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We discuss closed form representations of filter coefficients of

wavelets on the real line, half real line and on compact intervals.

We show that computer algebra can be applied to perform this

task. Moreover, we present a matrix analytical approach that

unifies constructions of wavelets on the interval.

1. INTRODUCTION

Wavelets are one of the most popular tools in signal

and image processing. These functions are widely

used in many practical applications such as data

compression [Bradley et al. 1993; DeVore et al. 1992;

Scherzer et al. 1998], or for the solution of partial dif-

ferential equations (see [Ja�ard 1992], for example).

Wavelets are special functions that often have a frac-

tal character. This makes it relatively di�cult to

work with them explicitly; for example, point eval-

uation of a wavelet function may already be a com-

putationally expensive task. To work with wavelets

one uses the nice feature that they are de�ned by

a small number of parameters, called �lter coe�-

cients. In general, any algorithm relying on wavelets

uses the �lter coe�cients only and not the wavelet

function itself.

In this paper we review the basic equations for

the �lter coe�cients. We show that these equations

can be solved using computer algebra. In particular

we can construct closed form representations of the

wavelet coe�cients (Section 3). The most popular

wavelets form an orthonormal basis of the space of

square integrable functions on R [Daubechies 1992].

In many practical applications one requires a basis

on the half-line or on a compact interval. In Sec-
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tion 4 we review several constructions of wavelets

on the interval. We construct the �lter coe�cients

of wavelets on the interval using a matrix analyti-

cal approach which has the advantage to unify sev-

eral constructions in the literature [Meyer 1991; Co-

hen et al. 1993b; Dahmen et al. 1999]. Moreover,

our construction reveals that there exists a closed

form representation of the �lter coe�cients of wave-

lets on the interval. Another big advantage of using

computer algebra is that one can avoid instabilities

which occur in numerical calculations of �lter coef-

�cients.

Sections 4E and 5 summarize the algorithms for

calculating closed form coe�cients of wavelets on

the real line and on compact intervals and present

some results.

2. ORTHONORMAL WAVELETS ON IR

For convenience we summarize here the well-known

construction of compactly supported orthonormal

wavelet bases for L

2

(R ) (for details, see [Daubechies

1988; 1992; 1993; Cohen and Daubechies 1993], for

example).

The construction of wavelets is related with the

construction of a scaling function ' such that for

�xedm 2 Z the functions '

m;k

:=2

�m=2

'(2

�m

x�k),

with k 2 Z , are orthonormal with respect to L

2

(R ).

Moreover, the spaces

V

m

:= spanf'

m;k

: k 2 Z g

constitute a multiresolution analysis for L

2

(R ), i.e.,

V

m

� V

m�1

; for m 2 Z ,

with

\

m2Z

V

m

= f0g and

[

m2Z

V

m

= L

2

(R ):

The wavelet spaces W

m

are the orthogonal comple-

ments of V

m

in V

m�1

, i.e.,

W

m

:= V

?

m

\ V

m�1

:

One de�nes the wavelet  such that the functions

 

m;k

:= 2

�m=2

 (2

�m

x � k), k 2 Z , form an or-

thonormal basis for W

m

. Since both V

m

and W

m

are contained in V

m�1

the scaling function ' must

satisfy the dilation equation

'(x) =

X

k2Z

h

k

'(2x�k); (2–1)

where the sequence fh

k

g is known as the �lter se-

quence and satis�es constraints to be recalled below.

Correspondingly, the wavelet  satis�es

 (x) =

X

k2Z

g

k

'(2x�k); (2–2)

where g

k

= (�1)

k

h

1�k

.

Daubechies [1988] established conditions on the

�lter sequence in order to ensure that the dilation

equation (2{1) has a solution ' 2 L

2

(R ), with

supp' = [1�N; N ]

for a given integer N , and that for �xed m the func-

tions '

m;k

are orthogonal with the property that

polynomials up to degree N � 1 can be represented

as linear combinations of '

m;k

. Compact support of

' in [�N+1; N ] is ensured by

h

k

= 0; for k < 1�N or k > N: (2–3)

A requirement for the existence of a solution of (2{1)

is

N

X

k=1�N

h

k

= 2; (2–4)

which is equivalent to

R

'(x) dx = 1. Orthonormal-

ity of the translates of ', i.e., the condition that

R

'(x)'(x� l) dx = �

0;l

, can be translated into

N

X

k=1�N

h

k

h

k�2l

= 2�

0;l

; for l = 0; : : : ; N�1; (2–5)

and the condition that polynomials be representable

by the '

m;k

leads to

R

x

l

 (x) dx = 0 for l = 0, . . . ,

N�1, which is equivalent to

N

X

k=1�N

(�1)

k

h

1�k

k

l

= 0; for l = 0; : : : ; N�1: (2–6)

3. CLOSED FORM REPRESENTATION OF FILTER
COEFFICIENTS

In this section we reconsider the calculation of the

�lter coe�cients h

k

from equations (2{3){(2{6) by

using methods of computer algebra. Below we give a

brief and informal account on Gr�obner bases, which

we exemplify by the calculation of the �lter coe�-

cients for the special case N = 2. Afterwards we

pass on to the cases N > 2 and present more com-

putational details on our symbolic approach.
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3A. Gröbner Bases

Due to the conditions imposed explicitly on the sum-

mation bounds in the equations (2{4){(2{6), we can

restrict our attention to the task of solving only

those; the conditions (2{3) can be satis�ed sepa-

rately by mere de�nition. But instead of solving the

equations (2{4){(2{6) numerically and for a �xed

integer value N , we try to �nd closed forms for the

coe�cients h

k

, i.e., to approach the problem from

the symbolic computation point of view. To solve

systems of polynomial equations symbolically, the

obvious tools to use are Gr�obner bases: after their

original introduction by B. Buchberger [1965] to an-

swer ideal-theoretic questions, the solving of alge-

braic systems was soon realized to be one of their

natural domains of application [Buchberger 1970].

For further introductory information see, e.g., [Win-

kler 1996] or [von zur Gathen and Gerhard 1999].

Additional references and the state of art can be

found in [Buchberger and Winkler 1998].

The case N = 1 is trivial; h

0

= h

1

= 1 is the

only solution. Hence we illustrate the Gr�obner bases

method for N = 2. In this case we are interested in

all common roots of the �ve polynomials in the four

variables x

1

; x

2

; x

3

; x

4

:

�2+x

1

+x

2

+x

3

+x

4

; �2+x

2

1

+x

2

2

+x

2

3

+x

2

4

;

x

1

x

3

+x

2

x

4

; x

1

�x

2

+x

3

�x

4

; 2x

1

�x

2

+x

4

; (3–1)

for the sake of simplicity we introduced the following

renaming of variables:

x

1

= h

�1

; x

2

= h

0

; x

3

= h

1

; and x

4

= h

2

:

Let I be the ideal in the polynomial ring

C [x

1

; x

2

; x

3

; x

4

]

generated by the polynomials from (3{1). Applying

Buchberger's algorithm with respect to a certain or-

der imposed on the monomials of C [x

1

; x

2

; x

3

; x

4

]

(here: \lexicographic with x

4

> x

3

> x

2

> x

1

")

delivers an alternative description of the ideal I,

namely by the generators:

�1�4x

1

+8x

2

1

; �1�2x

1

+2x

2

;

�1+x

1

+x

3

; �1+2x

1

+2x

4

: (3–2)

The polynomials (3{2) again generate the ideal I,

and in particular, share the same variety of common

roots as the generators from (3{1). But additionally,

they form a Gr�obner basis of I. Due to the choice of

a lexicographic monomial order, they furthermore

possess the following \elimination property": the

�rst polynomial in the Gr�obner basis is a univariate

polynomial (here in x

1

), the second one a bivariate

polynomial that involves only one further variable

(here x

1

and x

2

), the third one a polynomial in three

variables (here x

1

, x

2

, and x

3

), and so on. In other

words, the role of the Gr�obner basis algorithm in

solving systems of algebraic equations is the same

as that of Gaussian elimination in solving systems of

linear equations, namely to triangularize the system

or to carry out the elimination, respectively.

