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Abstract

We predict the number of hexagonal systems consisting of 24 and 25 hexagons

to be H

24

= 122237774262384 and H

25

= 606259305418149, with 6 and 5 signi�cant

digits, respectively. Further estimates for H

n

up to n = 31 are also given.

Hexagonal Systems

Informally speaking, a hexagonal system can be viewed as a connected arrangement of

hexagonal cells packed in the same way as the typical honeycomb arrangement in a bee-

hive. More formally, it is a �nite connected plane graph with no cut-vertices, in which

all interior regions are mutually congruent regular hexagons [1]. Hexagonal systems have

from time to time attracted the attention of mathematicians (and were named \hexagonal

animals", \honeycomb systems", \polyhexes", etc.), in connection with statistical physics

and applications to lattice gas models [2, 3, 4]. But the main interest in them comes from

chemistry: hexagonal systems are the natural graph representations of benzenoid hydro-

carbons, whence the names \benzenoid graphs", \benzenoid systems", and \fusenes" used

in the chemical literature. An enormous literature exists on various chemical applications

of hexagonal systems. We refer to [5, 6] for details and references.

One of the classical problems in the theory of hexagonal systems is their enumeration.

In what follows, the number of non-isomorphic hexagonal systems consisting of n hexagons

is denoted by H

n

, where \non-isomorphic" means viewed up to translations, rotations,

and symmetries. This in turn is equal to the number of n-cyclic benzenoid hydrocarbons.

The �rst few values of H

n

are given in Table 1.

The enumeration of hexagonal systems according to area stands as one of the most

challenging unsolved problems of combinatorial theory (cf. Section 10.8.5 in [7]). In spite of

numerous attempts, no one was successful in applying P�olya's theory [7, 8, 9] or any other

technique of combinatorics to �nd H

n

or, at least, in establishing the asymptotic behavior



n 1 2 3 4 5 6

H

n

1 1 3 7 22 81

n 7 8 9 10 11 12

H

n

331 1435 6505 30086 141229 669584

n 13 14 15 16 17

H

n

3198256 15367577 74207910 359863778 1751594643

Table 1: Numbers H

n

of hexagonal systems with n hexagons (1 � n � 17)

of H

n

as n goes to in�nity. Consequently, the only way to evaluate H

n

is to use a (more

or less) brute-force computer-assisted constructive enumeration; details of these methods

are outlined in the book [10], in the reviews [11, 12], and elsewhere [13, 14, 15, 16, 17, 18].

Recently, some very e�cient algorithms for the construction and counting of hexagonal

systems were designed [17, 18], but even with them the calculation of H

n

is extremely

time- and memory-consuming. For instance, in order to obtain H

22

, more than 300 days

of CPU time were needed; the analogous calculation of H

23

required 2.4 years of CPU

time [18].

The values of H

n

for n between 13 and 16 were �rst reported in 1990 by Knop et al.

(H

13

and H

14

in [13], H

15

and H

16

in [14]). Three years later To�si�c et al. arrived at H

17

[15, 16]. With this the limit of the performance of the currently available computers had

been reached, and further progress had to wait until a completely new algorithm was

developed by Caporossi and Hansen [17] and further enhanced by Brinkmann [18]. This

enabled the determination of H

18

to H

21

[17] as well as H

22

and H

23

[18]. It seems to be

unlikely that the application of the same technique will be feasible in the case of n � 24.

It is a natural idea to somehow use the information contained in the sequence H

1

,

H

2

; : : : ; H

n

to predict, at least approximately, the value of H

n+1

. Early attempts in this

direction [19, 20] were based on the assumption (without any theoretical justi�cation, but

in analogy with other results in graph enumeration) that for n being large enough, H

n

can

be approximated by some simple elementary function of n. This function was designed so

as to depend on a few (usually two) adjustable parameters, the values of which were then

determined from H

1

, H

2

; : : : ; H

n

. The resulting values of H

n+1

were eventually shown [13]

to be quite accurate, but|of course|far from being exact. The same analysis was later

applied to sequences of isomer counts of other homologous series of interest in chemistry

[21, 22].

