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(Editor)

Abstrat

These seminar notes onstitute the proeedings of a seminar devoted to the analysis of

algorithms and related topis. The subjets overed inlude ombinatoris, symboli om-

putation, probabilisti methods, and average-ase analysis of algorithms and data strutures.

This is the ninth in our series of seminar proeedings. The previous ones have appeared as INRIA

Researh Reports numbers 1779, 2130, 2381, 2669, 2992, 3267, 3504, and 3830. The ontent of these

proeedings onsists of summaries of the talks, usually written by a reporter from the audiene.

2

The primary goal of the seminar is to over the major methods for the average-ase analy-

sis of algorithms and data strutures. Neighbouring topis of study are ombinatoris, symboli

omputation, asymptoti analysis, probabilisti methods, and omputational biology.

The study of ombinatorial objets|their desription, their enumeration aording to various

parameters|arises naturally in the proess of analysing algorithms that often involve lassial

ombinatorial strutures like strings, trees, graphs, and permutations.

Beside the traditional topis of ombinatoris of words and algorithmis on words, over the years

an inreasing interest has been given in the seminar to biologial appliations of ombinatoris.

Symboli omputation, and in partiular omputer algebra, plays an inreasingly important

role in these areas. It provides a olletion of tools that allows one to attak omplex models of

ombinatoris and the analysis of algorithms via generating funtions; at the same time, it inspires

the quest for developing ever more systemati solutions and deision proedures for the analysis of

well-haraterized lasses of problems.

The 31 artiles inluded in this book represent snapshots of urrent researh in these areas.

A tentative organization of their ontents is given below.

PART I. COMBINATORICS

In addition to its own traditions rooted in mathematis, the study of ombinatorial models arises

naturally in the proess of analysing algorithms that often involve lassial ombinatorial strutures

like permutations, strings, trees, random walks, and graphs. Maps are a speial lass of graphs that

are drawn in the plane. This is an ative �eld of researh to whih our seminar already dediated

several sessions last year. Further progress has been made reently; this is reported in [1℄, [2℄, [3℄,

and [4℄. The talks [5℄ and [6℄ are onerned with other types of graph enumerations: those of

non-rossing on�gurations in the plane and of onstrained subgraphs of retangular grids. Models

of random automata have been developed reently. A simple lass of automata is introdued in [7℄,

and a random generation algorithm is presented. A ombinatorially meaningful question is to

1

Partially supported by the IST Programme of the EU under ontrat number IST-1999-14186 (ALCOM-FT).

2

The summaries for the past nine years are available on the web at the URL http://algo.inria.fr/seminars/.

i



lassify ombinatorial models aording to the nature|rational, algebrai, D-�nite, non-D-�nite|

of the orresponding generating funtions. Two di�erent viewpoints are given on this problem: the

talk [8℄ lassi�es the solutions to a general lass of multivariate reurrene systems, while several

models of random walks are ompared in [9℄. The \n! Conjeture" in algebrai ombinatoris

assoiates some vetor spae of polynomials to eah partition of the integer n and states that eah

of these spaes has dimension n!. A re�nement of the onjeture relates to Madonalds polynomials

and has been proved only reently. A vetor spae that inludes all the spaes above is the objet

of study in [10℄.

[1℄ Enumeration of Planar Rooted Triangulations. J. Z. Gao.

[2℄ Some Sharp Conentration Results about Random Planar Triangulations. J. Z. Gao.

[3℄ Planar Maps and Composition Shemes. G. Shae�er.

[4℄ Coalesene: Emergene of the Map{Airy Law. C. Banderier.

[5℄ Enumeration of Geometri Con�gurations on a Convex Polygon. M. Noy.

[6℄ Tutte Polynomials in Square Grids. M. Noy.

[7℄ Random Group Automata. C. Niaud.

[8℄ Solving Disrete Initial- and Boundary-Value Problems. M. Petkov�sek.

[9℄ Classifying ECO-Systems and Random Walks. C. Banderier.

[10℄ Combinatoris of Harmoni Polynomials. F. Bergeron.

PART II. COMPUTER ALGEBRA AND SYMBOLIC METHODS

For a omputer algebra system, it is ruial to optimize the arithmetial operations on basi

objets. In this spirit, lever algorithmi optimizations of existing algorithms are disussed in [11℄,

and novel methods of lazy evaluation are presented in [12℄. These works are part of the few works

that provide omputer algebra proedures with aurate omplexity analysis. Also fundamental is

the LLL algorithm; for example, it has reently been used as a ruial ingredient in an eÆient

fatoring algorithm. Summary [13℄ analyses three variants of LLL whih output bases of a similar

quality, but in a muh faster way on average. The Galois theory for di�erential equations is now

lassial and over the years has been the topi of several talks in our seminar. Reently, a Galois

theory has been developed for the ase of di�erene equations. The results are oneptually similar

but have required a non-trivial adaptation. This is the topi of [14℄. A new algorithm to solve a

ertain lass of linear di�erene equations is presented in [15℄. As a transition to the next part, a

general symboli methodology to perform automati average-ase analysis of algorithms is presented

in [16℄.

[11℄ EÆient Algorithms on Numbers, Polynomials, and Series. P. Zimmermann.

[12℄ Relax But Don't Be Too Lazy. J. van der Hoeven.

[13℄ Threshold Phenomena in Random Latties and Redution Algorithms. A. Akhavi.

[14℄ Eigenring and Reduibility of Di�erene Equations. R. Bomboy.

[15℄ Di�erene Equations with Hypergeometri CoeÆients. M. Bronstein.

[16℄ Attribute Grammars and Automati Complexity Analysis. M. Mishna.

PART III. ANALYSIS OF ALGORITHMS AND DATA STRUCTURES

Continued frations have made several appearanes in this year's session of the seminar. Expan-

sion into ontinued fration is losely related to the Eulidean algorithm; following previous works

on the arithmetial omplexity of these algorithms, [17℄ onsiders the orresponding bit omplex-

ity. The distribution of digits in ontinued frations and other number representation systems is

studied in [18℄, where sorting algorithms based on suh expansions are also analysed. The next

ii



two talks also deal with ontinued frations, but are of a more number-theoreti nature. As a

follow-up to last year's series of talks by the same author, [19℄ provides the limiting distribution

of the alternating sum of the oeÆients of a ontinued fration; [20℄ detets the transendene

of numbers from the digit struture of their expansions into ontinued frations or in some base b.

Summary [21℄ deals with the alloation of resoures to onnetion requests in a network, a problem

of graph olouring in disguise. A general basis for the analysis and synthesis of digital iruits is

provided in [22℄, together with unexpeted onnetions between hardware design and the lassial

notion of automati sequenes in number theory.

[17℄ Average Bit-Complexity of Eulidean Algorithms. B. Vall�ee.

[18℄ Continued Frations, Comparison Algorithms and Fine Struture Constants. Ph. Flajolet.

[19℄ Continued Frations and Modular Forms. I. Vardi.

[20℄ Transendene of Numbers whose Expansion in Base b or into Continued Frations is \Too

Regular." J.-P. Allouhe.

[21℄ Routing Permutations on Trees. S. Corteel.

[22℄ Synhronous Deision Diagrams: a Data Struture for Representing Finite Sequential Digital

Funtions. J. Vuillemin.

PART IV. COMPUTATIONAL BIOLOGY AND COMBINATORICS OF WORDS

The �rst three talks are of a biologial avour. Summary [23℄ is onerned with determining the

loal statistial distribution of nuleotides along a hromosome. Searhing genomi databases has

motivated the work [24℄ in whih the key tool is the lassial desription of the possible periods

in strings. Trees are another ombinatorial struture entral to omputational biology. Indeed,

phylogeneti trees exhibit the evolution of a speies, a gene, and so on. In this vein, [25℄ analyses

several methods of onstrution of lassi�ation trees. More lassially about ombinatoris of

words, [26℄ presents a new data struture used to design eÆient string mathing algorithms: a

minimal automaton that stores the fators of a word.

[23℄ Bayesian Approah to DNA Segmentation into Regions with Di�erent Average Nuleotide

Composition. V. Makeev.

[24℄ Enumeration of Autoorrelations and Computation of Their Populations.

�

E. Rivals.

[25℄ Classi�ation by Trees: the Shape of the Inferred Tree Depends on the Algorithmi Sheme

Seleted. O. Gasuel.

[26℄ Fator Orale, SuÆx Orale. M. RaÆnot.

PART V. MISCELLANY

Two talks are onerned with the analysis of algorithms or data strutures, but are of a more

probabilisti avour. Random walks on graphs are studied in [27℄. Measures related to internal

path length in various models of possibly randomized searh trees and to the Quik�nd algorithm

are analysed in [28℄. The information-theoreti problem of soure oding is onsidered in great

generality in [29℄. The key question is to analyse the redundany of a soure. This relates to data

ompression by Hu�man odes, Shannon{Fano odes, and Lempel{Ziv algorithms. A dynamial

system exhibiting haos is studied in [30℄; the iteration proess is desribed in terms of a language

whose omplexity is sought. Finally, [31℄ disusses lassial models of statistial mehanis. This

reets the reent inrease of interest in suh problems in our seminar.

[27℄ On Random Graph Homomorphisms into Z. E. Mossel.

[28℄ Distributional Analysis of Reursive Algorithms by the Contration Method. R. Neininger.

[29℄ Analyti Information Theory and the Redundany Rate Problem. W. Szpankowski.
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[30℄ Queues, Staks, and Transendentality at the Transition to Chaos. C. Moore.

[31℄ Colorings, Potts Models, Height Representations, and Entropi Fores. C. Moore.
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The editor,
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Enumeration of Planar Rooted Triangulations

Jason Zhiheng Gao

Shool of Mathematis and Statistis, Carleton University

June 8, 2000

Summary by Gilles Shae�er

This talk presents a joint work with I. M. Wanless and N. C. Wormald [5℄.

1. Introdution

A planar map is a onneted graph embedded in the plane. In this talk, loops and multiple edges

are forbidden. A map is rooted if one edge is oriented. The start point of this root is alled the root

vertex, the fae on its right the root fae and the fae on its left the near fae. If the root and near

fae of a planar map are the same, the root is a bridge. By onvention the root is always taken so

that the root fae is the in�nite fae. The other faes are then alled interior faes. The degree of

a fae is its number of inidenes of edges (i.e., bridges ount for two). A triangulation is a map

whose faes all have degree three. A map is p-onneted if at least p verties must be removed to

separate it into two onneted omponents.

Euler already enumerated triangulations of polygons in the 19th entury (they are Catalan), but

the enumeration of triangulations as de�ned here started with Tutte's work in the sixties. Several

families of planar rooted triangulations were in fat enumerated:

{ 4-onneted triangulations (see [8℄: algebrai generating funtion and asymptoti are given),

{ 3-onneted triangulations (see [2, 8℄: with n verties they are (4n+ 1)!=(n+ 1)! (3n + 2)!),

{ 2-onneted allowing multiple edges (see [7℄: with n verties they are 3 �2

n

(3n)!=n! (2n+2)!),

{ all triangulations allowing loops and multiple edges (see [6℄: algebrai generating funtion

and asymptoti are given).

All these family of planar rooted triangulations have algebrai generating funtions and asymptoti

behaviors of the same form,



i

n

�5=2

(1=�

i

)

n

;

where n denotes the number of verties. For onnetivity i from 1 to 4, the values of �

i

are

p

3=36; 2=27; 27=256; 4=27;

respetively. For no planar map is 6-onneted, the only missing onnetivity for triangulations

was 5, whih is the subjet of the present study: it turns out that for 5-onneted triangulations,

the generating funtion is algebrai of degree 6, and the asymptoti behavior is similar, with �

5

given as a root of a ertain polynomial P of degree 6 suh that

�

5

� 0:2477:

It is amusing to remark that �

5

is not the smallest positive root the polynomial P .

The proof is based on skillful re�nements of the three original ingredients of Tutte's method:

root edge deletion, the quadrati method, and omposition shemes.



4 Enumeration of Planar Rooted Triangulations

2. Root Edge Deletion

The deletion of the root edge is maybe the simplest possible idea to deompose a map. It turns out

to be very eÆient in providing funtional equation for generating funtions of \not-too-onneted"

maps.

In general there are two ases in the root edge deletion proess applied to a planar map M of a

family F :

{ either the root edge deletion separates M into two piees that more or less belong to F ,

{ or it yields diretly a map M

0

that belongs more or less to the family F . In this ase, M

0

usually has a larger root fae degree than M : the removal of the root has merged the root

and near faes of M .

This deomposition an be made one-to-one, at the expense of taking the root fae degree into

aount. It then results into funtional equations for the generating funtion

F (x; y) =

X

n;k

f

n;k

x

n

y

k

;

where f

n;k

denote the number of maps with n inner verties and a root fae of degree k.

For instane let F (x; y) be the generating funtion of near-triangulations, i.e., maps with all faes

of degree three, exept maybe the root fae. Then the root edge deletion yields

F (x; y) = y

2

+ y

�1

F (x; y)

2

+ xy

�1

�

F (x; u)� y

2

� yF

3

(x)F (x; y)

�

;

where F

3

(x) is the generating funtion of triangulations, i.e., F (x; y) = y

2

+F

3

(x)y

3

+O(y

4

). Indeed

in the right hand side, the three summands orrespond to three ases in the deomposition of a

near-triangulation M :

{ M is the degenerate triangulation with one edge and two verties,

{ M is made of a ouple of triangulations separated by a rooted triangle,

{ or removing the root of M diretly yields a triangulation M

0

. In this ase, M

0

must not be

the degenerate triangulation, nor have a short diagonal utting it into a triangulation and a

near-triangulation (otherwise, replaing the root of M would reate a double edge).

In order to enumerate 5-onneted triangulations, it turns out to be neessary to enumerate M-type

maps, i.e., maps whose interior faes have degree three or four. Their generating funtion

M(x; y; z) =

X

n;l;k

m

n;l;k

x

n

y

l

z

k

;

where m

n;l;k

denotes the number of rooted M-type maps with n triangular interior faes, l interior

quadrangular faes and a root fae of degree k, satis�es

M(x; y; z) = 1 + z

2

+M

3

(x; y)z

3

+M

4

(x; y)z

4

+O(z

5

)

where M

3

and M

4

denote the generating funtions of M-type maps with root fae of degree three

and four respetively.

The root edge deletion applied to M-type maps yields, with M

0

=M � 1,

M

0

= z

2

M

2

+ xz

�1

(M

0

� z

2

M � zM

3

M

0

) + yz

�2

(M

0

� z

2

� z

3

M

3

M � z

2

M

4

M

0

):

3. The Quadrati Method

The equations provided by root edge deletion have always the same avor: they involve a prin-

ipal generating funtion (F (y) for near-triangulations) in whih the equation is quadrati, and a

seondary generating funtion not depending on y (F

3

for near-triangulations).
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The quadrati method, as used by Tutte, proeeds as follows

{ Write the equation in the form A

2

= B, where A and B are polynomials in all variables and

generating funtions and where B does not ontain the prinipal generating funtion. E.g.,

for near-triangulations this gives

A = F +

1

2

(x� xyF

3

� y); and B =

1

4

(x� xyF

3

� y)

2

+ xy

2

� y

3

:

In general this is possible beause the equation is quadrati in F .

{ Show that there exists a power series Y (x) suh that

A

�

x; Y (x); F

3

(x); F

�

x; Y (x)

�

�

= 0:

{ Then

B

�

x; Y (x); F

3

(x)

�

=

�B

�y

�

x; Y (x); F

3

(x)

�

= 0

and, provided this system is not degenerate, this proves that F

3

and Y are algebrai.

In the ase of M-type maps, the situation is somewhat more involved, beause of the presene of two

seondary generating funtions. However using a theorem of Brown on power series that are square

roots [3℄, Bender and Can�eld have dealt with a similar situation in [1℄. Upon �nding appropriate

parametrizations to make the omputation tratable with Maple, this approah yields

M

3

= u

3

� 2uv + u; and M

4

= 3u

4

� 5u

2

v + u

2

� v

2

+ v + 2;

where u = u(x; y) and v = v(x; y) are the power series uniquely determined by

x =

3u

3

� 2uv + u

(1 + v)

3

; and y =

v � u

2

(1 + v)

3

:

4. Composition Shemes and Non-Uniqueness

Root edge deletion does not work well on 4-onneted triangulations or triangulations with

higher onnetivity, beause the deletion of the root an produe maps with smaller onnetivity

that are hard to deompose bak into maps with high onnetivity. To enumerate 4-onneted

triangulations, Tutte introdued ompositions shemes.

First remark that a triangulation is 3-onneted as soon as it ontains no loop and multiple edges,

4-onneted if all its yles of length three bound faes, and 5-onneted if moreover it ontains no

4-yles with a vertex inside.

In the last two setions we were able to determine the generating funtion F

3

(x) of (3-onneted)

triangulations. Now take a 3-onneted triangulation M . Its yles of length three are ordered by

inlusion. In partiular they are all inside the outer yle of the root fae; all a yle of length three

maximal if it is not inside any other one. A maximal yle either bounds a fae or ontains at least

one vertex in its inside. In the latter ase, the maximal yle and its inside form a triangulation.

Removing the triangulation inside eah maximal yle yields the deomposition of M into a

4-onneted triangulationM

0

plus one triangulation per fae ofM

0

(possibly redued to a triangle).

In terms of generating funtions, this yields

F

3

(x)� 1 =

X

k�1

G

k

x

k

F

3

(x)

2k+1

where G

k

is the number of 4-onneted triangulations with k verties (and 2k+1 inner faes). This

yields a fontional equation of the omposition type

F

3

(x) = 1 + F

3

(x)G

�

xF

3

(x)

2

�

;



6 Enumeration of Planar Rooted Triangulations

whih properly determines the generating funtionG(a) in terms of f(x) = F

3

(x)

2

. Indeed, onsider

the equation a = xf(x). As f(x) = 1+O(x) this equation properly de�nes a power series x(a) and

from the omposition equation,

�

1�G(a)

�

2

f

�

x(a)

�

=

�

1�G(a)

�

2

a=x(a) = 1:

Now as F

3

(x) is algebrai, so is f(x) and there is a polynomial P (x; f) suh that P (x; f(x)) = 0.

Take x = x(a) so that

P

�

x(a); f

�

x(a)

�

�

= P

�

x(a); a

�

= 0;

and we onlude that x(a), and thus G(a), are algebrai.

The next step is to go from 4-onneted triangulation to 5-onneted ones. The idea is again to

start with a triangulation and remove the inside of any non empty yle of length three or four.

However in general this yields an M-type map and not a triangulation.

The omposition sheme has thus to be de�ned between 4- and 5-onneted M-type maps. The

same tehnique immediately applies to remove yles of length three in M-type maps, but for

yle of length four, a new diÆulty appear: two four yles an overlap, making the de�nition of

maximal four-yles no so easy.

Finally, it turns out that a areful ase study allows to lassify overlapping four-yles and work

out the desired omposition shemes.

5. Conlusion

Using the latter omposition sheme and the results for M

3

(x; y) and M

4

(x; y), algebrai equa-

tions for the generating funtion T (x) of 5-onneted triangulations an �nally be derived. These

equations take the form of a parametrization T (x) = �(x; s) where s has a relatively ompat

algebrai equation (unlike T (x)).

The asymptoti is then obtained from a areful analysis of the possible soures of singularity

in the parametrization. This indiret approah seems more easily tratable than dealing with the

expliit polynomial equation giving T (x).

This onludes the story for planar triangulations. As far as exat expression for generating

funtions are onerned, for general planar maps, there is no more than Tutte's result giving

3-onneted ones. On higher genus surfaes, 2-onnetivity was the limit until the very reent

result of [4℄ for 3-onneted triangulations of the projetive plane.
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Abstrat

The theory of random maps has a relatively short history when ompared to the theory of

random graphs. In this talk, we mention some reent results onerning sharp onentration

properties of parameters in random planar triangulations. Examples inlude the maximum

vertex degree, the largest omponent, the number of opies of a given submap, and the

number of ippable edges. This is joint work by Jason Zhiheng Gao and Niholas Wormald

(Melbourne, Australia).

1. Introdution

Draw a graph on a sphere and then mark (or \root") a fae, an edge of this fae and a vertex

of this edge. Then projet the graph on the plane (e.g., by a stereographi projetion): you get a

planar map. Without loss of generality, you an rotate the sphere so that the marked fae ontains

the north pole; then the projetion transforms the marked fae into an unbounded fae, whih is

alled the external fae.

For bakground, we refer to the summary of Gao's other talk (pages 3{6 in these proeedings)

for several de�nitions and examples on maps and triangulations.

For ten years, Jason Zhiheng Gao (often ollaborating with other speialists of maps, namely

Bender, Can�eld, Rihmond, MKay, Wormald, . . . ) has studied several parameters of maps

(strong onnexity, pattern ourrenes, vertex degree, symmetries, yles, Eulerian properties),

�nding new funtional equations, solving them, and also obtaining preise asymptoti estimations.

We speialize here the disussion to two parameters that appear to be intimately related: vertex

degree and submap ourrene. Conentration results are obtained by the seond moment method.

2. Submap Density Result

Many ombinatorial strutures satisfy Borges's Theorem,

1

meaning that any pattern will appear

with high probability in a large enough struture. Any word of length lnn appears with high

probability in a random word of length n (for more details, see the study by Guibas and Odlyzko [6℄,

and then by Niod�eme et al. [7, 8℄). The ourrene of patterns in random graphs has also been

studied [2℄. However for maps, the situation is di�erent as these objets live in quite a di�erent

probability spae. Let's make a bet: hoose a map of size 6, while I generate a random map

of size 1000; would you bet that your map is a submap of mine? This talk makes expliit the

onditions under whih you an make good (or bad) bets.

1

Philippe Flajolet oined this naming in referene to Borges's novel The Library of Babel.
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Let T be any �xed triangulation and �

n

(T ) be the random variable ounting the number of

opies of T in a random triangulation with n verties. Rihmond and Wormald [9℄ showed that

P

�

�

n

(T ) > n

�

> 1� exp

�Æn

for some positive onstants  and Æ depending on T . Bender, Gao and Rihmond [1℄ showed that

the above result holds for many families of maps, and reently Gao and Wormald [4℄ proved that

�

n

(T ) is sharply onentrated around n for some onstant . More preisely:

Theorem 1. Let T be a 3-onneted triangulation with j+3 verties suh that there are r distint

ways to root T . Let  = 2r(27=256)

j

. Then, provided that n!1, P

�

�

�

�

n

(T )� n

�

�

= o(n)

�

! 1.

A near-triangulation is omposed of triangulations exept that it an have more than 3 verties

on its external fae. De�ne

�

k

=

8(k � 2)

4k

2

� 1

�

�

3

4

�

k

�

�3=2

k

�

:

Theorem 2. Let M be a 3-onneted near-triangulation with external fae of degree k and with

j internal verties suh that there are r distint ways to root the external fae. Then, for �xed j

and k with k � 4, one has

P

�

�

�

�

n

(M)� r�

k

(27=256)

j�1

n

�

�

= o(n)

�

! 1:

Proof. The method used here relies on Chebyshev-like inequalities: P(X > t�) � 1=t and P

�

jX �

�j � t�

�

� 1=t

2

for a nonnegative random variable X with average � and variane �

2

. A onse-

quene is that if � = o(�), then one gets a onentration result.

Let us �rst study the number �

n

(k) of verties of degree k in a random triangulation with

n + 2 verties. The quantity T

n

denotes the number of rooted triangulation with n + 2 verties;

T

n;k

denotes the number of rooted triangulation with n + 2 verties and root vertex of degree k;

T

n;k;l

denotes the number of rooted triangulation with n+ 2 verties, root vertex of degree k and

another distinguished vertex of degree l. The sheme of the proof is as follows:

Step 1: Use ombinatorial arguments to show the relations

E

�

�

n

(k)

�

=

6n

k

T

n;k

T

n

and E

�

�

n

(k)(�

n

(k)� 1)

�

=

6n

k

T

n;k;k

T

n

:

Step 2: Obtain funtional equations for the generating funtions for T

n;k;l

, T

n;k

, and T

n

, and

perform singularity analysis.

Step 3: Derive a suitable multivariate version of Flajolet and Odlyzko's transfer theorem (see

Lemmas 2 and 3 below), and obtain the following asymptotis, uniformly for k = O(lnn):

T

n

=

p

6=(32

p

�)n

�5=2

(256=27)

n

�

1 +O(1=n)

�

;

T

n;k

=

k

p

6

192

p

�

�

k

n

�5=2

(256=27)

n

�

1 +O(k

20

=n)

�

;

T

n;k;k

=

k

p

6

192

p

�

�

2

k

n

�3=2

(256=27)

n

�

1 +O(k

20

=n)

�

:

Step 4: Derive asymptotis for the �rst two moments of �

n

(k);

E

�

�

n

(k)

�

= n�

k

�

1 +O(k

20

=n)

�

and Var

�

�

n

(k)

�

= n�

k

+ (n�

k

)

2

O(k

20

=n);

uniformly for k = O(lnn). It follows from Chebyshev's inequality that

P

�

�

�

�

n

(k)� �

k

n

�

�

= o(�

k

n)

�

! 1

uniformly for k <

�

lnn� (ln lnn)=2

�

= ln(4=3) � 
(n). �
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The proof is based on three lemmas.

Lemma 1. Let T be a 3-onneted near-triangulation with j + 3 verties suh that j is o(n) and

that there are r distint ways to root T . Let �

n

(T ) be the number of opies of T in a random rooted

triangulation with n+ 2 verties. Then

E

�

�

n

(T )

�

= r

�

27

256

�

j�1

E

�

�

n+1�j

(3)

��

1 + o(1)

�

;

E

�

�

n

(T )(�

n

(T )� 1)

�

= r

2

�

27

256

�

2j�2

E

�

�

n+2�2j

(3)(�

n+2�2j

(3) � 1)

��

1 + o(1)

�

:

In order to state preise results, one needs the following notation: let � be a small positive

onstant, � be a onstant satisfying 0 < � < �=2, and �y be (y

1

; y

2

; : : : ; y

d

). De�ne:

�(�; �) =

�

x suh that jxj � 1 + �; x 6= 1; jArg(x� 1)j � �

	

;

R(�; �) =

�

(x; �y) suh that jy

j

j < 1; 1 � j � d; x 2 �(�; �)

	

:

Let �

j

> 0 for 1 � j � d, and � be any real number. The following two notations are also useful.

De�nition 1 (

e

O notation). We write f(x; �y) =

e

O

�

(1�x)

��

Q

d

j=1

(1�y

j

)

��

j

�

if there exist � > 0 and

0 < � < �=2 suh that, in R(�; �), f(x; �y) is analyti and f(x; �y) = O

�

j1�xj

��

Q

d

j=1

(1� jy

j

j)

��

j

�

as (1� x)(1� y

j

)

�p

! 0, for 1 � j � d, and some p � 0; for some q � 0 and some real number �

0

,

one has f(x; �y) = O

�

j1� xj

��

0

Q

d

j=1

(1� jy

j

j)

�q

�

:

De�nition 2 (� notation). We write f(x; �y) � (1 � x)

��

Q

d

j=1

(1 � y

j

)

��

j

if f(x; �y) an be

expressed as f(x; �y) = (�y)(1 � x)

��

Q

d

j=1

(1 � y

j

)

��

j

+

P

d

j=0

C

j

(x; �y) + E(x; �y) where C

0

(x; �y)

is a polynomial in x, and for 1 � j � d, C

j

(x; �y) is a polynomial in y

j

and where E(x; �y) =

e

O

�

j1 � xj

��

0

Q

d

j=1

(1 � y

j

)

��

0

j

�

for some �

0

< � and �

0

j

� 0, 1 � j � n and �nally where

(�y) = +O(

P

d

j=1

j1� y

j

j) and is analyti when �y 2 �(�; �)

d

, with (

�

1) =  6= 0.

Lemma 2. Suppose that

f(x; �y) =

e

O

�

(1� x)

��

d

Y

j=1

(1� y

j

)

��

j

�

;

then as n!1 and 1 � k

j

= O(lnn),

[x

n

�y

k

℄f(x; �y) = O

�

n

��1

d

Y

j=1

k

�

j

j

�

;

and for any 0 < �

0

< 1 and for all n and k

j

,

[x

n

�y

k

℄f(x; �y) = O

�

n

��1

d

Y

j=1

(1� �

0

)

�

j

�

:

Lemma 3. Let d � 1 and f(x; �y) � (1 � x)

��

Q

d

j=1

(1 � y

j

)

��

j

, where � is neither a negative

integer nor 0, and  6= 0. Then as n!1 and k

j

= O(lnn),

[x

n

�y

k

℄f(x; �y) =



�(�)

d

Y

j=1

�

k

�

j

�1

j

=�(�

j

)

�

 

1 +O

�

d

X

j=1

1=k

j

�

!

:
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3. Maximum Vertex Degree

Let d

n

be the maximum vertex degree of a random map in a family of maps of size n. Devroye,

Flajolet, Hurtado, Noy, and Steiger [3℄ showed that, for triangulations of an n-gon,

P

�

�

�

d

n

� ln(n)= ln 2

�

�

� (1 + �) ln lnn= ln 2

�

! 1:

Gao and Wormald [5℄ improved this last result and extended it to general families of maps. They

showed that, for any funtion 
 going to in�nity arbitrarily slowly, one has

{ for triangulations of an n-gon: P

�

�

�

d

n

�

lnn+ln lnn

ln 2

�

�

� 
(n)

�

! 1,

{ for 3-onneted triangulations of n verties: P

�

�

�

�

d

n

�

lnn+(ln lnn)=2

ln(4=3)

�

�

�

� 
(n)

�

! 1,

{ for all maps of n edges: P

�

�

�

�

d

n

�

lnn+(ln lnn)=2

ln(6=5)

�

�

�

� 
(n)

�

! 1.

4. A Few Open Problems

At the end of the talk, a few questions were raised, and the following onjetures appear plausible

but might involve hard work.

Conjeture 1. The generating funtion of maps without a given submap is algebrai.

There is no doubt that a funtional equation ould be obtained for eah pattern (however, as

the overlaps an be very intriate, the funtional equation would be horrendous, and it is not lear

that a generalization of the quadrati method would allow us to solve it, and prove algebraiity).

Conjeture 2. A Gaussian limit law should hold.

One more, we expet the behavior to be qualitatively the same for words, trees and maps.

Another interesting study (whih is as of now out of reah) is the ourrene of a given pattern,

not in a loal sense but in a global one (suh patterns are alled \minors").

Other onentration results about random planar triangulations suh as the largest omponent

and the number of ippable edges were �nally not presented in the talk but an be found in Gao's

artiles at his homepage http://mathstat.math.arleton.a/~zgao/.
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Abstrat

This talk is onerned with presenting the enumerative theory of planar maps, following

Tutte's original approah. Combinatorial proofs of many beautiful formul� disovered by

Tutte have been given reently (f. last year's talk). However, in \less beautiful" ases,

one is invariably bak to deompositions and generating series. In other words, the best

tools still are those introdued by Tutte and Brown in the 1960's. The deompositions

by \deletion/ontration" of edges translate into quadrati bivariate disrete di�erential

equations, that transform into algebrai equations by the (rather miraulous) \quadrati

method." Deompositions by \omposition" of maps translate into omposition shemes.

From the viewpoint of singularity analysis, these shemes are all of the same type: the ritial

omposition of two singularities in (�� x)

3=2

. The goal of this presentation is espeially to

show where the omposition shemes and the random generation algorithm reported on in

Cyril Banderier's ompanion talk stem from.
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~

ên-Th

�

ê

Abstrat

Maps are planar graphs presented together with an embedding in the plane, and as suh,

they model the topology of many geometri arrangements. This talk is onerned with

the statistial properties of random maps, and fouses on onnetivity issues. The analysis

that we introdue is largely based on a method of \oalesing saddle points." We exhibit

here a new lass of \universal" phenomena that are of the exponential-ubi type exp ix

3

,

orresponding to nonstandard distributions that involve the Airy funtion. Consequenes

inlude the analysis and �ne optimization of random generation algorithms for multiply

onneted planar graphs.

(Joint work of C. Banderier with P. Flajolet, G. Shae�er and M. Soria.)

1. Statistial Properties of Random Maps

Generially, M and C will be two lasses of maps, respetively the \basi maps" and the \ore-

maps," withM

n

and C

n

the subsets of elements of size n. Here, the lass C is always a subset ofM

satisfying additional properties, suh as higher onnetivity.

1.1. Combinatoris of maps. LetM

n

and C

k

be the ardinalities ofM

n

and C

k

. The generating

funtions of M and C are respetively de�ned by M(z) =

X

n>1

M

n

z

n

and C(z) =

X

k>1

C

k

z

k

:

(i) Root-fae deomposition. From the quadrati method [6, Se. 2.9℄ and from root-fae de-

omposition [9℄, one an �nd two power series  and �, suh that M(z) =  

�

L(z)

�

, where L is

impliitly determined by L(z) = z�

�

L(z)

�

. For nonseparable maps, one has �(y) = (1 + y)

3

and  (y) = y(1� y). Lagrange inversion theorem [6℄ hene yields:

M

n

= [z

n

℄M(z) =

1

n

[y

n

℄ 

0

(y)�(y)

n

; that is, for nonseparable maps: M

n

=

4(3n)!

n! (2n+ 2)!

:

(ii) Substitution deomposition. Notiing that the generating funtions z+

2M(z)

2

1+M(z)

and C

�

M(z)

�

enumerate respetively the maps without ore (i.e., no submap that is element of C

n

) and the maps

formed of a nondegenerate ore in whih maps are substituted, we dedue that M(z) satis�es [9℄:

M(z) =

�

z +

2M(z)

2

1 +M(z)

�

+ C

�

M(z)

�

:

De�ne the bivariate generating funtion M(z; u) =

P

n;k

M

n;k

u

k

z

n

, with M

n;k

= CardM

n;k

,

where M

n;k

is the set of maps of size n having a ore of k + 1 edges. Tutte proved the re�nement

M(z; u) = C

�

uM(z)

�

.
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1.2. Connetivity issues. We are interested in the probability P[X

n

= k℄ that a map ofM

n

has

a ore with k + 1 edges. This probability is given by

P[X

n

= k℄ =

C

k

[z

n

℄M(z)

k

M

n

; with [z

n

℄M(z)

k

=

k

n

[y

n�1

℄y 

0

(y) (y)

k�1

�(y)

n

;

where the seond equality results from Lagrange inversion.