Remarkably, in our situation of solving �lter coef-

�cient equations, an even nicer pattern emerges. In-

deed, given the �rst univariate Gr�obner basis poly-

nomial p

1

(x

1

) in x

1

only, the second Gr�obner ba-

sis polynomial is the sum of a univariate polyno-

mial in x

1

and a linear polynomial in x

2

; the third

Gr�obner basis polynomial is the sum of a univariate

polynomial in x

1

and a linear polynomial in x

3

, and

so on. This means that all other �lter coe�cients x

i

for i > 1 �nd a representation of the form

x

i

= p

i

(x

1

); (3–3)

where each p

i

(x

1

) is a polynomial from C [x

1

], i.e.,

depending on x

1

only. Consequently, there are as

many di�erent solutions of a system of �lter coef-

�cient equations as there are di�erent roots of the

�rst univariate Gr�obner basis polynomial p

1

(x

1

). So

far we have observed the nice pattern of a univari-

ate polynomial and relations like (3{3) for all val-

ues of N up to 6, so that we conjecture that this

situation also holds for arbitrary N . For readers in-

terested in ideal theory we state this in the form of

the following conjecture. (For more ideal-theoretic

background see, for instance, the \shape lemma" in

[Winkler 1996].)

Conjecture 3.1. Polynomial ideals corresponding to

Daubechies �lter coe�cient equations are 0-dimen-

sional and radical .

Also note that by choosing di�erent lexicographic

orders on the x

i

, it would be possible to obtain al-

ternative descriptions of the solutions, parameter-

ized by another choice of x

j

. Also, since we expect

a representation of the form of (3{3), other non-

lexicographic orders could be used, with enhanced

e�ciency. (Speci�cally, any order which sorts x

2

,
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x

3

, and x

4

by any non-lexicographic order, but sorts

them lexicographically higher than x

1

.) In the same

vein, extensive calculations discussed elsewhere have

shown that for N = 2; : : : ; 6, the ideal generated

by the system (2{4){(2{6) contains a nonzero uni-

variate polynomial in h

i

of degree 2

N�1

for each i

between 1�N and N , and none of smaller degree.

(See related explicit results in Table 2 on page 83

and the surrounding text.)

To conclude this informal discussion of the Gr�obner

bases approach, we state the solution of the case

N = 2 explicitly. Since (1 +

p

3)=4 and (1 �

p

3)=4

are the roots of the �rst Gr�obner basis polynomial

�1�4x

1

+8x

2

1

, we obtain two solutions for the �lter

coe�cients:

(x

1

; x

2

; x

3

; x

4

) =

1

4

�

1+

p

3; 3+

p

3; 3�

p

3; 1�

p

3

�

;

(x

1

; x

2

; x

3

; x

4

) =

1

4

�

1�

p

3; 3�

p

3; 3+

p

3; 1+

p

3

�

:

3B. Reduction of the Filter Coefficient Equations

For �xedN , the system (2{4){(2{6) consists of 2N+

1 equations in 2N unknowns. For each N such that

the system admits a nice triangular representation

of the form (3{3), 2N is also the number of Gr�obner

basis polynomials we �nally have to solve explicitly.

In this section, as an important preprocessing step

to Gr�obner basis computation, we transform the sys-

tem (2{4){(2{6) into a more economic form. More

precisely, this system will consist of only N equa-

tions in N unknowns; the corresponding Gr�obner

bases will then consist of N polynomials for which

one again observes the nice shape that was described

above (see the discussion preceding Conjecture 3.1).

Not only is this system more compact, but it also

induce faster Gr�obner basis calculations in practice,

as was suggested by the doubly exponential upper

bound of the degree of polynomials in a Gr�obner

basis in terms of the number of variables.

In a �rst reduction step we introduce a normal-

ization via multiplication by a binomial coe�cient;

namely, for any �xed positive integer N we de�ne a

k

by

h

k

=

�

2N�1

N�k

�

a

N�k

; (k = 1�N; : : : ; N): (3–4)

This implicitly installs conditions (2{3) and thus en-

ables to relax the explicit statement of the summa-

tion bounds in (2{4){(2{6).

More importantly, a second change of variables

will prove successful in the sequel: for �xed positive

integer N we restrict ourselves to consider a

k

as a

polynomial in k of degree at most N � 1. To this

end, we write

a

k

=

N�1

X

j=0

P

j

�

k

j

�

; (3–5)

where the P

j

are the new unknowns we have to solve

for. Note that we have in total N of those, instead

of 2N in the original setting (2{4){(2{6). In addi-

tion, we shall see below why it is convenient to work

with the

�

k

j

�

as basis elements instead of the k

j

.

With ansatz (3{4) and (3{5) in hand, we return

to equations (2{3){(2{6). It is not di�cult to see

that only two of them remain: (2{3) is guaran-

teed due to the presence of the binomial coe�cient

in (3{4); also, equation (2{6) is satis�ed for arbi-

trary l = 0; : : : ; N�1 because of the following ele-

mentary combinatorial lemma (see [Graham et al.

1994, (5.42)], for instance).

Lemma 3.2. For any nonnegative integer n and com-

plex numbers c

i

:

n

X

k=0

(�1)

k

�

n

k

�

(c

0

+ c

1

k + � � �+ c

n

k

n

) = (�1)

n

n! c

n

:

(3–6)

Now, with ansatz (3{4), equation (2{6) for 0 � l �

N � 1 is rewritten as

2N�1

X

k=0

(�1)

k�N+1

�

2N�1

k

�

a

k

(k �N + 1)

l

= 0;

and both a

k

and (k �N + 1)

l

are polynomials in k

with degree less than or equal to N � 1. Hence, by

Lemma 3.2, equation (2{6) is satis�ed for all l in

question.

In order to state new versions of the remaining

equations (2{4) and (2{5) in the form of proposi-

tions, it is convenient to renormalize P

j

by intro-

ducing

Q

j

=

�

2N�1

j

�

P

j

:

The �nal ansatz now becomes

h

k

=

N�1

X

j=0

Q

j

�

2N�j�1

N+k�1

�

; (3–7)
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after substituting (3{5) into (3{4) and using the el-

ementary fact

�

2N�1

k

��

k

j

�

=

�

2N�1

j

��

2N�j�1

2N�k�1

�

:

Proposition 3.3. Under the assumption (3{7), equa-

tion (2{4) is equivalent to

N�1

X

j=0

2

2N�j�2

Q

j

= 1: (3–8)

Proof. This follows from
X

l

�

2N�j�1

l

�

= 2

2N�j�1

;

a special instance of the binomial theorem. �

Proposition 3.4. Under the assumption (3{7), equa-

tion (2{5) is equivalent to

N�1

X

i;j=0

�

4N�i�j�2

2N+2l�i�1

�

Q

i

Q

j

= 2�

0;l

; (3–9)

for l = 0; : : : ; N�1.

Proof. Substituting (3{7) twice in (2{5) yields

N�1

X

i;j=0

Q

i

Q

j

N

X

k=1�N

�

2N�j�1

N+k�1

��

2N�i�1

N+k�2l�1

�

= 2�

0;l

:

The inner sum can be evaluated as follows: after

changing k into N�k and applying the binomial

symmetry

�

n

m

�

=

�

n

n�m

�

to the second binomial, it becomes

2N�1

X

k=0

�

2N�j�1

2N�k�1

��

2N�i�1

k+2l�i

�

=

�

4N�i�j�2

2N+2l�i�1

�

;

where the last identity is a variant of the standard

Vandermonde summation; see [Graham et al. 1994,

(5.22)], for instance. The preceding derivation is

clearly invertible. �

The number of equations can be reduced further.

In order to prove this, we need another elementary

combinatorial result.

Lemma 3.5. For non-negative integers m and n such

that m+ n � 1:

X

l

�

m+n

m+2l

�

= 2

m+n�1

:

Proof. We have

X

l

�

m+n

l

�

= 2

m+n

and

X

l

(�1)

l

�

m+n

l

�

= 0

as a result of the binomial theorem. Taking the sum

and the di�erence of both identities yields

X

l

�

m+n

2l

�

=

X

l

�

m+n

2l+1

�

= 2

m+n�1

:

Now, the sum in the claim is one of the two sums

above, depending on the parity of m, whence the

result. �

Remark. Proofs of binomial summations like the Van-

dermonde formula or Lemma 3.5 can now be car-

ried out in a purely automatic fashion thanks to

Zeilberger's summation machinery [Petkov�sek et al.

1996]; see, for instance, the Mathematica package

[Paule and Schorn 1995].

We are now ready to carry out the last reduction

step. As opposed to Propositions 3.3 and 3.4 that

relate identities between the h

i

and the Q

i

, the fol-

lowing proposition states an reduction between the

equations in the Q

i

only.

