Mp. Let s1, . . . , sd denote its subtrees at the

root. Then, in each si, leaves of type ◦ can appear only at level h − 1. Substitute for all

such ◦ either � or a node of out-degree chosen from D and having ◦ for all its subtrees.

Do this substitution in all possible ways. The collection of trees obtained are some of

the aks, say a
k

(j)
1

, a
k

(j)
2

, etc. Thus, we obtain the recursive relation

aj = x
(
a
k

(1)
1

⊕ a
k

(1)
2

⊕ · · ·
)

· · ·
(
a
k

(d)
1

⊕ a
k

(d)
2

⊕ · · ·
)

for aj .

In general, we obtain a partition of L + 1 classes a0, . . . , aL and corresponding recursive

descriptions, where each tree type aj can be expressed as a disjoint union of tree classes

of the kind

xaj1 · · · ajr = xal00 · · · alLL , (3.2)
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where r denotes the degree of the root of aj and the non-negative integer li is the number

of repetitions of the tree type ai.

We proceed to show that this directly leads to a system of equations of the form (3.1),

where each polynomial relation stems from a recursive equation between combinatorial

classes.

Let Λj be the set of tuples (l0, . . . , lL) with the property that (l0, . . . , lL) ∈ Λj if and only

if the term of type (3.2) is involved in the recursive description of aj (in expanded form).

Further, let k = K(l0, . . . , lL) denote the number of additional occurrences of the pattern M
in (3.2) in the following sense: if b = xaj1 · · · ajr and T is a (planted rooted) labelled tree

of b with subtrees T1 ∈ aj1 , T2 ∈ aj2 , etc., and M occurs m1 times in T1, m2 times in T2,

etc., then T contains M exactly m1 + m2 + · · · + mr + k times. The number k corresponds

to the number of occurrences of M in T in which the root of T occurs as internal node

of the pattern. By construction of the classes ai this number only depends on b and not

on the particular tree T ∈ b. Let us clarify the calculation of k = K(l0, . . . , lL) with an

example. Consider the class a9 of the partition for the example pattern. Now, in order

to determine the number of additional occurrences, we match the planted patterns of

Figure 3 at the root of an arbitrary tree of class a9. The left planted pattern of Figure 3

matches three times, the right one matches once. Thus we find that in this case k = 4. For

the other classes we find the following values of k = K(l0, . . . , lL):

terms of class a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

value of k 0 0 0 1 2 1 2 3 3 4 5
.

Now define series Pj by

Pj(y0, . . . , yL, u) =
∑

(l0 ,... ,lL)∈Λj

1

l0! · · · lL!
yl00 · · · ylLL uK(l0 ,... ,lL).

These are in fact polynomials for 1 � j � L by the finiteness of the corresponding Λj . All

matches of the planted patterns are handled in the Pj , 1 � j � L, thus

P0(y0, . . . , yL, u) = ey0+···+yL −
L∑

j=1

Pj(y0, . . . , yL, 1)

does not depend on u.

In our pattern we get, for example, for P8(y0, . . . , y10, u)

P8(y0, . . . , y10, u) =
1

2
xy2

2u
3 + xy2y3u

3 + xy2y4u
3 +

1

2
xy2

3u
3 + xy3y4u

3 +
1

2
xy2

4u
3

=
1

2
x(y2 + y3 + y4)

2u3.

Finally, let aj;n,m denote the number of planted rooted trees of type aj with n nodes and

m occurrences of the pattern M, and set

aj(x, u) =

∞∑
n,m=0

aj;n,m
xnum

n!
.
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By this definition it is clear that

aj(x, u) = x · Pj

(
a0(x, u), . . . , aL(x, u), u

)
,

because the size of labelled trees is counted by x (exponential generating function) and

the occurrences of the patterns is additive and counted by u. Hence, we explicitly obtain

the proposed structure of the system of functional equations (3.1).

For the example pattern we arrive at the following system of equations, where we

denote the generating function of the class ai by the same symbol ai:

a0 = a0(x, u) = p −
10∑
i=1

ai = x + x

10∑
i=0

ai + x

∞∑
n=3

1

n!

(
10∑
i=0

ai

)n

,

a1 = a1(x, u) =
1

2
xa2

0,

a2 = a2(x, u) = xa0a1,

a3 = a3(x, u) = xa0(a2 + a3 + a4)u,

a4 = a4(x, u) = xa0(a5 + a6 + a7 + a8 + a9 + a10)u
2,

a5 = a5(x, u) =
1

2
xa2

1u,

a6 = a6(x, u) = xa1(a2 + a3 + a4)u
2,

a7 = a7(x, u) = xa1(a5 + a6 + a7 + a8 + a9 + a10)u
3,

a8 = a8(x, u) =
1

2
x(a2 + a3 + a4)

2u3,

a9 = a9(x, u) = x(a2 + a3 + a4)(a5 + a6 + a7 + a8 + a9 + a10)u
4,

a10 = a10(x, u) =
1

2
x(a5 + a6 + a7 + a8 + a9 + a10)

2u5.

In order to complete the proof of Proposition 3.1 we just have to show that the

dependency graph is strongly connected. By construction, a0 = a0(x, u) depends on all

functions ai = ai(x, u). Thus, it is sufficient to prove that every ai (1 � i � L) also depends

on a0. For this purpose consider the subtree of M that was labelled by ai and consider a

path from its root to an empty node. Each edge of this path corresponds to another subtree

of M, say ai2 , ai3 , . . . , air . Then, by construction of the system of functional equations above,

ai depends on ai2 , ai2 depends on ai3 etc. Finally, the root of air is adjacent to an empty

node and thus (the corresponding generating function) depends on a0. This completes the

proof of Proposition 3.1.

Note that we obtain a relatively more compact form of this system by introducing

b0 = b0(x, u) = a0(x, u),

b1 = b1(x, u) = a1(x, u),

b2 = b2(x, u) = a2(x, u) + a3(x, u) + a4(x, u)

b3 = b3(x, u) = a5(x, u) + a6(x, u) + a7(x, u) + a8(x, u) + a9(x, u) + a10(x, u),

(3.3)
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b0 b1 b2 b3

Figure 5. The classes corresponding to the bi of equations (3.3).

together with the recursive relations

b0 = xeb0+b1+b2+b3 − 1

2
x(b0 + b1 + b2 + b3)

2,

b1 =
1

2
xb2

0,

b2 = xb0b1 + xb0b2u + xb0b3u
2,

b3 =
1

2
xb2

1u + xb1b2u
2 + xb1b3u

3 +
1

2
xb2

2u
3 + xb2b3u

4 +
1

2
xb2

3u
5.

The combinatorial classes corresponding to the bi (which we will also denote by bi) have

the interpretation shown in Figure 5. We could have obtained the classes bi directly by

restraining the construction to a maximal depth h − 1 instead of h. In principle, we could

then apply the analytic treatment of Section 4 to the system of the bi. However, we feel

that the existence of a recursive structure of the system of the bi with a well-defined

K(l0, .., lL) for each term in the recursive description is slightly less clear. Therefore we

preferred to work with the ai which have a well-defined K(ai). In Appendix A we will

discuss another algorithm that yields in general even more compact systems of equations.

3.2. From planted rooted trees to rooted and unrooted trees

The next step is to find equations for the exponential generating function of rooted trees

(where occurrences of the pattern are marked with u). As above we set

r(x, u) =

∞∑
n,m=0

rn,m
xnum

n!
,

where rn,m denotes the number of rooted trees of size n with exactly m occurrences of the

pattern M. (That is, occurrences of the rooted patterns Mr deducible from M. Here, a

rooted pattern is defined in a very similar way to a planted pattern.)

Proposition 3.2. (Rooted trees) Let M be a pattern and let

a0(x, u), . . . , aL(x, u)

denote the auxiliary functions introduced in Proposition 3.1. Then there exists a polynomial

Q(y0, . . . , yL, u) with non-negative coefficients satisfying Q(y0, . . . , yL, 1) �c e
y0+···+yL , and such

that

r(x, u) = G(x, u, a0(x, u), . . . , aL(x, u)) (3.4)
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Figure 6. Rooted patterns for the pattern in Figure 1.

for

G(x, u, y0, . . . , yL) = x
(
ey0+···+yL − Q(y0, . . . , yL, 1) + Q(y0, . . . , yL, u)

)
. (3.5)

Proof. The proof is in principle a direct continuation of the proof of Proposition 3.1.

We recall that a rooted tree is just a root with zero, one, two, . . . planted subtrees, i.e.,

the class of rooted trees can be described as a disjoint union of classes c of rooted trees

of the form xaj1 · · · ajd . Furthermore, let li denote the number of classes ai in this term

such that c = xal00 · · · alLL , and set K̄(l0, . . . , lL) to be the number of additional occurrences

of the pattern M. This number again corresponds to the number of occurrences of M in

a (rooted) tree T ∈ c in which the root of T occurs as internal node of the pattern. Set

Qd(y0, . . . , yL, u) =
∑

l0+···+lL=d

1

l0! · · · lL!
yl00 · · · ylLL uK̄(l0 ,... ,lL).

Then, by construction,

r(x, u) = x
∑
d�0

Qd(a0(x, u), . . . , aL(x, u), u).