1.3. The asymptotis of maps. Thanks to transfer methods [4℄, one an derive asymptotis for

M

n

and C

k

[1℄. One obtains positive numbers b and b

0

, as well as � and � , suh that:

M

n

�

n!1

3b

4

p

�

�

�n

n

5=2

; in partiular M

(non sep.)

n

�

n!1

p

3

2

p

�

�

27

4

�

n

n

�5=2

;

C

k

�

n!1

3b

0

4

p

�

 (�)

�k

k

�5=2

; in partiular C

(3-onn.)

k

�

n!1

8

243

p

�

4

k

k

�5=2

:

Hene, studying P[X

n

= k℄ essentially onsists in estimating [z

n

℄M(z)

k

.

2. Two Saddle Points

Let us start the estimation of [z

n

℄M(z)

k

by Cauhy's formula,

[z

n

℄M

k

(z) =

k

n

1

2i�

Z

�

z

�

 (z)

k

�

0

�(z)

n

dz

z

n+1

=

k

n

1

2i�

Z

�

G(z) (z)

k

(�(z)=z)

n

dz

where � is a ontour enirling the origin and G(z) =  

0

(z)= (z) = (1� 2z)=(z(1 � z)).

We make use of the saddle-point method. The idea onsists in deforming the ontour � in

the omplex plane in order to have it ross a saddle point of the integrand f (i.e., a zero of the

derivative) and to take advantage of onentration of the integral near the saddle point.

The problem at hand furnishes with two saddle points, z

+

= 1=2 and z

�

= (n � k)=(n + k),

solutions of the equation

�

�z

�

k ln + n ln(�=z)

�

= 0. We distinguish four ases.

2.1. Distint saddles. When k < n=3, the saddle point z

+

= 1=2 is dominant, and when k > n=3,

z

�

= (n�k)=(n+k) dominates. If k is far enough from n=3, the basi saddle-point method applies

and we use for ontour a irle �

0

entered around the origin and passing through the dominant

saddle point � . Loal expansions are of the \exponential quadrati" type and, the ontour being

orthogonal to the real axis in � , the real-variable Laplae method permits one to estimate the

integral asymptotially [3℄. Then we have:

Theorem 1 (Tails and distint saddles [5℄). Let �(n) be an arbitrary funtion with �(n)! +1 and

�(n) = o(n

1=3

). Then, the probability distribution of the ore of random element of M

n

satis�es

P[X

n

= k℄ �

32

243

p

�

�

n

5=2

k

3=2

(n� 3k)

5=2

; uniformly for �(n) < k <

n

3

� n

2=3

�(n);

P[X

n

= k℄ = O

�

exp(�n(k=n� 1=3)

3

)

�

; uniformly for k >

n

3

+ n

2=3

�(n):

2.2. A double saddle. Here we diretly attak the analysis of the \enter" of the distribution,

that is, the ase where n = 3k exatly. Then, the saddle points beome equal: z

�

= z

+

= � . The

funtion f an be written f(z) = f(�)+f

(3)

(�)(z��)

3

=6+O

�

(z��)

4

�

, with f

(3)

(�) real and negative.

Hene the urves of steepest desent, orresponding to real and nonpositive f

(3)

(�)(z� �)

3

=6 when

z is lose to � , either follow the positive real axis or form an angle of �2�=3 with it. We approximate
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Maps (M), M

n

Cores (C), Sheme �

0



general, n edges 1, M' C[XM

2

℄ 1/3 3=4

2=3

general, n edges bridgeless, M' C[X (XM)

�

℄ 4/5 (5=3)

2=3

=4

general, n edges loopless, M' L+ C[X ((XM)

�

)

2

℄ 2/3 3=2

loopless , n edges simple, M' C[XM℄ 2/3 3

4=3

=4

bipartite, n edges bipartite simple, M' C[XM℄ 5/9 3

8=3

=20

bipartite, n edges bipartite nonseparable, M' C[XM

2

℄ 5/13 (13=6)

5=3

� 3=10

bipartite, n edges bipartite bridgeless, M' C[X (XM)

�

℄ 3/5 (15=2)

5=3

=18

nonseparable, n edges simple nonseparable, M' C[XM℄ 4/5 15

5=3

=36

nonseparable, n+ 1 edges 3-onneted, M' D + C[M℄ 1/3 3

4=3

=4

ubi nonseparable, n+ 2 faes ubi 3-onneted, M' C[X (1 +M)

3

℄ 1/2 (3=2)

1=3

ubi 3-onneted, n+ 2 faes ubi 4-onneted, M'M � C[XM

2

℄ 1/2 6

2=3

=3

Table 1. A seletion of omposition shemes (X an edge, L, D auxiliary families).

those last two urves by replaing a small ar of �

0

by two small segments �

1

and �

2

interseting �

at an angle of �2�=3. A few omputations then deliver:

P[X

3k

= k℄ =

4

27

�(2=3)

3

1=6

�

k

�2=3

�

1 +O

�

(lnk)

4

k

�1=3

��

; with

4

27

�(2=3)

3

1=6

�

� 0:0531:

The estimation remains valid for n = 3k+1 and n = 3k+2. A similar result holds for n = 3k+O(1).

2.3. Nearby saddles. When k is lose to n=3, we hoose a ontour � with the same shape as

previously but going through the mid-point � := (z

�

+ z

+

)=2, so that it simultaneously athes

the ontributions of the two saddle points z

�

and z

+

. Loal estimates of the integrand lead to an

expression involving Airy funtions. With the \map{Airy" distribution A de�ned by

A(x) = 2 exp

�

�

2

3

x

3

�

�

xAi(x

2

)�Ai

0

(x

2

)

�

; where Ai(z) =

1

2�

Z

+1

�1

e

i(zt+t

3

=3)

dt;

we have indeed: sup

a6

k�n=3

n

2=3

6b

�

�

�

�

�

n

2=3

P[X

n

= k℄�

16

81

3

4=3

4

A

 

3

4=3

4

k � n=3

n

2=3

!

�

�

�

�

�

�!

n!1

0:

2.4. Coalesing saddles. This ase is an improvement of the former one, in so far as we provide

a uniform desription of the transition regions around n=3, allowing k to range anywhere between

�(n) and n� �(n), for any �(n) = o(n) with �(n)!1. We set k = (1=3 + �)n, and make � vary

in any ompat subinterval of

�

�1=3; 2=3

�

. By a hange of variable, one redues the omputation

to the ase of (the exponential of) a ubi integrand [1, 2, 10℄|the simplest ase enabling a double

saddle point| to get:

P[X

n

= n=3 + �n℄ =

16

81(1 + 3�)

3=2

n

2=3

�

a

1

2

A(�) +

a

4

n

2=3

exp

�

�

2

3

�

3

�

Ai(�

2

)

�

�

1 +O(1=n)

�

;

where: (i) � = n

1=3

; (ii) the error term is uniform for � in any ompat subinterval of

�

�1=3; 2=3

�

and is also uniform for any k > �(n), up to replaing O(1=n) with O

�

�(n)

�1

�

; (iii) , a

1

, a

4

are

funtions of � made expliit in [1℄.

3. Appliations to Maps and Random Sampling

The former framework was applied to the families of random maps presented in Table 1, whose

generating funtions are all of Lagrangian type. Eah family is haraterized by two parameters

�

0

and , displayed in Table 1.
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Theorem 2. Consider any sheme of Table 1 with parameters �

0

and . The probability P[X

n

= k℄

that a map of size n has a ore of size k has a loal limit law of the map{Airy type with entering

onstant �

0

and sale parameter .

Suppose now that one wants to generate a random map from a given family in Table 1. For

general, nonseparable, bipartite, and ubi nonseparable maps, an algorithm Map is already given

in [8℄ that takes an integer n and outputs in linear time a map of size n uniformly at random.

For the other families of Table 1, one an use the following probabilisti algorithm Core(k) with

parameter f(k):

1. use Map(n) to generate a random map M 2M of size n = f(k);

2. extrat the largest omponent C of M with respet to the sheme;

3. if C does not have size k, then go bak to step 1; otherwise output C.

Exept for an exponentially small number of failures, this algorithm produes an element of C

k

with

uniform probability. Among other results, we have:

Theorem 3. In all extration/rejetion algorithms of [8℄, the hoie f(k) = k=�

0

yields an algo-

rithm whose average number of iterations satis�es

`

n

� n

2=3

=

�

A(0)

�

:

Let x

0

� 0:44322 be the position of the peak of the map{Airy density funtion given by the equation

(1� 4x

3

0

)Ai(x

2

0

) + 4x

2

0

Ai

0

(x

2

0

) = 0:

The optimal hoie f(k) = k=�

0

� (x

0

=�

0

) (k=�

0

)

2=3

redues the expeted number of loops by

1�A(0)=A(x

0

) � 30%.

This proves that the extration/rejetion algorithms have overall omplexity O(k

5=3

), as do

variant algorithms of [7, 8℄ that are uniform over all C

k

. This omplexity drops to O(k) if one

allows some small tolerane on the size of the generated map.
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Abstrat

We survey reent work on the enumeration of non-rossing on�gurations on the set of

verties of a onvex polygon, suh as triangulations, trees, and forests. Exat formul� and

limit laws are determined for several parameters of interest. In the seond part of the talk

we present results on the enumeration of hord diagrams (pairings of 2n verties of a onvex

polygon by means of n disjoint pairs). We present limit laws for the number of omponents,

the size of the largest omponent and the number of rossings. The use of generating

funtions and of a variation of Levy's ontinuity theorem for harateristi funtions enable

us to establish that most of the limit laws presented here are Gaussian. (Joint work by Mar

Noy with Philippe Flajolet and others.)

1. Analyti Combinatoris of Non-rossing Con�gurations [3℄

1.1. Conneted graphs and general graphs. Let �

n

= fv

1

; : : : ; v

n

g be a �xed set of points in

the plane, onventionally ordered ounter-lokwise, that are verties of a regular n-gon K. De�ne

a non-rossing graph as a graph with vertex set �

n

whose edges are straight line segments that do

not ross. A graph is onneted if any two verties an be joined by a path. Parameters of interest

are the number of edges of onneted graphs and general graphs, and the number of omponents

of general graphs.

x

1v

y

z

1v

(a) (b)

z

x

y

Figure 1. (a) A onneted non-rossing graph; (b) an arbitrary non-rossing graph.
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1.2. Trees and forests. A (general) tree is a onneted ayli graph and the number of edges in a

tree is one less than the number of verties. The study of trees beomes easier with the introdution

of butteries [3℄, de�ned to be ordered pairs of trees with a ommon vertex; a tree appears to be

a sequene of butteries attahed to a root. A forest is an ayli graph, in other words a graph

whose omponents are trees.

1
v

x

y

z

1v

x

y

(b)(a)

Figure 2. (a) A tree; (b) a forest.

1.3. Triangulations. A triangulation [7℄ is a set T

n

of n � 3 non-rossing diagonals v

i

v

j

whih

partitions K into n� 2 triangles. As eah triangle orresponds to an internal node of a binary tree

(see the generating funtion of exerise 7.22 of [6℄) via a lassial bijetion due to Euler [11℄, the

number

b

T

n

of triangulations is given by the (n�2)-th Catalan number

b

T

n

= C

n�2

=

�

2n�4

n�2

�

=(n�1).

Let d

i

denote the degree of the vertex v

i

(i.e., the number of diagonals inident with v

i

) and

kv

i

v

j

k = min

�

ji� jj; n� ji� jj

�

the length of a diagonal v

i

v

j

. De�ne [2℄:

�

n

(�) = max

�

d

i

�

�

i = 0; : : : ; n� 1

	

;

the maximal degree of the verties, and

�

n

(�) = max

�

kv

i

v

j

k

�

�

v

i

v

j

2 T

n

	

;

the length of the longest diagonal in the triangulation.

Those features are of interest for a triangulation � beause they onvey information about the

orresponding tree b(�): �

n

(�) measures the external-node separation of b(�), i.e., the maximal

distane between suessive external nodes; �

n

(�) measures its nearly half measure, i.e., the size

of the largest subtree with not more than half the external nodes.

Using ombinatorial bijetions and probability lemmas [2℄, we �nd:

E[�

n

℄ � log

2

n; and E[�

n

℄ � �n; where � =

p

3

�

+

1

3

�

log

�

2 +

p

3

�

�

' 0:4654:

Let an ear of a triangulation � be a triangle sharing two sides with the polygon, and e

n

the

number of ears of a triangulation. Let us view triangulations as binary trees and ears as leaves

(internal node whose hildren are external nodes [11℄) or roots with at least one hild that is an
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external node, and let

b

B enumerate binary trees by size and number of leaves and

b

T enumerate

triangulations by size and number of ears.

1

These generating series satisfy [5℄

z

2

b

T (z; w) =

�

1 + 2z(w � 1)

�

b

B(z; w); where

b

B(z; w) = z

�

w + 2

b

B(z; w) +

b

B(z; w)

2

�

;

leading to Var[e

n

℄ �

p

n=4 and a Gaussian limit law (see x1.5 below). The expetation

E[e

n

℄ =

n(n� 1)

2(2n� 5)

�

n

4

was already known from a ombinatorial manipulation of Catalan numbers desribed in [7℄.

1.4. Generating funtions. The ombinatorial objets and parameters above, exept for ex-

tremal ones, lead to univariate and bivariate generating funtions, given in Table 1 below.

Con�guration Generating funtion equation

Conneted graphs C

3

+ C

2

� 3zC + 2z

2

= 0

|{, edges wC

3

+ wC

2

� (1 + 2w)zC + (1 + w)z

2

= 0

Graphs G

2

+ (2z

2

� 3z � 2)G+ 3z + 1 = 0

|{, edges wG

2

+

�

(1 + w)z

2

� (1 + 2w)z � 2w)G+ w + (1 + 2w)z = 0

|{, omponents G

3

+ (2w

3

z

2

� 3w

2

z + w � 3)G

2

+ (3w

2

z � 2w + 3)G+ w � 1 = 0

Trees T

3

� zT + z

2

= 0

|{, leaves T

3

+ (z

2

w � z

2

� z)T + z

2

= 0

Forests F

3

+ (z

2

� z � 3)F

2

+ (z + 3)F � 1 = 0

|{, omponents F

3

+ (w

3

z

2

� w

2

z � 3)F

2

+ (w

3

z + 3)F � 1 = 0

Triangulations z

4

b

T

2

+ (2z

2

� z)

b

T + 1 = 0

|{, ears z

4

b

T

2

+

�

1 + 2z(w � 1)

�

(2z

2

� z)

b

T + w

�

1 + 2z(w � 1)

�

2

= 0

Table 1. Generating funtion equations (z and w mark verties and the seondary parameter).

A few triks enable one to make Lagrange inversion appliable and to derive exat formul�|

sometimes involving summations|for all oeÆients. For example, the hange of variable T = z+zy

followed by Lagrange's formula yields:

T

n

=

1

2n� 1

�

3n� 3

n� 1

�

and T

n;k

=

1

n� 1

�

n� 1

k

�

k�1

X

j=0

�

n� 1

j

��

n� k � 1

k � 1� j

�

2

n�2k+j

:

Finding C

n;k

goes through a parameterization of the funtional equation of C. To get the oef-

�ients

b

T , we use the equality

b

T

n;k

=

b

B

n+2;k�1

+ 2

b

B

n+1;k

� 2

b

B

n+1;k

dedued from z

2

b

T (z; w) =

�

1 + 2z(w � 1)

�

b

B(z; w).

1.5. Asymptotis. All of the univariate generating funtions above, and a few others (dissetions

and partitions of onvex polygons) not presented in the talk but available in [3℄, have a unique

dominant singularity � in (0; 1), and an be written

f(z) = 

0

+ 

1

�

1�

z

�

�

1=2

+O

�

1�

z

�

�

; entailing [z

n

℄f(z) =



1

�(�1=2)

�

1 +O

�

1

n

��

:

For example the numbers T

n

and F

n

of respetively general trees and forests satisfy

T

n

� (27=4)

n

= 6:75

n

and F

n

� 8:2246

n

; whene T

n

= o(F

n

):

1

The expression of

b

T , entailing the Gaussian limit of the distribution of ears of triangulations, was established by

the author of this summary.



20 Enumeration of Geometri Con�gurations on a Convex Polygon

The numbers C

n

and G

n

of respetively onneted and general graphs satisfy

C

n

�

 

p

6

9

�

p

2

6

!

� 10:39

n

and G

n

�

1

4

q

99

p

2� 140 �

2

n

(3 + 2 +

p

2)

n

p

�n

3=2

� 11:65

n

;

entailing C

n

=G

n

! 0 when n!1.

The bivariate generating funtion seen before admits the form

f(z; w) = 

0

(w) + 

1

(w)

�

1�

z

�(w)

�

1=2

+O

�

1�

z

�(w)

�

;

this leads to

f

n

(w) = (w)

�

1

�(w)

�

n

�

1 +O

�

1

p

n

��

; or

f

n

(w)

f

n

(1)

=

(w)

(1)

�

�(1)

�(w)

�

n

�

1 +O

�

1

p

n

��

:

From the Quasi-Powers theorem [5, 8℄, whih is a onsequene of Levy's ontinuity theorem for har-

ateristi funtions, one dedues that f

n

is asymptotially normal. The mean �

n

and variane �

n

satisfy �

n

� �n and �

2

n

� �n for algebrai numbers � and �.

For instane, for the distribution of the number of edges in the spae of onneted graphs of

given size, we have � =

�

1 +

p

3

�

=2 ' 1:366:

2. Analytis Combinatoris of Chord Diagrams [4℄

2.1. De�nitions. Take 2n points on a irle, labelled 1, 2, . . . , 2n, and join them in disjoint pairs

by n hords. The resulting on�guration is alled a hord diagram. A diagram is onneted if no

set of hords an be separated from the remaining hords by a line. A omponent is a maximal

onneted subdiagram.

2.2. Components.

2.2.1. Number of omponents. Let C(z) =

P

n>0

C

n

z

n

be the generating funtion of onneted

diagrams of size n. The bivariate generating funtion I(z; w) =

P

n;k>0

I

n;k

w

k

z

n

of diagrams of

size n and k omponents satis�es I(z; w) = 1 +wC

�

zI(z; w)

2

�

.

We have the following result:

Theorem 1. Let X

n

be the number of omponents in a random diagram of size n.

1. For k > 1, one has P[X

n

= k℄ =

n!1

e

�1

(k � 1)!

�

1 + o(1)

�

.

2. The mean �

n

and the variane �

n

of the distribution satisfy �

n

�

n!1

2 and �

2

n

�

n!1

1.

Sketh of proof. The proof of the �rst point makes use of \monoliths," or \monolithi diagrams,"

where a diagram is said to be monolithi if: (i) it onsists solely of the onneted omponent that

ontains 1 (alled the root omponent) and of isolated edges; (ii) for any two suh isolated edges

(a; b) and (; d), one never has a <  < d < b or  < a < b < d (in other words, two isolated hords

are never in a dominane relation).

The ordinary generating funtion of monoliths reads M(z) = C

�

z=(1 � z)

2

�

, and aording to

Stein and Everett [12℄ C

n

=I

n

= e

�1

+ o(1), so one an dedue the relation M

n

� I

n

, i.e., that

almost every diagram is a monolith. The number M

n;k

of monoliths of size n with k omponents

is given by

M

n;k

=

�

2n� k

k � 1

�

C

n�k+1

�

e

�1

(k � 1)!

I

n

:
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As to the seond point, using 2zC(z)C

0

(z) = C(z)

2

+ C(z)� z, whih is dedued from

C

n

= (n� 1)

n�1

X

j=1

C

j

C

n�j

and C

1

= 1 [9, 13℄, one �nds

�

n

=

�I

�w

(z; w)

�

�

�

�

w=1

=

1

z

�

I(z) + h(z)� 2

�

; where h(z) = I(z)

�1

:

Hene, letting g

n

= h

n

=I

n

, one obtains

g

n

= 1�

n�1

X

k=1

g

k

�

n

k

��

2n

2k

�

�1

= 1�

1

n

+

3

4n

2

+O(n

�3

);

and �

n

=

I

n+1

+ h

n+1

I

n

=

2n+ 1

n+ 1

+O(n

�1

) � 2: Similar omputations yield the variane. �

2.2.2. Largest onneted omponent.

Theorem 2. Let L

n

be the size of the largest onneted omponent in a random diagram of size

n. Then, as n!1, the mean �

n

and the variane �

n

of the distribution of L

n

are

E[L

n

℄ = n� 1 + o(1); Var[L

n

℄ = 1 + o(1);

and for any �xed k > 1, one has P[n � L

n

= k℄ =

e

�1

k!

�

1 + o(1)

�

: In other words, thre random

variable n� L

n

follows a Poisson law of parameter 1.

The proof relies on the analysis of the largest omponent in a monolith, namely, the root om-

ponent with probability 1 � o(1), the other omponents being only edges. The number M

n;k

of

monoliths of size n with root omponent of size n� k is given by:

M

n;k

=

�

2n� k � 1

k

�

C

n�k

�

n!1

e

�1

(k � 1)!

I

n

:

2.3. Crossings. Let � denote the number of hord rossings in a hord diagram, and let I

n

be the

set of all diagrams of size n. Flajolet and Noy proved the following result:

Theorem 3. Let X

n

be the random variable equal to the value of � taken over the set of hord

diagrams I

n

of size n endowed with the uniform probability distribution.

1. The mean �

n

and the variane �

n

of the distribution of X

n

are given by

�

n

= E[X

n

℄ =

n(n� 1)

6

and �

2

n

= Var[X

n

℄ =

n(n� 1)(n+ 3)

45

; respetively.

2. The distribution of X

n

is Gaussian in the asymptoti limit: for all real x, one has

lim

n!1

P

�

X

n

� �

n

�

n

6 x

�

=

1

p

2�

Z

x

�1

e

�y

2

=2

dy:

Sketh of proof. Flajolet and Noy prove a stronger result by omputing the moments of any order.

They use the exat formula disovered by Touhard [14℄ and Riordan [10℄, namely that the series

�

n

(q) =

X

w2I

n

q

�(w)

equals

1

(1� q)

n

n

X

k=�n

(�1)

k

q

k(k�1)=2

�

2n

n+ k

�

:
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Using the equality e

a

2

=2

=

1

p

2�

Z

+1

�1

e

�x

2

=2

e

ax

dx for a = k

p

t, one obtains:

�

n

(e

t

) =

1

(1� e

t

)

n

n

X

k=�n

(�1)

k

e

�kt=2

�

2n

n+ k

�

e

k

2

t=2

=

1

2

p

�

Z

+1

�1

e

�x

2

=2

x

2n

H(x; t)

n

dx;

where H(x; t) =

2 sinh

2

(x

p

t=2� t=4)

x

2

exp(t=2) sinh(t=2)

.

Taking derivatives with respet to t and taking the limit when t! 0 yields the moments of any

order; this proves the �rst point of the laim.

The Laplae method delivers the asymptoti relation

e

�u�

n

=�

n

�

n

(u=�

n

)

�

n

(1)

= e

u

2

=2

�

1 +O(n

�1=5

)

�

:

From Levy's ontinuity theorem for Laplae transforms [1℄, one onludes that (X

n

� �

n

)=�

n

onverges in distribution towards N (0; 1). �
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Summary by Fr�ed�eri Chyzak

Abstrat

The Tutte polynomial of a graph G is a two-variable polynomial that reords muh informa-

tion on G. In partiular, di�erent evaluations at integers provide the number of spanning

trees, forests (ayli spanning subgraphs), and ayli orientations of G. We estimate these

values when G is an n� n square grid so as to dedue re�ned upper and lower bounds for

the numbers of forests and ayli orientations on suh grids.

1. Polynomial Invariants of Graphs

1.1. Chromati polynomials. A general graph G = (V;E) is a undireted graph with loops

and multiple edges allowed; it is desribed by its set V of verties and its set E of edges. The

hromati polynomial p(G;�), introdued by Birkho� in 1912 is a very important invariant of G:

it ounts the number of its �-olourings, i.e., the number of ways to assign olours to the verties

of G in suh a way that no two adjaent verties share the same olour, and that the number of

olours used is at most �. This polynomial reords many statistis of the graph: indeed, for a

graph on n verties, we have the expansion p(G;�) = �

n

� jEj�

n�1

+ a�

n�2

� � � � � �

�(G)

where

a = jEj

�

jEj � 1

�

=2 � t(G) relates to the number t(G) of triangles in G, and where �(G) is the

number of onneted omponents of G. Also, the oeÆients of p(G;�) alternate in signs. Table 1

provides other interesting graph statistis as evaluations of the hromati polynomial.

Unfortunately, the omputation of a hromati polynomial is hard: already the problem of om-

puting the hromati number of a graph G, i.e., the smallest integer � suh that there exists a

�-olouring, is NP-omplete; evaluating the hromati polynomial itself is #P-hard, as is even

omputing the hromati polynomial at any algebrai number di�erent from 0, 1, and 2. A sim-

ple exponential algorithm to ompute p(G;�) is based on ontration and deletion of edges: the

graph G=e resulting from the ontration of an edge e in a graph G is obtained by removing the

edge and identifying both inident verties; the mere deletion of an edge e in a graph G results

in the graph G n e with same vertex set V and new edge set E n feg. The algorithm onsists in

following the reurrene p(G;�) = p(G n e;�) � p(G=e;�) provided that G is onneted and that

e is neither a loop nor a bridge (also alled isthmus or o-loop, i.e., an edge whose deletion does

not disonnet the graph). Finally, the hromati polynomial of a (possibly disonneted) graph is

the produt of the hromati polynomials of its onneted omponents.

1.2. Tutte polynomials. A generalization of the hromati polynomial is the Tutte polynomial

T (G;x; y) of a graph G [5, 6℄, most easily de�ned as the variant T (G;x; y) = R(G;x � 1; y � 1) of

Whitney's rank generating funtion R(G;x; y) [9℄. The rank of a graph G is de�ned as the size of

any of its spanning forests, whih is jV j��(G). This notion stems from the matroid interpretation
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p(G; 0) 0

p(G; 1) 1 if G is empty

p(G; 1) 0 if G ontains an edge

p(G; 2) 2

�(G)

if G is bipartite

p(G; 2) 0 if G is not bipartite

�

�

p(G;�1)

�

�

# of ayli orientations [4℄

T (G; 1; 1) # of spanning trees

T (G; 2; 1) # of forests

T (G; 1; 2) # of onneted subgraphs

T (G; 2; 0) # of ayli orientations [4℄

T (G; 1; 0) # of a. or. with a single soure

T (G; 0; 2) # of totally yli orientations

Table 1. Speial evaluations of the hromati (left) and Tutte (right) polynomials.

of graphs [7, 8℄, whih, informally, views iruits (i.e., yles) in a graph as dependeny relations

and forests as sets of independent edges. Now, by de�nition

(1) R(G;x; y) =

X

A�E

x

r(E)�r(A)

y

jAj�r(A)

= x

r(E)

X

A�E

y

jAj

=(xy)

r(A)

;

where r(A) denotes the rank of the subgraph G

A

= (V;A) of the graph G = (V;E) obtained by

retaining the subset A � E of its edges only. Note that r(A) = r(E) means that G

A

has the same

number of onneted omponents as G, while r(A) = jAj means that G

A

is ayli. The hromati

polynomial is reovered through the relation p(G;�) = (�1)

r(G)

�

�(G)

T (G; 1 � �; 0); on the other

hand, the relation f(G;�) = (�1)

jGj

T (G; 0; 1 � �) de�nes the ow polynomial of G, whih ounts

the number of ows on G with edges weighted by elements of Z=�Z, one any orientation has

been hosen on G. (A ow is an assignment of weights to edges in suh a way that the weights

orresponding to all edges inident to the same vertex add up to zero.) Table 1 provides other

interesting graph statistis as evaluations of the Tutte polynomial.

An algorithm similar to the one in the ase of the hromati polynomial above omputes the Tutte

polynomial, and is based on the relations: T (G;x; y) = 1 if G is empty; T (G;x; y) = T (G=e;x; y) if

e is a bridge; T (G;x; y) = T (G n e;x; y) if e is a loop; and T (G;x; y) = T (G=e;x; y)+T (G n e;x; y)

otherwise. Finally, the Tutte polynomial of a (possibly disonneted) graph is the produt of the

Tutte polynomials of its onneted omponents.

1.3. Tutte{Grothendiek invariants. A restatement of this is that the Tutte polynomial is an

example of Tutte{Grothendiek invariant [2℄, i.e., a funtion v from the set of graphs to a �xed

ommutative ring|Z[x; y℄ in the ase of the Tutte polynomial|with the relations:

1. v(G) = v(G=e) + v(G n e) provided G is onneted and e is neither a loop nor a bridge;

2. the invariant of a graph is the produt of the invariants of its onneted omponents;

3. the invariants of two isomorphi graphs are the same.

A result by Brylawski [2℄ is that any Tutte{Grothendiek invariant is uniquely determined by its

values on the loop and bridge graphs, onsisting of a single loop around a single vertex and of a

single edge between two verties, respetively, and the invariant v(G) is the evaluation of the Tutte

polynomial at x = v(loop graph) and y = v(bridge graph).

The Tutte polynomial satis�es the following more general universality theorem (f. [1, Chap. X℄).

Let v be any funtion from the set of graphs to the ommutative ring Z[x; y; �; �; � ℄ whih satis�es

onditions 2. and 3. in the desription of Tutte{Grothendiek invariants and the relations u(G) =

�

jGj

if G is empty; u(G) = xu(G=e) if e is a bridge; u(G) = yu(G n e) if e is a loop; u(G) =

�u(Gne)+�u(G=e) otherwise. Then v is given in terms of the Tutte polynomial of G by the relation

v(G) = �

�(G)

�

jGj

�

r(G)

T (G;�x=�; y=�). Speial ases are the hromati and Tutte polynomials,

respetively obtained when (x; y; �; �; �) is set to (1� x; 0; x; 1;�1) and (x; y; 1; 1; 1).
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1.4. Matroidal interpretation of graphs. Matroids [7, 8℄ are a general onept used to represent

the ombinatoris of dependeny between objets of many di�erent types, like linear dependeny,

aÆne dependeny, algebrai dependeny, the struture of yles (or iruits) in a graph, and so

on. Chromati and Tutte polynomials extend to this setting with the same type of properties.

Appliations inlude lattie theory, graph theory, knot theory, oding theory, geometry, networks,

perolation theory, and statistial mehanis.

2. Counting Problems on the n� n Grid

Although the following ombinatorial objets are well-de�ned on any graph, we onsider their

enumeration on the square n�n grid L

n

(with simple edges only) where we proeed to derive new

asymptoti estimates:

1. A mathing is a pairing of neighbouring verties by edges of the graph, possibly leaving some

of its verties unpaired. Enumerating mathings relates to the study of a lattie gas model

of statistial physis for a gas onsisting of monomers and dimers.

2. A perfet mathing is a mathing that leaves no vertex on its own. This orresponds to a

gas with dimers only.

3. A set of verties is independent if no two of them an be joined by an edge. This orresponds

to Fibonai arrays, i.e., arrays onsisting of 0's and 1's only, with no two onseutive 1's,

either vertially or horizontally.

4. A spanning tree is a tree made of edges of the graph and that exhausts its verties.

5. An ayli orientations is an orientation of the edges of the graph that indues no yle.

Upon substitution of eah vertex of L

n

by a square entred at this vertex, and after gluing squares

that orrespond to adjaent verties, a mathing beomes a tiling with dominoes and squares while

a perfet mathing beomes a domino tiling. Obviously, the above-mentioned transformation is a

one-to-one orrespondene. The following ombinatorial algorithm by Temperley provides another

bijetion, between spanning trees on L

n

and perfet mathings on L

2n+1

deprived of one vertex:

(i) spanning trees are rooted at some �xed vertex; (ii) dominoes are then plaed on the branhes

of trees, from leaves to the root, and the same proess is applied to the dual graph of the tree;

(iii) domino tilings are hanged into perfet mathings. The ommon ounting number t(n) on

the grid L

n

is given as T (L

n

; 1; 1) (see Table 1) and is known to satisfy lim

n!1

t(n)

1=n

2

= t

where t = 3:2099125 : : :

Upper and lower bounds for forests and ayli orientations. The numbers of forests and

ayli orientations on the graph L

n

are expressable in terms of its Tutte polynomial, and are

T (L

n

; 2; 1) and T (L

n

; 2; 0), respetively (see Table 1). Sine a spanning tree is a forest and a forest

is merely an unonstrained hoie of edges, the bounds t

n

< f

n

< 2

2n(n�1)

< 4

n

2

hold for the

number of forests. On the other hand, orienting all vertial edges towards the top endows L

n

with

an ayli orientation, and ayli orientations are orientations. This yields the bounds 2

n(n�1)

<

a

n

< 2

2n(n�1)

< 4

n

2

. Again, the limits f = lim

n!1

f(n)

1=n

2

and a = lim

n!1

a(n)

1=n

2

exist; the

relations above yield the trivial bounds t = 3:2099125 : : : < f < 4 and 2 < a < 4. Merino, Noy,

and Welsh have obtained the improved bounds

t = 3:64497 � f � 3:74698 and 3:41358 � a � 3:56322:

The method used to derive the new, better upper bounds is to view the square grid L

n

as a

omposite of m=n retangular m�n grids L

m;n

, relying on the omputation of T (L

m;n

; 2; 1) as the

ardinal of a rational language. The idea is to extend a forest, respetively an ayli orientation,

on L

m;n

to one on L

m;n+1

. To this end, the m verties on the nth olumn of the original graph
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are tagged in order to keep trak of verties that are members of the same tree. The number of

suh on�gurations is �nite (in partiular, the m verties an be in at most m di�erent trees).

Among the 2

2m�1

hoies of edges that may be used to extend the original graph, only part of

them do not produe a yle. This provides a �nite-state automaton that reognizes the relevant

on�gurations on L

m;n

. The generating series that enumerates this on�gurations is thus rational,

and the ounting numbers grow as the exponential �

n

m

of an algebrai number �

m

. Gluing n=m

on�gurations on L

m;n

in any way yields the upper bounds f

n

� (�

n

m

)

n=m

2

n(n=m�1)

� (2�

m

=m)

n

2

(sine blind gluing may produe yles), as well as similar bounds for a

n

(with a di�erent �

m

).

The ase of the new lower bounds is very similar. Again, the forests, resp. ayli orientations,

on L

n

are obtained by gluing relevant on�gurations on L

m;n

. However, an additional onstraint is

that the seleted on�gurations on L

m;n

indue forests, resp. ayli orientations, on the graph L

�

m;n

obtained by ontrating the mth row to a single vertex. This ensures that no yle is reated while

gluing the retangular grids. Again, the on�gurations on L

�

m;n

are ounted by a rational language,

yielding lower bounds of the same form as the upper bounds above. The numerial values indiated

were obtained for m = 8. An artile is in preparation [3℄.