Proposition 3.6. Under the simultaneous assumption

of the cases l = 1; : : : ; N�1 in (3{9), the case l = 0

in equation (3{9) is equivalent to

�

N�1

X

j=0

2

2N�j�2

Q

j

�

2

= 1; (3–10)

and is therefore a consequence of equation (3{8).

Proof. By L
l

we denote the double sum on the left-

hand side of (3{9). We assume the cases l = 1, . . . ,

N�1 in (3{9). Because of the symmetry property

L

l

= L

�l

and after applying Lemma 3.5, we have

L

0

=

N�1

X

l=1�N

L

l

=

N�1

X

i;j=0

2

4N�i�j�3

Q

i

Q

j

= 2

�

2

2(N�1)

N�1

X

j=0

Q

j

2

j

�

2

:

This proves that the relation L

0

= 2 is equivalent to

equation (3{10). �

Finally we summarize our reduction of the 2N + 1

Daubechies equations in 2N unknowns to N alge-

braic equations in N unknowns as follows:
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Proposition 3.7. Any solution of the N algebraic equa-

tions

N�1

X

j=0

Q

j

2

j

=

1

2

2N�2

; (3–11)

and

N�1

X

i;j=0

�

4N�i�j�2

2N+2l�i�1

�

Q

i

Q

j

= 0;

for l = 1; : : : ; N�1; (3–12)

gives rise to a solution of the Daubechies �lter coef-

�cient equations (2{3){(2{6) via

h

k

=

N�1

X

j=0

�

2N�j�1

N+k�1

�

Q

j

;

for k = 1�N; : : : ; N: (3–13)

Conversely for any solution h of (2{3){(2{6), any

solution Q of (3{13) is a solution of (3{11){(3{12).

At this stage, the �rst part of the proposition pro-

vides us with a means to obtain solutions of (2{3){

(2{6). But this procedure may miss solutions h: for

h satisfying (2{3){(2{6), we have no proof yet that

the system (3{13) is solvable as a system in Q. But

this gap can also be closed, leading to the following

more speci�c \Equivalence Theorem," whose proof

is postponed to the next section.

Theorem 3.8 (Equivalence Theorem). Systems (2{3){

(2{6) and (3{11){(3{12) are equivalent descriptions

of the same algebraic variety . More precisely , there

exists an explicit linear isomorphism between C

N

and the N -dimensional linear subspace de�ned by

(2{6) in C

2N

which realizes a linear change of co-

ordinates between the solution set of the algebraic

system (2{4){(2{6) and the solution set of the alge-

braic system (3{11){(3{12).

In particular, this theorem provides a bijection be-

tween the solution sets of both systems; additionally

the whole structures of these solution sets, including

dimension and multiplicities, are the same.

Remark. In connection with experimental mathemat-

ics it is worth noting that concrete Gr�obner bases

computations led us to conjecture the Equivalence

Theorem. Namely, it turned out that the Gr�obner

bases computed with respect to the system (3{11){

(3{12) have the same nice triangulation property as

those computed with respect to the system (2{4){

(2{6). In addition we observed that in all instances

the �rst univariate Gr�obner basis polynomial is the

same in both cases.

3C. Proof of the Equivalence Theorem

This section is devoted to the proof of Theorem 3.8.

Viewing (2{4){(2{5) as de�ning an algebraic vari-

ety H in C

2N

and (3{11){(3{12) as de�ning an al-

gebraic variety Q in C

N

, we are about to show that

(3{13) installs a linear isomorphism between the

N -dimensional linear subspace K de�ned by (2{6)

in C

2N

and C

N

. In this way H \ K and Q can be

viewed as the same algebraic variety in C

N

' K,

but expressed in di�erent linear bases.

The proof consists of three steps: �rst, we intro-

duce an injective linear map � from C

N

to C

2N

,

which embeds Q into H; next, we introduce a sur-

jective linear map � from C

2N

to C

N

, whose ker-

nel is K; �nally, by showing �� = 0, we obtain

the isomorphism between the algebraic varieties Q

and H \K.

The Injective Linear Map �. Following the idea of em-

bedding Q into H, we introduce the mapping

� : C

N

! C

2N

which maps Q = (Q

0

; : : : ; Q

N�1

)

t

to the point h =

(h

1�N

; : : : ; h

N

)

t

given by

h

i

=

N�1

X

j=0

�

2N�j�1

N+i�1

�

Q

j

:

Denote by � = (�

i;j

) the matrix of this linear map

in the canonical bases of C

N

and C

2N

, where the

indices i and j range from 1 to 2N , and 1 to N ,

respectively. In view of the unusual indexing in h

and Q, we have

h

i�N

=

N

X

j=1

�

i;j

Q

j�1

;

and by identi�cation

�

i;j

=

�

2N�j

i�1

�

for 1 � i � 2N and 1 � j � N . Therefore,

� =

�

S

U

�

for two N�N square blocks S and U . The an-

tidiagonal of U is obtained when i�N = N+1�j,
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i.e., i�1 = 2N�j, for which �

i;j

= 1; the triangu-

lar block under the antidiagonal of U is obtained

when i�N > N+1�j, i.e., i�1 > 2N�j, for

which �

i;j

= 0; the block U is therefore upper anti-

triangular with 1's on the antidiagonal. It follows

that � has maximal rank, namely N . By the rank

theorem we obtain that dimker� = 0 and thus that

� is injective.

Now consider Q 2 Q. In other words, Q satis-

�es (3{11){(3{12), so that by the �rst part of Propo-

sition 3.7, equations (2{4){(2{6) are satis�ed by h =

�Q. In particular, equations (2{4){(2{5) are satis-

�ed, so that h 2 H.

Summarizing, the variety Q de�ned by (3{11){

(3{12) is injectively mapped by � into the varietyH

de�ned by (2{4){(2{5):

�(Q) � H:

The Surjective Linear Map �. Following the idea of re-

garding the variety de�ned by (2{4){(2{6) as an in-

tersection by a suitable kernel K, we introduce the

mapping

� : C

2N

! C

N

which maps h=(h

1�N

;: : : ;h

N

)

t

to z=(z

0

;: : : ;z

N�1

)

t

given in analogy with (2{6) by

z

i

=

N

X

j=1�N

(�1)

j

h

1�j

j

i

:

Again, we also denote by

� = (�

i;j

)

the matrix of this linear map on the canonical bases

of C

2N

and C

N

, where the indices i and j range

from 1 to N and 1 to 2N , respectively. In view of

the unusual indexing in z and h, we have

z

i�1

=

2N

X

j=1

�

i;j

h

j�N

;

and by identi�cation

�

i;j

= (�1)

N+1�j

(N+1�j)

i�1

for 1 � i � N and 1 � j � 2N . Therefore, since the

signs only depend on j,

� = (�1)

N


 diag

2N

(1;�1; : : : ; 1;�1);

where diag

r

(�

1

; : : : ; �

r

) denotes the r � r-diagonal

matrix with entries �

i

on the diagonal, and where


 is a matrix


 =

�

V

W

�

consisting of two N�N square Vandermonde blocks

V and W . For example, the �rst block V is the

Vandermonde matrix of the powers of N , on the

�rst column, to the powers of 1, on the last column.

It follows from the non-nullity of the Vandermonde

determinant that � has maximal rank, namely N ,

and is thus surjective.

Now, by the rank theorem the kernel K = ker�

has dimension N and by construction is precisely

the linear subspace of C

2N

de�ned by (2{6). The

algebraic variety de�ned by (2{4){(2{6) is therefore

included in this kernel K; it is H \K, whose study

is the topic of the next paragraph.

The Intersection H \ K. Since � is injective, it real-

izes a linear isomorphism between C

N

and the im-

age �(C

N

). Proving that this image is the kernel K

of � now su�ces to obtain that Q is in bijection with

the intersectionH\K by this linear isomorphism �.

This bijection is an isomorphism of algebraic vari-

eties.

To this end, we compute z = ��Q for Q 2 C

N

.