In this paper we report the results of an analogous approach, which, however, is much

less arbitrary. Indeed, the class of sequences in which the approximation is searched

for is much larger than those classes used so far, and allows for as many parameters

as needed. The method is reminiscent of the methods of di�erential approximants [23]

and algebraic approximants [24] used in statistical mechanics, and possesses the sound

theoretical and algorithmic foundation of holonomic functions. This is the topic of the

end of the introduction, which to a certain extend is independent from the rest of the text.

Holonomic Guessing

Being faced with the �rst �ve entries 0, 1, 3, 6, and 10 of an in�nite sequence of numbers, an

obvious guess for the sixth one would be 15. One could even propose the formula n(n+1)=2



for the nth entry, but this re�ned guess cannot be proved unless further information is

provided. For instance, such a proof would become an easy task if we knew in addition

that we are dealing with the sums of the �rst n nonnegative integers.

Over the years various computer algebra tools have been developed in order to assist

this process of guessing and proving. As far as guessing is concerned, this is reected by the

success of Sloane's classical book [25] and its enlarged revision [26]. Each book is basically

a table of sequences of integers, collected from all branches of mathematics and sciences.

The sequences are arranged in numerical order, and come each with a brief description

and references. The mere existence of these \dictionaries" has allowed for a new process

of research: after generating the �rst numbers of a sequence of combinatorial interest, one

identi�es them with the aid of the tables. The work by Sloane and Plou�e has recently

found an electronic and algorithmic supplement [27]: the tables are now electronically

available for human search; additionally the on-line system now has a facility where it

will algorithmically try to guess a formula or to relate the input sequence to a tabulated

one. In particular, the counting sequence of hexagonal systems is now to be found there

(known as sequences number A000228, A018190, and A038148). With regard to proving,

we only mention Zeilberger's \holonomic systems approach to special function identities"

[28] and the developments described in [29].

In this article, the aspect of computer-assisted holonomic guessing plays the central

role. The �rst systematic presentation of the underlying theory of univariate holonomic

functions has been given by Stanley [30]. The �rst implementation of these ideas was

realized in the form of the Maple package Gfun by Salvy and Zimmermann [31]; it is

now used as part of [27]. Another package named GeneratingFunctions provides

Mathematica users with the same functionality [32].

A detailed description of holonomic theory (e.g., closure properties of holonomic func-

tions, etc.) would go far beyond the scope of this note. Therefore we restrict to introduce

only those notions that are relevant to the understanding of the method to be used for

predicting the values H

24

and H

25

.

For many counting sequences (a

n

), the ordinary generating function and its exponen-

tial counterpart,

1

X

n=0

a

n

x

n

and

1

X

n=0

a

n

x

n

n!

;

respectively, are holonomic, which means that such a function or series satis�es a linear

di�erential equation with polynomial coe�cients. Examples of holonomic functions in-

clude many familiar power series such as algebraic functions (functions that are solution

of a polynomial equation), the exponential function e

x

, logarithmic function log(1 + x),

and trigonometric functions like sinx. For example, if b

n

denotes the number of binary

planar trees with n+ 1 leaves (with the convention b

0

= 1), then the ordinary generating

function of the sequence (b

n

) is holonomic since

1

X

n=0

b

n

x

n

=

1�

p

1� 4x

2x

is algebraic.