3. Computing the Tutte Polynomial of L

m;n

by a Reurrene in n

The interpretation in terms of rational languages also applies to the omputation of Tutte poly-

nomials for L

m;n

, based on the right-most representation (1) of Whitney's rank generating funtion.

This form makes expliit the way to extend the rational automaton reognizing the forests of L

m;n

,

whih has been desribed in the previous setion. This extension only needs to keep trak of the

number of verties (+m at eah olumn), the number of onneted omponents (whose variation

is between �m and +m at eah olumn), and the number of edges (whih by di�erene yields the

rank). To eah state s orresponding to a struture of onneted omponents on the nth olumn

of L

m;n

, we assoiate a generating funtion F

(s)

(x; y; z) =

P

n

R

(s)

n

(x; y)z

n

where R

(s)

n

(x; y) is the

ontribution to the sum (1) restrited to on�gurations A of edges whose last olumn orresponds

to state s. This indues a linear system of reurrenes between the F

(s)

(x; y; z), with Laurent

polynomial entries in x and y.

For �xed m, the rational generating funtion of the rank generating funtions of the family of

graphs L

m;n

is thus obtained as one of the F

(s)

(x; y; z) for a suitable state s. The rational generating

funtion of the Tutte polynomials is then obtained by shifting x and y.
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Abstrat

A group automaton is a omplete deterministi automaton suh that eah letter of the

alphabet ats on the set of states as a permutation [1, 5℄. The aim is to desribe an

algorithm for the random generation of a minimal group automaton with n states. The

treatment is largely based on properties of random permutations and random automata.

1. Properties

A group automaton is a omplete deterministi automaton suh that eah letter of the alphabet

ats on the set of states as a permutation [1, 5℄. We onsider a group automaton A, with states

1, 2, . . . , n. The state 1 is the initial state; the set of �nal states is denoted by F , the alphabet by

a, b, . . . , and the transitions by q

2

= Æ(q

1

; a) or equivalently (q

1

; a; q

2

).

1 2 3 4

start a

a

b

a

b

b

a,b

Figure 1. A group automaton.

Let us reall that two states q

1

and q

2

of an automaton are equivalent, notationally q

1

� q

2

, if for

every word u, the state Æ(q

1

; u) belongs to F if and only if Æ(q

2

; u) belongs to F . The automaton A

is minimal if A has no distint equivalent states. The struture properties of group automata are:

the minimal automaton of a group automaton is a group automaton; the set of group automata is

losed under union, intersetion and omplementation but it is not losed under star and produt.

As eah letter ats like a permutation on the set of states, there annot exist two transitions (q

1

; a; q)

and (q

2

; a; q) with q

1

and q

2

distint. This means that there is a \reversibility" property beause

when the automaton is in a state q after reading a word u, it is possible to retrae the path followed.

We are now interested in the onnexity of an automaton. An automaton is onneted if for

any state q, there is a path joining the initial state to q. Beause of the reversibility property, if

a group automaton is onneted then it is strongly onneted, whih means that for any states q

and q

0

, there is a path from q to q

0

. A group automaton is de�ned by the k permutations oding

the transitions and by the set F , where k is the ardinality of the alphabet, so there are (2

n

�1)n!

k

group automata. We show that, if the alphabet has at least two letters, almost all group automata

on n states are onneted. In order to do this we �rst state the fat that given two permutations
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� and � the generated group h�; �i is almost surely transitive. This an be shown by a simple

ombinatorial argument. Take two letters a and b and onsider �

a

the permutation related to a

and �

b

the one related to b; then as h�

a

; �

b

i is almost always transitive the automaton is almost

always onneted. We even have an asymptoti estimate if the alphabet has exatly two letters:

Card(not onneted group automata)

Card(group automata)

�

1

n

:

2. Minimality

We now have to study the minimality of the automaton. An important theorem is that almost all

onneted group automata are minimal. The proof is partially based on the study of the one-letter

ase: if the automaton is onneted, then as there is only one letter a, the permutation indued

by a is a irular permutation. It is minimal if it is not stable under a rotation whih is equivalent

to saying that the word u = 1 � � � Æ

k

(1; a) � � � Æ

n�1

(1; a) is not a non-trivial fator of uu. Then in this

ase by ounting the words orresponding to minimal irular permutations we show that almost

all onneted automata are minimal on a one-letter alphabet. If the alphabet has more than one

letter, we observe that for almost all group automata, there is a letter a suh that the permutation

indued by a on the set of states has only one yle of maximum length [3℄. More preisely, we

have the following lemma:

Lemma 1. The probability that a permutation � of size n has more than two yles of maximum

length is o(1).

Proof. Let 

n;m

be the probability that a permutation of size n has exatly two maximal yles of

size m + 1. We note the generating funtion C

m

(z) =

P

1

n=0



n;m

z

n

and 

n

=

P

m�n=2



n;m

. The

following equality holds:

C

m

(z) =

z

2(m+1)

2(m+ 1)

2

e

z

� � � e

z

m

m

=

1

1� z

z

2(m+1)

2(m+ 1)

2

exp

�

�r

m

(z)

�

where r

m

(z) =

P

n>m

z

n

=n is the remainder of the generating funtion of the logarithm. In order

to get the oeÆient 

n;m

we apply Cauhy's formula:



n;m

=

1

2i�

Z

C

1

1� z

z

2(m+1)

2(m+ 1)

2

exp

�

�r

m

(z)

�

dz

z

n+1

where C is a path around the origin. We hoose for this path a irle around the origin de�ned by:

jzj = e

�1=n

and we set z = e

�p=n

for a hange of variable. So we have



n;m

=

1

2i�

Z

1+in�

1�in�

exp

�

�r

m

(e

�p=n

)

�

1� e

�p=n

e

�p(2m+2)=n

2(m+ 1)

2

e

p

n

dp

We now need to approximate some of the quantities in the integral, for this we use a tehnique and

a few lemmas provided in [2℄. We �rst have the relations

(1) r

m

(e

�p

) = E(mp) +O

�

e

�mp

m

�

and

1

n

�

1� e

�p=n

�

=

1

p

+

1

n

 

�

p

n

�

with E(x) =

R

1

x

e

�v

v

dv and  (z) =

1

1�e

�z

�

1

z

, and where the error term O

�

exp(�mp)=M

�

is

moreover uniform over <(p) > 0 and

�

�

=(p)

�

�

� �.

Property 1. For all a > 0, the funtion e

�aE(u)

is bounded on <(u) > 0.
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The relations 1 allow us to write, after we set � = m=n:



n;m

=

1

2i�

Z

1+in�

1�in�

exp

�

�E(�p) +O

�

1

m

���

1

p

+

1

n

 

�

p

n

�

�

e

p

e

�p(2m+2)=n

2(m+ 1)

2

dp

=

1

2i�

Z

1+in�

1�in�

exp

�

�E(�p)

�

�

1

p

+

1

n

 

�

p

n

�

+O

�

1

pm

��

e

p

e

�p(2m+2)=n

2(m+ 1)

2

dp:

This rewrites as 

n;m

= I

1

+ I

2

+ I

3

where

I

1

=

1

2i�

Z

1+in�

1�in�

exp

�

�E(�p)

�

1

p

e

p

e

�p(2m+2)=n

2(m+ 1)

2

dp;

I

2

=

1

2i�

Z

1+in�

1�in�

exp

�

�E(�p)

�

1

n

 

�

p

n

�

e

p

e

�p(2m+2)=n

2(m+ 1)

2

dp;

I

3

=

1

m

1

2i�

Z

1+in�

1�in�

exp

�

�E(�p)

�

O

�

1

p

�

e

p

e

�p(2m+2)=n

2(m+ 1)

2

dp:

To study these three expressions, we use the fat that the quantities exp

�

�E(�p)

�

(Property 1)

and e

p

e

�p(2m+2)=n

are bounded uniformly on m. This helps us to give an upper bound for these

three expressions: �rst,

I

1

=

Z

1+in�

1�in�

O(1)

pm

2

dp = O

�

log n

m

2

�

and this approximation is uniform on m. Seond

I

2

=

Z

1+in�

1�in�

O(1)

1

n

 

�

p

n

�

1

2(m+ 1)

2

dp

as  is also bounded uniformly on m we have

I

2

=

1

nm

2

Z

1+in�

1�in�

O(1) dp = O

�

1

m

2

�

:

Third, as in the ase of I

1

, we obtain

I

3

=

1

m

Z

1+in�

1�in�

O

�

1

p

�

1

2(m+ 1)

2

dp = O

�

log n

m

3

�

:

Combining these estimates we obtain 

n;m

= O

�

log n

m

2

�

uniformly onm. The approximation is going

to be useful when m is greater than

p

n; otherwise we use the following lemma:

Lemma 2. The probability that a permutation � of size n has a maximal yle of length smaller

than

p

n is o(1).

Proof. Let p

n;m

be the probability that a permutation of size n has all its yles of size smaller

than m. The saddle-point method gives us an upper bound for the quantity p

n;m

. Then we have

p

n;m

= [z

n

℄e

l

m

(z)

�

e

l

m

(r)

r

n

where l

m

(z) = z + � � � +

z

m

m

:

The saddle-point method drives us to apply this inequality to the value r = n

1

3m

hosen to �t the

minimum, whih gives

p

n;m

�

exp

�

n

1=3

logm

�

n

n=3m

; so p

n;

p

n

� e

�

n

1=3

2

�

p

n

3

�

log n

= o(1):
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�

The probability that a permutation has two maximal yles of sizem is bounded by the probabil-

ity that a permutation has one maximal yle of size m. Therefore the probability that a permuta-

tion of size n has two maximal yles of size smaller than

p

n is o(1). So 

n

= o(1)+

P

m=n=2

m=

p

n



n;m

=

o(1) by the approximation 

n;m

= O

�

log n

m

2

�

. Lemma 1 diretly follows by showing that almost all

permutations of size n having at least two maximal yles have exatly two maximal yles. �

We de�ne E

n

as the set of group automata A of size n that are onneted and with the property

that there exists one letter a suh that the permutation indued by a has only one maximal yle.

By Lemma 1, we show that almost all onneted group automata belong to E

n

. Furthermore, if A

belongs to E

n

then we an show that the maximal yle of �

a

does not interfere with other yles,

beause of their di�erent ardinalities and so we an use the one-letter ase, and say that this

maximal yle is almost always minimal. As the automaton onsidered is onneted, this implies

that the automaton is minimal. So we have the following result:

Theorem 1. Almost all group automata are minimal.

Proof. E

n

� Minimal

n

� Conneted

n

� Group Automaton

n

, and we have proved that almost every

group automaton is in E

n

. �

3. Algorithm

This work naturally leads to an algorithm for generating uniformly at random a minimal on-

neted group automata. Here the ardinality of the alphabet is bounded. The size of an automaton

is the number n of states of its minimal automaton. The algorithm is:

{ generate a random group automaton A using a funtion returning a random permutation for

eah letter of the alphabet. The ost is O(n);

{ test if A 2 E

n

, if not use Hoproft's algorithm to hek if it is minimal. Sine Hoproft is

used rarely, the ost is O(n);

this being done a onstant number of time on average, beause of the theorem above.

This yields a linear omplexity in the average ase, whih is better than the best known algorithm

by Hoproft [4℄ whih has omplexity n log n.
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Summary by Cyril Banderier

Abstrat

Multivariate linear reurrenes appear in suh diverse �elds of mathematis as ombinatoris,

probability theory, and numerial resolution of partial di�erential equations. Whereas in

the univariate ase the solution of a onstant-oeÆient reurrene always has a rational

generating funtion, this is no longer true in the multivariate ase where this generating

funtion an be non-rational, non-algebrai, and even non-D-�nite. Nevertheless, there are

important ases where the solution an be omputed exatly in terms of algebrai funtions.

Examples inlude many lattie-path problems suh as the enumerations of Dyk, Motzkin,

and Shroeder paths, determining the ardinality of various free algebras, and (in some

ases) the enumeration of permutations with a forbidden pattern. This is joint work by

Marko Petkov�sek and Mireille Bousquet-M�elou (CNRS, Universit�e de Bordeaux I).

1. Multivariate Linear Reurrenes

Combinatoris are often synonymous of reurrenes; whereas a quite impressive apparatus is

available for univariate reurrenes, multivariate reurrenes are always a strange and mysterious

world. Whereas a linear reurrene with onstant oeÆients neessarily leads to a rational gen-

erating funtion in one variable, this is no longer true in several variables (even with very regular

boundary onditions). In fat, the set of multivariate generating funtions with suh a reurrene

intersets almost all of the well-known lasses of funtions. Here are two examples leading to two

kinds of generating funtions.

A rational generating funtion: the hess king reurrene. On the square lattie, one

performs a walk, beginning at (0; 0), made of a sequene of jumps (1,0), (1,1) or (0,1). Let a

n;k

be

the number of ways to reah (n; k). Thus, one has the relation a

n;0

= a

0;k

= 1 (for n; k � 0) and

the reurrene a

n;k

= a

n�1;k

+ a

n;k�1

+ a

n�1;k�1

(for n; k � 1). Then, the generating funtion is

F (x; y) =

1

X

n;k=0

a

n;k

x

n

y

k

=

1

1� (x+ y + xy)

:

Of ourse there is an expliit formula for the oeÆients (often referred to as Delannoy numbers

1

),

namely a

n;k

=

P

n

i=0

�

n

i

��

n+k�i

n

�

whih translates all the possible hoies to perform i moves of the

type (1; 1), n� i moves of the type (1; 0) and k � i moves of the type (0; 1).

1

Henry Auguste Delannoy was born in 1833, graduated from the

�

Eole polytehnique in 1853 and beame a military

intendant in the ity of Orl�eans. He wrote a lot of ontributions in rereative mathematis and ombinatoris until

1895, the most remarkable being How to use a hessboard in order to solve some probability problems. After the death

of his friend Luas, he took in harge the publiation of Luas's last unahieved books.
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An irrational generating funtion: the hess knight reurrene. This time, one performs

jumps (1; 2) or (2; 1) and the a

n;k

's are known for n � 1 or k � 1. Petkov�sek proved that F (x; y) =

P

a

n;k

x

n

y

k

is irrational [10℄ and a forthoming artile by Bousquet-M�elou and Petkov�sek should

show that F is in fat non D-�nite.

A �rst problem whih an arise in several variables is that initial onditions have to be or-

retly set in order to establish the uniqueness of the solution to a linear reurrene with onstant

oeÆients. The seond problem is what the nature of the solutions is, and how to ompute them.

2. Existene and Uniqueness of the Solution

Heneforth, we view all the indies (and variables) as tuples of Z

d

or C

d

, that is n = (n

1

; : : : ; n

d

)

and x = (x

1

; : : : ; x

d

). Let H = fh

1

; : : : ;h

k

g be the set of allowed jumps. Let s be the \true"

starting point of the walk, that is the point after whih all jumps are possible and where one does

not are about the side onditions anymore. The kind of reurrene under study is formalized by

(1) a

n

=

(

�(n) for n � 0 and n 6� s;



h

1

a

n+h

1

+ � � �+ 

h

k

a

n+h

k

for n � s.

The �rst part of the reurrene stands for the \initial" onditions (that is, the boundary values)

and the seond part reets the di�erent shifts (or jumps) allowed.

De�nition 1 (Dependeny relation). De�ne ! by p! q () (p� q 2 H and q � s). Note

+

! the

transitive losure of !.

Thus, p! q simply means that there is a \step" from p to q, with q outside of the \boundary

value" area, and p

+

! q means that there is a sequene of steps from p to q.

Theorem 1. The following are equivalent:

1. the transitive losure

+

! of the dependeny relation ! is well-founded in N

d

;

2. there exists u > 0 suh that u � h < 0 for any \jump vetor" h 2 H;

3. the onvex hull of H does not interset R

d

+

.

The last point is the most eÆient for proving uniqueness of the solution of reurrene (1) as

it is easy to hek. For example, for the hess king problem, one has a reurrene with starting

point s = (1; 1) and the set of allowed jumps is H = f(�1; 0); (�1;�1); (0;�1)g, the intersetion

of the onvex hull of H (a triangle in the lower left quarter) and of R

2

+

is learly the empty

set; thus there is a unique solution to the reurrene. Considering now the reurrene a

n;k

=

a

n�1;k+2

+ a

n+2;k�1

(for n; k � 1), where the a

n;k

's are known (for n = 0 or k = 0), where the

starting point is s = (1; 1) and where the set of allowed jumps H = f(�1; 2); (2;�1)g, gives an

example for whih the onvex hull intersets R

2

+

; thus uniqueness does not hold. As a last example,

one shows that the hess knight problem has a unique solution: the starting point is s = (2; 2) and

the set of allowed jumps is H =

�

(�2; 1); (1;�2)

	

, whose onvex hull does not interset R

2

+

.

3. Nature of the Solution

Let K be a �eld of harateristi zero. Consider F (x) =

P

n�0

a

n

x

n

with a

n

2 K and x

n

=

x

n

1

� � � x

n

d

. A funtion F (x) is alled rational if there exist two polynomials P and Q in K [x℄ n f0g

suh that QF �P = 0. The funtion F is alled algebrai if there exists P 2 K [x; t℄ n f0g suh that

P (x; F (x)) = 0. The funtion F is alled D-�nite if there exist polynomials P

i;j

in K [x℄ suh that

P

i;k

(x)

�

k

F (x)

�x

k

i

+ � � � + P

i;0

(x)

�

k

F (x)

�x

k

i

= 0
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with P

i;j

6= 0 for at least one j for eah i = 1; 2; : : : ; d. An equivalent de�nition states that the

spae spanned by all the derivatives of F is �nite-dimensional over K (x). D-�nite funtions have

nie losure properties and are related to a lot of ombinatorial problems (see Stanley's artile [12℄

and Lipshitz's artile [7℄).

De�nition 2 (Apex). The apex of H is the omponentwise maximum of H [ f0g.

For example, for the hess knight problem, one has H = f(�2; 1); (1;�2)g so the apex is (1; 1)

(and the starting point is (2; 2)). If H = f(�2;�1); (�1; 2)g, then the apex is (0,2).

An important ingredient in the proof of the two theorems stated hereafter is the kernel method.

Let us detail this point: one wants to make expliit the solution F

s

of the reurrene (1), whih

rewritesQ(x)F

s

(x) = K(x)�U(x) whereK stands for the known initial onditions and U stands for

the unknown initial onditions. Q is alled the kernel. The kernel method onsists in anelling the

kernel Q(x) by a hoie of algebrai values a of x, thus one gets a system of equationsK(a)�U(a) =

0. Solving this system generally allows to make U expliit. This provides F

s

for generi x:

F

s

(x) =

K(x)� U(x)

Q(x)

:

Typially, the funtion U(x) is the sum of m unknown multivariate funtions F

i

(x

1

; : : : ; x

d�1

); thus

anelling the kernel with m di�erent values for x

d

(whih then beome funtions of (x

1

; : : : ; x

d�1

))

yields a system whih allows to make expliit the F

i

's. The kernel method has belonged to mathe-

matial folklore sine the 1970's; e.g., it has been used by ombinatorialists [3℄[6, Se. 2.2.1, Ex. 4

and 11℄ and probabilists [4℄. There is also some reent work whih makes a deep use of it [1, 2, 10, 11℄.

Theorem 2. Assume the apex of H is 0. Then the generating funtion F

s

(x) of the unique solution

of reurrene (1) is rational if and only if the known initial funtion K(x) itself is rational.

Theorem 3. Take K = C . Assume the apex of H has at most one positive oordinate. Then the

generating funtion F

s

(x) of the unique solution to the reurrene (1) is algebrai if and only if the

known initial funtion K(x) itself is algebrai.

An algebrai example: Dyk paths. One performs steps (1; 1) or (1;�1), the numbers a

i;j

of

paths from (0; 0) to (i; j) satisfy the reurrene a

i;j

= a

i�1;j�1

+ a

i�1;j+1

(for m;n � 1), a

0;0

= 1

and a

i;j

= 0 elsewhere. This leads to the funtional equation (y � x � xy

2

)F

s

(x; y) = y � U(x).

Applying the kernel method yields

F

s

(x; y) =

y �

1�

p

1�4x

2

2x

y � x� xy

2

:

A transendental and D-�nite example: Young tableaux. The generating funtion of Young

tableaux of height at most d is related to the numbers

a

1;:::;1;n+1

=

d�1

Y

i=1

i

d�1

(dn)!

Q

d�1

i=0

(n+ i)!

�

d�1

Y

i=1

i

d�1

p

d

(2�)

(d�1)=2

d

dn

n

(d

2

�1)=2

:

Algebraiity would imply asymptotis of the type C � A

n

=

�

�(1 � r)n

r

�

with C and A algebrai

numbers and r a rational number not in f1; 2; 3; : : : g (lassial result from singularity analysis [5℄).

In our ase, for odd d > 1, r is an integer and for even d > 2, �

�

1 � (d

2

� 1)=2

�

is in Q

�

p

�

�

but not in Q

�

�

(d�1)=2

�

. Thus, the generating funtion of Young tableaux of height at most d

is transendental (for d � 3) and D-�nite. Due to well-known one-to-one orrespondenes, this

result extends from Young tableaux to ballot problems and involutions avoiding long inreasing

subsequenes.
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A non-D-�nite and hypertransendental example. The numbers a

m;n

de�ned by

a

m;n

= a

m+1;n�2

+ a

m�2;n+1

� a

m�1;n�1

; if m;n � 2,

a

1;1

= �1, and a

m;n

= 0 elsewhere, atually belong to f0; 1;�1g and orrespond to a nie \fratal"

lozenge pattern (see the \diamond �gure" in [11℄). Let G(x) =

P

m�2

a

m;2

x

m+1

; one then has

F

s

(x; y) =

X

m;n�2

a

m;n

x

m�2

y

n�2

=

xy �G(x)G(y)

(x� y

2

)(y � x

2

)

:

This equation gives x

3

�G(x)�G(x

2

) = 0 whih leads by iteration to G(x) = x

3

P

i�0

(�i)

i

x

2

i

: This

kind of launary series annot be D-�nite. A stronger result gives that G is in fat hypertransen-

dental [8℄, whih means that there exists no algebrai di�erential equation P

�

z;G;G

0

; : : : ; G

(n)

�

= 0.

4. Conlusion

This talk gave a bestiary of solutions for linear multivariate reurrenes with onstant oeÆients.

In two dimensions, it overs the theory of Riordan arrays [9℄ (objets related to the Lagrange

inversion formula). Even in two dimensions, it an be diÆult to get the status of the generating

funtion (algebrai?, D-�nite?, . . . ). The main possible proofs are: in the algebrai ase, the key

point is the kernel method, note that this method also appears in two other summaries in these

proeedings (see Shae�er's and Banderier's talks); in the transendental ase, asymptotis allow

to detet the nonalgebraiity, and for non D-�nite funtions, one generally tries bootstrapping and

then obtaining an in�nite number of singular points.

Marko Petkov�sek has implemented some of the methods presented here in a Mathematia pakage

multivar, available, as several author's artiles, at http://www.fmf.uni-lj.si/~petkovsek/.

Bibliography

[1℄ Banderier (C.), Bousquet-M�elou (M.), Denise (A.), Flajolet (P.), Gardy (D.), and Gouyou-Beauhamps (D.). {

Generating funtions for generating trees. Disrete Mathematis. { 25 pages. To appear.

[2℄ Bousquet-M�elou (Mireille). { Multi-statisti enumeration of two-stak sortable permutations. Eletroni Journal

of Combinatoris, vol. 5, n

�

1, 1998. { Researh Paper 21, 12 pp. (eletroni).

[3℄ Cori (Robert) and Rihard (Jean). {

�

Enum�eration des graphes planaires �a l'aide des s�eries formelles en variables

non ommutatives. Disrete Mathematis, vol. 2, 1972, pp. 115{162.

[4℄ Fayolle (G.) and Iasnogorodski (R.). { Solutions of funtional equations arising in the analysis of two-server

queueing models. In Performane of omputer systems (Pro. Fourth Internat. Sympos. Modelling Performane

Evaluation Comput. Systems, Vienna, 1979), pp. 289{303. { North-Holland, Amsterdam, 1979.

[5℄ Flajolet (Philippe). { Analyti models and ambiguity of ontext-free languages. Theoretial Computer Siene,

vol. 49, n

�

2-3, 1987, pp. 283{309. { Twelfth international olloquium on automata, languages and programming

(Nafplion, 1985).

[6℄ Knuth (Donald E.). { The art of omputer programming. Vol. 1: Fundamental algorithms. { Addison-Wesley,

1968.

[7℄ Lipshitz (L.). { D-�nite power series. Journal of Algebra, vol. 122, n

�

2, 1989, pp. 353{373.

[8℄ Loxton (J. H.) and Van der Poorten (A. J.). { A lass of hypertransendental funtions. Aequationes Mathemat-

iae, vol. 16, n

�

1-2, 1977, pp. 93{106.

[9℄ Merlini (Donatella) and Verri (M. Ceilia). { Generating trees and proper Riordan arrays. Disrete Mathematis,

vol. 218, n

�

1-3, 2000, pp. 167{183.

[10℄ Petkov�sek (M.). { The irrational hess knight. In Formal Power Series and Algebrai Combinatoris, pp. 513{

522. { 1998. Proeedings of FPSAC'98, June 1998, Toronto.

[11℄ Petkov�sek (Marko) and Bousquet-M�elou (Mireille). { Linear reurrenes with onstant oeÆients: the multi-

variate ase. Disrete Mathematis, vol. 225, n

�

1-3, 2000, pp. 51{75.

[12℄ Stanley (R. P.). { Di�erentiably �nite power series. European Journal of Combinatoris, vol. 1, n

�

2, 1980,

pp. 175{188.



Algorithms Seminar 1999{2000,

F. Chyzak (ed.), INRIA, (2000), pp. 35{38.

Available online at the URL

http://algo.inria.fr/seminars/.

Classifying ECO-Systems and Random Walks

Cyril Banderier

Algorithms Projet, INRIA Roquenourt

September 27, 1999

Summary by Pierre Niod�eme

Abstrat

This talk presents a lassi�ation by rationality, algebraiity or transendene of ECO-

systems (Enumerating Combinatorial Objets) and of more general random walks. It is

based on an artile by Cyril Banderier, Mireille Bousquet-M�elou, Alain Denise, Philippe

Flajolet, Dani�ele Gardy and Dominique Gouyou-Beauhamps [1℄.

1. Introdution

A generating tree is de�ned by a system (an axiom and a family of rewriting rules)

(1)

�

(s

0

);

�

(k); (e

1

(k))(e

2

(k)) : : : (e

k

(k))

	

k�0

�

:

Here, the axiom (s

0

) spei�es the degree of the root, while the produtions e

i

(k) (with e

i

(k) > 0)

list the degrees of the k desendants of a node labelled k (note the onstraint on the number of

desendants of a node). Suh a system onstitutes an ECO-System.

Example. 123-avoiding permutations. Consider the set S

n

(123) of permutations of length n that

avoid the pattern 123: there exist no integers i < j < k suh that �(i) < �(j) < �(k). For instane,

� = 4213 belongs to S

4

(123) but � = 1324 does not, sine �(1) < �(3) < �(4).

Observe that if � 2 S

n+1

(123), then the permutation � obtained by erasing the entry n + 1

from � belongs to S

n

(123). Conversely, for every � 2 S

n

(123), insert the value n+1 in eah plae

where this is ompatible with the avoiding rule; this gives an element of S

n+1

(123). For example,

the permutation � = 213 gives 4213, 2413 and 2143, by insertion of 4 in �rst, seond and third

plae respetively. The permutation 2134, resulting of the insertion of 4 in the last plae, does

not belong to S

4

(123). This proess an be desribed by a tree whose nodes are the permutations

avoiding 123: the root is 1, and the hildren of any node � are the permutations derived as above

(see Figure 1(a)).

Let us now label the nodes by their number of hildren: we obtain the tree of Figure 1(b). It

an be proved that the k hildren of any node labelled k are labelled respetively k+ 1; 2; 3; : : : ; k.

Thus the tree we have onstruted is the generating tree obtained from the following system:

(2)

�

(2);

�

(k); (2)(3) : : : (k � 1)(k)(k + 1)

	

k�2

�

:

Notations. We assume that all the values appearing in the generating tree are positive.

In the generating tree, let f

n

be the number of nodes at level n and s

n

the sum of the labels of

these nodes. By onvention, the root is at level 0, so that f

0

= 1. In terms of walks, f

n

is the number

of walks of length n. The generating funtion assoiated to the system is F (z) =

P

n�0

f

n

z

n

:

Note that s

n

= f

n+1

, and that the sequene (f

n

)

n

is nondereasing.
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1

21 12

321 231 213 312 132

4321 3241
3421 3214

4231
2431 2413

4213 2143 4312
3412

3142 4132
1432

5 2 3 4 3 2 4 2 3 4 2 3 3 2

4 2 3 3 2

3 2

2

(a) (b)

Figure 1. The generating tree of 123-avoiding permutations: (a) nodes labelled

by the permutations; (b) nodes labelled by the numbers of hildren.

Now let f

n;k

be the number of nodes at level n having label k (or the number of walks of length n

ending at position k). The following generating funtions will be of interest:

F

k

(z) =

X

n�0

f

n;k

z

n

and F (z; u) =

X

n;k�0

f

n;k

z

n

u

k

:

We have F (z) = F (z; 1) =

P

k�1

F

k

(z). Furthermore, the F

k

's satisfy the relation

(3) F

k

(z) = [k = s

0

℄ + z

X

j�1

�

j;k

F

j

(z);

where [k = s

0

℄ is 1 if k = s

0

and 0 elsewhere and �

j;k

denotes the number

�

�

f i � j j e

i

(j) = k g

�

�

of

one-step transitions from j to k. This is equivalent to the reurrene f

n+1;k

=

P

j�1

�

j;k

f

n;j

for the

numbers f

n;k

(with f

0;s

0

= 1), that results from traing all the paths that lead to k in n+ 1 steps.

We refer to [1℄ for random generation using ounting and generating trees.

2. Rational Systems

ECO-systems satisfying strong regularity onditions lead to rational generating funtions. This

overs systems that have a �nite number of allowed degrees, as well as systems where the sum of

the labels at level k depends linearly on k.

Proposition 1. If �nitely many labels appear in the tree, then F (z) = F (z; 1) is rational.

Proof. Only a �nite number of F

k

's are nonzero; they are related by linear equations like Equa-

tion (3) above and therefore rational. F (z) is a �nite sum of these, and is also rational. �

Example. Fibonai numbers are generated by the system

�

(1);

�

(k); (k)

k�1

((k mod 2) + 1)

	�

that an also be written as

�

(1);

�

(1); (2); (2) ; (1)(2)

	�

.

Proposition 2. Let �(k) = e

1

(k) + e

2

(k) + � � � + e

k

(k). If � is an aÆne funtion of k, say

�(k) = �k + �, then the series F (z) is rational. More preisely:

F (z) =

1 + (s

0

� �)z

1� �z � �z

2

:
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Proof. Let n � 0 and let k

1

; k

2

; : : : ; k

f

n

denote the labels of the f

n

nodes at level n. Then

f

n+2

= s

n+1

= (�k

1

+ �) + (�k

2

+ �) + � � �+ (�k

f

n

+ �)

= �s

n

+ �f

n

= �f

n+1

+ �f

n

:

We know that f

0

= 1 and f

1

= s

0

. The result follows. �

Example. The system

�

(2);

�

(k); (2)

k�1

(k+1)

	�

produes the Fibonai numbers of even index.

Proposition 2 an be adapted to apply to systems that \almost" satisfy its riterion (see [1℄).

3. Algebrai Systems

Systems where a �nite modi�ation of the set f1; : : : ; kg is reahable from k lead to algebrai

generating funtions.

The possible moves from k are given by the rule:

(4) (k); f(0); : : : ; (k � 1)g n f(k � i) j i 2 Bg [ ff(k + j) j j 2 Agg;

where A � N and B � N

+

are a �nite multiset (denoted ff: : : gg) and a �nite set speifying

respetively the allowed forward jumps (possibly oloured) and the forbidden bakwards jumps.

Observe that these walk models are not neessarily ECO-systems, �rst beause we allow labels

to be zero|but a simple translation an take us bak to a model with positive labels|, and seond

beause we do not require (k) to have exatly k suessors.

In this setion f

n;k

is the number of walks of length n ending at point k and f

n

(u) =

P

k�0

f

n;k

u

k

is the oeÆient of z

n

in F (z; u).

We ontinue this setion with the example A = f4; 15g and B = f2g, axiom (0) and the orre-

sponding family of rules

�

(k); (0)(1) : : : (k � 3)(k � 1)(k + 4)(k + 15)

	

:

This orresponds in generating funtions to substituting u

k

in

u

0

+ � � �+ u

k�1

� u

k�2

+ u

k+4

+ u

k+15

=

1� u

k

1� u

� u

k�2

+ u

k+4

+ u

k+15

for k � 2. This gives the reurrene f

n+1

(u) =

f

n

(1)�f

n

(u)

1�u

+ (u

4

+ u

15

� u

�2

)f

n

(u), and yields the

funtional equation

(5) F (z; u) = 1 + z

0

�

F (z; 1) � F (z; u)

1� u

+ P (u)F (z; u) � fu

<0

g

X

n�0

z

n

L[f

n

℄(u)

1

A

:

Here P (u) =

P

�2A

u

�

�

P

�2B

u

��

and L[g℄(u) =

g(1)�g(u)

1�u

+ P (u)g(u). Equation (5) may be

rewritten as

F (z; u)

�

1 +

z

1� u

� zP (u)

�

= 1 +

z

1� u

F (z; 1) � z

b�1

X

j=0



j

(u)�

j

u

F (z; 0);

where the 

j

(u) are Laurent polynomials. The kernel K(z; u) of Equation (5) is the oeÆient

of F (z; u) in the left-hand side of this equation. F (z; u)K(z; u) is a linear ombination of b + 1

unknown funtions. Solving K(z; u) = 0 in u gives b + 1 onvergent branhes u

i

(z) whih, in

turn, give the �

j

u

F (z; 0) through a (b+ 1)� (b+ 1) linear system, and from there F (z; 1), whih is

algebrai.
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Proposition 3. The generating funtion F (z; 1) ounting the number of walks, starting from zero

and irrespetive of their endpoint is algebrai and F (z; 1) = �1=z

Q

b

i=0

(1 � u

i

); where b = maxB

and u

i

(z) are the �nite solutions at z = 0 of the equation K(z; u) = 0.