We have, for 0 � l � N � 1,

z

l

=

N

X

i=1�N

(�1)

i

i

l

h

1�i

=

2N�1

X

i=0

(�1)

i+1�N

(i+1�N)

l

h

N�i

=

2N�1

X

i=0

(�1)

N+1+i

(i+1�N)

l

N�1

X

j=0

�

2N�j�1

2N�i�1

�

Q

j

=

N�1

X

j=0

(�1)

N+1

Q

j

2N�1

X

i=0

(�1)

i

�

2N�j�1

i�j

�

(i+1�N)

l

=

N�1

X

j=0

�

(�1)

N+1+j

Q

j

�

2N�1�j

X

i=0

(�1)

i

�

2N�j�1

i

�

(i+j+1�N)

l

�

:

We claim that the inner sum is zero, whence z =

0 and �� = 0. Indeed, this is a consequence of

Lemma 3.2: the result is obtained when considering

identity (3{6) for n = 2N � j � 1 and polynomials

in i (taking the role of k in (3{6)), and in view of

the fact that (i+ j + 1�N)

l

is a polynomial in i of
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degree l with l < n since l � N � 1 and j � N � 1,

therefore such that c

n

= 0.

We know from the analysis of � that �(Q) � H,

and wish to obtain an equality. We have just ob-

tained �� = 0, so that

�(C

N

) � ker� = K:

Now, as already mentioned, by the injectivity of �

and the rank theorem applied to �, the dimensions

of �(C

N

) and ker� are both n. Thus the equality

�(C

N

) = ker� = K:

From it and the known inclusion �(Q) � H therefore

follows

�(Q) � H \K:

For the converse inclusion, let h 2 H\K. In other

words, h satis�es equations (2{4){(2{6). By the sec-

ond part of Proposition 3.7, equations (3{11){(3{12)

are satis�ed by Q, so that Q 2 Q. Finally,

�(Q) = H \K:

Remark. The inverse mapping of � (from ker� to C

N

)

is given by

Q

i

=

N

X

j=1

(�1)

N+i+j

�

N+j�1

2N�i�1

�

h

j

(3–14)

for 0 � i � N � 1, as can be obtained from ele-

mentary manipulations of binomials and the special

case (1 + (�1))

n

of the binomial theorem.

3D. Computational Aspects and a Conjecture

We conclude this section with a few comments on

various computational aspects of our approach, to-

gether with a conjecture that has been suggested by

the observation of the �lter coe�cients obtained for

small values of N .

First of all the reduction of the original system to

N equations in N unknowns enables the computa-

tion of the corresponding Gr�obner bases up to N =

6. We used the computer algebra systemMathemat-

ica and the built-in procedure GroebnerBasis (see

Section 5). The case N = 6 takes about 20 seconds

and uses less than 10 MB of memory on a comput-

ing platform equipped with a Pentium II processor;

the case N = 7 is intractable within 128 MB.

Another important point concerns the remark at

the end of Section 3B that the Gr�obner bases com-

puted with respect to the N equations (3{11) and

(3{12) from Proposition 3.7 have the same nice tri-

angulation property as those computed with respect

to (2{4){(2{6). We make this link explicit in the

form of a proposition, for which we need the fol-

lowing de�nition: a polynomial explicit representa-

tion (with respect to x

1

) of a 0-dimensional ideal

of C [x

1

; : : : ; x

r

] is a generating system of the ideal

of the form

fp

1

(x

1

); x

2

�p

2

(x

1

); : : : ; x

r

�p

r

(x

1

)g

for univariate polynomials p

i

. When an ideal has

such a representation, the r generators are a Gr�obner

basis of the ideal for any term order such that x

1

<

x

i

for i > 1, and the polynomial p

i

for i > 1 can be

chosen of smaller degree than p

1

.

Proposition 3.9. Fix an integer N . Then, the alge-

braic system (2{4){(2{6) admits a polynomial ex-

plicit representation with respect to h

N

if and only if

the algebraic system (3{11){(3{12) admits a polyno-

mial explicit representation with respect to Q

0

. Ad-

ditionally , the univariate polynomials in both repre-

sentations are equal (up to a renaming of indeter-

minates) when this property is satis�ed .

Note that in this proposition we consider univariate

polynomials in h

N

, instead of univariate polynomi-

als in h

1�N

= x

1

as in Section 3A. Explicit values of

the common univariate polynomial under consider-

ation are provided for N between 2 and 6 in Table 2

on page 83.

Proof. For a polynomial explicit representation

�

p

0

(h

N

); h

N�1

�p

1

(h

N

); : : : ; h

1�N

�p

2N�1

(h

N

)

	

(3–15)

with respect to h

N

of the ideal generated by the

system (2{4){(2{6), we apply the mapping � of Sec-

tion 3C, which maps a solution h of (2{4){(2{6) to a

solution Q of (3{11){(3{12). We let h be a solution

of (2{4){(2{6).

First, setting i = 0 in (3{14) yields h

N

= Q

0

, so

that p

0

(Q

0

) = p

0

(h

N

) = 0. Next, for any i > 0,

equation (3{14) rewrites

Q

i

=

N

X

j=1

(�1)

N+i+j

�

N+j�1

2N�i�1

�

p

N�j

(h

N

) = q

i

(Q

0

)
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for some polynomial q

i

. To prove that this makes

�

p

0

(Q

0

); Q

i

�q

1

(Q

0

); : : : ; Q

N�1

�q

N�1

(Q

0

)

	

a polynomial explicit representation of the system

(3{11){(3{12) with respect to Q

0

, there only re-

mains to show that this set generates the same ideal

as (3{11){(3{12), or equivalently, that the latter

ideal contains no univariate polynomial ~p

0

in Q

0

of

degree smaller than p

0

. If it were so, by considering

the mapping � of Section 3C, we would obtain the

polynomial ~p

0

(h

N

) in the ideal generated by (2{4){

(2{6), contradicting that (3{15) is a polynomial ex-

plicit representation for this ideal.

One proves the converse similarly, using (3{13)

instead of (3{14). �

Since the Gr�obner bases for both systems seem to

be of the same \triangular" shape with a common

univariate polynomial, the degree of this polynomial

is a bound on the number of solutions. In all the

casesN = 1; : : : ; 6, it turns out to be of degree 2

N�1

.

Besides, this number 2

N�1

is also the product of

the degrees of the polynomials in system (3{11){

(3{12), the so-called B�ezout bound of the system,

which would bound the number of a�ne solutions if

we could prove that this system has no solution at

in�nity [Cox et al. 1998].

Conjecture 3.10. Both systems of algebraic equations

(2{4){(2{6) and (3{11){(3{12) have at most 2

N�1

di�erent solutions .

In order to elaborate on the B�ezout bound of the

system, we consider the system consisting of (3{12)

and the variant of (3{11) obtained by setting its

right-hand side to 0. A proof that this system has

no solution but the trivial solution

Q

0

= � � � = Q

N�1

= 0

would immediately imply by B�ezout's theorem [Cox

et al. 1998] that systems (2{3){(2{6) and (3{11){

(3{12) both have exactly 2

N�1

complex solutions

counted with multiplicity. In other words, this would

prove Conjecture 3.10 and the zero-dimensionality

in Conjecture 3.1.

To corroborate Conjecture 3.10 on the number

of solutions, we also performed the calculations of

Gr�obner bases for a total degree order up to N = 34.

With this choice of an order, the bases computed do

not have the elimination property and the triangular

shape discussed in Section 3, but su�ce to derive the

dimension and degree of the algebraic systems. To

this end we used the specialized software Gb [1994],

with which each basis was obtained in a matter of

seconds. (We could not go further due to a limita-

tion in the size of integers.) The result is that in each

case the variety has dimension 0 and degree 2

N�1

,

which proves the conjecture up to N = 34.

Also here more seems to be true. For instance,

up to N = 6 the common univariate Gr�obner basis

polynomial always has 2

N�1

di�erent solutions. In

particular, we have two real solutions in the cases

N = 2 and N = 3; four real solutions in the cases

N = 4 and N = 5; and eight real solutions if N = 6.

In the sidebar on page 82 we give the Mathematica

procedure we have used together with some Gr�obner

bases output. Univariate polynomials in indetermi-

nates other than h

N

or Q

0

have been obtained by

further extensive calculations for 2 � N � 6 (see

Table 2). The observation is that for each h

i

and

each Q

i

but Q

N�1

, the degree of the univariate poly-

nomial is 2

N�1

, whereas for Q

N�1

it is only 2.