It is not di�cult to prove that the series

P

1

n=0

a

n

x

n

is holonomic if and only if the

sequence (a

n

) satis�es a linear recurrence with polynomial coe�cents, i.e.,

p

0

(n)a

n

+ p

1

(n)a

n+1

+ � � � + p

d

(n)a

n+d

= 0;

where the p

i

's are polynomials in the indeterminate n. This serves as a motivation to

call the sequence (a

n

) holonomic in this case. Algorithmically it is easy to convert each

representation|di�erential equation and recurrence|into the other. Furthermore, both

representations serve as the basis for computer-assisted guessing. For example, let us

assume that we came up with the �rst six binary tree numbers (b

0

; b

1

; b

2

; b

3

; b

4

; b

5

) =

(1; 1; 2; 5; 14; 42). Then we could use Gfun (or GeneratingFunctions) to automati-

cally guess the recurrence

(n+ 2)b

n+1

� 2(2n+ 1)b

n

= 0:

The procedure to produce this guess is essentially based on a simple coe�cient comparison

method (namely di�erential Pad�e-Hermite approximants) for which one has to bound in

advance the order of the recurrence and the degree of the polynomial coe�cients involved:

the product \order times degree" is essentially the number of undetermined coe�cients

used by the method.

As mentioned above, additional information is needed in order to prove such a guess.

For instance, if one knows in advance that the generating function is algebraic, which

implies the existence of a holonomic recurrence, then one only needs to know an upper

bound for its order. Or, if the holonomic nature is not known in advance, one might

observe the convolution recurrence

b

n

=

n�1

X

k=0

b

k

b

n�k�1

:

In this case transforming the conjectured recurrence of order 1 into the closed form

b

n

=

1

n+ 1

�

2n

n

�

and substituting it into the convolution formula leads to the veri�cation of a binomial

identity. This could again be left to the computer by appying a symbolic summation

procedure from [29]. (The numbers b

n

above are the well-known Catalan numbers, often

denoted by C

n

.)

Concerning the problem of enumerating hexagonal systems, we do not know up to now

whether the corresponding generating function of (H

n

) is holonomic or not. Therefore

we would need additional information to actually prove the accuracy of our guess, which

can only be considered as a \holonomic approximation". The information we use for our

holonomic guessing solely consists in the values of H

n

that have been computed so far.

In order to provide further evidence, we present a detailed analysis of the stability of the

prediction scheme.

Holonomic guessing could also be considered as a kind of computer-assisted \heuristic

reasoning", meant in the spirit of P�olya. According to his dictionary of heuristics [33]:

\We are often obliged to use heuristic reasoning. We shall attain complete certainty when

we shall have obtained the complete solution, but before obtaining certainty we must often

be satis�ed with a more or less plausible guess."

In the present article we use the Maple package Gfun. Analogous procedures are

available to Mathematica users [32] and could have been used as well.



1 Warming Up: Predicting the Number of Hexag-

onal Systems with n Hexagons for n between 18

and 23

When To�si�c et al. gave the value 1751594643 for H

17

[15, 16], only the values of H

1

, H

2

,

: : : , H

16

were known. All those results are summarized in Table 1. Using these initial

17 numbers as exclusive information about the sequence (H

n

), we proceed to guess a

linear recurrence satis�ed by a holonomic approximation of the sequence. By means of

it we then predict further numbers H

n

of hexagonal systems when 18 � n � 23, before

comparing them with the actual values already known at present.

Prediction Scheme

We use the following prediction scheme:

Step 1. Load the package (as part of the standard distribution of Maple V Release 5),

enter the list of numbers known after To�si�c et al., and set up a few package parameters.

with(share): with(gfun):

L:=[1,1,3,7,22,81,331,1435,6505,30086,141229,669584,

3198256,15367577,74207910,359863778,1751594643]:

gfun['minordereqn']:=1: gfun['maxordereqn']:=2:

gfun['mindegcoeff']:=0: gfun['maxdegcoeff']:=20:

Speci�cally, we require the package to consider equations of order 1 or 2 with polynomial

coe�cients of degree between 0 and 10.

Step 2. Guess a recurrence satis�ed by the sequence which starts with the values above:

rec17:=listtorec(L,u(n));

which outputs:

rec17 := [fp

0

(n)u(n) + p

1

(n)u(n+ 1) + p

2

(n)u(n+ 2); u(0) = 1; u(1) = 1g; ogf]

where each p

i

above is a polynomial of degree 5 in n with integer coe�cients of 52 digits.