Note that
∑

d�0 Qd(y0, . . . , yL, 1) = ey0+···+yL . Let D̄ denote the set of degrees of the internal

(filled) nodes of the pattern, that is, D̄ = { d + 1 : d ∈ D }; then Qd(y0, . . . , yL, u) does not

depend on u if d �∈ D̄. With

Q(y0, . . . , yL, u) :=
∑
d∈D̄

Qd(y0, . . . , yL, u),

we obtain (3.4) and (3.5). The number K̄(l0, . . . , lL) is well-defined for a similar reason as

was K(l0, . . . , lL), and can be calculated similarly.

We again illustrate the proof with our example. In Figure 6 the corresponding rooted

patterns are shown. For convenience let r0 = r0(x, u) denote the function

r0 = xep − xp3

3!
,

where p = a0 + · · · + a10. The function r0 might also be interpreted as a catch-all function

for the ‘uninteresting’ subtrees – just a root x with an unspecified number of planted

trees attached, except the ones we handle differently, namely the cases d ∈ D̄ = {3}. The
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generating function r = r(x, u) for rooted trees is then given by

r = r0 +
1

6
xb3

0 +
1

2
x

∑
1�i�3

b2
0biu

i−1 +
1

2
x

∑
1�i,j�3

b0bibju
i+j−1 +

1

6
x

∑
1�i,j,k�3

bibjbku
i+j+k,

where the bi are defined in (3.3).

As above we have tn,m = rn,m/n, where tn,m denotes the number of unrooted trees with

n nodes and exactly m occurrences of the pattern M. This relation is sufficient for our

purposes. It is also possible to express the corresponding generating function t(x, u). In a

way similar as before, we can define the number of additional occurrences K̂(i, j) of the

pattern M that appear by constructing an unrooted tree from two planted trees of the

class ai and aj by identifying the additional edges at their planted roots and discarding

the phantom nodes. For our example we get

t(x, u) = r(x, u) − 1

2
p(x, u)2 − 1

2

∑
1�i,j�3

bi(x, u)bj(x, u)(u
i+j−2 − 1).

4. Asymptotic behaviour

Although the exact number of occurrences of the pattern is encoded in the system of

equations (3.1) together with (3.4), this kind of implicit representation cannot be used to

obtain (nice) explicit representations for these numbers. However, if we are interested in

the asymptotic behaviour, we do not have to compute explicit formulae from the system of

equations. Instead, we apply a result slightly adapted from [4] which we state and discuss

in Appendix B. In fact, it is immediately clear that Theorem B.1 in this appendix, whose

object is the proof of Gaussian limiting distributions, applies to the kind of problem we

are interested in: the assertions of Propositions 3.1 and 3.2 exactly fit the assumptions of

Theorem B.1.

The only missing point is the existence of a non-negative solution (x0, a0) of the system

a = F(x, a, 1), (4.1)

0 = det(I − Fa(x, a, 1)), (4.2)

where (4.1) is the system of functional equations of Proposition 3.1 and Fa is the Jacobian

matrix of F. Since the sum of all unknown functions p(x, u) is known for u = 1,

p(x, 1) = p(x) =
∑
n�1

nn−1 x
n

n!
= 1 −

√
2
√

1 − ex + · · · ,

it is not unexpected that x0 = 1/e.

Proposition 4.1. There exists a unique non-negative solution (x0, a0) of system (4.1)–(4.2),

for which x0 = 1/e and the components of a0 are polynomials (with rational coefficients) in

1/e.

Proof. For a proof, set u = 1 and consider the solution a(x, 1) = (a0(x, 1), . . . , aL(x, 1)).

Since the dependency graph is strongly connected it follows that all functions aj(x, 1)

have the same radius of convergence, which has to be x0 = 1/e, and all functions
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are singular at x = x0. Since 0 � aj(x, 1) � p(x, 1) < ∞ for 0 � x � x0, it also follows

that aj(x0, 1) is finite, and we have a(x0, 1) = F(x0, a(x0, 1), 1). If we had the inequality

det(I − Fa(x0, a(x0, 1), 1)) �= 0 then the implicit function theorem would imply the existence

of an analytic continuation for aj(x, 1) around x = x0, which is, of course, a contradiction.

Thus, the determinant is zero and system (4.1)–(4.2) has a unique solution.

To see that the components ā0, . . . , āL (with āi = ai(1/e, 1)) of a0 are polynomials in 1/e

we will construct the partition A = {a0, a1, . . . , aL} on which the system of equations (4.1)–

(4.2) is based, by refining step by step the trivial partition consisting of only one class p. The

recursive description of this trivial partition is given by the formal equation p = x
∑

i�0 p
i.

Additionally, the solution of the corresponding equation p = x exp(p) for the generating

function p (denoted by the same symbol p) is given by (x0, p̄) = (1/e, 1), with p̄ clearly

a (constant) polynomial in 1/e. Now let D = {d1, . . . , ds} (s ∈ N) again denote the set of

out-degrees that occur in the planted patterns. We will refine p by introducing for each

di ∈ D a class ai consisting of all trees of root out-degree di, as well as a class a0 for trees

with root out-degree not in D. The partition {a0, a1, . . . , as} has the recursive description

a0 = x
∑

j∈N\D

(a0 ⊕ a1 ⊕ · · · ⊕ as)
j ,

ai = x(a0 ⊕ a1 ⊕ · · · ⊕ as)
di (i = 1, . . . , s), (4.3)

and the solution of the corresponding system of equations

a0(x, 1) = x
∑

j∈N\D

1

j!
(a0(x, 1) + a1(x, 1) + · · · + as(x, 1))j

= xea0(x,1)+···+as(x,1) − x

s∑
i=1

1

di!
(a0(x, 1) + a1(x, 1) + · · · + as(x, 1))di

= xep(x) − x

s∑
i=1

1

di!
p(x)di , (4.4)

ai(x, 1) =
x

di!
(a0(x, 1) + a1(x, 1) + · · · + as(x, 1))di =

x

di!
p(x)di (i = 1, . . . , s),

is given by

x0 = 1/e, āi =
1

di! e
(i = 1, . . . , s), ā0 = 1 − (ā1 + · · · + ās), (4.5)

thus again polynomials in 1/e. We continue by refining this last partition by introducing

classes c1, . . . , cm (for some m ∈ N) for each term at the right-hand side of (4.3) after

expanding the ‘multinomial’. Such a class cj is of the form

cj = xa
l
(j)
0

0 a
l
(j)
1

1 · · · al
(j)
s
s

with natural numbers l
(j)
i , i = 0, . . . , s. We get a new partition {a0, c1, . . . , cm} which has a

recursive description by construction (because we can replace the ai by disjoint unions of

certain cj). The corresponding system of equations for the generating functions is given by

cj(x, 1) =
x

l
(j)
0 ! l(j)1 ! · · · l(j)s !

a0(x, 1)l
(j)
0 a1(x, 1)l

(j)
1 · · · as(x, 1)l

(j)
s (j = 1, . . . , u),
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and consequently we have for x0 = 1/e the solution

c̄j =
1

e

1

l
(j)
0 ! l(j)1 ! · · · l(j)s !

ā
l
(j)
0

0 ā
l
(j)
1

1 · · · āl
(j)
s
s (j = 1, . . . , m)

with the āi of (4.5). Thus the c̄j are again polynomials in 1/e. By continuing this procedure

until level h (i.e., performing the refinement step h times) we end up with the partition A
and we see that the solution for the corresponding system of equations consists of

polynomials in 1/e, which completes the proof of Proposition 4.1.

Note that there is a close link with Galton–Watson branching processes. Let pk = 1
k! e

denote a Poisson offspring distribution. Now we interpret a class ai as the class of

process realizations for which the (non-planar) branching structure at the beginning of

the processes corresponds to the root structure of ai. Then āi = ai(1/e, 1) is just the

probability of this event.

We now solve the system of equations obtained for the example pattern. We have

x0 = 1/e. The components of a0 can be easily obtained by following the construction of

the proof of Proposition 4.2 (or we use the branching process interpretation). For example,

if we set p = 1/(2e) for the probability of an out-degree 2 and q = 1 − p then we get ā4 =

a4(1/e, 1) = 2qp3 = 2e−1
16e5 . The factor 2 comes from the fact that the two subtrees of the root

may be interchanged: see Figure 4. The other classes can be treated similarly, and we find:

p(1/e, 1) = 1, a5(1/e, 1) = (2e − 1)4/(128e7),

a0(1/e, 1) = (2e − 1)/(2e), a6(1/e, 1) = (2e − 1)3/(32e7),

a1(1/e, 1) = (2e − 1)2/(8e3), a7(1/e, 1) = (2e − 1)2/(64e7),

a2(1/e, 1) = (2e − 1)3/(16e5), a8(1/e, 1) = (2e − 1)2/(32e7),

a3(1/e, 1) = (2e − 1)2/(8e5), a9(1/e, 1) = (2e − 1)/(32e7),

a4(1/e, 1) = (2e − 1)/(16e5), a10(1/e, 1) = 1/(128e7).