To end this section, we display two of the four

solutions corresponding to the case N = 3. In order

to obtain those, �rst one has to �nd all solutions of

the univariate Gr�obner basis polynomial, which is

p

1

(x

1

) = 9� 96x

1

� 1536x

2

1

� 4096x

3

1

+ 16384x

4

1

:

From this, one computes the two real solutions: a

�rst real value for the list (h

�2

; h

�1

; h

0

; h

1

; h

2

; h

3

) is

�

1+

p

10+

p

5+2

p

10

16

;

5+

p

10+3

p

5+2

p

10

16

;

5�

p

10+

p

5+2

p

10

8

;

5�

p

10�

p

5+2

p

10

8

;

5+

p

10�3

p

5+2

p

10

16

;

1+

p

10�

p

5+2

p

10

16

�

;

and a second one is obtained by re
ection. The four

real solutions obtained forN = 4 are also expressible

as explicit expressions in nested radicals, but are too

large to be displayed here.

The presence of 2

N�1

di�erent solutions that can

be expressed in terms of nested square roots for 2 �

N � 4 suggests that this could hold for all N . How-

ever, Klappenecker seemingly proved by a Galois-

theoretic result that the scaling coe�cients of the

Daubechies wavelet cannot be expressed by radicals

for all N between 6 and 100 [Klappenecker 1997].
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4. WAVELETS ON THE INTERVAL

4A. Meyer’s Construction

To our knowledge the �rst construction of orthogo-

nal wavelets on the interval was proposed by Meyer

[Meyer 1991]. His construction restricts compactly

supported orthonormal wavelets on R (as consid-

ered in Section 2) to the interval I := [0; 1] and

manipulates the restricted functions in such a way

that they form an orthonormal basis on I. Follow-

ing his construction we develop a matrix analytical

approach that allows to unify several constructions

of wavelets on the interval in the same framework.

To avoid notational di�culties we restrict our at-

tention to the construction of wavelets on R

+

:=

[0;1). From our presentation it will become evident

how the construction can be generalized to obtain a

wavelet basis for L

2

(I).

We introduce the family of scaling functions re-

stricted to R

+

'

half

m;k

(x) :=

�

0 if x < 0,

'

m;k

(x) if x � 0,

and the corresponding spaces

V

half

m

:= span

�

'

half

m;k

: k 2 Z

	

:

The spaces V

half

m

form a multiresolution analysis for

L

2

(R

+

). The corresponding wavelet spaces W

half

m

are given by

W

half

m

:=

�

V

half

m

�

?

\ V

half

m�1

: (4–1)

As a consequence, we have the relation V

m�1

=

V

m

�W

m

, where the direct sum is orthogonal. By

P

W

half

m

and P

V

half

m

we denote the orthogonal projec-

tion operators onto the spaces W

half

m

and V

half

m

, re-

spectively.

Since the scaling function ' has support in the

interval [1�N; N ], we have '

half

m;k

= 0 for k � �N

and '

half

m;k

= '

m;k

for k � N�1.

Wavelets on R

+

can be constructed in the follow-

ing way:

1. Orthonormalize the set of functions

�

'

half

m;k

: k �

1�N

	

. The obtained orthonormal basis of V

half

m

is denoted by

�

'

edge

m;k

: k � 1�N

	

.

2. Compute P

W

half

m

'

edge

m�1;k

and orthonormalize them

to obtain an orthonormal basis  

edge

m;k

of W

half

m

.

Orthonormalized scaling functions 'half
m,k. The functions

'

half

m;k

are orthonormalized by making a basis trans-

formation

'

edge

m

= A'

half

m

; (4–2)

where

'

edge

m

:=

0

B

@

'

edge

m;�N+1

'

edge

m;�N+2

.

.

.

1

C

A

; '

half

m

:=

0

B

@

'

half

m;�N+1

'

half

m;�N+2

.

.

.

1

C

A

:

Using the notation

��

t

:=

�


�

k

; �

l

��

k;l�1�N

;

for any vector �, we see that the orthonormality

of the functions '

edge

m

is equivalent to the matrix

equation

'

edge

m

'

edge

m

t

= I:

From (4{2) it follows that

I = A'

half

m

'

half

m

t

A

t

:

If the matrix

� := '

half

m

'

half

m

t

(4–3)

of the inner products of the truncated scaling func-

tions '

half

m;k

is known, then the matrix A in (4{2) can

be obtained by the Cholesky factorization

� =

�

A

�1

� �

A

�1

�

t

; (4–4)

where A

�1

is regular and of lower triangular form.

Therefore the matrix A is also lower triangular. In

view of (4{2) and of the supports of the functions

'

half

m;l

, this in particular ensures staggered support of

the functions '

edge

m;k

; that is,

supp'

edge

m;k

� [0; 2

m

(N+k)]:

We now derive the re�nement equations (similar

to (2{1) and (2{2)) for '

edge

m

and the correspond-

ing wavelets  

edge

m

. These equations are the basis

for the implementation of multiresolution cascade

algorithms [Mallat 1989], as they are used in data

compression; see [Williams and Amaratunga 1994],

for example.

By truncation of the dilation equations (2{1), the

truncated scaling functions '

half

m;k

satisfy the dilation

equation

'

half

m;k

=

1

p

2

X

r2Z

h

r�2k

'

half

m�1;r

;
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which in matrix form rewrites

'

half

m

= H'

half

m�1

: (4–5)

Here the dilation matrix H makes the transition

from the truncated scaling functions at scale m� 1

to those at the �ner scale m, and is therefore called

the re�nement matrix. This is a 1�2 block-Toeplitz

matrix:

H

k;l

=

8

<

:

h

l�2k

p

2

if 1�N � l�2k � N ,

0 otherwise;

in other words, H

k;l

is 0 outside a band of slope

1

2

.

From (4{2) and (4{5) it follows that

'

edge

m

= A'

half

m

= AH'

half

m�1

= AHA

�1

'

edge

m�1

: (4–6)

Thus the re�nement matrix H

edge

for the dilation

equation of the edge scaling functions '

edge

m

is

H

edge

= AHA

�1

: (4–7)

Note that H

edge

is no longer a 1 � 2 block-Toeplitz

matrix (which is the case for wavelets on R ). This

re
ects the fact that the edge scaling functions can-

not be obtained as shifts of a single function.

Projection onto the Subspace Whalf
m . Now we construct

the edge wavelets and derive their re�nement ma-

trix. The projections of '

edge

m�1;k

onto W

half

m

, which

was de�ned by (4{1), are given by

 

half

m;k

:= P

W

half

m

'

edge

m�1;k

= '

edge

m�1;k

�

X

l




'

edge

m�1;k

; '

edge

m;l

�

'

edge

m;l

;

or equivalently with matrices

 

half

m

= '

edge

m�1

�

�

'

edge

m�1

'

edge

m

t

�

'

edge

m

: (4–8)

In view of (4{6) and (4{7) it follows that

 

half

m

= '

edge

m�1

�

�

'

edge

m�1

('

edge

m�1

t

H

edge

t

)

�

H

edge

'

edge

m�1

= (I �H

edge

t

H

edge

)'

edge

m�1

=: G

half

'

edge

m�1

:

The matrix G

half

does not have 1 � 2 lower block-

triangular form, i.e., it does not ful�ll G

half

k;l

= 0 for

l > N+2k. Consequently the functions  

half

m;k

do not

have staggered support. In [Cohen et al. 1993b] it is

established that there exists a basis transformation

U such that

 

stag

m

:= U 

half

m

(4–9)

has staggered support. In Section 4E we give a sim-

ple constructive algorithm for calculating U . The

functions  

stag

m;k

are orthonormalized to get the edge

wavelets

 

edge

m

= B 

stag

m

: (4–10)

Orthonormalized edge wavelets  
edge

m,k . In the following

we outline the orthonormalization procedure, i.e.,

the calculation of the matrix B. Let �

w

be the ma-

trix of inner products of the functions  

stag

m;k

. Then

from (4A) and (4{9) it follows that

�

w

:=  

stag

m

 

stag

m

t

= UG

half

G

half

t

U

t

: (4–11)

On the other hand, we get from (4{10) and the or-

thonormality of the functions  

edge

m

�

w

= (B

�1

)(B

�1

)

t

:

Thus the matrix B can be calculated from �

w

by

a Cholesky factorization and inversion. From (4A){

(4{10) it follows that

 

edge

m

= BUG

half

'

edge

m�1

:

Thus the matrix G

edge

for the re�nement equation

of the edge wavelets is given by

G

edge

= BUG

half

: (4–12)

To make the calculations complete we have to de-

termine the matrix � in (4{3). The matrix � is

independent of the scale m as one can see from the

following argument. Since

'

half

m;k

(2x) =

p

2'

half

m�1;k

(x)

it follows that




'

half

m�1;k

; '

half

m�1;l

�

= 2




'

half

m;k

(2 �); '

half

m;l

(2 �)