The explicit values are available in Appendix A.

Step 3. Convert this recurrence into a procedure which computes the nth term of the

sequence:

pr17:=rectoproc(op(1,rec17),u(n));

Remarkably, the output procedure pr17, which is too large to be displayed here, has been

automatically generated by Gfun. Additionally, Gfun automatically optimized it, in the

sense of minimizing the number of arithmetical operations used in the procedure.



n 18 19 20

H

0

n

8553612149 41892180909 205710300568

H

n

8553649747 41892642772 205714411986

��

n

4:4 � 10

�6

1:1 � 10

�5

2:0 � 10

�5

n 21 22 23

H

0

n

1012535580260 4994621421396 24686078283303

H

n

1012565172403 4994807695197 24687124900540

��

n

2:9 � 10

�5

3:7 � 10

�5

4:2 � 10

�5

Table 2: Predicted numbers H

0

n

of hexagonal systems with n hexagons, actual num-

bers H

n

, and corresponding relative errors ��

n

= �(H

0

n

� H

n

)=H

n

of prediction

(18 � n � 23)

Step 4. Compute predicted values for hexagonal systems with 18 to 23 hexagons. The

predicted values H

0

n

are in fact rational numbers rounded to the nearest integer. Rather

than displaying the Maple output, as obtained by the command

seq(i=trunc(pr17(i-1)+1/2),i=18..23);

we give the predicted results in Table 2.

Comparison to Recent Results

The numbers obtained in Step 4 of the previous scheme match with good accuracy those

obtained by Caporossi and Hansen [17], and by Brinkmann, Caporossi and Hansen [18].

Indeed, the heavy computations described in [18, 17] proved the numbers H

n

of hexagonal

systems to be those given in Table 2. The table also gives the corresponding relative error

�

n

=

H

0

n

�H

n

H

n

of the predicted values H

0

n

.

In order to perform the calculations of rec17, pr17, and the estimates, not more than

3 seconds of CPU time were needed.

Note that other parameter settings could have been used in Step 1 above. Let us

repeat that the number of undetermined coe�cients used by the method is essentially

the product \order times degree". The algorithm tries to detect equations with a small

number of non-zero coe�cients in the search space described by the parameters. The

other setting

gfun['minordereqn']:=0: gfun['maxordereqn']:=20:

gfun['mindegcoeff']:=0: gfun['maxdegcoeff']:=2:

yields another equation with low polynomial degree but high order (speci�cally: order 8

instead of 2, degree 1 instead of 5, 25-digit instead of 52-digit integers). The latter

recurrence results in di�erent predicted numbers, which however approximate the actual

ones with essentially the same good accuracy. This is why we will not discuss the choice

of parameter settings any further.



n 4 5 6 7 8 9 10 11 12 13 14 15 16 17

order 2 2 2 2 2 2 2 2 1 2 2 1 2 2

degree 1 1 2 2 2 3 3 3 5 4 4 7 5 5

digits 1 1 3 4 5 9 13 17 26 28 33 47 48 52

n 18 19 20 21 22 23

order 1 2 2 1 2 2

degree 8 6 6 10 7 7

digits 69 70 78 103 104 116

Table 3: Parameters for the recurrence obtained by the scheme at nth stage (4 � n � 23)

2 Predicting the Number of Hexagonal Systems with

24 or More Hexagons

In the previous section, we started from a list of known values for the H

n

(up to n = 17),

and derived a single recurrence to predict several further values (up to n = 23). In this

section, we follow a more incremental strategy: from a list of known or already predicted

values for H

1

; : : : ; H

n

, we derive a recurrence to predict a single further value for H

n+1

.

Adjoining it to the initial list, we then iterate the process ` times, ending with several

recurrences, one for each value predicted for H

n+1

; : : : ; H

n+`

.