Examples of algebrai systems are the Catalan numbers

�

(k); (0)(1) : : : (k)(k+1)

	

, the Motzkin

numbers

�

(k); (0) : : : (k � 1)(k + 1)

	

, the Shr�oder numbers

�

(k); (0) : : : (k � 1)(k)(k + 1)

	

or

the m-ary trees

�

(m);

�

(k); (m) : : : (k)(k + 1)(k + 2) : : : (k +m� 1)

	�

.

4. Transendental Systems

4.1. Transendene. If the oeÆients of a series grow too fast, its radius of onvergene is zero.

Proposition 4. Let b be a nonnegative integer. For k � 1, let m

k

=

�

�

f i j e

i

(k) � k� b g

�

�

. Assume

that:

1. for all k, there exists a forward jump from k (i.e., e

i

(k) > k for some i),

2. the sequene (m

k

)

k

is non-dereasing and tends to in�nity.

Then the generating funtion of the system has radius of onvergene 0.

Proof. See [1℄. �

However, there are ECO-systems or walks that are transendental with positive radius of on-

vergene suh as

�

(k); (2)(4) : : : (2k)

	

or

�

(k); (dk=2e)

k�1

(k + 1)

	

.

4.2. Holonomy. A sublass of transendental funtions is the lass of holonomi funtions. A

series is said to be holonomi or D-�nite if it satis�es a linear di�erential equation with polynomial

oeÆients in z. Equivalently, its oeÆients f

n

satisfy a linear reurrene relation with polynomial

oeÆients in n. Given a sequene f

n

, the OGF (ordinary generating funtion)

P

f

n

z

n

is holonomi

if and only if the EGF (exponential generating funtion)

P

f

n

z

n

=n! is holonomi.

The following table gives examples of holonomi and non-holonomi transendental systems with

referenes to the Enylopedia of Integer Sequenes (EIS) by Sloane and Plou�e [2, 3℄.

Axiom Rewriting rules Name EIS Id. Generating Funtion

Holonomi OGF EGF

(1) (k); (k + 1)

k

Permutations M1675 1=(1� z)

(2) (k); (k)(k + 1)

k�1

Arrangements M1497 e

z

=(1� z)

(1) (k); (k � 1)

k�1

(k + 1) Involutions M1221 e

z+z

2

=2

(2) (k); (k + 1)

k�1

(k + 2) Partial permutations M1795 e

z=(1�z)

=(1� z)

Nonholonomi OGF EGF

(1) (k); (k)

k�1

(k + 1) Bell numbers M1484 e

e

z

�1

(2) (k); (k � 1)(k)

k�2

(k + 1) Bessel numbers M1462 |
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The spae of totally harmoni polynomials in n variables (for the symmetri group) is \lassially"

de�ned as the set of solutions y(x) to the system of PDE's:

n

X

i=1

�

k

x

i

y(x) = 0; 1 � k � n:

We reall an expliit desription of this solution set before introduting the notion of diagonally

harmoni polynomials. As we will see, this gives rise to many ombinatorial problems.





Part II

Computer Algebra and Symboli Methods
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EÆient Algorithms on Numbers, Polynomials, and Series

Paul Zimmermann

Polka Projet, INRIA Lorraine, F{54600 Villers-l�es-Nany, Frane
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Summary by Fr�ed�eri Chyzak

Abstrat

For a omputer algebra system, it is ruial to optimize the arithmetial operations on basi

objets|numbers, polynomials, series, . . . In fat, two lasses of objets an be distin-

guished: integers and polynomials, whih require exat operations; oating-point numbers

and series, for whih only the most signi�ant part of the exat result is needed. The best

algorithms urrently known for multipliation, division, and square root on integers and

oating-point numbers are mostly reent. We present and analyse them using omplexity

models based on three di�erent multipliation algorithms (naive, Karatsuba, and FFT).

The MPFR library developed by Guillaume Hanrot and Paul Zimmermann is a C library for

multipreision oating-point omputations with exat rounding [6℄. Its main purpose is to ahieve

eÆieny with a well-de�ned semantis. Beside the elementary operations +, �, �, and /, it

provides routines for square root (with remainder in the integer ase, without remainder in the

oating-point ase), logarithm and exponential. The longer-term goal is to integrate routines for

the numerial evaluation of other elementary and speial funtions as well.

Paul Zimmermann's algorithm for square roots [8℄ originates in this work. It is reported on here,

as well as other reent fast algorithms for multipliations, divisions, and square roots. They all base

Operation Naive Karatsuba FFT

Method exat trunated exat trunated exat trunated

Multipliation 1 1/2 1 1 1 1

Mulders 0.808

Division 1 1/2

Newton 7/2 5/2 5 4

Karp{Markstein 17/6 11/6 9/2 7/2

Jebelean, Burnikel{Ziegler 2 3/2

Mulders 1.397

Square root 1/2 1/4

Newton 7/2 5/2 5 4

Karp{Markstein 17/6 11/6 9=2

y

7=2

y

Jebelean, Burnikel{Ziegler 3=2

z

1

z

Mulders 0:966

z

Figure 1. Complexity of division and square root algorithms in terms of exat

multipliations for the three usual multipliation models. Algorithms marked `y',

resp. `z', were analysed, resp. designed and analysed, by Paul Zimmermann in [8℄.
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on Newton's method, whih essentially redues division and square root to a few multipliations.

Conversely, division annot be performed faster than multipliation, for ab = a=(1=b). Thus, one

a model for multipliation is hosen, the best to hope is to lessen the onstant in the omputational

omplexity of inversion and square rooting. Several approahes to redue this onstant are desribed

and ombined in the following setions. To simplify the exposition, arries and their propagation

are not taken into aount, although they ould be aomodated with no oneptual diÆulty and

no essential hange of the omplexities.

1. The Three Classial Multipliation Models

The naive multipliation algorithm omputes a produt by onvolution between oeÆients. Its

arithmetial omplexity is N(n) = O

�

n

2

�

. Karatsuba's reursive algorithm bases on the formula

(1) uv = (u

1

b+ u

0

)(v

1

b+ v

0

) = u

1

v

1

b

2

+

�

(u

1

+ v

1

)(u

0

+ v

0

)� u

1

v

1

� u

0

v

0

�

b+ u

0

v

0

;

where only three multipliations are required instead of four by the naive method, yielding the

better omplexity K(n) = O

�

n

lg 3

�

= O

�

n

1:585:::

�

. A re�nement of this idea, splitting eah term

of the produt into more and more parts as n goes to in�nity, is the Toom{Cook approah [5℄.

The improved omplexity is O

�

n

1+

p

2=

p

lg n

lnn

�

. However this algorithm is only a theoretial

one. Finally, the fastest known multipliation algorithm relies on FFT (fast Fourier transform)

to ahieve the omplexity F (n) = O(n lnn ln lnn). FFT is a fast reursive method to ompute

the DFT (disrete Fourier transform) of a polynomial (i.e., its evaluation at eah of the nth roots

of unity, also alled its Fourier oeÆients). DFT exhanges produt of polynomials|onvolution

of the oeÆients|and point-wise produt of the Fourier oeÆients. A produt of polynomials

is thus essentially omputed by two diret DFT, mulpliation of the Fourier oeÆients, and one

reverse DFT. Note the following asymptoti relations between arithmetial omplexities:

(2) N(2n) � 4N(n); K(2n) � 3K(n); and F (2n) � 2F (n):

2. Newton's Sheme for Inverses and Square Roots

Newton's shemes respetively given by �(x) = x(2 � ax) and �(x) = x(3 � ax

2

)=2 onverge

to 1=a and 1=

p

a. This entails that inverses and square roots an be omputed by additions and

multipliations only, using b=a = b� (1=a) and

p

a = a� (1=

p

a ). Both methods have a quadrati

onvergene rate sine

�

�

1 + �

a

�

=

1� �

2

a

and �

�

1 + �

p

a

�

=

1� 3�

2

=2� �

3

=2

p

a

:

This means that the number of orret digits doubles at eah step of the iteration.

For a of size n and x of size n=2, a naive alulation of �(x) would take 5M(n=2) arithmetial

operations, returning an output of size 2n. The method is optimized by writing �(x) = x+x(1�ax)

and noting that if the n=2 digits of x are orret, 1 � ax starts with n=2 zeroes and ends with

a orretion of size n, whose �rst n=2 digits only are useful. Thus, only the middle n=2 digits

of ax are omputed in 2M(n=2) arithmetial operations, then multiplied with x, then added to x

by merely appending them. The overall ost I(n) for inverting a of size n is therefore given by

the reurrene I(n) = 3M(n=2) + I(n=2). Unfolding it using (2) yields the asymptotis 2N(n)

(no improvement), 3K(n)=2, and 3F (n), depending on the multipliation model. Adding 1 for the

�nal multipliations, this gives the onstants for the trunated ase. In the ase of inversion with

remainder, the latter is omputed after the division as a orreting term, so that another 1 has to

be added to the onstant.
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The same trik works to ompute square roots, after writing �(x) = x + x(1 � ax

2

)=2: x

2

is

omputed in M(n=2) arithmetial operations, then 1 � ax

2

in M(n) arithmetial operations; the

�rst n=2 digits are zero, and only the next n=2 ones are multiplied with x in M(n=2) arithmetial

operations. The overall ost S(n) to ompute 1=

p

a for a of size n is therefore given by the

reurrene S(n) =M(n)+2M(n=2)+S(n=2), whih one unfold yields the asymptotis 2N(n) (no

improvement), 5K(n)=2, and 4F (n), whene the onstants for the trunated and exat ases.

3. Karp and Markstein's Modi�ation of Newton's Method

Karp and Markstein's improvement is to inorporate the �nal multipliations b � (1=a) and

a�(1=

p

a ), respetively, into the last step of Newton's method in the orresponding alulation [4℄.

In the ase of the inverse, this orresponds to replaing the last step of the iteration with the

omputation of y = bx, then of y + x(b � ay). Only the �rst n=2 digits of y are kept, and the

onvergene remains quadrati. As to the omplexity, onlyM(n=2) has been added to the iteration

as a replaement for the arithmetial omplexity M(n) of a multipliation outside of it. The gain

is thus 2K(n)=3 or F (n)=2, depending on the multipliation model.

In the ase of the square root, the last step of the iteration is replaed with the omputation

of y = ax, then of y + x(a � y

2

)=2. Only the last n=2 digits of y are kept, the method remains

quadrati, and the gains are the same as with inversion.

4. Burnikel and Ziegler's Division with Remainder

All the algorithms mentioned above base on Newton's method to redue manipulations of objets

of size 2n to manipulations of objets of size n. For a hange, Burnikel and Ziegler's improvement

of division [1, 3℄ onsists of two mutually reursive algorithms for dividing an objet of size 3n by

an objet of size 2n and for dividing an objet of size 4n by an objet of size 2n. The division

algorithm obtained in this way was then reused by Zimmermann for the omputation of square

roots [8℄.

Algorithm D

2=1

to divide u

3

b

3

+ u

2

b

2

+ u

1

b + u

0

by v

1

b + v

0

(where eah u

i

or v

i

is a blok of

size n and where b is a suitable basis) �rst omputes (q

1

; r

1

b + r

0

) = D

3=2

(u

3

b

2

+ u

2

b + u

1

; v

1

b +

v

0

), then (q

0

; s

1

b + s

0

) = D

3=2

(r

1

b

2

+ r

0

b + u

0

; v

1

b + v

0

), to return (q

1

b + q

0

; s

1

b + s

0

). The

arithmetial omplexity D

2=1

(n) to divide an objet of size n by an objet of size n=2 is thus twie

the arithmetial omplexity D

3=2

(n=2) to divide an objet of size 3n=2 by an objet of size n. For its

part, Algorithm D

3=2

to divide u

2

b

2

+u

1

b+u

0

by v

1

b+v

0

�rst omputes (q; ) = D

2=1

(u

2

b+u

1

; v

1

),

then r = r

1

b + r

0

= b + u

0

� qv

0

; next, it dereases q by 1 while adding v

1

b + v

0

to r until

r is nonnegative, before returning (q; r). This `while' loop is proved to ost little, so that the

omplexity D

3=2

(n) is just D

2=1

(n) +M(n).

Consequently, the omplexity D

2=1

(n) is ruled by the reurrene D

2=1

(n) = 2D

2=1

(n=2) +

2M(n=2). This makes no improvement in the ase of FFT (omplexity 2F (n) lnn), but provides

a Karatsuba-based exat division of arithmetial omplexity 2K(n), whih is redued to 3K(n)=2

for trunated division. Indeed, the trunated variant of Algorithm D

2=1

alls the exat variant

of Algorithm D

3=2

one, and its trunated variant one. Then, the exat D

3=2

only uses the

exat D

2=1

, while the trunated D

3=2

alls the trunated D

2=1

. This variant saves as muh as

M(n=2) +M(n=4) + � � � , that is to say K(n)=2 in the Karatsuba model.

Zimmermann's algorithm R to ompute the square root of u

3

b

3

+ u

2

b

2

+ u

1

b + u

0

�rst om-

putes (s

0

; r

0

) = R(u

3

b + u

2

), then (q; u) = D

2=1

(r

0

b + u

1

; 2s

0

); it next lets s and r be s

0

b + q

and (ub + u

0

) � q

2

, respetively; if r is nonnegative, it returns (s; r), else (s; r + 2s � 1). The

arithmetial omplexity R(n) to ompute the square root of an objet of size n is then given by the
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reurrene R(n) = R(n=2) + D

2=1

(n=2) +M(n=2). With multipliations by the Karatsuba algo-

rithm, this redues to 3K(n)=2 for the exat ase. In the trunated ase, the algorithm is modi�ed

by alling the trunated variant of D

2=1

and by not substrating q

2

to de�ne r. The reurrene

beomes R(n) = R(n=2) +D(n=2), whih in the Karatsuba model delivers a omplexity K(n) for

square roots without remainder.

5. Mulders' \Short Produts"

Mulder's idea is a modi�ation of Karatsuba's algorithm dediated to the trunated ase [7℄.

Eah of the terms u

1

v

1

, (u

1

+v

1

)(u

0

+v

0

)�u

1

v

1

�u

0

v

0

, and u

0

v

0

in Equation (1) has size 2n if the

input u and v are of size 2n. In view of a trunated produt|or \short produt"|, the same relation

suggests to ompute u

1

v

1

exatly, only the most signi�ant half of (u

1

+ v

1

)(u

0

+ v

0

)�u

1

v

1

�u

0

v

0

,

and to save the alulation of u

0

v

0

. In fat, the simpler form u

1

v

0

+ u

0

v

1

is used: the produt uv

is thus redued to an exat multipliation, u

0

v

0

, and two trunated multipliations, u

1

v

0

and u

0

v

1

.

Unfortunately, unfolding the reurrene M(n) = K(n=2) + 2M(n=2) yields no optimization at all.

The idea is then to vary the sizes of the bloks in u and v: for bloks u

1

and v

1

of size �n, the

reurrene beomes M(n) = K(�n) + 2M

�

(1 � �)n

�

, induing M(n) = K(n) for  = �

�

=

�

1 �

2(1� �)

�

�

, where � = lg 3 = 1:585 : : : The optimum is obtained for � ' 0:694 and  ' 0:808.

The same idea applies to division, with an optimum for � ' 0:542 and  ' 1:397. Moreover,

Zimmermann's algorithm redues the omputation of a trunated square root of an objet of size n

to an exat square root and a trunated division on objets of size n=2; this yields the arithmetial

omplexity ' (3=2 + 1:397)K(n=2) ' 0:966K(n) for trunated square root.

6. Other Improvements

Other improvements for the Karatsuba model were announed in the talk: Hanrot and Zimmer-

mann have obtained a better onstant for inversion and division (' 1:212), whih was then used

by Queria to lessen the onstant for division without remainder to roughly 1. These works have

been further developed sine then, with appliations to square roots as well [2℄.
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Relax But Don't Be Too Lazy

Joris van der Hoeven

Laboratoire de Math�ematique, Universit�e Paris-Sud

January 24, 2000

Summary by Paul Zimmermann

Joris van der Hoeven's talk presents novel algorithms operating on formal power series. These new

algorithms are based on fast multipliation methods (Karatsuba, Toom{Cook, FFT), and improve

the best asymptoti omplexities known, for example those obtained by Brent and Kung [1℄, while

staying very eÆient for the medium range (Karatsuba).

Most algorithms work with a linear spae in the input size n, some of them require a spae

in n logn. The basi idea of these new algorithms is what Joris van der Hoeven alls \the relaxed

approah," intermediate between the zealous approah and the lazy approah. This relaxed ap-

proah was invented in 1997, with the presentation of two relaxed algorithms for the multipliation

of formal power series at the ISSAC'97 onferene [8℄. The report [9℄ details these algorithms and

their implantation, presents some other multipliation algorithms, shows how the relaxed approah

extends naturally to other operations on formal power series, and �nally o�ers several experimental

omparisons between lassial and relaxed algorithms.

1. The Zealous Approah

Let us onsider the produt of two formal power series, f = f

0

+� � �+f

n

z

n

and g = g

0

+� � �+g

n

z

n

.

The zealous approah onsists in using at the same time every data f

0

, . . . , f

n

, g

0

, . . . , g

n

to

alulate the produt h = f � g = h

0

+ � � � + h

n

z

n

+ O(z

n+1

). So it orresponds to the lassial

or \o�-line" approah. Several algorithms of di�erent omplexities implement this approah: the

na��ve multipliation in O(n

2

), Karatsuba's algorithm in O(n

log

2

3

) [6℄, and the multipliation by

FFT in O(n log n log log n). The following table summarizes the omplexity in time and spae of

the best known zealous algorithms for di�erent operations on formal power series (to failitate the

reading, we omitted the O(�) terms):

Algorithm Time Spae

Multipliation M(n) = n log n log logn n

Division M(n) n

Di�erential equations M(n) n

Holonomi funtions n n

Algebrai omposition M(n) log n n

General omposition M(n)

p

n logn n logn

Composition in �nite harateristi M(n) log n n
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Newton's method. Newton's method redues several operations to elementary omputations. For

example, the logarithm of a formal power series is written:

log f = log f

0

+

Z

f

0

f

and redues to a division (f

0

=f) and an integration of linear omplexity, whene a ost in O

�

M(n)

�

.

Exponentiation redues to logarithm by Newton's method. If g is suh that log g � f = O(z

n=2

),

i.e., g is an approximation to order n=2 of exp f , then ~g = g�g(log g�f) will be an approximation

to order n, whene an algorithm again in O

�

M(n)

�

. Funtional inversion|given a series f , �nd g

suh that f Æ g = z|redues to omposition by:

~g = g �

f Æ g � z

f

0

Æ g

;

and so the omplexity of inversion is that of omposition.

Polynomial omposition. The problem is as follows: given a polynomial f of degree p, a polyno-

mial g with zero onstant oeÆient and of �xed degree q, and an integer n � p, ompute h = f Æ g

to order n. The divide-and-onquer algorithm onsists in writing:

f Æ g = (f

lo

+ z

p=2

f

hi

) Æ g = f

lo

Æ g + g

p=2

(f

hi

Æ g);

and so on with p=4, p=8, . . . , the powers of g being preomputed. It gives a omplexity of

O

�

(pq=n)M(n) log n

�

.

General omposition. Given two formal power series f = f

0

+ � � �+ f

n

z

n

and g = g

1

z+ � � �+ g

n

z

n

,

we want to ompute h = f Æg = h

0

+ � � �+h

n

z

n

+O(z

n+1

). Brent and Kung's algorithm [1℄ splits gf

into two parts g = g

lo

+ g

hi

:

g

lo

= g

1

z + � � � + g

q

z

q

g

hi

= g

q+1

z

q+1

+ � � � + g

n

z

n

;

then writes the Taylor expansion of f Æ (g

lo

+ s) at s = 0:

f Æ g = f Æ g

lo

+ (f

0

Æ g

lo

)g

hi

+

1

2

(f

00

Æ g

lo

)(g

hi

)

2

+ � � � :

The omputation of f

(n)

Æ g

lo

an be done by diret iteration:

f

(i)

Æ g

lo

=

�

f

(i�1)

Æ g

lo

�

0

g

0

lo

or inverse iteration:

1

(i� 1)!

f

(i�1)

Æ g

lo

= f

i�1

+ i

Z

�

1

i!

f

(i)

Æ g

lo

�

g

0

lo

:

2. The Lazy Approah

Here, we regard the formal power series not as a list of oeÆients given one and for all,

but as a ow of oeÆients. That orresponds to \in-line" omputations. The lazy approah

onsists in alulating the oeÆients one by one; at eah stage, we only perform stritly neessary

omputations.
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Let us onsider for example the equation for the generating funtion f(z) of binary trees ounted

aording to their internal nodes:

f = 1 + zf

2

:

Here the zealous or \o�-line" approah does not apply beause the oeÆient f

n

of order n � 1

of f depends on f

0

, f

1

, . . . , f

n�1

:

f

n

= f

0

f

n�1

+ f

1

f

n�2

+ � � �+ f

n�2

f

1

+ f

n�1

f

0

:

Thus, for the multipliation at order 3 of f = f

0

+f

1

x+f

2

x

2

+O(x

3

) by g = g

0

+g

1

x+g

2

x

2

+O(x

3

)

giving h = f � g = h

0

+ h

1

x + h

2

x

2

+ O(x

3

), the lazy approah onsists in alulating the value

h

0

= f

0

g

0

at stage 0, then h

1

= f

0

g

1

+ f

1

g

0

at stage 1 and h

2

= f

0

g

2

+ f

1

g

1

+ f

2

g

0

at stage 2,

for a total of 6 multipliations. It is also possible to represent this omputation graphially by

the following table, where the value k at the intersetion of line g

i

and olumn f

j

means that the

value f

j

g

i

is obtained at stage k:

g

2

2

g

1

1 2

g

0

0 1 2

� f

0

f

1

f

2

The major disadvantage of this approah is that the omputation of all oeÆients up to order n

osts O(n

2

): we annot use fast multipliation algorithms to redue the omplexity.

1

Another example is the omputation of the exponential g = exp f of a formal power series. By

di�erentiation, we obtain g

0

= g � f

0

, whih redues the exponentiation to a multipliation (the

di�erentiation and the integration having linear omplexity):

g =

Z

f

0

g:

However, here again, the series g appears in both members of the equation; with the lazy approah,

we an alulate the produt f

0

g one term at a time only, here again giving a quadrati omplexity.

The artile [10℄ by Stephen Watt desribes an implementation in Srathpad II (former name of

Axiom) of that approah, based on a lazy implementation of formal power series.

In onlusion, the lazy approah has the advantage on the zealous approah to apply to the

ase of impliit equations; in return it does not allow the use of fast multipliation algorithms,

and therefore gives higher asymptoti omplexities. It is preisely this drawbak whih the relaxed

approah solves.

3. The Relaxed Approah

The relaxed approah tries to use fast algorithms from the zealous approah in ases where this

approah is not appliable, i.e., when \o�-line" omputations are not possible, like for example for

the omputation of the oeÆients of the generating funtion of binaries trees f = 1 + zf

2

, or of

the exponential of a series g =

R

f

0

g.

The basi idea is the following: instead of performing the minimal omputations at eah stage as

in the lazy approah, one performs a few more alulations at ertain stages, whih will allow the

use of fast algorithms, and in the end a global gain. As all operations onsidered ultimately redue

to multipliations, it is enough to detail the relaxed approah for the multipliation of formal power

series.

1

By the way, this method is preisely that used in the ombstrut library for the enumeration of ombinational

strutures.
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Let us reall the above-mentioned example of the produt of f = f

0

+ f

1

x + f

2

x

2

+ O(x

3

) by

g = g

0

+g

1

x+g

2

x

2

+O(x

3

). The relaxed algorithm operates in the following way: at stage 1, instead

of alulating h

1

by f

0

g

1

+f

1

g

0

, we obtain it by Karatsuba's formula (f

0

+f

1

)(g

0

+g

1

)�f

0

g

0

�f

1

g

1

,

thus with two multipliations as well beause f

0

g

0

= h

0

has already been alulated. However, this

already made it possible to ompute part of h

2

, namely f

1

g

1

. Then stage 2 has to ompute f

0

g

2

and f

2

g

0

only, thus a gain of one multipliation ompared to the lazy approah. The orresponding

table is the following:

g

2

2

g

1

1 1

g

0

0 1 2

� f

0

f

1

f

2

where the square formed by the `0' and three `1' is obtained in three multipliations instead of

four, thanks to Karatsuba's algorithm. Considering di�erently, we ut out the triangle of side 3

in two squares 1 � 1 and a square 2 � 2, for whih we used a fast algorithm. More generally, any

relaxed algorithm for the multipliation of formal power series of order n onsists of a tiling of the

triangle of side n by a set of squares. With eah tiling orresponds a new algorithm. Eah square

is numbered by an integer from 0 to n, indiating the stage at whih it is alulated; at stage n,

only the oeÆients of order less than or equal to n an be used.

The example above illustrates two signi�ant points of relaxed algorithms:

1. at the end of stage 1, it is neessary to save the value of f

1

g

1

whih was omputed in advane,

for latter use at stage 2. The relaxed algorithms may thus require more memory than zealous

algorithms. In most ases however, the memory used remains linear, but it an be in n logn;

2. if we want to ontinue the alulation of h = fg to a higher order, say order 4, the

adopted strategy is not neessarily the best. Indeed, at stage 2 we ould have alulated

(f

0

+ f

2

)(g

0

+ g

2

)� f

0

g

0

� f

2

g

2

in two multipliations, whih would give f

0

g

2

+ f

2

g

0

in two

multipliations as well, but would also give the term f

2

g

2

of h

4

.

Thus we an distinguish two ases: (i) the ase where the maximum order n of alulations is

known in advane and thus it is a question of optimizing the total number of operations up to this

order n; (ii) the ase where the maximum order is not known a priori, and one wants to optimize

the \average" number of operations of the relaxed algorithm.

Joris van der Hoeven also shows that Karatsuba's algorithm for the multipliation of polynomials

|we do not speak any more of formal power series here|is essentially relaxed, i.e., the formula

giving the term h

k

of the produt only depends on f

0

, . . . , f

k

and g

0

, . . . , g

k

. Consequently,

Karatsuba's algorithm an diretly be used for the relaxed multipliation. The table orresponding

to the produt of two polynomials of degree 3 is the following:

2

g

3

3 3 3 3

g

2

2 3 2 3

g

1

1 1 3 3

g

0

0 1 2 3

� f

0

f

1

f

2

f

3

2

Exerise: Find the operations arried out with eah stage from 0 to 6 and hek that one indeed performs

9 multipliations. Help: 9 = 1 + 2 + 2 + 3 + 1 + 0 + 0.
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The major disadvantage of the relaxed alternative of Karatsuba's algorithm is however the memory

usage: on the one hand the memory required is in O(n log n), on the other hand the memory

management is extremely omplex, sine for eah stage it is neessary to know whih values must

be alulated, whih should be reused|and among those, whih an be destroyed|, �nally whih

have to be saved for latter use.

Another algorithm proposed by Joris van der Hoeven onsists in tiling the square n � n by a

sequene of `L' shapes of inreasing width. That leads to a relaxed multipliation in O

�

M(n) log n

�

.

Several other alternatives are proposed in [9℄, both for omplete produts (polynomials) and trun-

ated produts (formal power series). The other operations (division, omposition) are also \es-

sentially relaxed." Finally we obtain the following omplexities for the relaxed alternatives of the

operations on formal power series:

Algorithm Times Spae

Karatsuba's multipliation n

log

2

3

n logn

Multipliation via FFT D(n) =M(n) log n n

Division D(n) n

Di�erential equations D(n) n

Holonomi funtions n n

Algebrai omposition D(n) log n n

General omposition D(n)

p

n logn n

3=2

log n

Composition in �nished harateristi D(n) log n n logn

The time omplexities are the same ones as for the zealous approah, while replaing M(n)

with D(n). The memory omplexity is idential, exept when we use Karatsuba's multiplia-

tion algorithm (there is however a slower variant by a onstant fator, but in spae O(n)), or for

the omposition (general or in �nite harateristi).

Joris van der Hoeven gives in his report [9℄ many experimental results for these new algorithms.

Timings below orrespond to an AMD proessor at 200 MHz with 64 MB of main memory. Van

der Hoeven's program alulates 500 terms of the Taylor expansion of exp(z exp z) in 342 seonds

against 1086 seonds for the zealous approah; it alulates the number of alohols C

n

H

2n+1

OH

for n = 5000 in approximately 2300 seonds, whereas the na��ve method does not allow this alu-

lation in reasonable time and spae; it alulates the expansion in 1=x of the di�erential-di�erene

equation

f(x) =

1

x

�

1 + f(x+ 1) + f

0

(x)

2

�

to order 2000 in 1572 seonds.

4. Conlusion

Joris van der Hoeven presented us a whole panoply of algorithms whih redue the alulation

of the �rst n oeÆients of the majority of the formal power series de�ned by algebrai equations,

di�erential equations or di�erene equations, to a quasi-linear omplexity, whereas the best algo-

rithms known before were almost quadrati (in the impliit ase, i.e, where the zealous approah

does not apply).

It would be nie if these algorithms were implemented in enumerative ombinatoris softwares like

ombstrut

3

or CS [3℄. More generally, all omputer algebra systems worthy of the name should

implement these new algorithms, both for formal power series, polynomials, and integers. Indeed,

3

http://algo.inria.fr/libraries/software.html
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one of the by-produts of Joris van der Hoeven's report is a division algorithm with remainder in

K(n) operations, whereas the best known algorithm was in 2K(n) [7, 2, 5℄.

Related work. For trunated division and square root, new algorithms based on Karatsuba's mul-

tipliation are detailed in the report [4℄.

Aknowledgement. People who don't read Frenh may thank Gina Pierrel�ee-Grisvard who helped

to translate this summary.
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Threshold Phenomena in Random Latties and Redution Algorithms
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Summary by Philippe Flajolet

By a lattie is meant here the set of all linear ombinations of a �nite olletion of vetors in R

n

taken with integer oeÆients,

L = Ze

1

� � � � � Ze

p

:

One may think of a lattie as a regular arrangement of points in spae, somewhat like atoms

omposing a rystal in R

3

. Given the generating family (e

j

), there is great interest in �nding a

\good" basis of the lattie. By this is meant a basis that is \almost" orthogonal and is formed with

vetors of \small" length. The proess of onstruting a \good" basis from a skewed one is referred

to as lattie [basis℄ redution.

Lattie redution is of strutural interest in various branhes of number theory. For instane,

redution in dimension 2 is ompletely solved by a method due to Gau�. This entails a omplete

lassi�ation of binary quadrati forms with integer oeÆients, a fat that has numerous impli-

ations in the analysis of quadrati irrationals and in the representation of integers by quadrati

forms (f. for example Pell's equation, x

2

� dy

2

= 1.)

The algorithmi and omputational questions that stem from lattie redution are of even greater

appliability. In all generality, the exat optimization problem (i.e., �nding the \best" basis, for

instane, the one formed by vetors of stritly minimal lengths) isNP -omplete, hene omputation-

ally intratable even in relatively low dimensions. However, as is usual in this range of optimization

problems, approximate solutions may be found at a reasonable ost. In fat, a major advane in

this area is due to Lenstra, Lenstra, and Lov�asz [4℄ who were the �rst to give a polynomial approx-

imation algorithm (niknamed the `LLL' algorithm); this algorithm applies in all dimensions and

is of polynomial time omplexity. A spetaular onsequene was to provide (for the �rst time) an

algorithm that fatorizes univariate polynomials over the rationals in polynomial time.

1

The LLL

algorithm takes its inspiration from the lassial Gram{Shmidt orthogonalization proess, with

the important modi�ation that orthogonalization oeÆients must be approximated by integers,

while the algorithm strives to keep vetors of a \reasonable" length. This results both in a default

of orthogonality and a default of minimality as regards the basis that is onstruted.

Sine 1982, the LLL algorithm has found innumerable onsequenes in various branhes of om-

putational number theory, omputer algebra, ryptography, and ombinatorial optimization.

2

The

1

The authors of [4℄ proeed as follows. Let f be the initial polynomial (with integer oeÆients) and h be an

irreduible fator of f mod p

n

. The set of polynomials of degree one whih redue modulo p

n

to a multiple of h

is a lattie, and this lattie ontains a vetor of (relatively) short length if and only if it ontains a multiple of the

irreduible fator of f orresponding to h.

2

An example of appliation at the rossroads of ombinatorial optimization and ryptography is the Knapsak

Problem.
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superb book of von zur Gathen and Gerhard [5℄ devotes Chapters 16 and 17 to the question and

o�ers a very readable aount.

The talk presents two new notions of redution that are struturally weaker than LLL redution.

These are alled Gram redution and Shmidt redution. Regarding the algorithms assoiated to

these redutions, not muh gain is pereptible in the worst ase when ompared to LLL redution.

However, interesting di�erenes start appearing in the average ase. In ontrast, the relaxation of

onstraints a�orded by Gram or Shmidt redution brings measurable bene�ts in many ases to

be enountered in pratie. We refer to Akhavi's Ph.D. thesis and espeially to his paper [1℄ for a

preise desription of the algorithms involved. In what follows, we fous on modelling issues.

A simple and natural model of what a random lattie is an be desribed as follows: take a

system of p vetors (e

1

; : : : ; e

p

) hoosen uniformly and independently inside the unit ball of R

n

(with n � p). Let `

j

denote the length of the jth element of the orthogonalized version aording

to the lassial Gram{Shmidt proedure (in the real domain). Daud�e and Vall�ee have shown

that eah `

j

has a distribution that is asymptotially of the Beta type, with probability density

proportional to u

n�j

(1 � u

2

)

(j�1)=2

; see [3℄. A onsequene of the estimates of [3℄ is the following

upper bound for the expeted number E(K) of iterations of the LLL algorithm over inputs bounded

from above by M ,

E(K) �

n

2

log t

�

logn

2

+ 3

�

+ n+ 3n

2

log

t

M

M

1=3

:

(There t 2 (1; 2) is a ontrol parameter whih inuenes the performane of the redution algo-

rithm.) This result implies an upper bound on the number of iterations of the order of n

2

logn.

Akhavi improves the estimates of [3℄. The notieable fat here is the presene of thresholds.

Consider a large dimension n together with the lengths of the ath and bth (standard Gram{Shmidt)

orthogonalized vetors in R

n

. Then one has (Theorem 8 of [1℄):

1. If a = �n+ i and b = �n+ j with �xed 0 < � < � < 1, then the ratio `

b

=`

a

exhibits a sharp

threshold: the random variable `

b

=`

a

is with high probability onentrated around its mean,

namely �

0

:=

p

1� �=

p

1� �.