�

=




'

half

m;k

; '

half

m;l

�

: (4–13)

In view of (4{5) it follows that

� = '

half

m

'

half

m

t

= H�H

t

: (4–14)

Since �

k;l

=




'

half

m;k

; '

half

m;l

�

= �

k;l

if k � N�1 or l �

N�1, equation (4{14) above can be reduced to

�

0

= H

0

�

ext

0

H

t

0

; (4–15)

where H

0

2 R

(2N�2)�(4N�4)

with (H

0

)

k;l

= h

l�2k

=

p

2

for 1�N � k � N�2 and 1�N � l � 3N�4, and

�

ext

0

extends the matrix �

0

2 R

(2N�2)�(2N�2)

in the

form

�

ext

0

=

�

�

0

0

0 I

�

2 R

(4N�4)�(4N�4)

:
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Equation (4{15) is a non-homogeneous linear sys-

tem in as many unknowns as equations. Whereas

it gets numerically ill-conditioned, it can be solved

symbolically. We have strong evidence that there

exists a solution �

0

of (4{15) but so far we have no

proof: the existence of a solution is closely related

to the eigenvalues of the matrix

H

1

2 R

(2N�2)�(2N�2)

given by restriction ofH

0

to the �rst 2N�2 columns.

If the absolute values of the eigenvalues of H

1

are

less than 1, then from (4{15) it follows that

�

0

=

1

X

n=0

H

n

1

H

2

H

t

2

�

H

t

1

�

n

;

where H

2

are the last 2N�2 columns of H

0

.

We mention a result from [Strang 1996], which

indicates that N eigenvalues of H

1

are given by

2

�k�1=2

; for k = 0; : : : ; N�1:

Since there is no estimate for the other N�1 eigen-

values available, this result does not give existence of

a solution. However, in all our considered examples

the largest eigenvalue turned out to be 1=

p

2.

4B. The Construction of Cohen, Daubechies and Vial

The starting point is again a compactly supported

orthogonal wavelet family on R . As in Meyer's ap-

proach, the construction of Cohen, Daubechies and

Vial [Cohen et al. 1993b] retains the interior scaling

functions and adds adapted edge scaling functions.

That paper and [Cohen et al. 1993a] introduce the

family of transformed scaling functions restricted

to R

+

as follows:

'

mod

m;k

=

8

<

:

X

l

�

N�1�l

N�1�k

�

'

half

m;l

if 0 � k � N � 1,

'

half

m;k

if k � N .

The functions '

mod

m;k

generate all polynomials up to

degree N � 1 [Cohen et al. 1993b, Proposition 4.1].

In contrast to Meyer's construction this approach

requires less edge scaling functions to ful�ll this task.

While in Meyer's construction the spaces V

half

m

are

just the projections of V

m

onto L

2

(R

+

), here the

space

V

half

m

:= span

�

'

mod

m;k

: k 2 N

0

	

= T (V

m

);

where T = (T

k;l

) is a matrix with indices 0 � k and

1�N � l that satis�es

T

k;l

=

8

<

:

�

N�1�l

N�1�k

�

if 0 � k � N � 1,

�

k;l

if k � N .

Since T

k;l

= 0 if l > k the family

'

mod

m

= T'

half

m

(4–16)

has staggered support. The spaces V

half

m

de�ne a

multiresolution analysis on L

2

(R

+

) and the corre-

sponding wavelet spaces are given by

W

half

m

:=

�

V

half

m

�

?

\ V

half

m�1

:

The functions '

mod

m;k

can be orthonormalized by a

basis transformation

'

edge

m

= A'

mod

m

: (4–17)

Again the orthonormalization matrix A is deter-

mined by the Cholesky decomposition of

~

� := '

mod

m

'

mod

m

t

= T�T

t

; (4–18)

where � is as in (4{3), i.e.,

~

� = (A

�1

)(A

�1

)

t

: (4–19)

We now determine the �lter matrix H

edge

; once the

�lter matrix H

edge

is constructed, the re�nement

matrix G

edge

of the edge wavelets can be calculated

analogously to the construction presented in Section

4A.

The �lter matrix for the dilation equation satis�es

'

edge

m

= H

edge

'

edge

m�1

: (4–20)

From (4{16) and (4{5) we get

'

mod

m

= T'

half

m

= TH'

half

m�1

: (4–21)

Suppose that there exists a dilation equation for

'

mod

m

, i.e.,

'

mod

m

= H

mod

'

mod

m�1

; (4–22)

then from (4{21) and (4{22) it follows that

TH = H

mod

T:

Multiplication of this equation by a right inverse T

y

of T from the right gives

H

mod

= THT

y

: (4–23)
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This yields the following condition on T , H and T

y

:

THT

y

T = TH; (4–24)

which is equivalent to

N(T ) � N(TH); (4–25)

where N denotes the nullspace. In particular this

shows that the condition (4{24) is independent on

the choice of the right inverse T

y

.

From (4{23) and (4{20) it follows that

H

edge

= ATH T

y

A

�1

: (4–26)

The rest of procedure to constructG

edge

is analogous

as in Section 4A. For the reader's convenience we

have summarized the calculation of the re�nement

matrices in Section 4E.

This matrix analytical approach clearly reveals

the similarity between the constructions proposed

by Meyer and Cohen, Daubechies and Vial. In fact

the only di�erence in both constructions is that the

construction of the �lter matrix H

edge

incorporates

the matrix T . Any right-invertible matrix T satisfy-

ing (4{25) can be used to construct wavelets on R

+

with di�erent properties. The special form of the

matrix T proposed in [Cohen et al. 1993b] guaran-

tees that the scaling functions have staggered sup-

port and that any polynomial up to degreeN�1 can

be represented as a linear combination of the scal-

ing functions. Setting T = I gives the construction

proposed by Meyer.

4C. The Biorthogonal Case: The Constructions of

Dahmen et al.

In this section we show that the our matrix approach

for the construction of wavelets on the interval can

be generalized in a natural way to the construction

of biorthogonal wavelets on the interval. This out-

lines the constructions proposed in [Dahmen et al.

1999; Dahmen and Schneider 1998].

In the biorthogonal case one requires two scaling

functions ' and ~' satisfying dilation equations

'(x) =

N

X

k=1�N

h

k

'(2x�k);

~'(x) =

~

N

X

k=1�

~

N

~

h

k

~'(2x�k):

Both scaling functions satisfy (2{4), (2{6) and are

biorthogonal, i.e.,

X

k

h

k

~

h

k�2l

= 2�

0;l

:

The corresponding multiresolution analyses are

given by

V

m

:= span

�

'

m;k

: k 2 Z

	

;

~

V

m

:= span

�

~'

m;k

: k 2 Z

	

:

The wavelet spacesW

m

and

~

W

m

are then de�ned by

W

m

= V

m�1

\

~

V

?

m

;

~

W

m

=

~

V

m�1

\ V

?

m

:

For more background on biorthogonal wavelets see

[Cohen et al. 1992].

Following the notation of the previous sections we

de�ne the modi�ed scaling functions on R

+

by

'

mod

m

= T'

half

m

and ~'

mod

m

=

~

T ~'

half

m

; (4–27)

where again '

half

m

and ~'

half

m

are the restrictions to

the positive real line.

The two families '

mod

m

and ~'

mod

m

are biorthogonal-

ized by two basis transforms A and

~

A, i.e.,

'

edge

m

:= A'

mod

m

and ~'

edge

m

:=

~

A ~'

mod

m

(4–28)

satisfy

'

edge

m

~'

edge

m

t

= I:

Analogously to (4{18), (4{19) the last equation is

equivalent to

�

A

�1

��

~

A

�1

�

t

= T�

~

T

t

; (4–29)

where � := '

half

m

~'

half

m

t

.

For a given matrix T�

~

T

t

the factorization into

the matrices A

�1

and

~

A

�1

can be computed in sev-

eral ways: one could for example use a factorization

by means of a SVD as suggested in [Dahmen et al.

1999], an LU -decomposition, or simply set A = I

and

~

A = (T�

~

T

t

)

�1

. Each possible factorization re-

sults in di�erent biorthogonal bases for the same

multiresolution spaces V

half

m

and

~

V

half

m

. For orthog-

onal wavelets we calculated the factorization by a

Cholesky decomposition.