(4.6)

We are now ready to complete the proof of the main part of Theorem 1.1. By Proposi-

tions 3.1–4.1 we can apply Theorem B.1 and it follows that the numbers rn,m have a Gaus-

sian limiting distribution with mean and variance which are proportional to n. Since tn,m =

rn,m/n we get exactly the same law for unrooted trees. It remains to compute µ and σ2.

By using the procedure described in Appendix B we get for our example pattern

µ =
5

8e3
= 0.0311169177 · · ·

and

σ2 =
20e3 + 72e2 + 84e − 175

32e6
= 0.0764585401 · · · .

We observe – as predicted by Theorem 1.1 – that both µ and σ2 can be written as rational

polynomials in 1/e.

In what follows we will prove this fact (which completes the proof of Theorem 1.1)

and also present an easy formula for µ. Unfortunately the procedure for calculating σ2 is

much more complicated so that it seems that there is no simple formula.
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Proposition 4.2. Let x0 = 1/e and a0 be given by Proposition 4.1 and let Pj(y, u) (1 � j �
L) be the polynomials of Proposition 3.1, with y = (y0, . . . , yL). Then µ (of Theorem 1.1) is

a polynomial in 1/e with rational coefficients and is given by

µ =
1

e

L∑
j=1

∂Pj

∂u
(a0, 1). (4.7)

Proof. Let a = F(x, a, u) be the system of functional equations of Proposition 3.1. In

Appendix B the following formula for the mean is derived:

µ =
1

x0

bTFu(x0, a0, 1)

bTFx(x0, a0, 1)
. (4.8)

Here bT denotes a positive left eigenvector of I − Fa, which is unique up to scaling.

From the equality

F(x, a, u) =

⎛
⎜⎜⎜⎜⎜⎜⎝

x
(
ea0+···+aL −

∑L
j=1 Pj(a, 1)

)
xP1(a, u)

xP2(a, u)
...

xPL(a, u)

⎞
⎟⎟⎟⎟⎟⎟⎠
,

we get, after denoting ∂Pi

∂aj
with Pi,aj ,

Fa = x

⎛
⎜⎜⎜⎝
ea0+···+aL −

∑L
j=1 Pj,a0

· · · ea0+···+aL −
∑L

j=1 Pj,aL

P1,a0
· · · P1,aL

...
...

PL,a0
· · · PL,aL

⎞
⎟⎟⎟⎠. (4.9)

Since a0(x0, 1) + · · · + aL(x0, 1) = p(x0, 1) = 1 we have x0e
a0(x0 ,1)+···aL(x0 ,1) = 1. Consequently

the sum of all rows of Fa equals (1, 1, . . . , 1) for x = x0 = 1/e. Thus, denoting the transpose

of a vector v by vT, the vector bT = (1, 1, . . . , 1) is the unique positive left eigenvector of

I − Fa, up to scaling.

It is now easy to check that

x0b
TFx(x0, a0, 1) =

1

e
ea0(x0 ,1)+···aL(x0 ,1) = 1

and that

bTFu(x0, a0, 1) =
1

e

L∑
j=1

Pj,u(a0, 1).

The fact that µ is a polynomial in 1/e is now a direct consequence from the fact that a0

consists of polynomials in 1/e and the fact that the coefficients are rational follows from

the fact that F(x, a, u) has rational coefficients.

Of course, with the help of (4.7) we can easily evaluate µ directly. As already indicated

it seems that there is no simple formula for σ2.
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Before proving Proposition 4.4 we state an interesting fact that will be used henceforth.

Lemma 4.3. Let a0, a1, . . . , aL be the partition of p that is used in the proof of Theorem 1.1.

Then

det
(
I − Fa(x, a, 1)

)
= 1 − xea0+a1+···+aL .

Since the proof is a rather lengthy computation we postpone it to Appendix C.

Proposition 4.4. Let x0 = 1/e and a0 be given by Proposition 4.1. Then σ2 (of Theorem 1.1)

is a polynomial in 1/e (with rational coefficients).

Proof. From the proof of Proposition 4.2 we already know that xu(1) can be represented

as a polynomial in 1/e (with rational coefficients). The next step is to show that au(1) has

the same property. For this purpose we have to look at the system (B.11)

(I − Fa)au = Fxxu + Fu,

−Daau = Dxxu + Du,

where D(x, a, u) = det(I − Fa(x, a, 1)) = 1 − xea0+a1+···+aL . We first observe that

Da(x0, a0, 1) = (−1,−1, . . . ,−1).

Hence, we can replace the first row of the (L + 1) × (L + 1)-matrix I − Fa (which is

redundant since the matrix has rank L) by the row (1, 1, . . . , 1) and obtain a regular linear

system for au(1). Note that all entries of the right-hand side of this linear system can be

represented as polynomials in 1/e.

Let M(x, a) denote the matrix obtained from I − Fa(x, a, 1) by replacing the first row

by (1, 1, . . . , 1). It follows from the proof of Lemma 4.3 that det M(x, a) = 1. Further, all

entries of M(x0, a0) can be represented as polynomials in 1/e. Thus, M(x0, a0)
−1 has the

same property and consequently au(1) has this property too.

From that it directly follows from (B.12) that xuu is also represented as a polynomial

in 1/e. (By definition, b(x, a, u) is a rational polynomial of the entries of I − Fa.)

With the help of (B.4) this finally leads to a representation of σ2 as a polynomial in

1/e.

This completes the proof of Theorem 1.1.

5. Extensions and generalizations

In what follows we list some obvious and some less obvious extensions of our main result.

For conciseness we do not present the details.

5.1. Several patterns

Let M1, . . . ,Mk be k different patterns. Then the problem is to determine the joint

(limiting) distribution of the number of occurrences of M1, . . . ,Mk in trees of size n.
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Figure 7. Example pattern with empty nodes.

Using the same techniques as above (introducing the forest of planted patterns deduced

from the patterns) we again obtain a system of functional equations. The only difference

is that we now have to count occurrences of M1, . . . ,Mk with different variables u1, . . . , uk ,

which is done in the same fashion as for a single u. In view of Theorem B.1, multiple

variables u make no difference and we obtain a multivariate Gaussian limiting distribution.

5.2. Patterns containing paths of unspecified length

It might also be interesting to consider patterns where specific edges can be replaced by

paths of arbitrary length. It turns out that this case in particular is more involved since

a natural partition of all planted rooted trees is now infinite. Nevertheless it is possible

to replace infinite series of such classes by one new class and end up with a finite system.

Thus, this leads to a Gaussian limit law (as above).

5.3. Filled and empty nodes

In our model we have distinguished between internal (filled) and external (empty) nodes

of the pattern M, where the degrees of the internal (filled) nodes have to match exactly.

It also seems possible to consider the following more general matching problem. Let

M again be a finite tree, where certain nodes are ‘filled’ and the remaining ones are

‘empty’. Now we say that M matches if it occurs as a subtree such that the corresponding

degrees of the filled nodes are equal whereas the degrees of the empty nodes might be

different. It seems that the counting procedure above can be adapted to cover this case,

too. However, it is definitely more involved. For example, if leaves of the pattern are filled

nodes then these nodes have to be leaves wherever the pattern occurs. This implies that

some of the functions aj(x, u) are then explicitly given in the system and the dependency

graph is not strongly connected. However, it seems that this situation can be managed

by eliminating these functions. Furthermore, and this is more serious, in general one has

to consider infinitely many classes of trees leading to an infinite system of functional

equations, in particular if an internal node is ‘empty’. In such a case Theorem B.1 cannot

be applied any longer. Nevertheless we hope that the approach of Lalley [13], which is

applicable to infinite systems of functional equations in one variable, can be generalized

to a corresponding generalization of Theorem B.1 to proper infinite systems. Thus, we

can expect a Gaussian limit law even in this case.

In order to be more precise we will present an easy example. Let M denote the pattern

depicted in Figure 7. Here all nodes are empty. Thus, the corresponding pattern counting

problem is a subgraph counting problem.

We partition all planted trees according to their root degree. Let ak denote the set

of planted rooted trees with root out-degree k and ak(x, u) the corresponding generating
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function (which also counts the number of subgraph occurrences of M). Further, let

r(x, u) denote the generating function of rooted trees. Then we have

ak(x, u) =
x

k!

( ∑
i�0

ai(x, u)u
(k2)(

i
3)+(k3)(

i
2)

)k

(k � 0)

and

r(x, u) = x
∑
k�0

1

k!

( ∑
i�0

ai(x, u)u
(k−1

2 )( i3)+(k−1
3 )( i2)

)k

.

This system is easy to solve for u = 1. Here we have ak(x, 1) = xp(x)k/k! and r(x, 1) = p(x).

By taking derivatives with respect to u and summing over all k we also get (after some

algebra)

ru(x, 1) =
5

12

p(x)7

1 − p(x)
+

1

6

p(x)8

1 − p(x)
+

p(x)7

6
.

This implies that the average value of pattern occurrences (in this sense) is of the form

(7/12)n + O(1), that is, µ = 7/12. In principle it is also possible to get asymptotics for

higher moments but the calculations get more and more involved.