Prior to this, we provide good numerical evidence for the stability of our incremental

prediction scheme, which makes it possible to obtain values for H

24

and H

25

of credibly

good accuracy.

Stability of the Prediction Scheme

Using all known valuesH

1

; : : : ; H

n

for a number n � 23, one can predict the numbersH

n+p

for p � 1 following the same scheme as previously outlined for n = 17. This is readily

implemented in Maple:

L:=[1,1,3,7,22,81,331,1435,6505,30086,141229,669584,

3198256,15367577,74207910,359863778,1751594643,

8553649747,41892642772,205714411986,1012565172403,

4994807695197,24687124900540]:

gfun['minordereqn']:=1: gfun['maxordereqn']:=2:

gfun['mindegcoeff']:=0: gfun['maxdegcoeff']:=20:

for i from 4 to nops(L) do

rec[i]:=listtorec(L[1..i],u(n));

pr[i]:=rectoproc(op(1,rec[i]),u(n))

od:

Setting the order and degree parameters as indicated in the Maple code above, the

recurrences obtained are of small order (1 or 2), but involve polynomials in n of degree

linear in n (typically, bn=3c) and integers of (experimentally) O(n lnn) digits. This is

summarized in Table 3. Denote by H

(p)

n

the value for H

n+p

predicted p steps ahead by the



n 10 11 12 13 14 15

p = 1 9:9 � 10

�4

4:8 � 10

�3

7:8 � 10

�4

�1:2 � 10

�5

�4:3 � 10

�5

1:6 � 10

�5

p = 2 7:2 � 10

�3

1:6 � 10

�2

3:1 � 10

�3

�9:3 � 10

�5

�1:8 � 10

�4

7:1 � 10

�5

n 16 17 18 19 20 21

p = 1 �2:0 � 10

�6

4:4 � 10

�6

�5:2 � 10

�6

8:6 � 10

�6

�1:9 � 10

�6

3:7 � 10

�6

p = 2 �3:8 � 10

�6

1:1 � 10

�5

�1:9 � 10

�5

3:4 � 10

�5

�6:7 � 10

�6

2:0 � 10

�5

n 22

p = 1 �7:6 � 10

�7

Table 4: Relative errors ��

(p)

n

of prediction (1 � p � 2, 4 � n � 22)

scheme at the nth stage (i.e., by using the known H

k

's for 1 � k � n). This value H

(p)

n

is

obtained as the result of the following Maple command (again, a rational number rounded

to the nearest integer):

trunc(pr[n](n+p-1)+1/2);

Here, n and p are replaced by the corresponding integers.

The comparison of the estimate H

(p)

n

with the actual value H

n+p

is achieved via the

relative error

�

(p)

n

=

H

(p)

n

�H

n+p

H

n+p

;

which is given in Table 4. Our calculations suggest that for a �xed p, each sequence of

the absolute value j�

(p)

n

j of the errors made when predicting p steps ahead decreases with

(possibly) some small oscillation.

The errors �

(p)

n

for higher values of p are given in Table 7 (Appendix B). The same

remark about their decrease with small oscillation applies to values of p up to 8. Besides,

the data in the table also strongly suggests a slow and monotonic variation of ��

(p)

n

with

the parameter p (at least when n is greater than 8). More speci�cally, when n � 8 the

ratio �

n

= �

(8)

n

=�

(1)

n

never exceeds a few hundreds.

Predictions

Following our calculation scheme and the recurrence computed for n = 23, we obtain the

predictions for the next values of H

n

that are given in Table 5. Note that the predicted

values H

00

n

= H

(1)

n

for n > 23 have been obtained by de�ning H

(p)

n

by the recurrence

computed using the known values H

1

to H

23

together with the successively predicted

ones H

(1)

23

, H

(1)

24

; : : : ; H

(1)

n�1

.