The matrix � can be calculated similarly to the

orthogonal case (see (4{14)) as the solution of the

following linear inhomogeneous system:

� = H�

~

H

t

:
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The dilation matrices H

edge

and

~

H

edge

are given by

H

edge

= ATHT

y

A

�1

and

~

H

edge

=

~

A

~

T

~

H

~

T

y

~

A

�1

;

where T

y

and

~

T

y

denote the right inverses of T and

~

T satisfying

N(T ) � N(TH) and N(

~

T ) � N(

~

T

~

H): (4–30)

Note the similarity of the constructions of H

edge

in

the orthogonal and biorthogonal case!

The construction of the biorthogonal wavelet bases

can be carried over from the orthogonal case. Since

V

m

�W

m

= V

m�1

and

~

V

m

�

~

W

m

=

~

V

m�1

we can write the projections of '

edge

m�1

and ~'

edge

m�1

onto

W

m

and

~

W

m

as

 

half

m

:= P

W

m

'

edge

m�1

= '

edge

m�1

� P

V

m

'

edge

m�1

;

~

 

half

m

:= P

~

W

m

~'

edge

m�1

= ~'

edge

m�1

� P

~

V

m

~'

edge

m�1

;

and consequently

 

half

m

= G

half

'

edge

m�1

and

~

 

half

m

=

~

G

half

~'

edge

m�1

;

where

G

half

= I �

~

H

edge

t

H

edge

;

~

G

half

= I � H

edge

t

~

H

edge

:

In order to biorthogonalize the families of functions

 

half

m

and

~

 

half

m

we set

 

edge

m

:= B 

half

m

and

~

 

edge

m

:=

~

B

~

 

half

m

; (4–31)

where the matrices B and

~

B satisfy

�

B

�1

��

~

B

�1

�

t

= �

w

;

where

�

w

:=  

half

m

~

 

half

m

t

= G

half

~

G

half

t

:

The construction just presented reveals that there

is more freedom in generating biorthogonal wavelets

on R

+

than for the the construction of orthogonal

wavelets. The choice of the matrices T and

~

T deter-

mines the properties of the multiresolution analyses.

As in the orthogonal case, any T and

~

T , compatible

with H and

~

H in the sense of (4{30) can be used

to construct biorthogonal wavelets on the interval.

The choices of the biorthogonalizations (4{28) and

(4{31) a�ect the scaling functions and wavelets, but

not the multiresolution and wavelet spaces. Dah-

men et al. [1999] suggested transformations T and

~

T for the construction of biorthogonal wavelet bases

with certain polynomial exactness.

4D. (Bi-)orthogonal Wavelets with Staggered Support

The matrix analytical point of view of constructing

wavelets on the half line clearly indicates how to im-

pose additional properties on the wavelets and scal-

ing functions. In the construction above we have not

paid any attention to preserve staggered support of

the scaling functions and wavelets. In the following

we show how to construct (bi-)orthogonal wavelets

and scaling functions with staggered support. To

our knowledge biorthogonal wavelets on the interval

with staggered support have not been considered in

the literature so far.

The following lemma guarantees existence of a ba-

sis '

stag

m

of V

half

m

with staggered support.

Lemma 4.1. Let T
0

2 R

K�(2N�1)

, K � 2N �1 and let

T

0;1

be the K�K submatrix consisting of the last K

columns of T

0

. If T

0;1

is invertible, then there exists

an invertible matrix S

0

2 R

K�K

such that S

0

T

0

is

of lower triangular form.

Proof. Since T
0;1

is invertible,

�

T

�1

0;1

�

t

exists and can

be decomposed by an LU -factorization into

P

�

T

�1

0;1

�

t

= LU;

where L and U are lower and upper triangular ma-

trices, respectively, and P is a permutation matrix.

Thus

L

t

P

t

T

0;1

=

�

U

�1

�

t

is a lower triangular matrix. (Note that U

t

is lower

triangular, thus also (U

�1

)

t

, and L

t

P

t

is invertible.)

Let T

0

= (T

0;0

; T

0;1

), then as a consequence

L

t

P

t

T

0

= L

t

P

t

(T

0;0

; T

0;1

) =

�

L

t

P

t

T

0;0

; (U

�1

)

t

�

is lower triangular. Thus the assertion is proved

with S

0

:= L

t

P

t

. �

T in (4{16) is of the form

T =

�

T

0

0

0 I

�

:

Let S

0

be de�ned as in the lemma above. Then

T

stag

:=

�

S

0

0

0 I

��

T

0

0

0 I

�

=

�

S

0

T

0

0

0 I

�

is of lower triangular form and so '

stag

m

:= T

stag

'

half

m

has staggered support. Proposition 4.3 in [Cohen

et al. 1993b] guarantees the existence of wavelets

with staggered support.
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The above considerations can be easily carried

over to biorthogonal wavelets. In order to get bior-

thogonal wavelets and scaling functions with stag-

gered support an LU -factorization of (4{29) has to

be performed, since only this factorization guaran-

tees that the staggered support is preserved during

the biorthogonalization procedure.

4E. An Algorithm for the Calculation of the Refinement

Matrices

For the reader's convenience we summarize the com-

putational steps for calculating the re�nement ma-

trices H

edge

and G

edge

in the orthogonal case. The

modi�cations of this algorithm to calculate the re-

�nement matrices in the biorthogonal case are obvi-

ous.

Each step of the proposed algorithm can either be

performed numerically or symbolically.

The data are the �lter sequence h

k

of a compactly

supported orthonormal wavelet family on R with

h

k

= 0 if k � �N or k � N + 1 and the matrix

T 2 R

K�(2N�1)

. (We have T = I 2 R

(2N�1)�(2N�1)

for Meyer's construction and

(T

k;l

) =

�

N�l�1

N�k�1

�

2 R

N�(2N�1)

for the construction of Cohen et al.)

1. De�ne the �lter matrix

H := (H

k;l

) 2 R

(2N�1)�(4N�2)

;

with

H

k;l

= h

l�2k

=

p

2

for 1�N � k � N�1 and 1�N � l � 3N�2.

2. Solve

� = H�

ext

H

t

with � 2 R

(2N�1)�(2N�1)

and

�

ext

=

�

� 0

0 I

�

2 R

(4N�2)�(4N�2)

:

3. Compute the matrix of inner products

~

� = T�T

t

2 R

K�K

:

4. Compute A 2 R

K�K

from the Cholesky decom-

position

~

� = (A

�1

)(A

�1

)

t

:

5. The dilation matrix for the edge scaling functions

is then given by

H

edge

= ATH(T

ext

)

y

(A

ext

)

�1

2 R

K�(K+2N�1)

;

where

A

ext

=

�

A 0

0 I

�

2 R

(K+2N�1)�(K+2N�1)

:

and

T

ext

=

�

T 0

0 I

�

2 R

(K+2N�1)�4N�2

;

and (T

ext

)

y

is a right inverse of T

ext

.

6. Compute

C =

�

I �H

edge

t

H

edge

�

2 R

(K+2N�1)�(K+2N�1)

;

and de�ne G

half

2 R

N�(K+2N�1)

as

G

half

= (C

k;l

)

06k6N�1

N�K6l62N�2

7. Compute an upper triangular matrix

U 2 R

(N�1)�(N�1)

such that UG

half

is a lower triangular block ma-

trix in the sense that (UG

half

)

k;l

= 0 for l >

N + 2k. This can be done using the following

algorithm:

a. De�ne the matrix

~

C 2 R

N�N

by

~

C

k;l

= G

half

k;N+2l

; for 0 � k; l � N�1:

b. Compute U by the unpivoted LU -decompo-

sition

~

C

�1

= LU:

8. Compute the matrix of inner products

�

w

= UG

half

G

half

t

U

t

2 R

N�N

:

9. Compute the Cholesky decomposition

�

w

= (B

�1

)(B

�1

)

t

:

10. The �lter matrix G

edge

is then given by

G

edge

= BUG

half

:

The entries of H

edge

and G

edge

for k � N are given

by

H

edge

k;l

= h

l�2k

=

p

2 and G

edge

k;l

= g

l�2k

=

p

2:

5. EXPLICIT RESULTS

This section presents some explicit results for cases

of particular interest. We start with the closed form

representations of the �lter coe�cients for the Dau-

bechies wavelets, shown on the next page.
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Function definitions