5.4. Simply generated trees

Simply generated trees have been introduced by Meir and Moon [14] and are proper

generalizations of several types of rooted trees. Let

ϕ(x) = ϕ0 + ϕ1x + ϕ2x
2 + · · ·

be a power series with non-negative coefficients; in particular we assume that ϕ0 > 0 and

ϕj > 0 for some j � 2. We then define the weight ω(T ) of a finite rooted tree T by

ω(T ) =
∏
j�0

ϕ
Dj (T )
j ,

where Dj(T ) denotes the number of nodes in T with j successors. If we set

yn =
∑

|T |=n

ω(T ),

then the generating function

y(x) =
∑
n�1

ynx
n

satisfies the functional equation

y(x) = xϕ(y(x)).

In this context, yn denotes a weighted number of trees of size n. For example, if ϕj = 1

for all j � 0 (that is, ϕ(x) = 1/(1 − x)) then all rooted trees have weight ω(T ) = 1 and

yn = pn is the number of planted plane trees. If ϕj = 1/j! (that is, ϕ(x) = ex) then we

formally get labelled rooted trees, etc.
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Of course, we can proceed in the same way as above and obtain a system of functional

equations that counts occurrences of a specific pattern in simply generated trees, and

(under suitable conditions on the growth of ϕj) we finally obtain a Gaussian limiting

distribution. This has explicitly been done by Kok in his thesis [11, 12].

5.5. Unlabelled trees

Let p̂n denote the number of unlabelled planted rooted trees and t̂n the number of

unlabelled unrooted trees. The generating functions are denoted by

p̂(x) =
∑
n�1

p̂nx
n and t̂(x) =

∑
n�1

t̂nx
n.

The structure of these trees is much more difficult than that of labelled trees. It turns out

that one has to apply Pólya’s theory of counting and an amazing observation (5.1) by

Otter [15]. The generating functions p̂(x) and t̂(x) satisfy the functional equations

p̂(x) = x
∑
k�0

Z
(
Sk; p̂(x), p̂(x2), . . . , p̂(xk)

)
= x exp

(
p̂(x) +

1

2
p̂(x2) +

1

3
p̂(x3) + · · ·

)

and

t̂(x) = p̂(x) − 1

2
p̂(x)2 +

1

2
p̂(x2), (5.1)

where Z(Sk; x1, . . . , xk) denotes the cycle index of the symmetric group Sk . These functions

have a common radius of convergence ρ ≈ 0.338219 and a local expansion of the form

p̂(x) = 1 − b(ρ − x)1/2 + c(ρ − x) + d(ρ − x)3/2 + O
(
(ρ − x)2)

)
and

t̂(x) =
1 + p̂(ρ2)

2
− b2 + 2ρp̂′(ρ2)

2
(ρ − x) + bc(ρ − x)3/2 + O

(
(ρ − x)2)

)
,

where b ≈ 2.6811266 and c = b2/3 ≈ 2.3961466, and x = ρ is the only singularity on the

circle of convergence |x| = ρ. Thus, they behave like p(x) and t(x). We also get

p̂n =
b
√
ρ

2
√
π
n−3/2ρ−n

(
1 + O(n−1)

)
and

t̂n =
b3ρ3/2

4
√
π

n−5/2ρ−n
(
1 + O(n−1)

)
.

Furthermore, it is possible to count the number of nodes of specific degree with the

help of bivariate generating functions (compare with [5]). Thus, using Pólya’s theory of

counting we can also obtain a system of functional equations for bivariate generating

functions that count the number of occurrences of a specific pattern. The major difference

to the procedure above is that this system also contains terms of the form aj(x
k, uk) for

k � 2. Fortunately these terms can be considered as known functions when x varies around

the singularity ρ and u varies around 1 (compare again with [5]). Hence, Theorem B.1

applies again and we can proceed as above. This has explicitly been done by Kok in his

thesis [11, 12].
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5.6. Forests

First, let us consider the case of labelled trees with generating function t(x, u). Then the

generating function f(x, u) of unlabelled forests is given by

f(x, u) = et(x,u).

Thus, the singular behaviour of f(x, u) is the same as that of t(x, u) (compare with [5])

and consequently we again obtain a Gaussian limiting distribution for the number of

occurrences of a specific pattern in labelled forests.

The case of unlabelled forests is similar. Here we have

f̂(x, u) = exp

(
t̂(x, u) +

1

2
t̂(x2, u2) +

1

3
t̂(x3, u3) + · · ·

)
.

Of course, we can consider other classes of trees or forests of a given number of trees.

5.7. Forbidden patterns

It is also interesting to count the number tn,0 of trees of size n without a given pattern.

The generating function of these numbers is just p(x, 0), resp. t(x, 0). It is now an easy

exercise to show that there exists an η > 0 such that

tn,0 � tne
−ηn.

The only thing we have to check is that the radius of convergence of t(x, 0) is larger

than the radius of convergence of t(x, 1). However, this is obvious since the radius of

convergence of t(x, u) (which is the same as that of p(x, u)) is given by x(u) (for u around 1)

and x′(1) < 0.

Appendix A: Algorithms

In the main part of this paper we showed that the limiting distribution of the number of

pattern occurrences is normal with computable µ and σ2. However, the family of classes

{a0, a1, . . . , aL} considered in the first part was especially created to make the arguments

more transparent; there were no considerations about minimality. In this appendix

we focus on creating another partition A = {a0, . . . , aL} of p which has considerably

fewer classes. It also has the properties that it is recursively describable and allows

an unambiguous definition of the number of additional occurrences K(l0, . . . , lL) of the

pattern. For example, we show that for the pattern of Figure 9 we need just 8 equations,

whereas the previous proof would use more than 1000 equations.

First we remark that in some cases it is profitable to adjust the structure of the system

of equations (3.1) in Proposition 3.1 by allowing an additional polynomial P0(y0, . . . , yL, u)

in the first equation. The first equation then becomes

a0(x, u) = x · P0(a0(x, u), . . . , aL(x, u), u)

+ (xea0(x,u)+···+aL(x,u) − x

L∑
j=0

Pj(a0(x, u), . . . , aL(x, u), 1)).
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This system still fits our analytical framework. The advantage is that, for example, the

minimal system of equations for counting stars in trees on page 24 now fits this modified

system.

The idea for constructing A will be to create initially a certain family of tree classes

S = {t1, . . . , tn}, not necessarily building a partition of p. Each of these classes will be

defined as the class of all trees in p which ‘start’ in a certain way, or with other words,

which match a certain tree t′i at the root, just as was the case for the ai in the main part

of this paper. By abuse of notation we will usually write ti instead of t′i for this tree. Let

J = {1, . . . , n} and tci = p \ ti. Now, by collecting in A all different, non-empty classes of

the form

aI =
⋂
i∈I

ti ∩
⋂
i∈J\I

tci , I ⊆ J (A.1)

we will obtain a partition A of p. This partition will have a recursive description by

construction, see the algorithms below. Furthermore, if S is sufficiently rich, this partition

will allow an unambiguous definition of K(l0, . . . , lL).

We now make some considerations about the properties that S should possess to make

sure that A will allow an unambiguous definition of K(l0, . . . , lL). Let b be a subclass of

p. For each tree T ∈ p we can determine the number k(T ) of pattern occurrences at the

root of T . Let k(b) = { k(T ) : T ∈ b }. Because the patterns have finitely many nodes and

because in each internal node the degree is fixed and the root has to be part of the match,

there are only finitely many ways for a pattern match. Thus the set k(b) will be finite and

non-empty. Now let aI be defined by equation (A.1) (and non-empty). Now it holds that

k(aI ) ⊆
⋂
i∈I

k(ti) ∩
⋂
i∈J\I

k(tci ) (A.2)

because a tree T in aI is by definition in ti, i ∈ I and tci , i ∈ J \ I , and thus the number

of pattern occurrences at the root is constrained by k(ti), i ∈ I and k(tci ), i ∈ J \ I . If

S = {t1, . . . , tn} is sufficiently rich, then k(aI ) will only consist of a single number. This

will be the case if, for each m ∈ N, the family S contains all classes of trees ‘starting’ with

all possible arrangements of m overlapping patterns. Indeed, if we have, for example, for

a certain tree class ti that k(ti) = {r, r + 1}, then there will be another tree class tj , which

is a subclass of ti with k(tj) = {r + 1}. Now the intersections b = ti ∩ tcj and c = ti ∩ tj will

yield tree classes with a singleton k(.), namely k(b) = {r} and k(c) = {r + 1}.
For example, consider a pattern which consists of a node of degree 2 attached to a

node of degree 3. The corresponding planted patterns are shown in Figure 8. Now let S
consist of the three classes t1, t2, t3, shown in the centre of Figure 8. We have k(t1) = {1},
because the left planted pattern surely matches and the other does not, k(t2) = {1, 2},
because the left planted pattern does not match and the right one matches at least once,

but possibly twice. Here k(t3) = {2}, because the left pattern does not match and the

right one surely matches twice. We see that the only non-empty intersections of the form

(A.1) are a = t1 ∩ tc2 ∩ tc3, b = tc1 ∩ t2 ∩ tc3 and c = tc1 ∩ t2 ∩ t3. We obtain k(a) = k(b) = {1}
and k(c) = {2}, which are all singletons. Because we also need a recursive description of
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� t1 t2 t3 a b c

Figure 8. On the left: planted patterns. Centre: classes ti. Right: classes {a, b, c}. The white box here means a

node of out-degree different from 1. Note that this does not correspond to the output of the algorithms of this

appendix.