2. If a = n� i and b = n� j, then the ratio `

b

=`

a

is governed by a modi�ed Beta distribution

(that admits a ontinuous density).

These results quantify preisely the \evolution" of the lengths of vetors during the orthogonal-

ization proess. They desribe in fat two regimes, one with sharp thresholds is relative to the

\initial" steps of the proess while the other with ontinuous transitions desribes what happens

at the end.

Tehnially, the geometry of the problem leads to multidimensional integrals that one needs to

estimate asymptotially. The method of hoie here is the Laplae method for integrals as desribed

for instane in [2℄. The general method needs to be amended for the ase at hand and Akhavi o�ers

in [1℄ a valuable disussion of the asymptotis of 2-dimensional Laplae integrals when taken over

polygonal domains. Naturally, the disussion bases itself on whether the maximum of the integrand

lies inside, on the boundary, or outside of the integration domain. The net result is the preise

quanti�ation summarized above.

Finally, the estimates are put to use in order to analyse three redution methods, in the sense

of Siegel, Gram, and Shmidt. It turns out that, by relaxing the LLL onditions, the new redued

bases are obtained faster (see Theorem 9 of [1℄ for preise statements). An experimental study is

onduted that supports the theoretial results. First, under the uniform model, there is little loss

in the quality of the bases produed. Next the redution of latties assoiated with the \Subset
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Sum" problem are onsidered: these are of ryptographi relevane (in onnetion with the Shnorr{

Euhner system) and Akhavi reports omputational gains by a fator in the range 2{5, while the new

redued bases obtained prove to be of a quality omparable to what lassial redution algorithms

provide.
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Eigenring and Reduibility of Di�erene Equations
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Summary by Fr�ed�eri Chyzak and Pierre Niod�eme

Abstrat

The Galois theory for di�erential equations is now lassial. We onsider here a Galois

theory for di�erene equations whose development is more reent. In analogy with the

di�erential ase, a onept of Liouvillian solutions of a di�erene equation is introdued,

in relation to equations with solvable Galois group. In the �rst part of this talk, Bomboy

presents the Galois theory for linear �nite di�erene operators. Next he adapts the onept of

eigenring introdued in the di�erential ase by Singer [11℄ to suggest an algorithm searhing

for Liouvillian solutions of linear di�erene equations. This diret algorithm solves a sublass

of the di�erene equations without using Petkov�sek's algorithm [8℄.

Introdution

We review in Setion 1 the basi notions of Galois theory for di�erene equations, following the

presentation of [7℄. As in the di�erential ase, the Galois group is a linear algebrai group. In

Setion 2 we present the main properties of reduible and ompletely reduible systems, from the

point of view of the struture of their assoiated matries. In the di�erential ase, a Liouvillian

extension of a di�erential �eld is done by algebrai extensions and by the operations of exponenti-

ation and integration of a funtion of the �eld. In Setion 3 we de�ne Liouvillian solutions in the

di�erene ase; these solutions are essentially interlaings of hypergeometri sequenes. We desribe

the notion of eigenring in Setion 4 and summarize relevant properties. We �nish by presenting

Bomboy's algorithm for searhing Liouvillian solutions in Setion 5, and by onluding omments.

1. Di�erene Galois Theory

A di�erene ring (k; �) is a ring k with an automorphism �. (Note that all rings onsidered here

are rings with identity.) For example, let k be the ring C [z℄ of polynomials or the �eld C (z) of

frations, and � the automorphism that substitutes z + 1 for z. When �(x) = x for x 2 k, x is

alled a onstant of (k; �). The set C(k) of onstants is a subring of k.

From now on we assume that k is a �eld. A (salar) di�erene equation has the form

(1) L(y) = �

m

(y) + a

m�1

�

m�1

(y) + � � � + a

0

y = 0;

where the a

i

's are in k and L = �

m

+a

m�1

�

m�1

+� � �+a

0

is the di�erene operator assoiated to the

equation. The set of di�erene operators or skew polynomials in � with multipliation �a = �(a)�

is a non-ommutative ring P

k

(�). Equation (1) an be transformed into the system �(Y ) = A

L

Y ,
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where � is applied omponentwise to the vetor Y and

A

L

=

0

B

B

B

�

0 1 0 : : : 0

0 0 1 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�a

0

�a

1

: : : : : : (�a

m

� 1)

1

C

C

C

A

:

One sees that y is a solution of L(y) = 0 if and only if

�

y; �(y); : : : ; �

m�1

(y)

�

T

is a solution of

�(Y ) = A

L

Y .

More generally, we will onsider systems of di�erene equations of the form

(2) �(Y ) = AY

for an element A of GL

n

(k), the spae of invertible matries of dimension n over k. IfR is a di�erene

ring extension of k, a fundamental matrix for Equation (2) is an element U =

�

u

i;j

�

2 GL

n

(R)

suh that �(U) = AU where � maps omponentwise to matries. A di�erene ring extension R

of k is alled a Piard{Vessiot extension of k for Equation (2) if R is a simple di�erene ring (the

only �-invariants ideals are (0) and R) and R = k

�

u

1;1

; : : : ; u

n;n

; (detU)

�1

�

with U a fundamental

matrix. The following theorem desribes the struture of suh extensions.

Theorem 1 ([12℄). If the set of onstants C(k) is algebraially losed, Piard{Vessiot extensions

R of k exist and are unique up to isomorphism.

The Galois group Gal(R=k) of R over k is the set of linear maps that are the identity on k

and ommute with �. As in the di�erential ase, it an be proved to have a struture of a linear

algebrai group over C(k). The set V of solutions of Equation (2) in R

n

is an n-dimensional vetor

spae over C(k) that is invariant by Gal(R=k). This yields a representation of Gal(R=k) in C(k)

n

.

Let �(Y ) = AY and �(Y ) = BY be two systems with A and B in GL

n

(k) and let V

A

and V

B

be the orresponding solution spaes in Piard{Vessiot extensions R

A

and R

B

. Both systems are

equivalent if there is a matrix T 2 GL

n

(k) suh that B = �(T )AT

�1

. Then, if U is a fundamental

matrix of �(Y ) = AY , it follows that TU is a fundamental matrix for �(Y ) = BY ; in this ase, one

an identify the rings R

A

and R

B

, and V

A

and V

B

are isomorphi as Gal(R=k)-modules (de�ned as

modules over the group algebra of Gal(R=k) with oeÆients in C(k)). For a large lass of di�erene

�elds, any system �(Y ) = AY is equivalent to the ompanion system of a salar equation [7℄.

We onlude this setion with an illustration on the ring S of germs of sequenes over C .

De�nition 1. Consider two elements (a

n

)

n2N

and (b

n

)

n2N

of C

N

(where C � C is a ring). We

de�ne the following equivalene relation: (x

n

) � (y

n

) if and only if (x

n

) and (y

n

) only di�er by

a �nite number of terms. We now onsider the quotient ring S =

�

C

N

= �

�

where addition and

multipliation are de�ned omponentwise; an element of this ring is alled a germ.

Note that this gives us a natural embedding � of the rational funtion ring C (z) into S, where

for F 2 C (z), �(F ) is given as the germ of any (s

n

)

n2N

suh that s

n

= F (n) for suÆiently large n.

De�nition 2. The shift � of S maps �

�

(x

0

; : : : ; x

n

; : : : )

�

to �

�

(x

1

; : : : ; x

n+1

; : : : )

�

.

From now on, the ring C is an algebraially losed sub�eld of C and k = �

�

C(z)

�

.

Property 1 ([12℄). Let C � C be an algebraially losed �eld. There exists a Piard{Vessiot

extension of the equation �(Y ) = AY over C(z) � S that also lies in S.

Example. Consider k = �

�

C (z)

�

and the equation �(x) = �x. The Piard{Vessiot extension R of k

is the ring generated by k and the sequene s = (1;�1; 1;�1; : : : ). Note that if t = s+(1; 1; : : : ) =

(2; 0; 2; : : : ) then t��(t) = 0. The Piard{Vessiot extension therefore has zero divisors and annot

be a �eld.
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2. Reduibility

The following theorem gives a riterion of reduibility for operators.

Theorem 2 ([3℄). Consider an operator L 2 P

k

(�) with Piard{Vessiot extension R. The following

statements are equivalent:

1. L is reduible (i.e., L = L

1

L

2

in P

k

(�));

2. the solution spae V has a strit subspae W that is stable under the ation of the Galois

group G = Gal(R=k);

3. the system �(X) = A

L

X is equivalent to a system with blok upper triangular ompanion

matrix.

We also onsider the lass of ompletely reduible operators.

De�nition 3. Let llm stand for least ommon left multiple. An operator L 2 P

k

(�) is ompletely

reduible if there exist L

1

, . . . , L

k

suh that L = llm(L

1

; : : : ; L

k

),

Beware that an irreduible operator L is ompletely reduible beause L = llm(L).

Property 2 ([3℄). The following statements are equivalent:

1. L is ompletely reduible;

2. the solution spae V is expressible as a diret sum V = V

1

� � � � � V

k

where V

i

is a stable

G-module for eah i, and the orresponding operators are irreduible;

3. the system �(X) = AX is equivalent to a system with blok diagonal ompanion matrix where

eah blok orresponds to an irreduible G-module.

3. Liouvillian Solutions

We begin this setion by de�ning Liouvillian solutions of an equation in terms of interlaings

of sequenes and hypergeometri sequenes. Next we give the expeted Galois-theoreti harater-

ization of Liouvillian solutions of a di�erene equation, before giving another haraterization in

terms of interlaings of hypergeometri solutions.

De�nition 4. The interlaing of sequenes x

1

, . . . , x

l

of C

N

is the sequene (x

1

0

; x

2

0

; : : : ; x

l

0

; x

1

1

; : : : ).

This de�nition extends to interlaing of germs in a natural way.

De�nition 5. Hypergeometri sequenes are germs x 2 S suh that �(x) = ax for some a 2 k.

De�nition 6. The set L of Liouvillian sequenes is the smallest subring of S suh that:

1. onstants belong to L, where it is understood that  2 C(k) is identi�ed to the germ

(; ; : : : ) 2 S;

2. if x is hypergeometri, x belongs to L;

3. if x is solution of �(x) = x+ a with a 2 L, then x belongs to L;

4. if x belongs to L, the interlaings of x with zero germs (i.e., the interlaings of x

1

= � � � =

x

l�1

= 0 and x

l

= x) belongs to L.

Example. Elements of k are hypergeometri, thus belong to L; on the other hand, the germs (2

n

)

n2N

and (n!)

n2N

are two examples of hypergeometri, thus Liouvillian, sequenes that are not in k.

Example (Harmoni numbers). If k = C (z) and x =

�

P

n

j=1

1=j

�

n2N

we have

�

1=(n + 1)

�

n2N

=

�

�

1=(z + 1)

�

2 k and �(x) = x+

�

1=(n+ 1)

�

n2N

. The germ �(x) thus belongs to L.

Example. The sequene (0; 1; 0; 1; : : : ) is the interlaing of both onstant sequenes 0 and 1, and

therefore belongs to L.

The following theorem gives the expeted Galois-theoreti haraterization of Liouvillian se-

quenes.
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Theorem 3 ([7℄). A solution x 2 S of Equation (1) is Liouvillian if and only if the Galois group

of any Piard{Vessiot extension of this equation is solvable.

We ome to another haraterization of Liouvillian sequenes. Let Z be a fundamental system

of �(X) = AX. Then by iteratively applying � to �(Z) = AZ we see that Z is solution of

�

m

(Z) = �

m

�

Z where �

m

�

= �

m�1

(A) : : : A. Let � be the automorphism of C (z) substituting mz

for z. Then � Æ �

m

= � Æ � ; for i from 0 to m � 1, the ith m-setion � Æ �

i

(Z) of Z satis�es the

equation �(O) =

�

�

m

�;i

A

�

O in the unknown O, where �

m

�;i

A = � Æ�

i

�

�

m

�

A

�

. This gives the following

theorem and orollary.

Theorem 4 ([7℄). Let L be an operator of order n over k. The following statements are equivalent:

1. there is a Liouvillian solution for the equation L(y) = 0;

2. there exists an m less than or equal to n, suh that the equation L(y) = 0 has a solution that

is the interlaing of m hypergeometri series;

3. there exists an m suh that, for all i between 0 and m� 1, the equation �(y) = (�

m

�;i

A

L

)(y)

has an hypergeometri solution;

4. there exist m and i, with i � m, suh that the equation �(y) = (�

m

�;i

A

L

)(y) has an hyperge-

ometri solution.

Corollary 1 ([7℄). Let L be an operator with oeÆients in k. One an �nd operators H

1

, . . . , H

t

,

R with oeÆients in k suh that

1. L = RH

t

: : : H

1

;

2. the solution spae of eah H

i

is spanned by interlaings of hypergeometri sequenes;

3. any Liouvillian solution of L(y) = 0 is a solution of H

t

: : : H

1

(y) = 0.

4. Eigenrings and their Struture

We onsider the non-ommutative ring A = P

k

(�) and a di�erene operator L 2 A with Piard{

Vessiot extension R. Let V be the spae of solutions of L in R. We now desribe isomorphisms

between three lasses of objets:

1. eigenrings, that are rings that essentially ontain operators that follow some speial ommu-

tation relation with L;

2. endomorphisms of V that ommute with the Galois group G = Gal(R=k);

3. A-module homomorphisms of A=AL into A=AL.

Eigenring of L. Given an operator L, the elements U +AL 2 A=AL suh that there exists U

0

2 A

satisfying LU = U

0

L learly form a ring. We all it the eigenring E(L) of L. Note that E(L) is

never empty: C(k) is always part of E(L).

G-endomorphisms of the solution spae V . For P 2 A, onsider the mapping �

P

of R into R

de�ned by �

P

(v) = P � v for all v in R. This C(k)-linear mapping learly ommutes with G, sine

G ommutes with �. We are interested in the situation when the mapping �

P

indues a linear map

of End

G

V , the algebra of C(k)-linear mappings of V into V that ommute with G. Take v in V ;

we have L � v = 0. Consider L � �

P

(v) = LP � v. This is zero if and only if P +AL belongs to E(L),

for then there is P

0

suh that LP = P

0

L. In this latter ase, �

P

indues a G-endomorphism of V .

A-linear endomorphisms of A=AL. Consider the C(k)-algebra End

A

(A=AL) of A-linear endomor-

phisms of A=AL, and � an element of this algebra. Reall that the module A=AL an be viewed

as the A-module generated by any \generi solution" of L; the linear map � is thus ompletely
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desribed by the image of the generator 1+AL of A=AL. The map � is well-de�ned as an A-linear

map if and only if the image �(1 +AL) = U +AL abides by the relation

L(U +AL) = L�(1 +AL) = �

�

L(1 +AL)

�

= �(0) = 0;

whih implies that there exists U

0

suh that LU = U

0

L; in other words, U +AL is in the eigenring.

The onverse property is proved similarly.

With a loser look on the bijetions above, one gets the following result.

Proposition 1. The three rings E(L), End

G

V , and End

A

(A=AL) are isomorphi.

The lassial representation theory for semi-simple modules [6℄ applies to the study of the stru-

ture of eigenrings, yielding the following proposition and orollary.

Proposition 2 ([4℄). For an operator L with Galois group G and spae of solutions V , there are

ring isomorphisms between:

1. the eigenring E(L);

2. the endomorphism algebra End

G

V ;

3. the set of matries P 2M

n

(k) satisfying A

L

P = �(P )A

L

.

Proposition 3 ([4℄). Let L be a ompletely reduible operator with solution spae V . Then V is

isomorphi to a diret sum V

n

1

1

� � � � � V

n

l

l

where no V

i

and V

j

are isomorphi for i 6= j; the

eigenring E(L) is isomorphi to the diret sum

L

l

i=1

M

n

i

�

C(k)

�

.

Corollary 2 ([4℄). Let L be a di�erene operator with eigenring E(L). Then:

1. L is irreduible implies that E(L) is isomorphi to C(k);

2. L is ompletely reduible and E(L) is isomorphi to C(k) imply that L is irreduible.

5. Algorithms

Eigenring. An algorithm to ompute the eigenring of a di�erential operator was given by Singer

[11℄. A similar algorithm omputes the eigenring in the di�erene ase. The method proeeds by

undetermined oeÆients: an element of the eigenring of an operator L of order n is viewed as a

residue U modulo L; it is thus represented by n undetermined rational funtion oeÆients. One

then performs the multipliation by L on the left, then the Eulidean division by L on the right.

This yields a �rst-order linear di�erene system in the n unknowns. This system is then solved for

rational funtion solutions by algorithms based on Abramov's algorithm [1℄.

1

Linear Di�erene Equations of Order 2. We onsider the searh for Liouvillian solutions

of linear di�erene operators in the ase of order 2. As follows from the analysis in Setion 3,

the searh for Liouvillian solutions redues to searhing for hypergeometri solutions of assoiated

equations. Petkov�sek gave an algorithm for this purpose [8℄, but with exponential omplexity.

Bomboy's algorithm proeeds by determining hypergeometri solutions from the omputation of

suessive eigenrings, so as to derive the shape of the Galois group G little by little, while avoiding

Petkov�sek's algorithm as muh as possible.

In order to help to solve for hypergeometri solutions, note that eah non-trivial element U +AL

of E(L) yields a right fator of L. Indeed, viewed as an element of End

G

V , it neessarily has an

eigenvalue � and a orresponding eigenvetor v. The right gd G of U � � and L an be expressed

by a B�ezout relation and satis�es G � v = 0. It is therefore a non-onstant right-hand fator of L.

1

Note that the same idea was used in the ontext of symboli summation/integration in Chyzak's work [5℄.
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Let x be a hypergeometri solution: there exists a 2 C (z) suh that �(x) = a �x. For all g in the

Galois group G we have

�

�

g(x)

�

= g

�

�(x)

�

= g(a � x) = a � g(x):

Therefore the subspae C x is globally invariant under the ation of G. This entails that the spae

of hypergeometri solutions is a G-module, as is the total solution spae of L. From this and

Proposition 3, it follows that the eigenring is either not a semi-simple G-module, or has dimension

1, 2, or 4.

If the spae of hypergeometri solutions is 2-dimensional, G is isomorphi to the group of di-

agonal matries with two independent non-zero entries, and E(L) has dimension 2 or 4. If there

is only a 1-dimensional spae of hypergeometri solutions, a lassi�ation of the algebrai sub-

groups of GL

2

(C ) then shows that G is isomorphi to the group of upper triangular matries

�

a b

0 a

�

;

moreover, either the solution spae V is semi-simple as G-module and the eigenring E(L) has di-

mension 2, or it is not semi-simple, and in view of E(L) ' End

G

(V ), E(L) onsists of matries

that ommute with all the upper triangular matries above, and has dimension 1 or 2. If there are

no hypergeometri solutions, the same lassi�ation shows that the Galois group G ontains the

speial linear group SL

2

(C ) of matries of determinant 1, and E(L) has dimension 1.

If L has a Liouvillian solution, it also has a one that is either hypergeometri or the interlaing of

two hypergeometri sequenes. Bomboy's algorithm to deide the existene of Liouvillian solutions

and ompute a basis of their vetor spae therefore �rst omputes the eigenring E(L). If it is

not trivial (i.e., does not redue to homotheties), it provides all hypergeometri solutions, then all

Liouvillian solutions; otherwise, the eigenring orresponding to the system �

2

�

A

L

is omputed and:

1. if it is not trivial, we obtain an hypergeometri solution of this system, whih gives a solution

of L by interlaing of hypergeometri sequenes;

2. otherwise, the lassi�ation of algebrai groups shows that either L has a unique hypergeo-

metri solution, and it is neessary to searh this solution by Petkov�sek's algorithm, or L has

no hypergeometri solutions, and therefore L provedly has no Liouvillian solution.

6. Conlusion

Finally, the authors of this summary wish to do full justie to Petkov�sek, and want to empha-

size that the searh for Liouvillian solutions an be entirely performed by means of (variants of)

algorithms by Petkov�sek, and with no need of Galois theory.

2

Indeed, Petkov�sek showed in an unpublished work [9℄

3

how to use his algorithm for �nding

hypergeometri solutions [8℄ in a reursive fashion and in ombination with redution of order so

as to produe all Alembertian solutions of an operator. (The lass of Alembertian sequenes is

obtained by the same losure operations as the Liouvillian ase, exept for interlaings.) This

algorithm orresponds to fatorizations into �rst-order operators H

i

in Corollary 1.

In fat, Petkov�sek's hypergeometri algorithm extends in a simple way to an algorithm for �nding

the solutions of a reurrene

a

0

(n)u

n

+ � � �+ a

m�1

u

n+m�1

+ u

n+m

= 0

that are interlaings of hypergeometri sequenes:

1. derive a reurrene on u

n

in whih the index is shifted by multiples of m: sine we know that

the C (n)-vetor spae generated by u

n

is �nite-dimensional with basis (u

n

; u

n+1

; : : : ; u

n+m�1

),

2

This setion is the result of stimulating disussions with Bruno Salvy.

3

seemingly subsumed by [2℄,
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the partiular shifts u

n

, u

n+m

, u

n+2m

, . . . rewrite onto this basis, and a linear dependeny

an be found by Gaussian elimination;

2. for eah i between 0 and m� 1, derive a reurrene on v

(i)

p

= u

mp+i

by substituting mp+ i

for n in the obtained reurrene, and solve it for hypergeometri solutions;

3. return the interlaing of the sequenes v

(0)

p

, v

(1)

p

, . . . , v

(m�1)

p

.

A variant algorithm (orresponding to Steps 1. and 2. above) is derived in [10℄ by a di�erent

approah.

Corollary 1, or equivalently a diret analysis mimiking that in [9℄, an now be used to derive

an algorithm for �nding all Liouvillian solutions of a reurrene. This algorithm is essentially

Petkov�sek's algorithm for Alembertian solutions where searhes for hypergeometri solutions|

and �rst-order right-hand fators|is replaed with searhes for interlaings of hypergeometri

solutions|and higher-order right-hand fators. The main di�erene is that redution of order is

simultaneously performed by as many independent partiular solutions as the order of the interla-

ings, instead of by just 1.

One an thus view Bomboy's ontribution as providing a variant algorithm in terms of eigenrings.

A omplexity of both approahes still has to be performed so as to ompare them onlusively.
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Summary by Anne Fredet

Abstrat

Let k be a di�erene �eld with automorphism �. Let b be an element of k, and L be

a linear ordinary di�erene operator with oeÆients in k. A lassial problem in the

theory of di�erene equations is to ompute all the solutions in k of the equation L(y) = b.

If C denotes a onstant �eld and if k = C(n) and �n = n + 1 or �n = qn, there are

known algorithms (see [2℄ for example). Manuel Bronstein presents here a generalization to

monomial extensions of C(n) (see [5℄ for details and generalization).

1. Historial Context

The rational solutions of linear di�erential equations (equations of the form

P

n

i=0

a

i

y

(i)

) have

been �rst studied a long time ago, for example by Beke and Shlesinger at the end of the last entury.

In the middle of this entury, R. H. Rish gave an algorithm to ompute elementary integrals (see

[11, 12, 13℄). In [8℄, M. Karr onsidered di�erene equations (equations of the form

P

n

i=0

a

i

y(x+i)).

The link between the linear di�erential equations and the linear di�erene equations is now lear,

and in [1℄, an algorithm to ompute the rational solutions of this two types of equations with

oeÆients in C(x) is given. In [2℄, the author extends the previous algorithm to q-linear di�erene

equations (equations of the form

P

n

i=0

a

i

y(q

i

x)).

Algorithms to ompute the rational solutions of linear di�erential, di�erene and q-di�erene

equations with oeÆients in C(x) are now available, and extensions of C(x) have been onsidered.

In [14℄, M. F. Singer gives an algorithm to ompute the rational solutions of linear di�erential

equations with oeÆients in almost all the Liouvillian extensions of C(x), i.e., the extensions built

up using integral, exponential of integral, and algebrai funtions. In [7℄, the authors improve the

algorithm for the rational solutions of linear di�erential equations with oeÆients in an exponential

extension of C(x). In [6℄, M. Bronstein adapts the algorithm given in [1℄ to monomial extensions,

and in [5℄, the author uses the methods given in [2, 6℄ to �nd the solutions of linear di�erene

equations in their oeÆient �eld.

2. Introdution

In [6℄, the author introdued the splitting fatorization: he deomposed a polynomial in two

fators, the normal part where every irreduible fator is oprime with its derivative, and the speial

part where every irreduible fator divides its derivative. He then gave an algorithm to ompute the

normal part of the denominator of rational solutions of a linear di�erential equation with oeÆients

in a monomial extension. In [2℄, S. Abramov proposed an algorithm to ompute a polynomial

whih is divisible by the denominator of any rational solution of a linear di�erene equation with
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oeÆients in C(n), where �n = n+ 1 or �n = qn. In [7℄, a method to ompute the numerator of

the rational solution of a linear di�erential equation with oeÆients in an exponential extension of

C(x) is given. Manuel Bronstein now onsiders di�erene equations with hypergeometri terms in

the oeÆients (a term h(n) is hypergeometri if h(n+1)=h(n) is in C(n)). He adapts the previous

methods to di�erene equations with oeÆients in an hypergeometri extension of C(n), and this

gives an eÆient algorithm to ompute the rational solutions of suh equations. Remark that an

algorithm to ompute the hypergeometri solutions of linear di�erene equation with oeÆients

in C(n) is given in [10℄ and in [4℄ for q-hypergeometri solutions of q-di�erene equations.

3. Di�erene Equations and Hypergeometri Extensions

Let R be a ommutative ring of harateristi 0. Let � be an automorphism of R. De�ne

{ R

�

= fx 2 R suh that �x = x g (the set of invariant elements of R);

{ R

�

?

= fx 2 R suh that �

n

x = x for some n > 0 g (the set of periodi elements);

{ R

�

= fx 2 R suh that �x = ux for some u 2 R

?

g (the set of semi-invariant elements);

{ R

�

?

= fx 2 R suh that �

n

x = ux for some n > 0; u 2 R

?

g (the set of semi-periodi

elements).

It is lear that we have the inlusion R

�

� R

�

� R

�

?

. If R is a unique fatorization domain

then R

�

?

is losed under taking fators, i.e., for any polynomial q in R

�

?

, eah fator p of q is

in R

�

?

. This property is false for R

�

and R

�

, as shown by the example R = Q [t℄ and �(t) = 1� t:

�(1 � t) = t and �(t � t

2

) = t� t

2

is in R

�

(and then in R

�

and in R

�

?

), whereas t and 1 � t are

in R

�

?

, but neither in R

�

nor in R

�

.

3.1. Monomial extensions. Let k be a di�erene �eld with automorphism �. Let (K;�) be an

extension of (k; �).

De�nition 1. t in K is a monomial over k if t is transendental over k with �t in k[t℄.

Let � be an automorphism of K suh that �(t) is in k[t℄. Then � indues an automorphism

of k(t), an automorphism of k[t℄, and thus �(t) = at+ b for some a in k

?

and b in k

Proposition 1 ([9℄). If for all w in k

?

we have �w 6= aw + b, then t is transendental over k and

the following equalities hold: k(t)

�

= k

�

and k[t℄

�

= k[t℄

�

?

= k.

3.2. Hypergeometri extensions. Let � be suh that �t = at for some a 2 k

?

.

Proposition 2 ([9℄). If for all w in k

?

and n > 0 we have �w 6= a

n

w, then t is transendental

over k and the following equalities hold: k(t)

�

= k

�

and k[t℄

�

= k[t℄

�

?

= f t

m

j  2 k; m � 0 g.

For example, in C[n℄, let � be suh that �n = qn for some q 2 C

?

. The property holds whenever

q is not a root of unity. Or we an onsider C[n; t℄, with � suh that �

jC

= id

C

, �n = n+ 1 and

�t = (n+ 1)t; in other words t represents n!.

4. Dispersion

De�nition 2. Let K be a �eld of harateristi 0. Let � : K[X℄! K[X℄ be a funtion. Let p and

q be non-zero polynomials in K[X℄. One de�nes

{ the spread of p and q with respet to �:

Spr

�

(p; q) = fm � 0 suh that p and �

m

q have a non trivial gd g
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{ the dispersion of p and q with respet to �:

Dis

�

(p; q) =

8

<

:

�1 if Spr

�

(p; q) is empty;

max(Spr(p; q)) if Spr

�

(p; q) is a �nite nonempty set;

+1 if Spr

�

(p; q) is an in�nite set.

These de�nitions are speialized to the ase p = q: Spr

�

(p) = Spr

�

(p; p) and Dis

�

(p) = Dis

�

(p; p).

Examples are:

{ Dis

d=dx

�

p(x)

�

is the maximum of the multipliity of a root of p minus 1;

{ Spr

n!n+1

�

p(n)

�

is �nite (and then Dis

n!n+1

�

p(n)

�

< +1);

{ Dis

n!qn

(n) is in�nite.

Let � be an automorphism of k[t℄ suh that �k � k. Then the dispersion Dis

�

(q) is in�nite if and

only if there exists p in k[t℄

�

?

nk suh that p divides q. Also, the dispersion Dis

�

(h; q) is in�nite if

and only if there exists p in k[t℄

�

?

nk suh that p divides q and �

n

p divides h.

Example. Let a = 2n

7

+19n

6

+63n

5

+81n

4

+27n

3

be in Q [n℄ and � be the automorphism of Q [n℄

over Q that maps n to n+ 1. The resultant of a and �

m

a is

4m

19

(2m+ 5)

3

(2m+ 1)

3

(2m� 1)

3

(2m� 5)

3

(m� 3)

9

(m+ 3)

9

;

implying that Spr

�

(a) = f0; 3g and Dis

�

(a) = 3

4.1. Splitting fatorization. One now extends the splitting fatorization of polynomials to dif-

ferene �eld: let q in k[t℄ be deomposed into two fators q = q

1

q suh that

{ the gd of q

1

and q is equal to 1,

{ for all irreduible fator p of q, p divides q

1

if p is in k[t℄

�

?

,

{ and for all irreduible fator p of q, p divides q if p is not in k[t℄

�

?

.

The polynomial q

1

is the in�nite part of q, and q is its �nite part. We note that the dispersion

Dis

�

(q) is �nite, the dispersion Dis

�

(q

1

) is in�nite, and for all h the dispersion Dis

�

(h; q) is �nite.

4.2. �-Orbits. Given � and � in a �eld K, the problem of the orbit is to �nd m � 0 suh that

�

m

= �. A bound for the smallest m suh that �

m

= � is given in [3℄. The main ideas are as

follows: if there exists d suh that �

d

= 1 then one an test whether �

i

= � for 0 � i � d. If it

is not the ase, then the orbit problem has no solution, otherwise its solutions onsist of all the

integers of the form i

0

+ kd

0

where k � 0, i

0

is the smallest i � 0 suh that �

i

= � and d

0

is the

smallest d > 0 suh that �

d

= 1. One an now assume that � is not a root of unity, whih implies

that the orbit problem has at most one solution. If � is transendental over Q , the orbit problem

has a solution if and only if � is algebrai over Q(�). Looking at the degree at whih � appears

in � gives at most one andidate solution for the orbit problem. One an now assume that � is

algebrai over Q . This generalizes to �ndm � 0 suh that �

m;�

= �(��) : : : (�

m�1

�) = � (see [3℄).

4.3. Computation of the dispersion. Let � : K[X℄ ! K[X℄ be an automorphism suh that

�K � K. Then

Spr

�

�

Y

i

p

e

i

i

;

Y

j

q

f

j

j

�

=

[

i;j

Spr

�

(p

i

; q

j

) and Dis

�

�

Y

i

p

e

i

i

;

Y

j

q

f

j

j

�

= max

i;j

Dis

�

(p

i

; q

j

):

The omputation of the dispersion redues to the omputation of the dispersion of two irreduible

polynomials.

Let p and q be irreduible polynomials. Let m be in Spr

�

(p; q). This means that the greatest

ommon divisor of p and �

m

q is not trivial. The polynomials being irreduible, this is equivalent
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to the existene of u in K

?

suh that �

m

q = up. This implies that deg p = deg q. One just has to

onsider irreduible polynomials with ommon degree.

Let p and q be moni irreduible polynomials of k[t℄ with degree n: p = t

n

+

P

n�1

i=0

p

i

t

i

and

q = t

n

+

P

n�1

i=0

q

i

t

i

. Assume that �t = at for some a 2 k

?

. Then m is in Spr

�

(p; q) implies

�

m;�

i

= �

i

for all i suh that p

i

q

i

6= 0, where �

i

= q

i

=p

i

and �

i

= a

n�i

q

i

=�q

i

. Therefore, if

Spr

�

(p; q) is not empty then p

i

and q

i

vanish simultaneously. If p = q = t then Dis(p; q) = +1.

Otherwise, this redues to the orbit problem �

m;�

= � for �; � in k

?

and m in Spr(p; q). Remark

that if �w 6= a

d

w for all w in k

?

and d > 0 then �

d

6= 1 for all d > 0. So, the orbit problem has at

most one solution and then Spr

�

(p; q) has at most one element.

One an extend the omputation of the dispersion to rational funtions: let f = p=q with

relatively prime p and q in C[n℄. Let Dis

�

(f) = max

�

Dis

�

(p);Dis

�

(p; q);Dis

�

(q; p);Dis

�

(q)

�

and

�

1

(f) = deg q � deg p. Then �

1

(f

m;�

) = m�

1

(f). And if f is not in C then Dis

�

(f

m;�

) =

Dis

�

(f) +m� 1.

This last equality allows us to redue orbit problems to dispersions whenever � is not onstant.

5. Rational Solutions of Di�erene Equations

Let t be a monomial over k = C(n). Let � be suh that �n = n+ 1 and �t = at for some a in k

suh that �w 6= a

d

w, for all w in k

?

and d > 0. Let L =

P

N

i=0

a

i

�

i

be a linear di�erene operator,

with the a

i

's in k[t℄ and both a

0

and a

N

not equal to 0. Let b be in k[t℄. The aim of this setion is

to desribed an algorithm to �nd y in k(t) suh that L(y) = b (if there exists suh a y).

5.1. Denominator of a rational solution. The �rst problem is to �nd a bound for the �nite

part of any y in k(t) suh that L(y) = b. This means to ompute a polynomial q in k[t℄ suh that

if L(y) = b then yq = p=d

1

where p is in k[t℄ and d

1

in k[t℄

�

?

. We outline the ideas here, proofs

and tehnial details are given in [5℄.