Polys1[N_]:={Sum[Q[N,j]/2^j,{j,0, N-1}] - 1/2^(2N-2)}

Polys2[N_]:=Table[Sum[Binomial[4N-i-j-2,2N+2l-i-1]*Q[N,i]*Q[N,j],{i,0,N-1},{j,0,N-1}],

{l,1,N-1}]

AllPolys[N_]:=Join[Polys1[N],Polys2[N]]

Eqns[N_]:=Map[#==0&,AllPolys[N]]

Unknowns[N_]:=Table[Q[N,j],{j,0,N-1}]

CFSols[N_]:=Solve[Eqns[N],Unknowns[N]]

GB[N_]:=GroebnerBasis[AllPolys[N],Reverse[Unknowns[N]]]

cc[N_,k_]:=Binomial[2N-1,N-k] * Sum[Q[N,j] Binomial[N-k,j]/Binomial[2N-1,j], {j,0,N-1}]

CoefficientTable[N_,rules_]:= Table[h[N,k]->Simplify[ cc[N,k] /.rules],{k,1-N,N}]

Gröbner basis in the case N = 3

GB[3]

�

9� 96Q(3; 0)� 1536Q(3; 0)

2

� 4096Q(3; 0)

3

+ 16384Q(3; 0)

4

;

21Q(3; 0) + 32Q(3; 0)

2

� 128Q(3; 0)

3

+ 3Q(3; 1);

�3� 120Q(3; 0)� 256Q(3; 0)

2

+ 1024Q(3; 0)

3

+ 12Q(3; 2)

	

A real solution for N = 3

rules = Simplify[CFSols[3][[3]]]

CoefficientTable[3, rules]

(

h(3;�2)!

1 +

p

10 +

p

5 + 2

p

10

16

;

h(3; 0)!

5�

p

10 +

p

5 + 2

p

10

8

;

h(3; 2)!

5 +

p

10� 3

p

5 + 2

p

10

16

;

h(3;�1)!

5 +

p

10 + 3

p

5 + 2

p

10

16

;

h(3; 1)!

5�

p

10�

p

5 + 2

p

10

8

;

h(3; 3)!

1 +

p

10�

p

5 + 2

p

10

16

)

Gröbner basis in the case N = 4

GB[4]

�

625 + 16000Q(4; 0)� 1433600Q(4; 0)

2

+ 22937600Q(4; 0)

3

+ 220200960Q(4; 0)

4

� 4697620480Q(4; 0)

5

� 60129542144Q(4; 0)

6

� 137438953472Q(4; 0)

7

+ 1099511627776Q(4; 0)

8

;

125 + 389200Q(4; 0)� 1469440Q(4; 0)

2

� 29245440Q(4; 0)

3

+ 124780544Q(4; 0)

4

+ 2936012800Q(4; 0)

5

+ 7516192768Q(4; 0)

6

� 51539607552Q(4; 0)

7

+ 39200Q(4; 1);

�1875� 6661200Q(4; 0) + 57164800Q(4; 0)

2

+ 775864320Q(4; 0)

3

� 9064939520Q(4; 0)

4

� 136113553408Q(4; 0)

5

� 323196289024Q(4; 0)

6

+ 2456721293312Q(4; 0)

7

+ 196000Q(4; 2);

�11625 + 3553200Q(4; 0)� 42470400Q(4; 0)

2

� 483409920Q(4; 0)

3

+ 7817134080Q(4; 0)

4

+ 106753425408Q(4; 0)

5

+ 248034361344Q(4; 0)

6

� 1941325217792Q(4; 0)

7

+ 98000Q(4; 3)

	

Mathematica program to calculate the �lter coe�cients of the Daubechies wavelets. The lines in this font

(
ush left) represent input typed to the computer.
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Next we provide explicit values for the univari-

ate polynomials that describe systems (2{4){(2{6)

and (3{11){(3{12), as described in Sections 3A and

3D. Speci�cally, we choose to give the univariate

polynomial satis�ed by h

N

, or x

1

in the notation of

Section 3A, for any solution of (2{4){(2{6), which is

the same as the univariate polynomial satis�ed by

Q

0

for any solution of (3{11){(3{12). For �xed N ,

univariate polynomials in another h

i

or Q

i

(except

for Q

0

) would be of the same degree and with integer

coe�cients of same typical size.

All polynomials are normalized by enforcing in-

teger coe�cients and no nontrivial integer content.

Denote by p = c

0

+ � � � + c

d

X

d

the common uni-

variate polynomial for given N and call d its de-

gree. To reduce the size of the coe�cients so as to

display the polynomials, we remark that all coe�-

cients remain integers under the substitution of X

with X=2

2N�3

. The substituted polynomials are

called p

0

= c

0

0

+ � � � + c

0

d

X

d

. See Table 1 and the

sidebar below.

We also show on Table 2 the polynomials satis�ed

by Q

N�1

in any solution of (3{11){(3{12), for 2 �

N � 8. They have degree 2 and illustrate the fact

that Q

N�1

is the square root of a rational number.

polynomial p

N

polynomial p

0

N

N d s

d

s

0

max

i

s

i

d s

d

s

0

max

i

s

i

2 2 1 1 1 2 1 1 1

3 4 5 1 5 4 1 1 2

4 8 13 3 13 8 1 3 4

5 16 37 13 37 16 3 13 13

6 32 87 29 87 32 1 29 29

TABLE 1. Degrees and coe�cient sizes of the poly-

nomial p satis�ed by Q

0

for any solution of the sys-

tem (3{11){(3{12), and of the related polynomial p

0

obtained by the substitution X 7! X=2

2N�3

. The

notation s

i

denotes the number of digits of the (in-

teger) coe�cient of X

i

in the given polynomial.

2 4X

2

�3 4 64X

2

�35 7 1024X

2

�429

3 8X

2

�5 5 128X

2

�63 8 16384X

2

�6435

6 512X

2

�231

TABLE 2. Polynomials satis�ed by Q

N�1

in any so-

lution of (3{11){(3{12), for 2 � N � 8.

Finally, we turn to the re�nement matrices for the

construction proposed by Cohen, Daubechies and

Vial in the case N = 2.

p

0

2

= 2X

2

� 2� 1

p

0

3

= 4X

4

� 8X

3

� 24X

2

� 12 + 9

p

0

4

= X

8

� 4X

7

� 56X

6

� 140X

5

+ 210X

4

+ 700X

3

� 1400X

2

+ 500 + 625

p

0

5

= 256X

16

� 2048X

15

� 122880X

14

� 1162240X

13

+ 3672320X

12

+ 82199040X

11

� 239052800X

10

� 2639571200X

9

+ 21067452000X

8

� 46192496000X

7

� 73209920000X

6

+ 440535480000X

5

+ 344423450000X

4

� 1907594500000X

3

� 3529470000000X

2

� 1029428750000 + 2251875390625

p

0

6

= X

32

� 16X

31

� 3968X

30

� 127120X

29

+ 908488X

28

+ 99001616X

27

� 206896256X

26

� 45046412656X

25

+ 514227272860X

24

+ 9384914783664X

23

� 326335992812928X

22

+ 3719423566862640X

21

� 4725849211541640X

20

�321029601376721328X

19

+2420305333571518848X

18

+16398235495598877648X

17

� 211208519547389641914X

16

� 1033088836222729291824X

15

+ 9606191868945358307712X

14

+ 80272488735445037902416X

13

� 74446118321296204796040X

12

� 3691291866649887797453520X

11

� 20403669167515311931757952X

10

�36966997633084650250167888X

9

+127608470131412725062780060X

8

+ 704247243896852021529183888X

7

� 203778389811329721233161344X

6

� 6143110504249885426575754992X

5

+ 3551450686163073382755632328X

4

+ 31306969279922401804098069360X

3

� 61565775711706432446473031552X

2

+ 15639693023538327597289520112 + 61581291280182164914327485441:

Explicit form of the polynomials p

0

N

, for N = 2; : : : ; 6 (for de�nition, see text or caption of Table 1.)
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The �lter coe�cients h

k

of the Daubechies wave-

lets for the case N = 2 are

h

�1

=

1 +

p

3

4

;

h

1

=

3�

p

3

4

;

h

0

=

3 +

p

3

4

;

h

2

=

1�

p

3

4

:

The entries of the re�nement matrices H

edge

and

G

edge

are given in the sidebar below. For k � N the

entries are given by H

edge

k;l

= h

l�2k

=

p

2 and G

edge

k;l

=

g

l�2k

=

p

2.
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