Figure 9. Example pattern M.

the final partition A, we will construct some additional tree classes ti. As the partition

becomes finer when dealing with more classes ti, it is clear that k remains well-defined.

On the other hand we do not have to associate a unique number to k(aI ), only to

K(l0, . . . , lL). Therefore we can slightly reduce the family S = {t1, . . . , tn}. In the algorithm

below this reduction of S corresponds to considering only proper subtrees of the trees

q ∈ Q (q itself is excluded).

A coarse-grained description of an algorithm now follows.

(1) Calculate the set U of all planar embeddings of all planted patterns deducible from

the pattern M.

(2) Consider the planted planar trees issue of step (1) as planar tree classes and take

all possible intersections of any number of those classes. Now take the implied non-

planar general tree structure of each class and collect these non-planar planted trees

in the set Q.

(3) Create a family S = {t1, . . . , tn} for the forest of planted subtrees of trees q ∈ Q,

excluding the trees q themselves, where each tj has a recursive description in

t0, t1, . . . , tj−1 and where t0 denotes a leaf.

(4) Now interpret t0 as the class of all trees p and interpret the trees ti ∈ S as non-planar

tree classes. Construct a partition A = {a0, . . . , aL} of the class of all planted trees p

together with a recursive description (compare with (A.1)).

(5) Calculate for each term in the recursive description the number K(l0, . . . , lL) of

additional pattern occurrences and deduce a system of equations for the generating

functions aj(x, u) of the classes aj .

Before giving more detailed algorithms, we give an example. Consider the pattern of

Figure 9.
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Figure 10. Some of in total 16 planted planar embeddings U.

Figure 11. Some of in total 24 non-planar trees of Q.

With the procedure of the main part of the article we would end up with more than

1000 classes, yielding a system of equations with the same number of equations. However,

by using the following refined algorithm we only need 8 classes.

In the first step we create all planar embeddings of the corresponding planted pattern

(trees τ1, τ2, τ3 of Figure 14). This yields 3 · 2 + 2 + 4 · 2 = 16 planar trees of which some

are shown in Figure 10.

We now consider these structures as planar tree classes and additionally construct tree

classes by taking all possible intersections of any number of the classes issued from step 1.

Then, we take the non-planar implied tree structure of each planar class and collect

these trees in Q. We end up with 24 different trees: 9 that stem from τ1, 1 from τ2, and

14 from τ3. Some of them are shown in Figure 11.

For all proper subtrees for each tree in Q we now construct a recursive description.

For example, for the leftmost tree of Figure 11 we first consider the subtree consisting

of a node with four leaves. We denote this class by t4 = xt40. (Here we use the following

structural notation: x denotes a root node, t0 a leaf and xt40 denotes a root to which are

attached 4 leaves.) The next subtree is a root of out-degree 2 to which a subtree of type t4
is attached. We denote this with t5 = xt0t4. Figure 12 shows all 6 trees we end up with.

Observe in our example that the collection of subtrees at the root extracted from the

24 trees in Q consists of only 6 trees.

Their recursive descriptions are given by

t1 = xt30, t2 = xt0t1, t3 = xt21, t4 = xt40, t5 = xt0t4, t6 = xt24. (A.3)

We now interpret t0 in (A.3) as the class of all planted trees p. The other ti are also

interpreted as tree classes. For example, t1 is the class of all trees with root out-degree 3.

We now construct a partition based on these classes and their recursive description of

(A.3). We obtain the classes of Figure 13.
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t1 t2 t3

t4 t5 t6

Figure 12. Non-planar trees ti which possess a recursive description.

a0 a1 a2 a3

a4 a5 a6 a7

Figure 13. Non-planar partition classes. The white box means ‘not out-degree 3 or 4’ and the white triangle

means ‘anything that is not contained in the other classes’.

Their recursive description is given by

a0 = 7p \
7⊕

i=1

ai = x ⊕ x

7⊕
i=0

ai ⊕ x(a0 ⊕ a2 ⊕ a3 ⊕ a5 ⊕ a6 ⊕ a7)
2 ⊕ x

∞⊕
n=5

(
7⊕

i=0

ai

)n

,

a1 = xp3,

a2 = xa2
1,

a3 = xa1a4,

a4 = xp4,

a5 = x(a0 ⊕ a2 ⊕ a3 ⊕ a5 ⊕ a6 ⊕ a7)a1,

a6 = xa2
4,

a7 = x(a0 ⊕ a2 ⊕ a3 ⊕ a5 ⊕ a6 ⊕ a7)a4. (A.4)

The last step consists of determining the number of additional occurrences K(l0, . . . , l7)

for each term in the recursive description (A.4) and translating (A.4) in a system of

equations for the generating functions aj(x, u) = aj . As an example we consider the

equation for a1. Class a1 consists of the trees of root out-degree 3. We get no additional

occurrences of the pattern if we attach a tree of class a0, a1, a2, a4 or a5 to such a root, we

get one additional occurrence for each tree of class a3 or a7 and we have two additional
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occurrences for each tree of class a6 attached to the root. This yields the equation for

a1(x, u) below. Altogether we obtain

a0 = x + x

7∑
i=0

ai +
1

2
x(a0 + a2 + a3 + a5 + a6 + a7)

2 + x
∑
n�5

1

n!

(
7∑

i=0

ai

)n

,

a1 =
1

3!
x(a0 + a1 + a2 + a4 + a5 + (a3 + a7)u + a6u

2)3,

a2 =
1

2
xa2

1,

a3 = xa1a4u,

a4 =
1

4!
x(a0 + a1 + a4 + a6 + a7 + (a3 + a5)u + a6u

2)4,

a5 = x(a0 + a2 + a3 + a5 + a6 + a7)a1,

a6 =
1

2
xa2

4,

a7 = x(a0 + a2 + a3 + a5 + a6 + a7)a4.

We can now calculate µ. We get µ = 256−43e
8e3 = 0.865759040 . . . . The computation of σ2

was not feasible, because of memory problems.5

A.1. Planar embedding algorithm: GeneralToPlanar

Input. A general planted tree τ.

Output. The set U of planted planar trees π that share τ as their implied general tree

structure.

Algorithm.

(1) Write τ in the form xτ1 · · · τk , that is, let k be the root out-degree of τ and τ1, . . . , τk
be the children at the root.

(2) For each i between 1 and k, recursively compute Pi = GeneralToPlanar(τi).

(3) Construct and return the set of planar trees xπσ(1) · · · πσ(k) over all choices of πi ∈ Pi

and over all permutations σ of {1, . . . , k}.

A.2. Tree class intersection algorithm

Input. A set of planted planar trees U.

Output. The set Q of non-planar planted trees which are obtained by intersecting planar

tree classes based on U and collecting the non-planar tree structures of the resulting

planar tree classes.

Algorithm.

(1) For each i between 1 and |U|, consider all i-tuples of different trees π1, . . . , πi ∈ U and

determine for each i-tuple if s = π1 ∩ · · · ∩ πi may be interpreted as a non-empty tree

5 The actual computation uses polynomial expressions with more than 200,000 terms. We used Maple 9.5,

which used up GB of memory and a very large part of the 1 GB swap.
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class. In that case, let s′ be the implied non-planar tree structure of s and add s′ to

the set Q.

A.3. DAGification algorithm

We construct a recursive description for the forest of planted subtrees for each tree in a

given set of planted trees. Here we do not consider the tree itself as a subtree of itself.

This calculation is reminiscent of the DAGification process of computer science (see, e.g.,

[1]), which aims at compacting an expression tree by sharing repeated subexpressions.

However, if we interpret those subtrees as classes, the intersection of two classes need not

be empty.

Input. A set of planted trees Q.

Output. A number m and a recursive description of the forest of planted subtrees S =

{t1, . . . , tm} of the trees of Q, of the form

ti = xt
λ

(i)
1

· · · t
λ

(i)
ri

(ri ∈ N) for 1 � i � m

with the constraint λ(i)
j < i for all i and j.

Algorithm.

(Initialisation) Introduce the exceptional type t0 to denote the planted tree consisting of

a single node (in other words, a leaf) and set m to 1.

(Main loop) For all planted trees of U perform a depth-first traversal of the tree, starting

from the planted root; during this recursive calculation, at each node n:

(1) if the node is a leaf, return the type t0
(2) else, recursively determine the type associated with each child of n

(3) if n is not the planted root of the tree, write the subtree rooted at n as a

(commutative) product π = xtλ1
· · · tλr of the types obtained in the previous step

(4) look up the uniquification table to check whether this product has already been

assigned a type ti
(5) if not existent, increment m, create a new type tm, remember its definition tm = π,

and assign tm to the product π in the uniquification table

(6) return the type ti if it was found by lookup, otherwise return tm

(Conclusion) Return m and the sequence of definitions of the form ti = π, for i =

1, 2, . . . , m.

A.4. Disambiguating algorithm

The idea of the algorithm below is to consider each class of trees, ti, in turn, introducing

its defining equation

ti = xt
λ

(i)
1

· · · t
λ

(i)
ri

(r ∈ N)

into the calculation, while maintaining (and refining) a partition

p = a0 ⊕ · · · ⊕ aL
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of the total class of planted trees. To be able to do so, it is crucial that the recursive

equation for ti refers to classes tj with j < i only, starting with the special class t0 = p,

the full class of planted trees.