Let a

0

be deomposed: a

0

= a

0;1

a

0

. Let y be in k(t) suh that L(y) = b, where y = p=d and

d = d

1

d. Then Dis

�

(d) � max

�

�1;Dis

�

(a

N

; a

0

)�N

�

. Let h > 0 be an integer. One an ompute

an operator L

h

= b

s

�

sh

+ b

s�1

�

(s�1)h

+ � � �+ b

0

suh that L

h

= RL for some R in k(t)[�℄. It follows

that L

h

(y) = Rb for any b in k[t℄ and any solution y in k(t) of L(y) = b. We get that every solution

y in k(t) of L(y) = b satis�es an equation of the form



s

�

hs

(y) + � � � + 

1

�

h

(y) = d

h

where 

0

; : : : ; 

s

; d

h

are in k[t℄ and 

s

6= 0. If h was hosen suh that Dis

�

(d) < h then d divides

gd

0�i�s

(�

�ih



i

). This gives us a polynomial q suh that if L(y) = b then qy = p=d

1

with p in k[t℄

and d

1

in k[t℄

�

?

Example. Consider y(n+ 2)� (n! + n)y(n+ 1) + n(n!� 1)y(n) = 0. If we de�ne � by �n = n+ 1

and �t = (n + 1)t then the assoiated di�erene operator is �

2

� (t + n)� + n(t � 1). a

N

= 1,

a

0

= a

0

= n(t � 1) and Dis

�

(a

N

; a

0

) = �1. Then Dis

�

(d) � �1 and d 2 C(n). So, if there exists

y 2 C(n)(t) suh that L(y) = b then y is in C(n)[t; t

�1

℄.

Remark. The same results holds for the q-di�erene equation: let q be transendental over Q . Let

� be suh that �x = qx. Consider the q-di�erene equation

q

3

(qx+ 1)y(q

2

x)� 2q

2

(x+ 1)y(qx) + (x+ q)y(x) = 0(1)

We have a

0

= x+ q, a

2

= q

3

(qx+1). The resultant of a

2

and �

m

(a

0

) is q

3

(q

2

� q

m

), whih implies

that Dis

�

(a

2

; a

0

) = 2 hene that any solution of (1) has a denominator of the form x

n

d where

Dis

�

(d) � 0. Using the bound h = 1, we get L

h

= L and d divides the greatest ommon divisor of

gd

0�i�2

(�

�i

a

i

) = gd

�

x+q; �

�1

(q

2

(x+1)); �

�2

(q

3

(qx+1))

�

= gd

�

x+q; q(x+q); q

2

(x+q)

�

= x+q.
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Therefore, any rational solution of (1) an be written as y = p=

�

x

n

(x + q)

�

where n � 0 and p is

in Q [x℄.

The indiial equation at x = 0 is qZ

2

�2q

2

Z+q

3

= 0 (see [2℄). Its only solution of the form Z = q

n

is for n = 1, whih implies that any rational solution of (1) an be written as y = p=

�

x(x + q)

�

.

Replaing y by this form, we get p(q

2

x)� 2p(qx) + p(x) = 0 (whose solution spae is Q(q), whih

implies that the general rational solution of (1) is y = C=

�

x(x+ q)

�

for any C in Q(q)).

5.2. Laurent polynomial solution. The problem of �nding rational solutions y of L(y) = b is

redued to �nding y in k[t; t

�1

℄ suh that L(y) = b, where b is in k[t; t

�1

℄ and L =

P

N

i=0

a

i

�

i

is a

di�erene operator, with a

i

2 k[t℄ and non-zero a

0

and a

N

. This deomposes in two steps:

1. �nd a bound for the degree and the order in t of y;

2. ompute the oeÆients of y, seen as a Laurent polynomial in t.

5.2.1. Bound for the degree and order of a polynomial solution. One rewrites L as

P

d

j=�

t

j

L

j

where

the L

j

's are in k[�℄ and L

�

and L

d

are not equal to zero. Let y = y

Æ

t

Æ

+ � � � + y



t



be in k[t; t

�1

℄

for integers  and Æ satisfying  � Æ and suh that neither y

Æ

nor y



is equal to zero. Let b be in

k[t; t

�1

℄. If L(y) = b, then

1. either Æ � �(b)� �, or L

�

(y

Æ

t

Æ

) = 0;

2. either  � deg b� d, or L

d

(y



t



) = 0.

The problem is redued to onsidering di�erene operators T =

P

M

i=m

A

i

�

i

with A

i

2 C[n℄ for

non-zero A

m

and A

M

, and to searhing bounds for  2 Z suh that T (zt



) = 0 for some z in C(n).

Let e = ��

1

(�t=t) = �

1

(a). There are three possibilities:

{ if e > 0 then (deg

n

A

m

� deg

n

T )=e �  � (deg

n

T � deg

n

A

M

)=e;

{ if e < 0 then (deg

n

T � deg

n

A

m

)=e �  � (deg

n

A

m

� deg

n

T )=e;

{ if e = 0 then � = a(1) 2 C

?

. We deompose A

i

= a

i;�

i

n

�

i

+ � � � . We de�ne Q(z) =

P

ij�

i

=max

j

(�

j

)

a

i;�

i

z

i

. We have Q(�



) = 0. This problem an be solved if �

d

6= 1 for all

d � 0 (see setion 4.2).

5.2.2. CoeÆients of a Laurent polynomial solution. This is a generalization of the speialization

given in [7℄.

We have found  and Æ suh that if y is in k[t; t

�1

℄ with L(y) = b then deg

t

(y) �  and val

t

(y) � Æ.

Let z = t

Æ

y. Note that deg

t

(z) �  � Æ = J . One has to onsider the problem L(z) = b where L is

in k[t℄[�℄ and b in k[t℄. Let L =

P

d

j=0

t

j

L

j

with L

j

in k[�℄, and L

0

; L

d

not equal to zero.

{ if J = 0 then L(z) =

P

d

j=0

t

j

(L

j

z). But L

j

(z) is in k so L(z) = b implies L

j

(z) = b

j

for all

j and this redues to di�erene equations with oeÆients in C[n℄;

{ if J > 0 then one deomposes z = z

0

+ tz where z

0

= z(0) is in C(n). Then L

0

(z

0

) = b

0

and

one an �nd z

0

. So, L(z) = (L� L

0

)(z

0

) + L(tz) + L

0

(z

0

) and L(z) = b implies

L(tz) = b� b

0

� (L� L

0

)z

0

t

~

L(z) = t

�

b� b

0

t

�

� t

(L� L

0

)z

0

t

This gives us a new di�erene equation with a solution z of degree stritly less than J . By

indution, one an �nd z.

Example. Consider y(n + 2) � (n! + n)y(n + 1) + n(n! � 1)y(n) = 0, whih is assoiated to the

di�erene operator

L = �

2

� (t+ n)� + n(t� 1) = t(n� �) + (�

2

� n� � n) = tL

1

+ L

0
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Using the same notations as previously, e = ��

1

(�t=t) = ��

1

(n+ 1) = 1 and then y = y

0

+ y

1

t.

One �rst onsiders L

0

(y

0

) = �

2

y

0

� n�y

0

� ny

0

= 0, and �nds that y

0

= 0. Then:

L(tz

1

) = (n+ 2)(n+ 1)t�

2

(z

1

)� (n+ 1)(t+ n)t�(y

1

) + n(t� 1)ty

1

;

from whih follows that

~

L(y

1

) = (n+ 2)(n+ 1)�

2

(y

1

)� (n+ 1)(t+ n)�(y

1

) + n(t� 1)y

1

= 0:

This implies that y

1

= =n. Then y = y

1

t = (=n)n! = (n� 1)!.
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Abstrat

Starting from ombinatorial strutures, one an study some of their harateristis by means

of attribute grammars [1, 2℄. This leads to multivariate generating funtions that permit us

to study the distribution of these harateristis, part of it automatially.

1. Attribute Grammars

The grammars onsidered here are built from atoms, Z, Z

1

,. . . of weight 1 and from an � of

weight 0. The prodution rules are desribed in terms of a few onstrutors: union, artesian prod-

ut, set, sequene and yle. These onstrutors an take plae in a labelled world (permutations)

or unlabelled (trees) and they are already present in the ombstrut pakage. A grammar is

omposed of prodution rules of the type T = �(T

1

; : : : ; T

n

); T is said to be an anestor of eah

T

i

and eah T

i

is a desendant of T . The attributes on these grammars are values on the objets

produed by the grammar, here on ombinatorial strutures, like for example the size or the in-

ternal path length on a binary searh tree. An attribute is synthesized if it is a funtion of his

desendants (size of a tree) and inherited if it is a funtion of his anestors. An example of an

inherited attribute is the depth of a tree. The depth is de�ned by : the depth of the root is zero

and the depth of a subtree is the depth of its father plus one. An attribute is well-de�ned if there

are no irular dependenies amongst the attributes, whih an be heked algorithmially [5℄. The

attribute is linear if it is a linear funtion of the attributes of the desendants. The size of a tree

is a linear attribute, but the height of a tree de�ned by the maximum of the height of the subtrees

plus one is not.

We now onsider linear synthesized and well-de�ned attributes. The general spei�ation of a

struture is:

(1) B = �

1

(B

1

1

; : : : ; B

1

k

1

) j : : : j �

n

(B

n

1

; : : : ; B

n

k

n

):

where �

i

is a standard onstrutor, like artesian produt, set, sequene, or yle, or a terminal.

The general form of the de�nition of an attribute F

i

then is

F

i

(B) =

[

1�m�n

�

�

Æ

m

i

+

X

j;k

�

m

i;j

F

j

(B

m

k

)

�

+ 

i

where lower ase indexed greek letters indiate integer onstants, and F

j

orresponds to other at-

tributes. The letter � stands for a general iterative operator oding the fat that all the subelements

of the struture are onsidered. For example if � is the sequene onstrutor, eah element of the

sequene is onsidered reursively. The non-planar trees are de�ned by T = N � Set(T) and there
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the internal path length is spei�ed by ipl(T ) = �(size(T ) + ipl(T )). Other examples are the area

below Dyk paths, the number of yles in a permutation or the number of parts in a partition.

All these attributes an be enoded in multivariate generating funtions as follows. If the at-

tributes are named F

i

and the struture is de�ned as in equation (1), the generating funtion in an

unlabelled world is

(2) B(z

0

; : : : ; z

k

) =

X

b2B

z

jbj

0

z

F

1

(b)

1

: : : z

F

k

(b)

k

:

Let z be the vetor (z

1

; : : : ; z

k

), �

m

be the matrix [�

m

i;j

℄, 

m

and Æ

m

be vetors, where m is an

index indiating the related onstrutor �

m

. We use the following notations: z

Æ

= (z

Æ

1

1

; : : : ; z

Æ

k

k

) and

z

�

=

�

z

�

1;1

1

: : : z

�

1;k

k

; : : : ; z

�

1;k

1

: : : z

�

k;k

k

�

. This allows us to state the Attribute Grammars Generating

Funtion theorem.

Theorem 1. [6℄ Given the grammar spei�ation B = �

1

(B

1

1

; : : : ; B

1

k

1

) j : : : j �

n

(B

n

1

; : : : ; B

n

k

n

)

where eah �

i

is a grammar onstrutor or a terminal and given the set of attribute produtions

F

i

(B) =

S

1�m�n

�

�

Æ

m

i

+

P

j;k

�

m

i;j

F

j

(B

m

k

)

�

+

i

the multivariate generating funtion B(z) satis�es

B(z) =

X

m

z



m

G

�

m

�

z

Æ

m

B

m

k

(z

�

m

)

�

where G

�

m

is the lassial generating funtion transformation on strutures.

Proof. The proof requires a study of eah onstrutor. We give here a simpli�ed proof where

B = �(C). As in equation (2) the generating funtion is de�ned by

B(z) =

X

b2B

z

F

1

(b)

1

: : : z

F

k

(b)

k

:

By replaing with the de�nition of F

i

, i.e., F

i

(B) = �

�

Æ

i

+

P

j;k

�

i;j

F

j

(B

k

)

�

+ 

i

, we obtain

(3) B(z) =

X

b2B

Y

l

z



l

l

:

Y

a2b

Y

i

z

Æ

i

+

P

k

j=1

�

ij

F

j

(b)

i

;

whih simpli�es into

B(z) = z



X

b2B

z

Æ

Y

a2b

Y

j

�

Y

i

z

�

ij

i

�

F

j

(b)

:

In view of C(z) =

P

2C

Q

j

z

F

j

()

j

and B(z) =

P

b2B

Q

a2b

z

jbj

= G

�

B(z)

�

, we now have the �nal

result

B(z) = z



G

�

�

z

Æ

C(z

�

)

�

:

We obtain a simple formula to express the generating funtion of a struture given the type of its

attributes.

�

2. Automati Complexity Analysis

The idea of working on ombinatorial properties is not new, it has already been exploited in

�

�




[3, 7℄, part of whih is implemented in the ombstrut pakage. Given a ombinatorial

struture and a lass of algorithms based on programming primitives like sequene of programs,

test on unions, partial program desent and full omponent iteration, �

�




returns the asymptoti

value of the ost of the program on all strutures of size n. It is then possible to get the average value

of the ost of the onsidered program. The programs analysed by �

�




an be viewed as attributes
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Figure 1. The binary searh tree and inreasing tree assoiated with [521634℄.

on a grammar orresponding to the struture. In fat the expressivity of �

�




is enompassed by

the attribute grammar system. The attribute grammars are well implemented and will be in the

ombstrut pakage soon. For example it is possible to ompute the ost of di�erentiating a

regular expression based on plus, times and exp and to get the average and the variane of this

ost, whih is not possible in �

�




.

These tehniques an also be applied to other onstrutors, if their translation into generating

funtion is known. For instane the Quiksort algorithm an be studied using attribute grammars.

The Quiksort algorithm takes as input a random permutation, hooses a pivot, sorts the elements

aording to their position with respet to the pivot and then sorts reursively the two subarrays.

The run of the algorithm an be visualised by a binary searh tree, the root being the pivot, and

the two sons being the two subarrays. The omplexity is the number of omparisons done, whih

orresponds to the internal path length of the binary searh tree. This orrespondane between

exeutions of the algorithm and binary searh trees is not a bijetion, beause the inputs 231 and 213

yield the same tree. The solution to this problem is to keep the shape of the tree and to label it with

the order in whih the nodes are �lled, as shown on Figure 1. This gives a bijetion between runs

of Quiksort and inreasing trees. To desribe inreasing trees with attribute grammars, we need

to introdue the Greene operator also alled box operator [4℄. In a labelled struture, the Greene

operator spei�es where the minimum label is to be. For example the inreasing trees are de�ned

by T = � j T

1

�Min(N) � T

2

whih spei�es that the minimum is in the root N . The generating

funtion has been determined by Greene:

T (z) =

Z

z

0

T

2

(x)

�N(x)

�x

dx:

It is now possible to de�ne the internal path length as an attribute on the inreasing tree struture

by the relation

ipl(T ) = 0 j ipl(T

1

) + size(T

1

) + ipl(T

2

) + size(T

2

);

assuming that the internal path length of a node is 0, whih is oherent with the omplexity model

of the number of omparisons. The multivariate generating funtion is

T (z; u) = 1 +

Z

z

0

�

�

�x

x

�

T (xu; u)

2

dx:

The average is therefore

[z

n

℄T

u

(z; u)j

u=1

[z

n

℄T (z; 1)

= 2H

n

� 3 +

H

n

n

with T (z; 1) =

1

1� z

where H

n

is the nth harmoni number.
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All this work has been implemented in Maple in suh a way that the syntax of attributes gram-

mars use the same basi funtions as ombstrut. For example if a grammar rule is A = B j C

then an attribute for A follows the equation, in ombstrut syntax,

F(A)=Union(b_1*F_1(B)+...+b_k*F_k(B),_1*F_1(C)+...+_k*F_k(C))

+ a_1*F_1(A)+...+a_k*F_k(A)+a_0.

Similar rules apply for produt and set. Sine ombstrut an verify if a grammar is well de�ned,

the same algorithm an tell if an attribute grammar is linear and syntheti. For example if one

looks again at the internal path length but this time of a binary Catalan tree, using two lines to

de�ne the grammar (B = �+ zB

2

) and the attribute oding internal path length (ipl = size(B) +

ipl(B

1

) + ipl(B

2

)) and �ve to ompute the generating funtions and the �rst moments, one gets

automatially that the average equals

p

�n

3=2

+O(n) and the variane equals (10=3��)n

3

+O(n

5=2

).

This omputation an also be done on examples like the grammar de�ning the expressions based

on zero, one, x, sum, produt and exponentiation. It is possible to de�ne the attribute oding

the size of an expression after di�erentiation. This leads to an automati proof that on average

di�erentiating an expression of size n yields an expression of size 0:8n

3=2

.

Attribute grammars provide a good way of desribing reursive properties of deomposable stru-

tures; a struture is deomposable if it an be expressed with basi atoms (�, Z) and basi on-

strutors (union, produt, set, sequene, . . . ). The work that has been done on this subjet an

be used to obtain algorithms for random generation of strutures with given attribute value, and

also to obtain the distribution of the attribute. It an be ontinued on other attribute types for

example heads or tails of sequenes. From the aspet of attribute grammar researh, some theory

has been developed on the idea of oupling grammars. This simulates repeated appliation of a

funtion. This, for example, would allow a simple analysis of repeated di�erentiation, and other

omposed funtions. This requires a system where the attributes may be more than onstants, but

rather further strutures.
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Abstrat

The omplexity the Eulidean algorithm and its variants is well studied. This work re�nes

the problem further by onsidering preise average bit-omplexity. The tehnique is suÆ-

iently general as to apply to a wide lass of gd-type algorithms. It determines elementary

transformations for eah algorithm and derives asymptoti information from their analyti

behaviour. The methods rely on properties of transfer operators adapted from dynamial

systems theory. The use of Ergodi Theorems in the ontinuous ase (ontinued fration

algorithms) foreshadows the results, whih use Tauberian Theorems as replaement. This

is joint work with Ali Akhavi [1℄.

1. Why the Bit Case?

Sine the initial average ase analysis of the Eulidean algorithm in 1969 by Heilbronn and Dixon

a wide variety of approahes have been used to examine variants, the most reent of whih is the

method of using transfer operators [3, 4℄.

The tehnique involves viewing the algorithm as a dynamial system and eah iterative step as

a linear frational transformation (LFT). Previous talks by the speaker [2℄ shed some light on this

tehnique, how several lasses of GCD algorithms fell under a uni�ed approah and furthermore,

why they were naturally divided into two ategories: slow (�(log

2

n)) and fast (�(log n)).

This same tehnique will now aid in the study of bit-wise omplexity. The motivation for this

re�nement is the following. It is not a priori evident whether the properties whih make the slow

algorithms slow extend to the bit ase. It is true that there are more iterations, but what of the size

of eah iteration? This work answers the question de�nitively, yielding the same divisions between

slow and fast algorithms, however with new omplexity desriptions, �(log

3

n) and �(log

2

n).

Furthermore, it is of interest to onsider a pratial omplexity measure. The method o�ers preise

insights on the distribution of osts. This enables a further re�nement on the lassi�ation between

the fast and slow algorithms.

1.1. Standard algorithm. The standard Eulidean algorithm determines the gd of v

0

and v

1

by a �nite number of steps of the form v

i

= m

i

v

i�1

+ v

i+1

, with �nal step v

k

= 0. De�ne

l(x) = blog

2

x+ 1, the binary length of x. At eah step there is one \naive" division with bit

ost l(v

i

)l(m

i

), and two assignment steps involving v

i

and v

i+1

. The total bit-omplexity of one

iteration is l(v

i

)l(m

i

) + l(v

i

) + l(v

i+1

). The ost for the standard algorithm is then

C(v

1

; v

0

) =

k

X

i=1

l(v

i

) �

�

l(m

i

) + 2

�

:
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2. Main Result: Bit-Wise Complexity

The following two sets are valid input to the Eulidean algorithm:


 = f (u; v) j gd(u; v) = 1; 1 � u < v g and 


N

= f (u; v) j (u; v) 2 
; v � N g:

The goal is to estimate the mean value of a ost C : 
 ! R on 


N

. More preisely, to determine

the asymptoti value as N ! 1 of the mean value E

N

[C℄ satisfying E

N

[C℄ = C

N

=j


N

j, where

C

N

=

P

(u;v)2


N

C(v; u).

The funtion of interest in this presentation is the bit-ost of the standard Eulidean algorithm,

and onsequently the ost is as de�ned in the previous setion, but the methods are suÆiently

general as to apply to a number of ases. The tehnique views the algorithm as a dynamial system

with eah iterative step a LFT. Modifying the LFT yields the

variants. The ontinued fration expression of the problem

motivates the use of the transformations U(x) =

1

x

�

�

1

x

�

and

M(x) =

�

1

x

�

. Notie that m

i+1

= M

�

U

i

(v

1

=v

0

)

�

. The value

of k in the ontinued fration to the right is the depth.

v

1

v

0

=

1

m

1

+

1

m

2

+

1

m

3

+ � � �+

1

m

k

2.1. Ergodi theory estimates. Gauss observed that the iteration of the transformation U has

invariant density 	(t) =

1

log 2

1

1+t

. For any A : N ! R suh that

P

A(m)m

�2

< 1, de�ne

E

1

�

A(m)

�

=

R

1

0

A

�

m(t)

�

	(t) dt. This is equal to

E

1

�

A(m)

�

=

X

m�1

A(m)

�

log

2

�

1 +

1

m

�

� log

2

�

1 +

1

m+ 1

��

:

For example, when applied to l(m): E

1

�

l(m)

�

= (1= log 2) log

�

Q

k�1

1 + 2

�k

�

.

In the ontinuous ase, ergodi theory is appliable and gives the result that the expeted value

E

N

�

P

m

k=1

A(U

k

(x))

�

approahes E

1

[A℄ almost everywhere. Although ergodi theory does not

apply in the disrete ase, it does give plausible estimates as to what to expet. The assign-

ment A(m) = l(m) gives the expeted size of m

i

in bits. The disrete version is formulated as

E

N

�

P

p(x)

k=1

A(U

k

(x))

�

; where p(x) is the depth of the neessarily �nite ontinued fration expansion

of the rational x. In this framework one an study the aymptoti behaviour of several funtions

on 


N

, suh as:

~

A(x) =

P

p(x)

k=1

A

�

m

k

(x)

�

and

~

C(x) =

P

p(x)

k=1

l

�

m

k

(x)

�

� log

2

v

k

(x).

One might antiipate that the value of E

N

�

~

A

�

under ertain onditions should relate to the

expeted depth and the expeted size of an iteration. The expeted depth, E[p℄, orresponds to the

number of iterations of the Eulidean algorithm on input 


N

, and is asymptoti to 6=�

2

log

2

N .

So, in the ase of A(m) = l(m),

E

N

�

~

A

�

� E

N

[p℄�E

1

�

A(m)

�

=

0

�

12

�

2

log

Y

k�0

�

1 +

1

2

k

�

1

A

log

2

N:

This is the mean size of the ontinued fration enoding of a rational number. A similar heuristi

analysis of E

N

[

~

C℄ shows the relation

E

N

�

~

C

�

� E

N

[p℄

1

2

log

2

N �E

1

�

l(m)

�

:

These observations give a ontext for the main result.
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Theorem 1. The average bit-omplexity of the standard Eulidean algorithm on the set of valid

inputs of denominator less than N is asymptotially of log-squared order:

E

N

[C℄ �

0

�

6 log 2

�

2

log

Y

k�1

�

1 +

1

2

k

�

1

A

log

2

2

N:

This agrees with the heuristi argument. Numerially, this values satis�es E

N

[C℄ � 1:24237 log

2

2

N .

3. Summary of Methods

The general method for obtaining this result is similar to the speaker's analysis of gd-type

funtions. The average is expressible by partial sums of oeÆients of Dirihlet series. Tauberian

theory transfers the analyti behaviour of the series near singularities into asymptoti behaviour

of oeÆients. When seen as a dynamial system the generating funtions of bit-ost relate to the

Ruelle operators assoiated to the algorithm. The singularities of the Dirihlet series are related to

spetral projetions of the operators and are easy to desribe.

3.1. Dirihlet generating funtions. De�ne !

n

to be the set of all pairs (u; v) in 
 with v = n

and C

n

as the umulative value of C over !

n

. Then the orresponding enoding into Dirihlet

generating funtions is

F

hi

(s) =

X

n�1

C

n

n

s

=

X

(v

0

;v

1

)2


C(v

1

; v

0

)

v

s

0

:

Thus the expeted average ost is E

N

[C℄ =

�

P

n�N

C

n

�

=

�

P

n�N

j!

n

j

�

:

3.2. Tauberian theorem. The Tauberian theorems are a natural tool to onsider as they give

asymptoti information about the partial sums of oeÆients of Dirihlet series. They rely on the

nature and position of the singularities of F (s) =

P

a

n

n

�s

.

Theorem 2 (Delange). Let F (s) be a Dirihlet series with non-negative oeÆients suh that F (s)

onverges for <(s) > � > 0. Assume that:

1. F is analyti on <(s) = �; where s 6= �;

2. F (s) = A(s)(s� �)

��1

+C(s) for some  � 0, and A(s) and C(s) analyti with A(�) 6= 0.

Then, as N !1, the partial sum of oeÆients is

X

n�N

a

n

=

A(�)

��( + 1)

N

�

log



N

�

1 + �(N)

�

; where �(N)! 0:

However, the onditions are diÆult to verify for F

hi

(s) in its present form. A transformation

gives the required information about the singularities.

3.3. Ruelle operators. The lassial operator is

G

s

[F ℄(x) =

X

m�1

1

(m+ x)

s

F

�

1

m+ x

�

:

LetH = fh j h(x) = (m+x)

�1

;m � 1 g, the set of inverse branhes of U . IfD[h℄ is the denominator

of the LFT h(x), then sine D

�

h Æ g

�

(x) = D[h℄g(x) �D[g℄(x), the iterates of G

s

are given by

G

k

s

[F ℄(x) =

X

h2H

1

D[h℄(x)

s

F Æ h(x):
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Rationals of 
 an be written x = h(0) for some h inH

k

where k � 0. Then the Dirihlet generating

funtion for j!

n

j is equal to

P

n�1

j!

n

jn

�s

=

P

h2H

�

D[h℄(0)

�s

= (I �G

s

)

�1

[1℄(0). A ost version

of R

s;h

[F ℄(x) = D[h℄(x)

�1

F Æ h(x) is de�ned as R

[℄

s;h

[F ℄(x) = (h)D[h℄(x)

�1

F Æ h(x). Similarly the

ost ompanion to G

s

=

P

h2H

R

s;h

is G

[℄

s

=

P

h2H

R

[℄

s;h

:

Reall that C(v

0

; v

1

) �

P

i=1

log

2

(v

i

)(m

i

). If x = v

1

=v

0

= h

1

Æ h

2

Æ � � � Æ h

k

(0), then (m

i

) only

depends on h

i

and v

i

only depends on h

i+1

Æ � � � Æ h

k

(0). That is, the funtion an be expressed as

h = (h

1

Æ � � � Æ h

i�1

) Æ h

i

Æ (h

i+1

Æ � � � Æ h

k

) = b

i

(h) Æ h

i

Æ e

i

(h):

De�ning C

s;h

= �

k

X

i=1

�

�s

R

s;e

i

(h)

ÆR

[℄

s;h

i

Æ R

s;b

i

(h)

yields F

hi

(s) =

X

h2H

�

C

s;h

[1℄(0).

3.4. Funtional analysis. The singularities of the ost funtion an now be desribed in terms of

the singularities of the C

s;h

, and subsequently of (I�G

s

)

�1

. Analysis of (I�G

s

)

�1

determines the

values for the Tauberian theorem to be � = 2 and  = 2. Using this, Theorem 1 now follows. In the

ase of the operators related to the slow algorithms, the orresponding result is  = 3, aounting

for the log-ubed behaviour.

4. Variants and Enoding

As before, the tehnique applies to a family of variants. For example, the bit-omplexity of the

entred algorithm is asymptoti to

6 log 2

�

2

log

 

�

2

1

Y

k=3

�

2

+

2�

2

k

�1

�

2

�

2

2

k

�1

!

log

2

2

N; where � = (

p

5 + 1)=2:

Finally, the average length of a ontinued fration enoding is omputable. This is the room ou-

pied in memory by (m

1

;m

2

; : : : ;m

k

; v

k

). The enoding uses the same priniples as Fano{Shannon.

Theorem 3. The average Fano{Shannon ode-length D

N

of the ontinued fration expansion pro-

dued by the standard algorithm on valid inputs with denominator size N satis�es

D

N

�

12 log

2

�

2

 

1 +

2

log 2

log

1

Y

k=1

�

1 +

1

2

k

�

!

log

2

N:

The numerial value is 2:04868 log

2

N , whih is lose to the optimal 2 log

2

N .
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Continued Frations, Comparison Algorithms and Fine Struture Constants

Philippe Flajolet

Algorithms Projet, INRIA Roquenourt

November 8, 1999

Summary by Cyril Banderier

Abstrat

The simple problems of omparing frations (Gosper's algorithms for ontinued frations

from the Haker's Memorandum) and of deiding the orientation of triangles in omputa-

tional geometry lead to a omplexity analysis with an inursion into a surprising variety

of domains: dynamial systems (symboli dynamis), number theory (ontinued frations),

speial funtions (multiple zeta values), funtional analysis (transfer operators), numerial

analysis (series aeleration), and omplex analysis (Riemann hypothesis). These domains

all eventually ontribute to a detailed haraterization of the omplexity of omparison and

sorting algorithms, either on average or in probability. (Joint work with Brigitte Vall�ee.)

1. Introdution

To ompare two rational numbers (or similarly, to determine the sign of a 2� 2 determinant, a

relevant problem in omputational geometry) is a deliate problem when you have to work with

a numerial alulator limited to a given number of digits. For example, sine

312689

99532

�

833719

265381

�

3� 10

�11

, a omputer with 10-digit auray annot ompare \naively" the two rational numbers.

In the \Haker's Memorandum" [2℄, it is showed that it is always possible to solve this omparison

problem without exeeding the auray of the alulator. The algorithm onsists in expanding both

rational numbers in ontinued frations, but stopping as soon as one gets two di�erent oeÆients.

This algorithm is easily generalized to any number representation system (binary, d-ary, entered

or lassial ontinued fration, et.) and also to the omparison of n rational numbers.

2. Results

The funtions

�

U(x) = f1=xg and

^

U(x) = ff1=xgg (where ffygg stands for the distane to the

nearest integer from y) are the maps of lassial ontinued frations and entred ontinued frations

respetively. Under a uniform probabilisti model (over the set of legal inputs, that is, an interval

of the shape [ 0; � ℄), the number L of iterations needed to ompare two numbers satis�es P(L �

k + 1) =

P

jhj=k

�

�

h(0)�h(�)

�

�

�

2

and the moment sums of order l satisfy �

(l)

=

P

h

�

�

h(0)�h(�)

�

�

�

l

. These

sums are over the inverse branhes of U , whih appear to be linear fration operators of a spei�

shape [6℄, thus:

Theorem 1. The expeted ost of the basi (��) and entred (�̂) omparison algorithms are express-

ible as sums over lattie points in N

2

��

(l)

= 1 +

1

2

l

+

2

�(2l)

X

d<<2d

1



l

d

l

and �̂

(l)

=

2

l

�(2l)

X

d�<<d�

2

1



l

d

l

�

� =

�

1 +

p

5

�

=2

�

:
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With the help of double zeta values (also known as Euler{Zagier sums), de�ned as

�

++

(s; t) =

1

X

n=1

n�1

X

q=1

1

n

s

q

t

and �

�+

(s; t) =

1

X

n=1

n�1

X

q=1

(�1)

n

n

s

q

t

;

it is possible to rewrite ��

(2)

as a peuliar value of these multiple zeta values (this implies that ��

(2)

an be omputed to any preision in polynomial time):

Theorem 2. The mean number ��

(2)

of omparisons in the lassial ontinued fration an be

expressed in terms of double zeta values as

��

(2)

=

3

4

+

360

�

4

�

�+

(2; 2) = 17�

60

�

4

�

24Li

4

(1=2) � �

2

(ln 2)

2

+ 21�(3) ln 2 + (ln 2)

4

�

= 1:35113157:::

There exists a lot of alternative expressions, due to intriguing relations between multiple zeta

values, whih is a topi of ative researh (see [1, 5, 7℄), nowadays relevant to knot invariants,

Feynman diagrams and even the theory of perverse sheaves. For all the other moment sums,

polynomial time omputations are also possible, via some nie series/integral representations [6℄.

For the omparison of n real numbers, the ost of sorting n numbers depends on the position of the

nontrivial zeroes of the Riemann zeta funtion (see [3℄ for an approah by Dirihlet depoissonization

and Mellin transform, using the Vall�ee seant operator or [6℄ for an approah by N�orlund{Rie

integrals, via a omplex lifting of the moment sums):

Theorem 3. The expeted ost of sorting n uniform real numbers given by their lassial ontinued

fration representations satis�es

�

P (n) = n

n�1

X

l�1

(�1)

l�1

�

n� 1

l

�

��

(l+1)

= K

0

n lnn+K

1

n+Q(lnn) +O(1);

where K

0

is L�evy's entropy onstant and K

1

is a Porter-like onstant (see [4℄):

K

0

=

6 ln 2

�

2

and K

1

= 18

 ln 2

�

2

+ 9

(ln 2)

2

�

2

� 72

ln 2 �

0

(2)

�

4

�

1

2

:

The funtion Q(u) is an osillating funtion with mean value 0 that satis�es Q(n) = O(u

Æ=2

); where

Æ is any number suh that Æ > sup f<(s) j �(s) = 0 g.

For more details, we refer to Flajolet and Vall�ee's artiles, available on their web pages:

http://algo.inria.fr/flajolet and http://www.info.uniaen.fr/~brigitte.
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Continued Frations and Modular Forms

Ilan Vardi

IHES

April 3, 2000

Summary by Cyril Banderier

Abstrat

This inursion into the realm of elementary and probabilisti number theory of ontinued

frations, via modular forms, allows us to study the alternating sum of oeÆients of a

ontinued fration, thus solving the longstanding open problem of their limit law.

1. Introdution

For the readers of these proeedings,

1

it is not a seret anymore that the ontinued fration

expansion of p=q, the Jaobi symbol

�

p

q

�

, or the gd of two integers (p; q), or even Gauss' lattie

redution algorithm over phenomena of similar omputational omplexity. However for ontinued

frations, two distint ases have to be onsidered: the ontinuous and the disrete ase. The

disrete ase deals with ontinued fration expansions of rational numbers whereas the ontinuous

ase deals with ontinued frations of real (irrational) numbers.