The validity of these predictions for n = 24 and n = 25 is suggested by the stability

of the scheme, as described in the previous section (see Table 4). A similar analysis of

Table 7 vindicates the further values and the bounds on the errors to be found in Table 5.

In order to perform the calculations of the recurrences, evaluation procedures, and

estimates for each n between 1 and 23, not more than 60 seconds of CPU time were

needed.



n 24 25 26

H

00

n

122237774262384 606259305418149 3011424390300379

error 10

�6

10

�5

10

�5

n 27 28 29

H

00

n

14979449994317356 74608167670480920 372053203099446920

error 10

�5

10

�4

10

�4

n 30 31

H

00

n

1857452345893521033 9283108148442320346

error 10

�3

10

�3

Table 5: Predicted numbers H

00

n

of hexagonal systems with n hexagons and presumable

relative error bounds (24 � n � 31)

n 5 6 7 8 9 10 11 12 13

�

n

3.682 4.086 4.335 4.533 4.625 4.694 4.741 4.776 4.805

n 14 15 16 17 18 19 20 21 22

�

n

4.829 4.849 4.867 4.883 4.898 4.911 4.922 4.933 4.943

n 23 24 25 26 27 28 29 30

�

n

4.951 4.960 4.967 4.974 4.981 4.987 4.992 4.998

Table 6: Observed ratios �

n

= H

n+1

=H

n

(5 � n � 22), as well as predicted ratios �

00

n

=

H

00

n+1

=H

00

n

(23 � n � 30)

Again, the other parameter setting suggested at the end of Section 1 yields a di�erent

recurrence (order 11 instead of 2, degree 1 instead of 7, 46-digit instead of 116-digit

integers). However, the numbers predicted by this alternative recurrence remain close to

the ones in Table 5.

3 Exponential Asymptotic Part

A natural idea is to consider the ratio �

n

= H

n+1

=H

n

of two successive terms of the

sequence of observed numbers of hexagonal systems. Table 6 provides further evidence to

corroborate the conjecture of Aboav and Gutman that the limiting value is remarkably

close (or exactly equal) to 5 [20].

In the same vein, we observed that each predicted recurrence of the H

(p)

n

for �xed n

asymptotically behaves exponentially, namely H

(p)

n

� K

n

�

p

n

for a constant K

n

and a pa-

rameter �

n

that is an explicit algebraic number close to, but greater than 5. Furthermore,

the greater n is, the closer to 5 the exponential parameter �

n

is.
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A Explicit Value for the Recurrence of Section 1

The second-order recurrence in Step 2 of the prediction scheme described in Section 1

involves the following polynomials of degree 5 in n with integer coe�cients of 52 digits:

p

0

= �1867772898049832297838775598964134957166764980189512

� 10884556829407079968697291551132882484933172548220036n

+ 12721533878650287528554902964949356722769733250349510n

2

� 3253475329234326006503819920315214439352035172000985n

3

+ 318101006316857306412246953850890000013322435689442n

4

� 10942967863460680674924857755657134350847957422779n

5

;

p

1

= 5111812422122801926839613693662870834533658464707872

+ 35469788015542951395105181875419339475240204323784n

� 3367129112115264514741892953382392619519869487897336n

2

+ 770288443670151618651821390139171124785671163970316n

3

� 17497962137475978810591830043300350924099002352308n

4

� 3188835391221555958813481750811329757447934182008n

5

;

p

2

= �1081346508024323209666946031566245292455631161506120

+ 182573229867847718790436477380820200105219280204290n

+ 296672275392575104755387719895756498293914347320231n

2

� 50732258097471360256894519492471993600238207615036n

3

� 7073106935049620643525597754441192257088974124079n

4

+ 1027640238414335110389952660120536662439679446914n

5

:

B More Numerical Results Supporting the Predic-

tion Accuracy

Table 7 is an extended version of Table 4. It suggests that the calculation method proposed

in this paper is very stable, far beyond the prediction of the �rst next two values H

24

and H

25

of the sequence.
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