At any stage in the algorithm, the class of r-ary trees is given as the disjoint union of

Cartesian products⊕
λ∈Λ

xtλ1
· · · tλr where Λ = { λ : �(λ) = r, 0 � λj � L },

where �(λ) denotes the number of components in the tuple λ. In the process of the

algorithm below, each class ti gets represented in a ‘polynomial’ form as above, summed

over a subset Λ of the set of integer sequences λ = (λ1, . . . , λr) of a given length r.

Computing intersections and differences of classes means merely computing intersections

and differences of the Λ in their representations, because of the recursive structure of the

input and of the algorithm itself.

Input.

• A family S = {t1, . . . , tm} of classes of trees with recursive descriptions of the form

ti = xt
λ

(i)
1

· · · t
λ

(i)
r

(r = �(λ(i))) for 1 � i � m

with the constraint λ(i)
j < i for all i and j.

Output.

• An integer L implying a partition

p = a0 ⊕ · · · ⊕ aL

.

• A representation of each ti of the form

ti =
⊕
j∈Ii

aj for 0 � i � m and Ii ⊆ {0, . . . , L}.

• A recursive description of the ai of the form

ai =
⊕
λ∈Λi

xaλ1
· · · aλ�(λ) for 1 � i � L,

a0 being implicitly described as p \ (a1 ⊕ · · · ⊕ aL).

Algorithm.

(Initialisation) Start with the trivial partition p = a0 for L = 0, the single representation

t0 = a0, that is, I0 = {0}.
(Main loop) For k from 1 to m do

(1) replace each ti in the definition of tk with its current representation in terms of

the aj , expand, and set s to the result, so as to get a representation of tk of the

form

s =
⊕
λ∈Λ(s)

xaλ1
· · · aλ�(λ) for some Λ(s)
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(2) for i from 1 to L while s �= ∅ do

(a) set b to ai ∩ s by setting Λ∩ to Λi ∩ Λ(s)

(b) if b �= ∅, then do

(i) set b′ to ai \ s

(ii) if b′ �= ∅, then

(A) create a new aj with description b′: increment n before setting aL to b′,

that is, before setting ΛL to Λi \ Λ(s)

(B) split ai into ai ⊕ aL in the representations of the tj , that is, add n into

each set Ij containing i

(C) split ai into ai ⊕ aL in the descriptions of the aj , b, and s, that is, for

each sequence in each of the Λj , Λ∩, and Λ(s), add sequences with i

replaced by L when the sequence involves i (if i occurs more than once,

then replace i by i or L in all possible ways)

(D) set ai to b by setting Λi to Λ∩

(iii) set s to s \ b, which is also s \ ai, and update Λ(s) by setting it to Λ(s) \ Λi

(3) if s �= ∅, then

(a) create a new aj with description s: increment L before setting aL to s, that is,

before setting ΛL to Λ(s)

(b) split a0 into a0 ⊕ aL in the representations of the tj , that is, add L into each

set Ij containing 0

(c) split a0 into a0 ⊕ aL in the descriptions of the aj , that is, for each sequence

in each of the Λj , add sequences with 0 replaced by n when the sequence

involves 0 (if 0 occurs more than once, then replace 0 by 0 or L in all possible

ways)

(4) represent tk as the union of all those ais that have contributed a non-empty b

at step (2(b)) and of aL if a new aj was created at step (3(a)) that is, create the

corresponding set Ik consisting of the contributing is, together with L if relevant

(Final step) Return L, the representations of the ti for 1 � i � m, the recursive descrip-

tions of the ai for 1 � i � L.

We will explicitly show the stages through which the algorithm goes when running with

the input (A.3). For readability, we will keep expressions in factored form.

k = 1: from t1 = xa3
0, we derive t1 = a1 and a1 = x(a0 ⊕ a1)

3.

k = 2: from t2 = x(a0 ⊕ a1)a1, we derive t1 = a1, t2 = a2 and a1 = xp3, a2 = xpa1, where

p = a0 ⊕ a1 ⊕ a2.

k = 3: from t3 = xa2
1, we derive t1 = a1, t2 = a2 ⊕ a3, t3 = a2 and a1 = xp3, a2 = xa2

1, a3 =

x(a0 ⊕ a2 ⊕ a3)a1, where p = a0 ⊕ a1 ⊕ a2 ⊕ a3.

k = 4: from t4 = x(a0 ⊕ a1 ⊕ a2 ⊕ a3)
4, we derive t1 = a1, t2 = a2 ⊕ a3, t3 = a2, t4 = a4

and a1 = xp3, a2 = xa2
1, a3 = x(a0 ⊕ a2 ⊕ a3 ⊕ a4)a1, a4 = xp4, where p = a0 ⊕ a1 ⊕

a2 ⊕ a3 ⊕ a4.
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1τ τ τ2 3τ

Figure 14. Input trees τ, τ1, τ2, τ3.

k = 5: from t5 = x(a0 ⊕ a1 ⊕ a2 ⊕ a3 ⊕ a4)a4, we derive t1 = a1, t2 = a2 ⊕ a3 ⊕ a5, t3 =

a2, t4 = a4, t5 = a3 ⊕ a6 and a1 = xp3, a2 = xa2
1, a3 = xa1a4, a4 = xp4, a5 = x(a0 ⊕

a2 ⊕ a3 ⊕ a5 ⊕ a6)a1, a6 = x(a0 ⊕ a2 ⊕ a3 ⊕ a4 ⊕ a5 ⊕ a6)a4, where p = a0 ⊕ a1 ⊕ a2 ⊕
a3 ⊕ a4 ⊕ a5 ⊕ a6.

k = 6: from t6 = xa2
4, we derive t1 = a1, t2 = a2 ⊕ a3 ⊕ a5, t3 = a2, t4 = a4, t5 = a3 ⊕ a6 ⊕

a7, t6 = a6 and a1 = xp3, a2 = xa2
1, a3 = xa1a4, a4 = xp4, a5 = x(a0 ⊕ a2 ⊕ a3 ⊕ a5 ⊕

a6 ⊕ a7)a1, a6 = xa2
4, a7 = x(a0 ⊕ a2 ⊕ a3 ⊕ a5 ⊕ a6 ⊕ a7)a4, where p = a0 ⊕ a1 ⊕ a2 ⊕

a3 ⊕ a4 ⊕ a5 ⊕ a6 ⊕ a7.

A.5. Calculation of K(l0, . . . , lL): CountRootOccurrences

Input. Non-planar planted trees τ, τ1, . . . , τk .

Output. The number of occurrences of any of the τi at the root of τ.

Algorithm.

(1) Fix one element π′ from GeneralToPlanar(τ) (see algorithm A.1).

(2) For each i between 1 and k, compute Pi = GeneralToPlanar(τ).

(3) Count and return the number of pairs (πi, π
′) such that πi is element of Pi and πi occurs

at the root of π′.

As an example we calculate K(0, 1, 0, 1, 0, 0, 1, 0). This corresponds to calculating the

number of additional occurrences in the class xa1a3a6. The input trees τ, τ1, τ2, τ3 are

shown in Figure 14. Here τ corresponds to the class xa1a3a6 and τ1, τ2, τ3 correspond to

the three possible ways of planting the example pattern.

We take as fixed planar embedding π′ of τ the embedding of Figure 14. We now iterate

over the different planar embeddings π1 of τ1 (6 of them), π2 of τ2 (2 of them), and π3

of τ3 (8 of them), and determine for each πi (i ∈ {1, 2, 3}) whether it occurs at the root

of π′. Consider, for example, the four embeddings shown in Figure 10 (three embeddings

of τ1, one embedding of τ3). The leftmost embedding matches π′, the one next to it as

well. The third one does not match π′, because the node with out-degree four is in the

wrong position. The rightmost embedding clearly does not match either. By considering

all embeddings and counting the matches we get k = K(0, 1, 0, 1, 0, 0, 1, 0) = 3.

The algorithm calculates the correct value of k, because the partition consisting of

the classes ai is sufficiently fine. From this it follows that every match above of a

planar embedding really gives rise to exactly one additional pattern occurrence. See the

considerations made at the beginning of this appendix.

By now the transformation to a systems of equations is easy. We get the terms by

replacing a term xaj1 · · · ajs in the recursive description of aj by a term xyj1 · · · yjsuK(l0 ,...,lL)/

l0! . . . lL!. Here it is assumed that terms that represent the same tree classes (like xa1a2 and
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xa2a1) are identified before. It is clear that there are only finitely many terms for which

K(l0, . . . , lL) might be non-zero a priori.

Appendix B: Asymptotics of analytic systems

The following theorem is a slightly modified version of the main theorem from [4].