For the ontinuous model, given the apparatus of ergodi theory, many basi results on ontin-

ued frations fall as appliation of more general theorems (see Chapter 9 in Paul L�evy's book [11℄).

Ergodi theory, whih was guessed by Maxwell and formulated by Boltzmann, onerns itself prini-

pally with quantifying how points in a ontinuous spae evolve under iteration of a transformation.

The ergodi theorem (due to Birkho� in 1931) states that for almost all initial points x

0

of the

ontinuous spae E with measure �,

lim

n!+1

1

n

n

X

j=1

f

�

T

j

(x

0

)

�

=

Z

E

f(y) d�(y):

For the disrete model, there is some kind of e�et that preludes the use of ergodi theory. At

least, results from the ontinuous model may serve as a heuristi for guessing orresponding fats

about the disrete world.

What one would need in order to make this heuristi rigorous is a kind of \ergodi theory with

an error term." This is to some extent a�orded by the introdution of Ruelle operators (see the

works by Brigitte Vall�ee in 1995) and of modular forms (see the works by Ilan Vardi in 1987{1993)

in the disrete model.

The main objet of this leture is the alternating sum of oeÆients of a ontinued fration.

A motivation for studying this is the evaluation of Legendre symbol

�

d



�

, whih essentially expresses

whether d is a perfet square modulo . This symbol an be evaluated using the Eulidean redution

1

For newomers, I highly reommend the reading of summaries of previous talks by I. Vardi [3℄ and B. Vall�ee [1℄!
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�

d



�

=

�

d mod 



�

(where ; d are odd) and the quadrati reiproity law

�



d

�

= (�1)

(�1)(d�1)=4

�

d



�

:

In fat, it was shown by Rademaher [12℄ that

�

d



�

= (�1)

(3�a�d+

P

(�1)

i

a

i

)=4

;

where

d



= [0; a

1

; : : : ; a

r

℄ (brakets stand for the expansion in ontinued fration) and 0 < a; d < ,

ad � 1 mod  with  and r odd. Note that d

�1

mod  an itself be omputed using the Eulidean

algorithm.

There is also a geometrial motivation: the alternating sum expresses the number of times that

a geodesi winds around the usp of a modular surfae.

In the ontinuous ase, Guivar'h and Le Jan [7℄ established that the average alternating sum

onverges to a Cauhy distribution with harateristi funtion exp

�

��jtj=(2 ln 2)

�

. For the disrete

ase, the stumbling blok is that even the expeted asymptotis estimated �(d; ) �

12

�

2

ln  ln ln  is

unproved (�(d; ) stands for the sum of the oeÆient of the ontinued fration of

d



). The problem

remained open until Vardi found another approah (see [15℄) via Dedekind sums.

2. Dedekind Sums

The Dedekind sum appears to be have been mistakenly de�ned and instead should have been

de�ned as the alternating sum of ontinued fration oeÆients. Historially, the Dedekind sum is

de�ned for relatively prime integers d and  as

s(d; ) =

�1

X

h=1

((hd=))((h=));

with the notation ((x)) =

(

0; if x is an integer,

x� bx � 1=2; otherwise.

This sum was introdued by Dedekind in 1876 while editing Riemann's olleted works. He used

this sum to express the funtional equation of the Dedekind � funtion

�(z) = e

�iz=12

1

Y

n=1

(1� e

2�inz

)

whih, he proved, satis�es

(1) ln �

�

az + b

z + d

�

=

(

ln �(z) +

1

2

ln(z + d) +

�i

12

�

�3 +

a+d



� 12s(d; )

�

; for  > 0,

ln �(z) +

�ib

12

; when  = 0,

where =(z) > 0, g =

�

a b

 d

�

, and a, b, , d are integers satisfying ad� b = 1. Note that

ln �(z) =

�iz

12

�

1

X

m;n=1

e

2�imnz

m

;

so ln � is holomorphi for =(z) > 0. Using the funtional equation (1) Dedekind proved a funda-

mental identity for Dedekind sums, namely the reiproity law

s(; d) =



d

+

d



+

1

d

� s(d; ):
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Note that the de�nition of the Dedekind sum gives that s(d; ) = s(d mod ; ) and the reiproity

law relates the value of s(d; ) to s(; d). It follows that s(d; ) an be omputed by using the

Eulidean algorithm, so it should be expressible in terms of the ontinued fration expansion of

d=. In fat, this is the statement of a result found independently by three authors in 1977:

Theorem 1 (Barkan [2℄, Hikerson [9℄, Knuth [10℄). If [0; a

1

; a

2

; : : : ; a

r

℄ is the regular ontinued

fration expansion of d= with r odd (with d <  and 0 < a <  suh that ad � 1 mod ) then

s(d; ) =

1

12

�

�3 +

a+ d



�

r

X

i=1

(�1)

i

a

i

�

:

It remains to �nd the distribution of the values of the Dedekind sums when  and d range over

large intervals. Vardi did so by using Paul L�evy's theorem (details in Setion 4) and for this, needed

to justify several approximations. To this aim, let us reall a few fats about modular forms and

Kloosterman sums, sine these objets appeared to be the key to the asymptoti analysis.

3. Modular Forms

The group SL(2;Z) ats on the upper half omplex planeH by

�

a b

 d

�

z =

az+b

z+d

. One now onsiders

subgroups G of SL(2;Z) ontaining every matries of SL(2;Z) ongruent to the identity matrix in

SL(2;Z=NZ). Every suh group G has a fundamental domain: an open set D � H suh that for

all z 2 H there is at most one g 2 G with g(z) 2 D and at least one g 2 G with g(z) 2 D.

De�nition. A modular form of weight k is a holomorphi funtion on H satisfying:

1) Modularity ondition: f(gz) = (z + d)

k

f(z) for g 2 G,

2) Meromorphy ondition: f(z) is bounded in the usps (i.e., parts of D going o� to in�nity).

De�nition. A non-holomorphi modular form of weight r and multiplier system � is a funtion

f(z) on H satisfying:

1') f(gz) = �(g)

�

z + d

jz + dj

�

r

f(z) (for g 2 G), and 2')

ZZ

D

�

�

f(x+ iy)

�

�

2

dxdy

y

2

<1:

Condition 2') shows that the non-holomorphi modular forms form a Hilbert spae L

2

(D;�; r)

under the Petersson inner produt

hf; gi =

ZZ

D

f(z)g(z)y

r

dxdy

y

2

:

The Kloosterman sum (introdued by Kloosterman in 1927 in a re�nement of the Hardy{Littlewood

irle method) is de�ned by

S(m;n; ) =

X

e

2�i(ma+nd)=

;

where the sum ranges over d <  for ad � 1 mod  and gd(d; ) = 1.

In 1948, Andr�e Weil proved the estimate S(m;n; ) = O(

1=2+�

). Asymptotis of sums of Kloost-

erman sums is a vivid subjet, e.g., this \kloostermania" reently sueeded [5℄ to prove that

there are in�nitely many numbers of the form x

2

+ y

4

. Sums of Kloosterman sums exhibit strong

anellations that an be estimated by making use of modular forms.

Generalized Kloosterman sums (for some subgroup G of SL(2;Z)) are de�ned by

S(m;n; ; �;G) =

X

�(g)e

2�i((m��)a+(n��)d)=(q)

;

where the sums ranges over g =

�

a 

 d

�

2 G with 0 < a < q and 0 < d < q. In the sum, q is the

smallest integer suh that

�

1 q

0 1

�

2 G and � is de�ned by e

�2�i�

= �

�

1 q

0 1

�

with 0 � � < 1.
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Goldfeld and Sarnak's formulation (see [6℄) of Kuznetsov's trae formula gives

(2)

X

<N

S(m;n; ; �;G) =

X

1=2<s

j

<1

�

j

(m;n; �;G)

N

2s

j

�1

2s

j

+O(N

�=3+"

);

where � is the best onstant that an be put in the estimate S(m;n; ; �;G) = O(

�+"

); and the sum

is over exeptional eigenvalues s

j

(de�ned hereafter) of the operator �

r

= y

2

�

�

2

�x

2

+

�

2

�y

2

�

� iry

�

�x

.

Sine �

r

has a self-adjoint extension to L

2

(D;�; r), its spetrum is disrete and real: there is

a sequene of eigenvalues going to in�nity, with only a �nite set of negative eigenvalues whih

orrespond to holomorphi modular forms if r is an even integer. The non-negative eigenvalues are

simple exept the ase � = 1=4, whih ould have multipliity 2.

Aording to Selberg's notation, one writes an eigenvalue as � = s(1 � s), with <(s) � 1=2. It

follows that there is a �nite number of exeptional eigenvalues for whih � < 1=4. An exeptional

eigenvalue orresponds to s > 1=2, while the other eigenvalues have <(s) = 1=2 (note the analogy

with the Riemann hypothesis).

For a given non-holomorphi Poinar�e series P

m

(see [4℄), the Petersson produt hP

m

; u

j

i gives

the mth Fourier oeÆient �

j

(m) of the eigenfuntion u

j

(whih is a modular form) assoiated to

the eigenvalue s

j

(1� s

j

). This allows to make expliit the �

j

's of the formula (2):

�

j

(m;n; �;G) =

q

2

�

j

(m)�

j

(n)

�

�

2

(m� �)(n� �)=q

2

�

1�s

j

�(s

j

+ r=2)�(2s

j

� 1)

(�i)

r

��(s

j

� r=2)

Finally, the following theorem provides the link between a sum of generalized Kloosterman sums

and a sum whose asymptotis allows the appliation of L�evy's theorem:

Theorem 2 (Vardi [14℄).

e

�ir=2

X

0<d<

gd(d;)=1

e

2�irs(d;)

= S

�

1; 1; ; �

r

;SL(2;Z)

�

;

where �

r

= e

2�ir

(

a+d



�3�12s(d;)

)

.

4. Limiting Distribution

One says that an arithmeti funtion f(n) has a limiting distribution F (x) if

lim

N!1

1

N

�

�

fn < N : f(n) < x g

�

�

= F (x):

In other words, one takes a histogram of values of the funtion f(n) and looks at its shape. One

method of showing that an arithmeti funtion has a limiting distribution is due to Paul L�evy (see

examples in [13℄).

Theorem 3 (Paul L�evy). If there exists a funtion g(t) ontinuous in 0 suh that

lim

N!1

1

N

X

n<N

e

itf(n)

= g(t);

then f(n) has a limiting distribution F (x) satisfying g(t) =

Z

1

�1

e

itx

dF (x).

This is simply the probabilist's terminology for the Fourier transform; g is the harateristi

funtion of the distribution.
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In order to prove the limiting distribution result for Dedekind sums (and thus for alternating

sums of ontinued fration oeÆients) one applies L�evy's theorem to s(d; )= ln . What we want

to prove is the estimate

(3) lim

N!1

X

0<d<<N

gd(d;)=1

e

its(d;)= ln 

�

�

f 0 < d <  < N : gd(d; ) = 1 g

�

�

= e

�jtj=(2�)

;

where the right-hand side orresponds to the harateristi funtion of the Cauhy distribution

Z

1

�1

�e

ity

�

2

+ y

2

dy = e

��jtj

;

with � = 1=(2�). The well-known estimate [8℄

�

�

f 0 < d <  < N : gd(d; ) = 1 g

�

�

=

3N

2

�

2

+O(N lnN)

shows that the sought estimate (3) an be rewritten as

X

0<d<<N

gd(d;)=1

e

its(d;)= ln 

� e

�jtj=(2�)

3N

2

�

2

:

Proving suh a formula presents a number of tehnial diÆulties. For example, one would like

to remove the absolute values on the right hand side, and the bothersome 1= ln  term in the

exponential. The �rst point is solved sine s( � d; ) = �s(d; ) so that the left-hand side is

independent of the sign of t. Consequently, one may restrit attention to t > 0. The seond point

is solved noting that the ln funtion does not vary very muh, and that for most values of  < N ,

ln  is almost equal to lnN . An estimate obtained by the ontinued fration formula for Dedekind

sums and the subsequent upper bound of S(d=) � (lnN)

3=2+"

for almost all d <  < N , shows

that

X

0<d<<N

gd(d;)=1

e

its(d;)= ln 

=

X

0<d<<N

gd(d;)=1

e

its(d;)= lnN

+O

�

N

2

(lnN)

�1=5+"

�

:

See [15℄ for details. The problem is therefore redued to showing that

(4)

X

0<d<<N

gd(d;)=1

e

its(d;)= lnN

� e

�t=(2�)

3N

2

�

2

; t > 0:

Summing the relation of Theorem 2 leads to

X

0<d<<N

gd(d;)=1

e

2�irs(d;)

= e

�i�r=2

X

0<<N

S

�

1; 1; ; �

r

;SL(2;Z)

�

;

so it suÆes to obtain asymptotis of the last right-hand side when r = t=(2� lnN). This is given

by the speialization of Kuznetsov's trae formula (2) with � = 1 (the trivial bound) whih yields

(1=4)

r

�A

r

(1� r=2)

N

2�r

+O(N

4=3+"

) =

1

�A

0

e

�t=(2�)

N

2

+O(N

2

= lnN)

where A

r

=

RR

D

y

r

j�(x + iy)j

4r

dxdy

y

2

is the Petersson norm of y

r=2

�

2r

(x + iy) (the eigenfuntion of

the only exeptional eigenvalue

r

2

(1�

r

2

)).
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As one easily omputes A

0

= �=3, Equation (4) is satis�ed.

5. Conlusion

This talk is based on [4℄, for more details, refer to Ilan Vardi's artiles, available from

http://www.ihes.fr/~ilan/publiations.html.

The alternating sum of oeÆients of a ontinued fration seems to be the �rst example where one

needs not only upper bounds for sums of Kloosterman sums, but also their preise asymptotis.

The following fat is noteworthy. Eulidean algorithms are fundamental is several branhes

of siene while ounting amongst the oldest known algorithms. It is another testimony of the

\unreasonable e�etiveness of mathematis" (a phrase due to Eugene Wigner [16℄) that they reveal

their �nest serets only with our reent knowledges of dynamial systems and of analytial number

theory. Long live applied mathematis!
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Frations is \Too Regular"
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Summary by Philippe Flajolet

1. Normality and Transendene

�

Emile Borel introdued the onept of normal numbers: a real is normal in base b if its expansion

in this base ontains eah k-blok a \normal" number of times, that is, with a frequeny asymptoti

to 1=b

k

. This onept of normality is losely related to the famous Borel{Cantelli lemma, a on-

sequene of whih is that almost all numbers (in a measure-theoreti sense) are normal [3℄. Borel

himself returned to the subjet towards the end of his life and onduted detailed statistial stud-

ies [4℄ on the �rst two thousand digits of

p

2 as well as on other numbers like e or �. For instane

the frequenies of appearane of 0{9 amongst the �rst 50 digits of the deimal representation of �,

� = 3:14159 26535 89793 23846 26433 83279 50288 41971 69399 3751 : : :

are respetively 1, 5, 5, 9, 4, 5, 4, 4, 5, 8, and irregularities tend to be muh smoothed out when

more digits are onsidered. Every mathematiian believes that numbers like

p

2 or � are normal in

any base. However, suh onjetures, tested nowadays to billions of digits, seem well beyond the

reah of urrent mathematial knowledge.

A similar notion of normality an be de�ned for ontinued fration expansions. Every number

has a ontinued fration expansion, for instane,

 := lim

n!1

(H

n

� logn) =

1

1 +

1

1 +

1

2 +

1

.

.

.

= =1; 1; 2; 1; 2; 1; 4; 3; 13; 5; 1; 1; 8; 1; 2; 4; 1; 1; 40; 1; 11; 3; 7; 1; 7; 1; 1; 5; 1; 49; 4; 1; 65; : : : =:

The \law of Gauss" predits the asymptoti frequeny of digit k to be log

2

�

(k + 1)

2

=(k(k + 2)

�

for

a random real number, say, uniform over (0; 1); see [8, Se. 4.5.3℄ for an agreeable introdution.

Though it is observed numerially on extensive data that many lassial onstants like

3

p

2, �, or 

obey the law of Gauss, proofs are urrently not in sight. (E.g., it is not even known whether

the ontinued fration expansion of Euler's onstant  terminates, i.e., whether the onstant  is

irrational).

Very roughly, two onjetures are believed by most to be true:

Conjeture 1. The base b expansion of any irrational algebrai number is normal.
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Conjeture 2. The ontinued fration expansion of any algebrai irrational number that is not a

quadrati number is normal. In partiular the ontinued fration digits of any suh number should

be unbounded.

Given these onjetures, one may then expet the following: base expansions or ontinued fration

expansions that are in a sense \too regular" (hene fail to satisfy the strong normality ondition)

should determine transendental numbers. The researh desribed in this talk proeeds along these

lines; see [1℄ to whih we refer for an extensive bibliography.

Sine transendene of numbers is at stake it may be appropriate to start with a few basi fats;

see Gel'fond's book [7℄ for a pleasant introdution. Liouville was the �rst in 1844 to observe that

algebrai numbers are not well approximated by rationals: if � is algebrai of degree �, then the

inequality (a one-liner),

(1)

�

�

�

�

��

p

q

�

�

�

�

>

C

q

�

; C > 0;

is satis�ed for all integers p, q with � = �. By the onverse impliation, a transendene riterion

results and, in partiular, Liouville dedued that numbers with \very sparse" non-zero digits in

some base representation, for instane,

� :=

1

X

n=0

1

10

n!

;

must be transendental. Thue, Siegel, and Roth in the twentieth entury re�ned Liouville's esti-

mate (1) by showing suessively that one ould take � >

1

2

n+ 1, � > 2

p

n, and �nally any � > 2

(Roth, 1955); see the insightful desription of the story in [2, Ch. 7℄. Suh improvements onsid-

erably enlarge the lass of numbers reognized to be transendental. For instane, the \sparse"

number

� :=

1

X

n=0

1

10

b�

n



; � > 1;

is now known to be transendental (its nonzero digits are denser than those of �). These lassial

examples thus provide a �rst lass of numbers with expliit base representations (but very sparse

non-zero digits, though!) that are provably transendental. They also entail that ontinued fration

whose digits grow \too fast" lead to transendental numbers.

For base representations and for ontinued fration expansions, transendene thus beomes

aessible to proof whenever one an derive rational approximations that are \too good". This

will be the ase, in onnetion with the results mentioned above, as soon as enough ombinatorial

regularities of sorts happen to be present in number representations.

2. Base Representations and Transendene

In 1997, Ferenzi and Mauduit [5℄ proved the following:

Theorem 1. Assume that the base b representation of � is for eah n of the form 0:U

n

V

n

V

n

V

0

n

: : : ,

where V

0

n

is a pre�x of V

n

, and the following length onditions are satis�ed:

jV

n

j ! 1; lim inf

n!1

jV

0

n

j

jV

n

j

> 0; lim sup

n!1

jU

n

j

jV

n

j

<1:

Then, the number � is transendental.
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This theorem states that a number is transendental if its base representation ontains \near-

ubes" (V

n

V

n

V

0

n

) that are \not too far" from the beginning and long enough (the length onditions).

Roughly, suh numbers turn out to be too well approximated by numbers that are \lose" to b-adi

rationals (i.e., rationals whose denominator is a power of b). They are proved to be transendental

by virtue of a theorem established by Ridout in 1957 (see [2, p. 68℄) that onstitutes a generalization

of the Liouville and Roth theorems to the p-adi domain.

1

Allouhe [1℄ notied that the methods

of [5℄ give a bit more. First de�ne the omplexity of a sequene fu

n

g of digits as the funtion

k 7! p(k) that ounts the number of distint bloks of length k appearing in the sequene. A normal

number (in base b) ertainly has p(k) = b

k

. Thus, we might expet in view of Conjeture 1 that

any number with p(k) < b

k

is transendental. A step in this diretion is provided by the following

theorem:

Theorem 2. Assume that p(k) is for k large enough dominated by a funtion of the form k + a.

Then x is either rational or transendental.

The proof relies on ombinatorial properties of sequenes of low omplexity. The ase is redued

by a suitable morphism

2

) to that of Sturmian sequenes, that is, binary sequenes suh that p(k) =

k + 1. For these a suitable version of Theorem 1 an be applied.

Extending Theorem 2 to sequenes of omplexity p(k) = O(k) seems to be hard. Cases of

speial interest amongst sequenes of omplexity O(k) are those that are determined by iteration

of morphisms

3

that are \simple enough". For example:

1. the Fibonai sequene, i.e., the �xed point of the morphism 0 7! 01, 1 7! 0 that starts as

0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1;

2. the Thue{Morse sequene de�ned by the morphism 0 7! 01, 1 7! 10, that starts as

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1:

(Note: there seems to be gaps in tehnial results of Loxton and van der Poorten onerning the

transendene of automati sequenes.) Zamboni and Allouhe proved reently:

Theorem 3. If the binary expansion of a real number is the �xed point of a morphism that is either

\primitive" (e.g., the Fibonai sequene) or of �xed length (e.g., the Thue{Morse sequene), then

this number is either rational or transendental.

There, the notion of primitivity is the one familiar from the theory of positive matries and

Markov hains [6℄.

3. Continued Fration Expansions and Transendene

Somewhat similar results have been established for ontinued frations (abbreviated as CF)

whose digits|one also says quotients|are too regular. Results here are due to Davison, Que��ele,

Zamboni and Allouhe. A speial rôle is played in this ontext by quadrati irrationals whose

CF expansion is eventually periodi. A theorem of Shmidt relates approximability by quadrati

irrationals to transendene. (It is in a sense the analogue of the re�nements of Liouville's riterion.)

Roughly, like what happens with base representations, too muh ombinatorial regularity is shown

to imply transendene.

1

Ridout's theorem is: If � is an algebrai number and � > 0 is arbitrary, then there exist only �nitely many integers

p, q omprised solely of a �xed set of primes suh that j�� p=qj < q

��

.

2

A morphism here is a substitution of letters by words.

3

Note that a general sequene de�ned by iteration of a morphism may have omplexity of the order of k

2

.
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We shall only quote here two typial results surveyed in [1℄ that are relative to CF digit sequenes

of omplexities (k + 1) and O(k).

Theorem 4. 1. If the sequene of CF digits of a number � is a Sturmian sequene (i.e., a

binary sequene of omplexity k + 1), then the number � is transendental.

2. Let � be irrational and let the sequene of CF digits of a number � be de�ned as

a

n

= 1 +

�

bn� mod 2

�

;

Then, the number � is transendental.

Thus CF representations orresponding to digit sequenes of low omplexity produe transen-

dental numbers. This is supplemented by other results (see [1, 9℄) implying for instane that the

numbers (in CF representation) de�ned by any nontrivial rewriting of the Thue{Morse sequene is

transendental.
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Abstrat

We study the problem of routing permutations on trees. We show that this problem is

NP-hard but that it is 5=3-approximable. For a linear network or for a star tree network,

the problem is polynomial and we give its average omplexity. We extend these results and

obtain an upper bound for arbitrary trees. This talk is based on a joint work with Mario

Valenia-Pabon, Dani�ele Gardy, Dominique Barth, and Alain Denise [4℄.

1. Introdution

The routing problem on ommuniation networks onsists in the eÆient alloation of resoures

to onnetion requests. In the ase of all-optial networks, data is transmitted on lightwaves

through optial �ber, and several signals an be transmitted through a �ber link simultaneously

provided that di�erent wavelengths are used in order to prevent interferenes [3℄. As the number

of wavelengths is a limited resoure, it is desirable to establish a given set of onnetion requests

with a minimum number of wavelengths. Then the routing problem for all-optial networks an

be viewed as a path oloring problem: it onsists in �nding a desirable olletion of paths on the

network assoiated with the olletion of onnetion requests in order to minimize the number of

olors needed to olor these paths in suh a way that any two di�erent paths sharing a same link

are assigned di�erent olors. For simple networks, suh as trees, the routing problem is simpler, as

there is a unique path for eah ommuniation request.

Clearly, suh a routing problem an be modeled as a permutation-path oloring problem on trees.

An instane of the permutation-path oloring problem on trees is given by a direted symmetri

tree graph T on n nodes and a permutation � of the node set of T . Moreover, we assoiate with

eah pair

�

i; �(i)

�

, i 6= �(i), 1 � i � n, the unique direted path on T from node i to node �(i).

Thus, the permutation-path oloring problem for this instane onsists in assigning the minimum

number of olors to suh a permutation-set of paths in suh a way that any two paths sharing a

same ar of the tree are assigned di�erent olors.

2. De�nitions

We model the tree network as a rooted labeled symmetri direted tree T = (V;A) on n verties,

where proessors and swithes are verties and links are modeled by two ars in opposite diretions.

Let P be a olletion of direted paths on T . We assume that the verties of T are arbitrarily labeled

by di�erent integers f1; 2; : : : ; ng and that the vertex labeled n is the root vertex of T . We denote

i; j the unique direted path from vertex i to vertex j. The ar from vertex i to its father (resp.
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from the father of i to i), 1 � i � n� 1, is labeled by i

+

(resp. i

�

). We all T (i) the subtree of T

rooted at vertex i, 1 � i � n.

For any i, 1 � i � n � 1, the load of an ar i

+

(resp. i

�

) of T , denoted by L

T

(P; i

+

)

(resp. L

T

(P; i

�

)), is the number of paths in P using suh an ar, and the maximum load among

all ars of T is denoted by L

T

(P ). We all the oloring number and we denote by R

T

(P ), the

minimum number of olors needed to olor the paths in P suh that any two paths sharing a same

ar in T are assigned di�erent olors. Trivially, we have that R

T

(P ) � L

T

(P ).

We say that P is a permutation-path set on T if P represents a permutation � 2 S

n

of the vertex

set of T , where �(i) = j, i 6= j, if and only if i ; j 2 P . In the sequel we talk indi�erently

of a permutation-path set P or of the permutation � 2 S

n

that P represents. Thus, given a

permutation � 2 S

n

and a tree T on n verties, the load of the ar i

+

, resp. i

�

, 1 � i � n�1, an be

expressed by L

T

(�; i

+

) =

�

�

f j 2 T (i) j �(j) =2 T (i) g

�

�

, resp. L

T

(�; i

�

) =

�

�

f j =2 T (i) j �(j) 2 T (i) g

�

�

.

Let T be a tree on n verties. The average load of all permutations � 2 S

n

on T , denoted by

�

L

T

,

is de�ned as

�

L

T

= (n!)

�1

P

�2S

n

L

T

(�).

Proposition 1 ([7℄). There is a polynomial time algorithm to olor any olletion P of paths on

any tree suh that L

T

(P ) � R

T

(P ) �

�

(5=3)L

T

(P )

�

.

Let T be a tree on n verties. We denote by

�

R

T

the average number of olors needed to olor

all permutations in S

n

on T .

Proposition 2. Let T be a tree on n verties. Then

�

L

T

(P ) �

�

R

T

(P ) � (5=3)

�

L

T

(P ) + 1.

Let T be a tree on 2n verties. We denote by

~

R

T

the average number of olors needed to olor

all involutions in I

2n

on T .

Proposition 3. Let T be a tree on 2n verties and let

~

L

T

be the average load of all involutions

in I

2n

on T . Then

~

L

T

�

~

R

T

� (3=2)

~

L

T

.

3. Complexity of Computing the Coloring Number

We show the NP-hardness of the symmetri-path oloring problem on binary trees, answering

an open question in [2℄. For this, we use a redution similar to the one used in [6, 10℄ for proving

the NP-hardness of the general path oloring problem on binary trees. We extend this redution to

obtain NP-hardness results on very restritive instanes like involutions on both binary trees and

trees having only two verties with degrees greater than two.

Theorem 1. Let T be a direted symmetri tree and let P be a olletion of direted paths on T .

Then, omputing R

T

(P ) is NP-hard in the following ases:

{ T is a binary tree and P is a olletion of symmetri paths on T .

{ T is a binary tree and P represents an involution of the verties of T .

{ T is a tree with maximum degree greater or equal to 4, and P represents a irular permu-

tation of the verties of T .

{ T is a tree having only two degrees greater than two and P represents an involution of the

verties of T .

4. A Lower Bound for the Average Coloring Number

Let G = (V;A) be a direted symmetri graph on n verties and r a routing funtion in G whih

assigns a set of paths on G to route any permutation � 2 S

n

. Let

�

L

G;r

be the average load of all

permutations in S

n

indued by the routing funtion r, and let U � V be a subset of the vertex set

of G. We denote by (U) the ut (U;

�

U ), i.e., the set of ars f (u; v) 2 A j u 2 U; v 2 V n U g.
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Proposition 4. For any graph G = (V;A) on n verties, and any routing funtion r in G,

�

L

G;r

�

1

n

max

U�V

�

jU j(n� jU j)

j(U)j

�

:

Let T be a tree on n verties. By the previous proposition, we an dedue that the average load of

any ar i

+

of T , 1 � i � n� 1, denoted by

�

L

T

(i), satis�es

�

L

T

(i) = jT (i)j

�

n� jT (i)j

�

=n. Moreover,

for any vertex i of T , let v

T

(i) = jT (i)j=n and ~v

T

(i) = min

�

v

T

(i); 1 � v

T

(i)

�

. Let ~v

T

= max

i

~v

T

(i).

Proposition 5. Both inequalities

�

L

T

� n~v

T

(1� ~v

T

) and

�

R

T

� n~v

T

(1� ~v

T

) hold.

5. Average Coloring Number on Linear Networks

The main result is the following:

Theorem 2. The average oloring number of the permutations in S

n

to be routed on a linear

network on n verties is n=4 + (�=2)n

1=3

+O(n

1=6

) where � = 0:99615 : : :

To prove this result, we use enumerative and asymptoti ombinatorial tehniques (Theorems

3 and 4 below and results of Louhard [12℄ and Daniels and Skyrme [5℄). Our approah uses the

same methodology as Lagarias et al. [11℄ who studied involutions with no �xed point routed on the

linear network.

Let W

n

be the set of Motzkin walks of length n labeled as follows:

{ eah South-East step of height i is labeled by an integer between 1 and (i+ 1)

2

,

{ eah East step of height i is labeled by an integer between 1 and 2i+ 1.

Theorem 3. [9℄ There is a one-to-one orrespondene between the elements W

n

and those of S

n

.

We use Biane's bijetion [1℄ beause it preserves the height of our objets, i.e., the height of

a labeled Motzkin walks is equal to the height of the orresponding permutation. Moreover, the

height of a permutation is equal to its load.

Let S

n;�k

be the number of permutations in S

n

of height at most k and let S

n;k

be the number

of permutations in S

n

of height exatly k.

Theorem 4. [8, 13℄ We have the identities H

k

(z) =

X

n�0

X

�2S

n;k

z

n

=

(k!)

2

z

2k

P

?

k+1

(z)P

?

k

(z)

and

H

�k

(z) =

X

n�0

X

�2S

n;�k

z

n

=

1

1�

z

2

1� 3z �

4z

2

1� 5z �

.

.

.

1� (2k � 1)z �

k

2

z

2

1� (2k + 1)z

;

with P

0

(z) = 1, P

1

(z) = z� 1 and P

n+1

(z) = (z� 2n� 1)P

n

(z)�n

2

P

n�1

(z) for n � 1, where P

?

is

the reiproal polynomial of P , that is P

?

n

(z) = z

n

P

n

(1=z) for n � 0.

6. Average Coloring Number on Arbitrary Tree Networks

We an extend the average omplexity results on linear networks to arbitrary tree networks.

Theorem 5. The average load indued by all permutations of S

n

on T is

�

L

T

= n~v

T

(1 � ~v

T

) +

O(n

1=2

).
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Theorem 6. For all �, there exists n

0

= n

0

(�) suh that, for all n � n

0

and any tree T on n

verties, the average number of olors

�

R

T

needed to olor any permutation � 2 S

n

on T satis�es

�

R

T

� (5=3 + �)n~v

T

(1� ~v

T

).

Let ST (n) denote the direted symmetri star graph on n verties (i.e., the tree having only

one internal vertex onneted to n � 1 leaves). We all generalized star graph that we denote

by GST (�), a direted symmetri tree on n verties having k branhes onneted to eah other

by one vertex, where � = (�

1

; : : : ; �

k

) is a partition of the integer n� 1 into k parts (k > 2) and

where �

i

denotes the length of the ith branh (i.e., a branh of length �

i

is a path graph on �

i

+ 1

verties). We an also obtain the same type of results for generalized star trees and involutions

instead of permutations.

Theorem 7. Let k be a �xed integer greater than 2. The average number of olors needed to olor

any permutation � 2 S

nk+1

on a generalized star tree GST (�) having nk+1 verties and k branhes

of length n is n(k � 1)=k +O(n

1=2

).

Theorem 8. Let T be a tree on 2n verties. The average load indued by all involutions with no

�xed points � 2 I

2n

on T is

�

L

T

= 2n~v

T

(1� ~v

T

) +O(n

1=2

).
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Synhronous Deision Diagrams: a Data Struture for Representing Finite

Sequential Digital Funtions
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�

Eole normale sup�erieure

May 22, 2000

Summary by Philippe Dumas and Philippe Flajolet

Abstrat

Binary Diagrams (BDD's) are an important way to represent boolean funtions, that is,

ombinational iruits. Vuillemin proposes Synhronous Deision Diagrams (SDD's) that

are apable of representing all ausal iruits with �nite memory. The framework provides

a general basis for the analysis and synthesis of digital iruits. On the mathematial side,

it provides unexpeted onnetions between hardware design and the lassial notion of

automati sequenes in number theory.

Researhers working in iruit theory are onerned with design (given a funtion, how an it

be realized eÆiently?) and analysis (what is the funtion omputed by a given iruit?). This

talk presents a mathematial framework for the design and analysis of boolean iruits, either

ombinational (i.e., without memory) or sequential (i.e., with memory). It is superbly elegant as

well as oneptually simple. We shall start here with a review of Binary Deision Diagrams (BDD's)

that onstitute a anonial way to represent boolean funtions and serve the purpose of a gentle

introdution to the subjet. Then, we shall proeed with Synhronous Deision Diagrams (SDD's)

that an represent any type of iruit likely to be enountered in pratie (i.e., iruits with �nite

memory of the past whose output does not depend on the future). Due to severe time onstraints

imposed by the editor of the seminar proeedings,

1

the authors of this summary regret that they

annot do full justie to the work presented and refer to the paper [8℄ for an introdution to the

main ideas.

1. Binary Deision Diagrams

Let B be the boolean domain B = f0; 1g. A boolean funtion of n variables is a funtion from B

n

into B. Suh a funtion may be spei�ed by its truth table that is the sequene of its values on

its 2

n

possible inputs. Let �

n

be the set of n-ary funtions and �

n

the orresponding ardinality.