We denote the transpose of a vector v by vT. Let F(x, y, u) = (F1(x, y, u), . . . , FN(x, y, u))T

be a column vector of functions Fj(x, y, u), 1 � j � N, with complex variables x, y =

(y1, . . . , yN)T, u = (u1, . . . , uk)
T which are analytic around 0 and satisfy Fj(0, 0, 0) = 0 for

1 � j � N. We are interested in the analytic solution y = y(x, u) = (y1(x, u), . . . , yN(x, u))T

of the functional equation

y = F(x, y, u) (B.1)

with y(0, 0) = 0, i.e., we demand that the (unknown) functions yj = yj(x, u), 1 � j � N,

satisfy the system of functional equations

y1 = F1(x, y1, y2, . . . , yN, u),

y2 = F2(x, y1, y2, . . . , yN, u),

...

yN = FN(x, y1, y2, . . . , yN, u).

It is convenient to define the notion of a dependency (di)graph GF = (V , E) for such a

system of functional equations y = F(x, y, u). The vertices V = {y1, y2, . . . , yN} are just the

unknown functions and an ordered pair (yi, yj) is contained in the edge set E if and only

if Fi(x, y, u) really depends on yj .

If the functions Fj(x, y, u) have non-negative Taylor coefficients then it is easy to

see that the solutions yj(x, u) have the same property. (One only has to solve the

system iteratively by setting y0(x, u) = 0 and yi+1(x, u) = F(x, yi(x, u), u) for i � 0. The

limit y(x, u) = limi→∞ yi(x, u) is the (unique) solution of the system above.)

Now suppose that G(x, y, u) is another analytic function with non-negative Taylor

coefficients. Then G(x, y(x, u), u) has a power series expansion

G(x, y(x, u), u) =
∑
n,m

cn,mx
num

with non-negative coefficients cn,m. In fact, we assume that for every n � n0 there exists m

such that cn,m > 0.

Let Xn (n � n0) denote an N-dimensional discrete random vector with

Pr[Xn = m] :=
cn,m

cn
, (B.2)

where

cn =
∑
m

cn,m

are the coefficients of

G(x, y(x, 1), 1) =
∑
n�0

cnx
n.
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The following theorem shows that (under suitable analyticity conditions) Xn has a

Gaussian limiting distribution.

Theorem B.1. Let F(x, y, u) = (F1(x, y, u), . . . , FN(x, y, u))T be functions analytic around x =

0, y = (y1, . . . , yN)T = 0, u = (u1, . . . , uk)
T = 0, whose Taylor coefficients are all non-

negative, such that F(0, y, u) = 0, F(x, 0, u) �= 0, Fx(x, y, u) �= 0, and such that there exists

j with Fyjyj (x, y, u) �= 0. Furthermore, assume that the region of convergence of F is large

enough that there exists a non-negative solution x = x0, y = y0 of the system of equations

y = F(x, y, 1),

0 = det(I − Fy(x, y, 1)),

inside it. Let

y = y(x, u) = (y1(x, u), . . . , yN(x, u))T

denote the analytic solutions of the system

y = F(x, y, u) (B.3)

with y(0, u) = 0 and assume that dn,j > 0 (1� j �N) for n� n1, where yj(x, 1) =
∑

n�0 dn,jx
n.

Moreover, let G(x, y, u) denote an analytic function with non-negative Taylor coefficients such

that the point (x0, y(x0, 1), 1) is contained in the region of convergence. Finally, let random

vectors Xn (n � n0) be defined by (B.2).

If the dependency graph GF = (V , E) of the system (B.3) in the unknown functions y1(x, u),

. . . , yN(x, u) is strongly connected then the sequence of random vectors Xn admits a Gaussian

limiting distribution with mean value

EXn = µ n + O(1) (n → ∞)

and covariance matrix

Cov(Xn,Xn) = Σ n + O(1) (n → ∞).

The row vector µ is given by

µ = −xu(1)

x(1)
,

and the matrix Σ by

Σ = −xuu(1)

x(1)
+ µTµ + diag(µ), (B.4)

where x = x(u) (and y = y(u) = y(x(u), u)) is the solution of the (extended) system

y = F(x, y, u), (B.5)

0 = det(I − Fy(x, y, u)). (B.6)

The proof of Theorem B.1 is exactly the same as that given in [4]. The main observation

is that the assumptions above show that the solutions yj(x, u) admit a local representation
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of the form

yj(x, u) = gj(x, u) − hj(x, u)

√
1 − x

x(u)
,

(where u is close to 1 and x close to x0 = x(1)). The assumption that the dependency

graph is strongly connected ensures that the location of the singularity of all functions

yj(x, u) is determined by the common function x(u). Thus, we get the same property for

G(x, y(x, u), u):

G(x, y(x, u), u) = g(x, u) − h(x, u)

√
1 − x

x(u)
. (B.7)

It is then well known (see [2, 3]) that a square root singularity plus some minor conditions

implies asymptotic normality of the coefficients (in the sense introduced above) with mean

and covariance expressed in terms of derivatives of x(u). Note, for example, that the

assumption dn,j > 0 for n � n1 ensures that cn > 0 for sufficiently large n and from this

follows that x0 = x(1) is the only singularity on the radius of convergence of G(x, y(x, 1), 1).

In what follows we comment on the evaluation of µ and Σ. The problem is to extract

the derivatives of x(u). The function x(u) is the solution of the system (B.5)–(B.6) and is

exactly the location of the singularity of the mapping x �→ y(x, u) when u is fixed (and

close to 1).

Let x(u) and y(u) = y(x(u), u) denote the solutions of (B.5)–(B.6). Then we have

y(u) = F(x(u), y(u), u). (B.8)

Taking derivatives with respect to u we get

yu(u) = Fx(x(u), y(u), u)xu(u) + Fy(x(u), y(u), u)yu(u) + Fu(x(u), y(u), u), (B.9)

where the three terms in F denote evaluations at (x(u), y(u), u) of the partial derivatives

of F, and where xu and yu denote the Jacobian of x resp. y with respect to u. In particular,

for u = 1 we have x(1) = x0 and y(1) = y0 and, of course,

det(I − Fy(x0, y0, 1)) = 0.

Since Fy is a non-negative matrix and the dependency graph is strongly connected there

is a unique Perron–Frobenius eigenvalue of multiplicity 1. Here this eigenvalue equals 1.

Thus, I − Fy has rank N − 1 and has (up to scaling) a unique positive left eigenvector bT:

bT(I − Fy(x0, y0, 1)) = 0.

From (B.9) we obtain

(I − Fy(x0, y0, 1))yu(1) = Fx(x0, y0, 1)xu(1) + Fu(x0, y0, 1).

By multiplying bT from the left we thus get

bTFx(x0, y0, 1)xu + bTFu(x0, y0, 1) = 0 (B.10)

and consequently

µ =
1

x0

bTFu(x0, y0, 1)

bTFx(x0, y0, 1)
.
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The derivation of Σ is more involved. We first define b(x, y, u) as the (generalized) vector

product6 of the N − 1 last columns of the matrix I − Fy(x, y, u). Observe that

D(x, y, u) :=
(
bT (x, y, u)(I − Fy(x, y, u))

)
1

= det(I − Fy(x, y, u)).

In particular, we have

D(x(u), y(u), u) = 0.

Then from

(I − Fy)yu = Fxxu + Fu,

−Dyyu = Dxxu + Du (B.11)

we can calculate yu. (The first system has rank N − 1: this means that we can skip the

first equation. This reduced system is then completed to a regular system by appending

the second equation (B.11).)

We now set

d1(u) = d1(x(u), y(u), u) = b(x(u), y(u), u)TFx(x(u), y(u), u),

d2(u) = d2(x(u), y(u), u) = b(x(u), y(u), u)TFu(x(u), y(u), u).

By differentiating equation (B.10) we get

xuu(u) = − (d1xxu + d1yyu + d1u)xu + (d2xxu + d2yyu + d2u)

d1
, (B.12)

where d1x, d1y, d1u, d2x, d2y, d2u denote the respective partial derivatives and where we

omitted the dependence on u. With the knowledge of x0, y0 and yu(1) we can now

evaluate xuu at u = 1 and we finally calculate Σ from (B.4).

Appendix C: Proof of Lemma 4.3

In this appendix we will prove Lemma 4.3 saying that the determinant det(I − Fa(x, a, 1))

is given by

det(I − Fa(x, a, 1)) = 1 − xea0+a1+···+aL .

We first observe that the sum of all rows of I − Fa(x, a, 1) equals(
1 − xea0+a1+···+aL , 1 − xea0+a1+···+aL , . . . , 1 − xea0+a1+···+aL

)
,

compare with (4.9). Hence, we get

det(I − Fa(x, a, 1)) = (1 − xea0+a1+...+aL ) det M(x, a),

where M(x, a) denotes the matrix I − Fa where we replace the first row by (1, 1, . . . , 1).

Thus, it remains to prove that det M(x, a) = 1.

For this purpose we have to be more explicit with the partition A = {a0, a1, . . . , aL}.
More precisely we construct A recursively from level to level. This procedure is similar

6 More precisely, this is the wedge product combined with the Hodge duality.



The Distribution of Patterns in Random Trees 55

to that of Proposition 4.1 but not the same. In order to make our arguments more

transparent we restrict ourselves to 4 steps. Note that this procedure also provides a

recursive description of the polynomials Pj(a, 1).

One starts with A0 = {d0, d1}, where d0 = a0 and d1 = p \ a0. This means that d0 collects

all trees where the root out-degree is not contained in D and d1 those where it is contained

in D. For example, if D = {2} then the generating functions of this (trivial) partition are

given by d1(x, 1) = xp(x)2/2 and by d0(x, 1) = p(x) − d1(x, 1) = p(x) − xp(x)2/2.

Then we partition d1 according to structure of the subtrees of the root, where we

distinguish between the previous classes d0 and d1. We get A1 = {c0, c1, . . . , cm}, where

c0 = d0 and c1 ⊕ . . . ⊕ cm = d1. In particular, if D = {2} then m = 3, the class c1 collects all

trees with root out-degree 2 where both subtrees of the root are in class a0 = d0, c2 collects

all trees with root out-degree 2 where one subtree of the root is in class a0 = d0 and the

other one in class d1, and c3 collects those trees where both subtrees of the root are in

class d1. The corresponding generating functions are given by c1(x, 1) = xd0(x, 1)2/2, by

c2(x, 1) = xd0(x, 1)d1(x, 1), and by c3(x, 1) = xd1(x, 1)2/2. Of course, we also have c0(x, 1) =

d0(x, 1) and c1(x, 1) + c2(x, 1) + c3(x, 1) = d1(x, 1).

In the same fashion we proceed further. We partition cs (1 � s � m) according to the

structure of the subtrees of the root (which are now taken from {c1, . . . , cm}) and denote

them by A2 = {b0, b1, . . . , b�}. Further we define sets Cs by cs =
⊕

r∈Cs
br . If D = {2} then

b0 = c0, b1 = c1, c2 is divided into three parts, and c3 is divided into 6 parts: C1 = {1},
C2 = {2, 3, 4}, C3 = {5, 6, 7, 8, 9, 10}.7

Finally, we partition bj (j � 1) according to the structure of the subtrees of the root

that are taken from the bi and denote them by A = {a0, a1, . . . , aL}. As in the previous

step we define sets Br by br =
⊕

j∈Br
aj . In general we have to iterate this procedure until a

certain level and get almost the same partition as in the proof of Proposition 3.1. The only

difference is that at the lowest level we only distinguish between nodes with degree in D

and degree not in D. However, this is no real restriction as we can extend the partition

above with an additional level and we will have a well-defined number of additional

occurrences for each class. We again obtain a partition which fits Proposition 3.1.

We recall that this recursive procedure directly provides a recursive description of the

system of functional equations. In particular, we have

aj(x, 1) = xPj(a0(x, 1), a1(x, 1), . . . , aL(x, 1), 1),

where Pj(·, 1) can actually be written as a polynomial in b0, b1, . . . , b�.

Next

br(x, 1) = xQr(b0(x, 1), b1(x, 1), . . . , b�(x, 1), 1),

where Qr(·, 1) can be written as a polynomial in c0, c1, . . . , cm. Further,

Qr =
∑
j∈Br

Pj .

In other words, the sum
∑

j∈Br
Pj can be written as a polynomial in cr .

7 By the way this leads to the partition that is used in the proof of Theorem 1.1 resp. of Proposition 3.1.
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Finally,

cs(x, 1) = xRs(c0(x, 1), c1(x, 1), . . . , cm(x, 1)),

where Rs(·, 1) can be written as a polynomial in d0 = a0 and d1 = a1 + · · · + aL and we

have

Rs =
∑
r∈Cs

Qr.

Let G(x, a) denote the L × L-submatrix of Fa where we omit the first row and column.

Then G(x, a) has the following structure:

G(x, a) =

⎛
⎜⎝
G11 · · · G1m

...
...

Gm1 · · · Gmm

⎞
⎟⎠,

where

Gs′s′′ =
(
Br′r′′

)
r′∈Cs′ ,r

′′∈Cs′′

and

Br′r′′ =
(
xPi,aj

)
i∈Br′ ,j∈Br′′

.

The condition that Pi can be written as a polynomial in bj implies that Pi,aj1
= Pi,aj2

for

all j1, j2 ∈ Br , that is, each row of Br′r′′ is either zero or all entries are the same.

Further, if we fix r′ and sum over all rows i ∈ Br′ then we get∑
i∈Br′

xPi,aj = xQr′ ,aj .

Since Qr′ can be written as a polynomial in cs (0 � s � m) we have Qr′ ,aj1
= Qr′ ,aj2

for all

j1, j2 ∈ C̄s′′ , where we set C̄s =
⋃

r∈Cs
Br .

Similarly if we fix s′ and sum over all rows i ∈ C̄s′ then we get∑
i∈C̄s′

xPi,aj = xRs′ ,aj .

Since Rs′ can be written as a polynomial in d0 = a0 and d1 = a1 + · · · + aL we have

Rs′ ,aj1
= Rs′ ,aj2

for all 1 � j1, j2 � L.

Now we will calculate the determinant of the matrix

M(x, a) =

⎛
⎜⎜⎜⎝

1 1 · · · · · · · · · 1
0 I · · · 0
...

...
. . .

...

0 0 · · · I

⎞
⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎝

0 0 · · · 0

× G11 · · · G1m

...
...

...

× Gm1 · · · Gmm

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

1 1 · · · · · · · · · 1
× I − G11 · · · −G1m

...
...

...

× −Gm1 · · · I − Gmm

⎞
⎟⎟⎟⎠.
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(By × we denote an entry whose value is immaterial.) We now perform the following row

operations. For every s′ = 1, . . . , m we substitute the first row of(
× −Gs′1 · · · I − Gs′s′ · · · − Gs′m

)
by the sum of the corresponding rows i ∈ C̄s′ . Since Rs′ ,aj1

= Rs′ ,aj2
for all 1 � j1, j2 � L

this sum of the rows has the form(
× −xRs′ ,a · · · − xRs′ ,a · · · 1 − xRs′ ,a · · · 1 − xRs′ ,a · · · −xRs′ ,a · · · − xRs′ ,a

)
.

We now add the very first row (which equals (1, 1, . . . , 1)) xRs′ ,a times to this row and

obtain

ws′ =
(
× | 0 · · · 0 | · · · | 1 · · · 1 | · · · | 0 · · · 0

)
.

Next we fix s′ and r′ such that r′ ∈ Cs′ and substitute the first row of(
× (−Br′j)j∈C1

· · · (I · δr′j − Br′j)j∈Cs′ · · · (−Br′j)j∈Cm

)
by the sum of the rows i ∈ Br′ . Since for every s′′ it holds that Qr′ ,aj1

= Qr′ ,aj2
for all

j1, j2 ∈ C̄s′′ this sum has the form(
× (−xQr′ ,aj )j∈C̄1

· · · (δ̄r′j − xQr′ ,aj )j∈C̄s′
· · · (−xQr′ ,aj )j∈C̄m

)
,

where δ̄r′j = 1 if and only if j ∈ Br′ and = 0 otherwise. This means that for every s′′ �= s′

the entries (−xQr′ ,aj )j∈C̄s′′
are either all equal or, if s′′ = s′, then we have to add 1 at proper

positions. For every s′′ we now add row ws′′ xQr′ ,aj times. If s′′ �= s′ then we get a zero

block (0, . . . , 0). If s′′ = s′ we get a block of the form(
0 · · · 0 · · · 1 · · · 1 · · · 0 · · · 0

)
.

This means that this row is replaced by

ws′ ,r′ =
(
× | 0 · · · 0 | · · · | 0 · · · 0 | 0 · · · 0 · · · 1 · · · 1 · · · 0 · · · 0 | 0 · · · 0 | · · · | 0 · · · 0

)
.

With the help of these rows we can eliminate all further entries of M(x, a) that come from

G(x, a). (Here we use the fact that each row of Br′r′′ is either zero or all entries are the

same.) This means that we finally end up with a matrix of the form

H =

⎛
⎜⎜⎜⎝

1 1 · · · · · · · · · 1
× H11 · · · H1m

...
...

...

× Hm1 · · · Hmm

⎞
⎟⎟⎟⎠,

where Hs′s′′ = 0 for s′ �= s′′ and Hs′s′ is of the form

Hs′s′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

J K K · · · K

0 J 0 · · · 0
...

. . .
...

...
. . .

...

0 0 0 . . . J

⎞
⎟⎟⎟⎟⎟⎟⎠
.
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with

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1

0 1 0 · · · 0
...

. . .
...

...
. . .

...

0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎠

and K =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1

0 0 0 . . . 0
...

...
...

...
...

...
...

...

0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

It is now an easy task to transform the matrix (Hs′s′′)1�s′ ,s′′�m (with the help of row

transforms) to the identity matrix. Furthermore, we can transform the very first row

(1, 1, . . . , 1) of H to (1, 0, . . . , 0) and end up with a matrix of the form⎛
⎜⎜⎜⎝

1 0 · · · 0

× 1 0
...

. . .
...

× 0 1

⎞
⎟⎟⎟⎠.

Obviously, this matrix has determinant 1. Since the above row transforms do not change

the value of the determinant, we thus obtain det M(x, a) = 1.
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[17] Ruciński, A. (1988) When are small subgraphs of a random graph normally distributed?

Probab. Theory Rel. Fields 78 1–10.

[18] Steyaert, J.-M. and Flajolet, P. (1983) Patterns and pattern-matching in trees: An analysis.

Inform. Control 58 19–58.