Clearly, one has �

n

= 2

2

n

, hene the identity

�

n+1

= 2

2

n+1

�

�

2

2

n

�

2

= (�

n

)

2

:

This trivial identity suggests the existene of a fundamental isomorphism

�

n+1

' �

n

� �

n

:

1

Editor's Note. I aknowledge the promptitude of the authors of the summary. Espeially their promptitude to

renegoiate deadlines.
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Indeed any boolean funtion f(x

1

; : : : ; x

n

; x

n+1

) with f 2 �

n+1

an be spei�ed by a pair (f

0

; f

1

),

where f

0

2 �

n

and f

1

2 �

n

are \speializations" of f ,

f

0

(x

1

; : : : ; x

n

) := f(x

1

; : : : ; x

n

; 0); f

1

(x

1

; : : : ; x

n

) := f(x

1

; : : : ; x

n

; 1):

Consequently, when the deomposition is iterated, any boolean funtion of n variables beomes

representable as a perfet binary tree, the binary deision tree bdt(f), whose height is n, whose

internal nodes orrespond to partial speializations of f , and whose external nodes are either the

onstant funtion 0 or the onstant funtion 1. Observe that reading the B labels of the extrenal

nodes of bdt(f) from left to right produes preisely the truth table of f .

The binary deision diagram

2

of f , bdd(f), is then nothing but the direted ayli graph (dag)

representation of this tree obtained in the usual way by sharing repeated subtrees and representing

them only one. It is lassially known that suh a dag representation of a tree of size N an

always be onstruted in time O(N); see for instane [5℄ for a disussion. Here, one has N = 2

n

for

funtions in �

n

, so that the sharing algorithm approah is of exponential time omplexity when f

is given by its truth table or, equivalently, by its tree bdt(f). In many ases, fortunately, one an

operate with polynomial time omplexity.

Here is an example. Consider the adder funtion on three variables,

f(a; b; ) = a� b� :

We purposely refrain from operating with the truth-table desription of f in order to emphasize

that BDD's are diretly aessible via a symboli alulus on boolean funtions. Here, two \sub-

funtions" are �rst obtained upon setting the variable  to either 0 or 1:

f

0

(a; b) = a� b; f

1

(a; b) = a� b� 1:

Next, speialize b, whih yields here only two (and not four!) distint funtions, namely,

f

00

(a) = a; f

10

(a) = a� 1 (with f

01

� f

10

and f

11

� f

00

).

Finally, speialize a, whih eventually leads to a redution to the two onstant funtions

f

000

() = 0; f

010

() = 1 (with f

100

� f

010

and f

110

� f

000

):

This example shows, more generally, that the BDD of the n-fold adder f(x

1

; : : : ; x

n

) an be

determined in time linear in n via basi boolean algebra alone, this despite the fat that the truth

table has size 2

n

. The onstrution in the ase of the funtion f(a; b; ) = a� b�  is desribed in

Figure 1.

Bryant has invented the BDD onept in 1986 (see [1, 2℄). The BDD of an n-ary funtion an

often be omputed in time muh less than O(2

n

) (f. the adder example), sine it aptures the

regularities that are likely to be present in most funtions ourring in pratie.

3

Also, given the

BDD's of f and g it is possible, in low polynomial time, to determine BDD's for various ompositions

of f and g like f � g, f Æ g, et. Finally, one an ordering on variables has been �xed,

4

the BDD

2

The BDD's desribed here are sometimes alled OBDD's, where the `O' stands for \ordered" and refers to a �xed

ordering on boolean variables.

3

In the worst ase, a BDD ontains up to O(2

n

=n) nodes. A similar bound [6℄ even holds on average, for a random

boolean funtion. Suh properties are also related to a famous theorem of Shannon and Muller [7, p. 763℄ to the e�et

that almost all boolean funtions have minimal iruit omplexity of the order of 2

n

=n. This theoretial disussion

is however to be ounterbalaned by the fat that funtions destined to be realized in silion are seldom hosen at

random!

4

The struture and size of a BDD depends on the ordering of variables. Several heuristis have been developed in

order to try and ome up with \good" orders.
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=0 =1

b=0 b=1 b=1b=0

a=0 a=1 a=0 a=1 a=1a=0a=1a=0

f

001

()

= 1

f

101

()

= 0

f

011

()

= 0

f

111

()

= 1

f

01

(a) = a� 1 f

11

(a) = a

f

1

(a; b) = a� b� 1

f

110

()

= 0

f

010

()

= 1

f

100

()

= 1

f

000

()

= 0

f

10

(a) = a� 1f

00

(a) = a

f

0

(a; b) = a� b

f(a; b; ) = a� b� 

a� b� 1a� b

a� b� 

a

a� 1

0 1

Figure 1. The adder funtion, f(a; b; ) = a � b � : its Binary Deision Tree

(left) and its Binary Deision Diagram (right).

0

�

1

�

0 1

0 1

a

a

0 1

1 0

a� 1

a

�

�

0 1

a� b

b

0 1

a� b� 1

b

0 1

a� b� 



Figure 2. A realization of the adder funtion based on the BDD representation

and multiplexers.

beomes a anonial representation of the funtion it represents, so that equivalene of boolean

funtions beomes deidable in time linear in the sizes of the ompat BDD representations. In

partiular, this observation makes it possible to ompare any ombinational iruit design against

a anonial spei�ation (the \semantis" of the funtion) in a omputationally eÆient manner.

This onstitutes one of the powerful impliations of the BDD onept.

Finally, we mention that one the BDD form of a boolean funtion has been obtained, a iruit

realization of proportional size is immediate: all that is needed is \Shannon's swith" also known
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as \multiplexer,"

mux (x; f; g) := `if x then f else g' = (x ^ f) _ (x ^ g);

together with entries grounded at 0 and 1. A diagrammati representation is as follows:

0

1

g

f

mux(x; f; g)

x

The way the BDD of the adder funtion \ompiles" into a iruit based on multiplexers is displayed

in Figure 2.

2. Polynomial Representations of BDD's

As a preparation for the treatment of synhronous deision diagrams, we now introdue a repre-

sentation of boolean funtions by means of univariate polynomials with oeÆients in the binary

�eld F

2

. Let f be a boolean funtion in n variables. Its truth-table polynomial F = Tf is de�ned

as follows: interpret eah n-tuple (x

1

; x

2

; : : : ; x

m

) of boolean values as the binary representation of

an integer,

�(x

1

; : : : ; x

n

) := (x

1

x

2

: : : x

n

)

2

= x

1

2

n�1

+ � � � + x

n

;

(observe the onvention that lower order bits are on the right), and set

Tf(z) =

X

x

1

;:::;x

n

2B

f(x

1

; x

2

; : : : ; x

n

)z

�(x

1

;:::;x

n

)

:

For instane the adder funtion f(a; b; ) = a� b�  has the standard truth table

x

1

x

2

x

3

000 001 010 011 100 101 110 111

�(x

1

; x

2

; x

3

) 0 1 2 3 4 5 6 7

f(x

1

; x

2

; x

3

) 0 1 1 0 1 0 0 1

so that its truth-table polynomial is

Tf(z) = z + z

2

+ z

4

+ z

7

:

The BDD algorithm is amenable to interpretation in this formalism. De�ne the two \setioning"

operators on polynomials F

2

[z℄ by

S

0

�

X

k

f

k

z

k

�

=

X

k

f

2k

z

k

; S

1

�

X

k

f

k

z

k

�

=

X

k

f

2k+1

z

k

:

(The de�nition is also valid for power series of F

2

[[z℄℄, a fat to be used later.) The speialization

of the last bit in a funtion f(x

1

; : : : ; x

n

) is then seen to be isomorphi to setioning. Indeed, a

simple alulation shows that

S

0

T

�

f(x

1

; : : : ; x

n�1

; x

n

)

�

= T

�

f(x

1

; : : : ; x

n�1

; 0)

�

S

1

T

�

f(x

1

; : : : ; x

n�1

; x

n

)

�

= T

�

f(x

1

; : : : ; x

n�1

; 1)

�

:

Consequently, the BDD onstrution an be regarded as being equivalent to deomposing a poly-

nomial by means of S

0

, S

1

until an eventual redution to the onstants 0 and 1 is attained. In

this framework, the BDD algorithm applied to the adder example orresponds to the tree and the

diagram of Figure 3.
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Figure 3. Polynomial representations of the Binary Deision Tree and the Binary

Deision Diagram of the ternary adder.

3. Synhronous Deision Diagrams

In all generality, a sequential funtion maps in�nite sequenes of binary inputs into in�nite

sequenes of binary outputs. It thus takes as input a \stream" of bits (x

t

)

t�0

and produes another

\stream" (y

t

)

t�0

. In other words, a sequential funtion is a mapping from B

1

to B

1

. For pratial

purposes, additional onstraints must learly be imposed on the sequential funtions onsidered.

First, we say that a funtion f from B

1

to B

1

is ausal when the output at time t depends

exlusively upon the input values from times 0 through t. In what follows, only ausal funtions are

onsidered. (For the mathematially inlined reader, we note that ausal funtions are partiular

ontinuous funtions on the set B

1

endowed with the topology indued by the metri d(a; b) =

2

�minf t ja

t

6=b

t

g

.)

For f ausal, we let f

t

be the output at time t:

y

t

= f

t

(x

0

; : : : ; x

t

):

By analogy with the speialization of ombinational funtions, we de�ne the preditors, $

0

f

and $

1

f , by the properties:

($

0

f)

t+1

= f

t

(x

0

; : : : ; x

t

; 0); ($

1

f)

t+1

= f

t

(x

0

; : : : ; x

t

; 1):

These preditors tabulate whih value of f will be taken when the input bit to arrive next is

speialized to 0 or 1. For b

0

: : : b

r

a sequene of bits, we then have the (generalized) preditor of

order r + 1,

$

b

0

:::b

r

f = $

b

r

: : : $

b

0

f:

By in�nite iteration, we an then onstrut the synhronous deision tree (SDT) denoted by sdt(f)

as the tree where the nodes are the quantities � = $

w

(f) and the desendents of node � are

$

0

(�), $

1

(�). The tree sdt(f) an be realized by an in�nite tree iruit using only multiplexers and

registers (i.e., iruits apable of storing one binary value), muh in the same way as ombinational

iruits are realized by �nite tree iruits. See Figure 4 for an illustration.

Next, in order to be omputable by some physial devie, a digital funtion must be ausal,

but also representable by some �nite system. To formalize this, we introdue the notion of on-line

omputable funtion: by this is meant a funtion suh that the olletion of all preditors of all
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f
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x

Figure 4. The in�nite synhronous deision tree (top) and its iruit realization (bottom).

orders forms a �nite set. In this ase, the (in�nite) tree an be onverted to a (�nite) graph

5

by

identifying nodes of the SDT assoiated with funtions that are equal. The resulting graph is alled

the synhronous deision diagram (SDD) and it is obtained by a simple algorithm: (i) build the

in�nite SDT for f ; (ii) systematially share all the subexpressions generated during this proess.

(Optionally, one may also onsider funtions f , g to be isomorphi if either f = g or f = :g; in

that ase the SDD will also involve logial negation gates but will be more ompat.)

When presented as above, the SDD algorithm looks like an in�nite proess. However, it an be

seen [8℄ that if a funtion is realizable by a �nite transduer (i.e., an automaton with output), then

the SDD algorithm terminates in �nite time. In fat, the SDD algorithm provides an integrated

alternative to the lassial design of sequential iruits.

6

In order to illustrate the SDD onept, we apply it now to the design of a iruit that takes as

input a stream of bits (x

t

) meant to represent the real number � =

P

t�0

x

t

2

�t

and produes as

output the stream (y

t

) where the real number � =

P

t�0

y

t

2

�t

satis�es � = (1=3) �. Introdue the

integers

x

(t)

= 2

t

X

s�t

x

s

2

s

; y

(t)

= 2

t

X

s�t

y

s

2

s

; t � 0;

and the arry r

t

de�ned by

x

(t)

= 3y

(t)

+ r

t

; 0 � r

t

< 3; t � 0:

An easy alulation that mimis high shool arithmetis yields

2r

t

+ x

t+1

= 3y

t+1

+ r

t+1

; t � 0:

5

Observe that, as opposed to the ase of ombinational iruits, the orresponding graph is no longer ayli sine

nodes at di�erent levels in the tree may be ollapsed.

6

A lassial onstrution starts from a spei�ation of a �nite automaton and stores the urrent state of the

automaton in binary registers while realizing the transition funtion by means of a ombinational iruit (itself

possibly optimized via BDD's).
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These formul� show that the funtion � = �=3 is ausal and that the bit y

t+1

= f

t+1

(x

0

; : : : ; x

t+1

)

depends only on the last input bit together with the \arry" r

t

that is inherited from past history.

The arry an only assume three values and aordingly the number of preditors is �nite, to the

e�et that the SDT has only six nodes. Thus, f is on-line omputable. Figure 5 shows the result

of the onstrution. (In the diagram, a transition denoted by �=� is triggered by reading the bit �

and results in produing the bit �.)

f

$

0

f $

1

f

$

00

f $

01

f $

10

f

0=0 1=0

0=0 1=0 0=0

0=0

1=0

1=1

0=0

0=1

1=1

1=1

0 1

y = f(x)

0 1

0 1

0 1

0 1

0 0

0 1

0 1

0 1

1 1

0 1

0 1

� �

�

�

�

� �

x

Figure 5. The `(1=3) �' funtion: its abstrat SDD representation (top) and the

iruit realization (bottom).
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4. Formal Power Series Representations of SDD's

A ausal funtion f is haraterized by its truth table. This is the power series representation Tf ,

an element of F

2

[[z℄℄ de�ned as

Tf(z) :=

X

t�0

X

x

0

;:::;x

t

2B

f

t

(x

0

; : : : ; x

t

)z

�(1x

0

:::x

t

)�2

:

(The orretion of �2 in the exponent is a onveniene hosen to ensure that exponents start at 0.)

We shall refer to Tf as the truth-table representation of f . This notion extends in a natural way

the orresponding de�nition for ombinational funtions. Indeed, an alternative de�nition of Tf

for ausal funtions is as follows: take F

t

as the truth table of f

t

in \listed" form, and build the

truth table of f in \listed" form by

F

0

F

1

F

2

: : : =

�

f

0

(0)f

0

(1)

��

f

1

(00)f

1

(01)f

1

(10)f

1

(11)

��

f

2

(000)f

2

(001) : : : f

2

(111)

�

: : : ;

then F (z) = Tf(z) satis�es a sort of a \generating funtion relation,"

F (z) =

�

f

0

(0) + zf

0

(1)

�

+ z

2

�

f

1

(00) + zf

1

(01) + z

2

f

1

(10) + z

3

f

1

(11)

�

+ z

6

�

f

2

(000) + zf

2

(001) + � � � + z

7

f

2

(111)

�

+ � � � ;

so that there is a simple relation between truth tables of ombinational funtions and of sequential

funtions:

F (z) =

X

t�0

z

2

t+1

�2

Tf

t

(z):

Equipped with these de�nitions, we observe the ation of setions,

S

0

F (z) =

�

f

0

(0)

�

+ z

�

f

1

(00) + zf

1

(10)

�

+ z

3

�

f

2

(000) + zf

2

(010) + � � � + z

3

f

2

(110)

�

+ � � � ;

S

1

F (z) =

�

f

0

(1)

�

+ z

�

f

1

(01) + zf

1

(11)

�

+ z

3

�

f

2

(001) + zf

2

(011) + � � � + z

3

f

2

(111)

�

+ � � � ;

whih entails

S

0

F (z) =

X

t�0

z

2

t

�1

S

0

F

t

(z) = f

0

(0) + z

X

t�0

z

2

t+1

�2

S

0

F

t+1

(z);

S

1

F (z) =

X

t�0

z

2

t

�1

S

1

F

t

(z) = f

0

(1) + z

X

t�0

z

2

t+1

�2

S

1

F

t+1

(z):

This provides a diret relation between the setions of the truth table of any ausal f and the

preditors of f , namely,

S

0

(Tf)(z) = f

0

(0) + zT($

0

f)(z); S

1

(Tf)(z) = f

0

(1) + zT ($

1

f)(z):

Now, by de�nition, f is on-line omputable when its preditors lie in a �nite set. The equation

above shows that this is equivalent to the �niteness of vetor spae over F

2

(z) of all the (iterated)

setions of the truth table. The onnetion is thereby established with what is otherwise known as

automati series;

7

see the foundational paper by Christol et al. [3℄, Dumas's thesis [4℄, and several

summaries in previous issues of the Algorithms Seminar Proeedings. We state:

Theorem 1. The truth table Tf of an online omputable funtion f is a 2-automati series.

Consequently, it is an algebrai funtion over the �eld F

2

(z).

7

A sequene is de�ned to be automati if its nth element is produed by a �nite transduer applied to the binary

representation of n; a series is automati if its sequene of oeÆients is automati. Equivalent haraterizations of

automati series are as algebrai elements over F

2

(z) or as solutions to Mahlerian equations; refer to [3, 4℄.
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Eah ausal �nite funtion f may thus be represented by a bivariate harateristi polynomial

P (z; y) so that the truth table Tf is the only root y 2 F

2

[[z℄℄ of P (z; y) = 0. Coneivably, this

theorem opens an avenue to iruit design and veri�ation by means of polynomial elimination

algorithms|typially, Gr�obner bases. Given the superexponential omplexity of algebrai elimina-

tion, it seems however to the authors of the summary that a diret approah based on linear algebra

(in aordane with standard tehniques of 2-automati series [4℄) should yield deision proedures

of lower omplexity.

5. From Ciruits to Funtions

In this setion, we show how to put to good use the formalism introdued above in order to analyse

iruits: starting from a given iruits, the goal is to determine a mathematial spei�ation of what

it does. Note that the dual problem of synthesis has been already impliitly takled on the oasion

of the \one-third" funtion (� 7! �=3).

Let us �rst onsider a iruit that takes as input a stream of bits (g

t

) and produes the stream (h

t

)

whih is the same stream delayed by 1 in time. In other words, we have h

0

= z

0

(the initialization

value) and h

t

= g

t�1

for t � 1. In the ontext of a �nite iruit, the values h

t

are desribed by

their truth table and they depend on the global input sequene x = (x

t

)

t�0

of the iruit. Thus, in

terms of the �nite boolean funtions g

t

(x

0

; : : : ; x

t

) and h

t

(x

0

; : : : ; x

t

), we have

h

0

= z

0

; h

t

(x

0

; : : : ; x

t

) = g

t�1

(x

0

; : : : ; x

t�1

) for t � 1.

This relation translates into a relation between the truth tables of the input (G) and the output (H)

of the register,

(1) H(z) = (1 + z)

�

z

0

+ z

2

G(z

2

)

�

:

Thus, in the formal power series representation, a register operates by way of the \Mahlerian

operator," G(z) 7! G(z

2

).

Consider next a multiplexer that takes as input two streams of bits a(x) and b(x) (themselves

ausal funtions of the input stream x) and assume that ontrol is ahieved by the input stream x.

The output m(x) is a ausal funtion de�ned by

m

t

(x

0

; : : : ; x

t

) = mux

�

x

t

; a

t

(x

0

; : : : ; x

t

); b

t

(x

0

; : : : ; x

t

)

�

;

whih we abbreviate as

m(x) = mux

�

x; a(x); b(x)

�

:

A little reetion shows that the truth table of m is obtained by suitably merging the truth tables

of a and b as follows

A a

0

(0) a

0

(1) a

1

(00) a

1

(01) a

1

(10) a

1

(11) a

2

(000) a

2

(001) : : :

B b

0

(0) b

0

(1) b

1

(00) b

1

(01) b

1

(10) b

1

(11) b

2

(000) b

2

(001) : : :

M b

0

(0) a

0

(1) b

1

(00) a

1

(01) b

1

(10) a

1

(11) b

2

(000) a

2

(001) : : : .

This relation translates into

(2) M(z) = (S

0

B)(z

2

) + z(S

1

A)(z

2

);

whih now involves a blend of setioning and Mahlerian operators.

Now, a �nite iruit an be translated into a system of �xed-point equations: to eah entity

is assoiated its truth table; then relations (1) and (2) (used repeatedly) provide the system of

equations. Here is an appliation to a iruit disussed in [8℄. This iruit omprises one inverter

(represented by a irle), two multiplexers, and one register that is initially set at 0. The upper

entry of the leftmost multiplexer reeives a ontinuous stream of 1's whih is represented by 1.
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0

1

1

0

w

0

1

v

y

x

�

�

What is required is to verify that the iruit omputes the funtion

� 7! � = � + 1;

where the input and output streams are now interpreted as dyadi numbers, that is

� =

X

t�0

x

t

2

t

; � =

X

t�0

y

t

2

t

; x; y 2 Z

2

:

To eah of the ows, y, v, w, one assoiates its truth table, respetively Y (z); V (z);W (z). Given

the rules (1) and (2), the strutural desription of the iruit is translated (ompiled!) into the

system of equations:

Y (z) =

�

S

0

�

1

1� z

+ V

��

(z

2

) + z (S

1

V ) (z

2

) =

1

1� z

2

+ (S

0

V ) (z

2

) + z (S

1

V ) (z

2

)

=

1

1� z

2

+ V (z);

V (z) = (1 + z)z

2

W (z

2

);

W (z) =

�

S

0

1

1� z

�

(z

2

) + z (S

1

V ) (z

2

) =

1

1� z

2

+ z (S

1

V ) (z

2

):

In order to understand the funtion omputed by the iruit, we proeed to solve this system. The

seond equation provides S

1

V (z) = zW (z), a relation that, when arried into the third equation,

gives:

W (z) =

1

1� z

2

+ z

3

W (z

2

):

Suh a funtional equation is now easily solved by iteration,

W (z) =

+1

X

k=0

z

3(2

k

�1)

1� z

2

k+1

;

and this form entails in turn

Y (z) =

+1

X

k=0

z

3�2

k

�1

1� z

2

k+1

+

+1

X

k=0

z

3�2

k

1� z

2

k+1

=

�

1

�

+ z

2

�

z + z

2

�

+ z

6

�

z + z

3

+ z

5

+ z

6

�

+ z

14

�

z + � � �

�

+ � � � :

From there, it is an easy exerise (left to the reader) to hek that the truth table Y (z) is equal to

the truth table orresponding to the dyadi funtion � 7! � + 1.
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6. Conlusion

Due to onstraints already evoked, we ould only srath the surfae in this brief

8

seminar sum-

mary. The point of view developed in the talk bases itself further on the existene of isomorphisms

between various domains. For instane, as we have seen, the boolean domain may be viewed as

B or F

2

; boolean funtions are representable as elements of F

2

[z℄; on-line omputable funtions

are equivalent to algebrai elements of F

2

[[z℄℄ and to 2-automati series. There exist several other

interesting onnetions, for instane, with the ring of dyadi integers Z

2

that form one of the on-

eptual basis of the original paper [8℄. Suh isomorphisms do inrease the expressive power of the

SDD formalism that we have opted to develop here only over B while making use of representations

in F

2

[[z℄℄.

There is also great pratial potential in the algorithms assoiated with the SDD onept. Quot-

ing from Vuillemin: The SDD of f is a yli data struture, whih represents the minimal �nite

state mahine for f . In the worst ase, its size is doubly exponential in the size of f . However,

eÆient algorithms exist to operate on the SDD representations with the following harateristis:

onstant time

9

for f(�x), f(1 + �x); linear time for :f(x), �f(x), the inverse g

�

f(x)

�

= x, and

the �xed point y = �g(x; y); quadrati time for the omposition f

�

g(x)

�

and for boolean operations,

f(x) ^ f(y), et; ubi time for the more general omposition f

�

g(x); h(x)

�

. The SDD opens an

approah to sequential iruit synthesis and veri�ation whose implementation is straightforward in

a high-level language, and whih an ope automatially with synhronous iruits of limited size.
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Bayesian Approah to DNA Segmentation into Regions with Di�erent Average

Nuleotide Composition

Vsevolod Makeev

Engel'hard Institute of Moleular Biology, Mosow

Otober 7, 1999

Summary by Mireille R�egnier

1. Biologial Motivation

Loal nuleotide omposition, that is, the distribution of nuleotides A, C, G, T along a hromo-

some, is important for many biologial issues. Moreover, loal nuleotide omposition is aounted

for in many algorithms developed to searh for di�erent patterns in DNA sequenes. We present

a method of segmentation of nuleotide sequenes into regions with di�erent average omposition.

The sequene is modelled as a series of segments; within eah segment the sequene is onsidered

as a random Bernoulli proess. The partition algorithm proeeds in two stages. In the �rst stage

the optimal partition is found, whih maximizes the overall produt of marginal likelihoods om-

puted for eah segment and prevents segmentation into short segments. In the next stage, optimal

boundaries are �ltered, and segments with lose ompositions are merged. This allows us to study

segments with the hosen length-sale.

2. Optimal Segmentation

2.1. Probabilisti formulation. A symboli sequene over an alphabet 
 of V letters is onsid-

ered as a series of segments. Eah segment is modelled as a Bernoulli random sequene. Bernoulli

probabilities are estimated from the vetor n = (n

1

; : : : ; n

V

) where n

j

denotes the number of o-

urrenes of the jth symbol in the segment. In the Bayesian approah [1℄ estimated parameters

are random variables. The probability distribution of these random variables is estimated from

the data by a bootstrapping approah. First, one assumes an initial probability distribution|the

so-alled prior distribution|that may be hosen rather arbitrarily. These probability distributions

are re-estimated from the data using the Bayes formula. The results of Bayesian estimation are

always some probability distributions of the estimated quantity. Bayesian and lassial statistis,

however, agree for large samples beause Bayesian distributions onverge to the maximal likelihood

estimation for any reasonable prior distribution. Denote the set of letter probabilities (the segment

omposition) as � = (�

1

; : : : ; �

V

) with

P

V

k=1

�

k

= 1. The likelihood of the individual sequene

is L(�) =

Q

V

k=1

�

n

k

k

. Given a omposition � = (�

1

; : : : ; �

V

), one writes the probability density

funtion p(�), with normalisation ondition

R

p(�) d� = 1.

One starts from some prior distribution p(�), say the uniform distribution on

P

k

�

k

= 1. The

omposition � of the Bernoulli random proess is piked up aording to this prior distribution, p(�).

The estimated probability density funtion p(�=n) satis�es Bayes's theorem:

p(�=n) =

L(n=�)p(�)

P (n)
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where P (n) =

R

L(n=�)p(�) d�. The normalisation onstant P (n) is alled marginal likelihood [3℄.

It reets the overall probability of the given sequene in the two stage random proess. For a

uniform prior distribution, one has:

P (n) =

(V � 1)!

(N + V � 1)!

n

1

! : : : n

V

!:

Surprisingly, this quantity is also obtained in a oneptually similar but di�erent probabilisti

model (G. Shae�er, 1999). For a sequene of length N , the probability of this sequene in the

shu�ing proedure is omputed. Numbers (n

1

; : : : n

V

) are piked up aording to uniform distribu-

tion. With the assumption that segments as independent, the omplete likelihood of the sequene

segmentation into k segments with known boundary loation is:

P =

Y

k

P

k

(n

k

):

This quantity is optimized over the set of all possible boundary on�gurations yielding the optimal

segmentation.

2.2. Dynami programming. The maximization algorithm is as follows. Consider a sequene

S = s

1

s

2

s

3

: : : s

N

of length N , where s

i

2 
. For every segment S(a; b) = s

a

: : : s

b

, one introdues

a weight W (a; b): for example, W (a; b) an be lnP

�

S(a; b)

�

. A segmentation R in m bloks is

determined as a set of boundaries R = fk

0

= 0; k

1

; : : : ; k

m�1

; k

m

= Ng, where k

i

separates s

k

and s

k+1

. Its weight is:

F (R) =

m

X

j=1

W (k

j�1

+ 1; k

j

):

For funtions determined on the segmentations, one also uses another set of variables, the indi-

ators of the boundary positions q

k

, 1 � k � N . By de�nition, q

k

= 1 if there exists a segment

boundary after the kth letter, otherwise it is 0. Below, we use the notations F (R) and F (q

1

; : : : ; q

k

)

indi�erently. The segmentation R

�

with maximal weight is omputed in a reursive manner. De-

note by R

�

(k) the optimal segmentation of the fragment S(1; k), 1 � k � N . R

�

(1) is trivial.

When optimal segmentations R

�

(1), . . . , R

�

(k � 1) are known, the optimal segmentation R

�

(k) is

found using the following reurrene expression:

(1) F

�

R

�

(k)

�

= max

0�i�k�1

�

F

�

R

�

(i)

�

+W (i+ 1; k)

�

;

with F

�

R

�

(0)

�

= 0. This equation yields the algorithm. Sine the segmentation R

�

(k) is built in

time O(k), the total time an be estimated as O(N

2

).

2.3. Flutuations in loal omposition. It appears that segments in optimal segmentation are

usually very short. Even a random uniform Bernoulli sequene is divided into many segments.

More generally, when the sequene onsists of several random homogeneous domains, the optimal

segmentation may inlude many borders loated within the domains. This phenomenon is due

to statistial utuations of the loal nuleotide omposition in random sequenes. Thus it is

advantageous to extrat boundaries, whih separate long regions with di�erent ompositions from

those that reet statistial utuations. This an be done by penalizing those segmentations

that ontain more boundaries. The orret penalty hoie was initially hosen from omputer

simulations.
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3. Filtration of Boundaries

3.1. Partition funtion. To study the relative signi�ane of a boundary, one an alulate a

sore, that reets how the addition of this partiular boundary inuenes weights of segmentations.

Given the probability �(q) of eah segmentation q = (q

1

; : : : ; q

N

), one de�nes the partition funtion

of the segmentations in a standard way [2℄ by summing the probabilities of all possible partitions:

(2) Z(N) =

X

q

1

;:::;q

N�1

�(q

1

; : : : ; q

N�1

)

With the partition funtion at hand, one an ompute the probability of a boundary to be loated

after a partiular letter k. One omputes two partition funtions for the regions to the left and to

the right of this border, Z

L

and Z

R

respetively:

(3) �(k) =

Z

L

(k)Z

R

(N � k)

Z(N)

:

3.2. Dynami programming. The partition funtion in (2) rewrites as follows [2℄:

(4) Z(N) =

X

q

1

;:::;q

N�1

e

F (q

1

;:::;q

N�1

)

:

To ompute the probability of a boundary after the letter k, we also need the partition funtions

of the segments to the left and to the right of this boundary, and reursive formul� to ompute

Z

L

(k) and Z

R

(k) are analogous to (1). They are obtained through the formal substitution of

operations. Summation is used instead of taking the maximum, and multipliation is used instead

of summation [2℄. Equation (1) beomes:

Z

L

(k) =

k�1

X

j=0

e

W (j+1;k�1)

Z

L

(j);

Z

R

(k) =

N

X

j=k

e

W (k;j)

Z

R

(j);

with boundary onditions Z

L

(0) = Z

R

(N+1) = 1 andW (k�1; k) =W (N;N+1) = 0. An obvious

modi�ation of dynami programming alulates the partition funtion in the ase when only the

given set of boundaries is allowed.

3.3. Filtration strategy. For the best result one should ombine alulation of optimal segmen-

tation with �ltration. At the �rst stage, an optimal segmentation is found. Then a ut-o� value

is hosen and all the boundaries with probabilities (3) lower than that ut-o� value are removed.

The resulting set of boundaries usually is not optimal in the sense that some boundaries an also

be removed, yielding a on�guration with a higher probability P . So an additional round of opti-

misation is performed, removing some boundaries. Iterations onverge rapidly to the stable set of

boundaries all of whih have the partition funtion probabilities greater than the ut-o� value.
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Enumeration of Autoorrelations and Computation of Their Populations

�

Eri Rivals

LIRMM, Universit�e Montpellier II

November 22, 1999

Summary by Pierre Niod�eme

Abstrat

This talk presents in a �rst part Guibas and Oldlyzko's haraterization of autoorrela-

tions and in a seond part algorithms developed by

�

Eri Rivals with Sven Rahmann (TBI,

DKFZ, Heidelberg) to enumerate the autoorrelations and to simultaneously ompute their

populations.

1. Introdution

An interesting statistis about a random text of size N is the number of di�erent words of a

given size n it ontains, or, equivalently, how many words of size n are missing in the random text.

These statistis are losely linked with the autoorrelations of the words, that are sets of periods

of the words. We onsider here the enumeration of autoorrelations and the populations of the

autoorrelations, originally studied by Guibas and Odlyzko [3℄. The original motivation of Rivals

and Rahmann omes from searhing genomi databases with q-grams [1℄.

2. De�nitions

We onsider a �nite alphabet �. Let w = w

1

w

2

� � �w

n

where w

i

2 �. A period of w is an integer

p suh that for all i between 1 and n�p we have a

i

= a

i+p

. As an example, the word abraadabra

has for periods 0, 7, and 10. Its fator abra has for periods 0 and 1. The autoorrelation vetor

of a word w, denoted by V (w), is the binary vetor V = (v

0

; v

1

; : : : ; v

n�1

) suh that v

i

is equal to

one if i is a period of w and to zero otherwise. Alternatively, the autoorrelation will be denoted

by the orresponding binary word v

0

v

1

� � � v

n�1

. We denote �(w) the set of autoorrelations of the

word w.

We are interested in statistis about the whole set of words of size n and therefore denote �(n)

the set of autoorrelations of size n and �(n) its ardinality.

The periods have the following properties:

1. 0 is always a period;

2. if i is a period, then for all i in the range

�

1; bn=p

�

the integer ip is a period;

3. if p and q are periods of w, with p < q, then q � p is a period of the pre�x of length n � p

of w.

Theorem 1 (Fine andWilf). Let p and q be periods of a word w, with p < q. If p+q � jwj+gd(p; q)

then gd(p; q) is a period of w.

See [2, 3℄ for this theorem.
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3. Periods in Strings

This setion follows the lines of Guibas and Odlyzko [3℄.

In order to give equivalent haraterizations of autoorrelations vetors within binary vetors in

Theorem 2 below, we now give the de�nitions of the forward and bakward propagation rules and

of the � prediate that are used in this theorem.

If p < q are periods of a word w, then q + (q � p) is also period. This gives the following rule.

De�nition 1 (Forward Propagation Rule). A binary vetor V = (v

0

; v

1

; � � � ; v

n

) satis�es the

forward propagation rule if, whenever we have v

p

= v

q

= 1 with p < q, we also have v

t

= 1 for all t

in [ p; n) suh that t = p+ i(q � p) with i = 0; 1; 2; : : : .

The bakward propagation rule asserts that if p and q are periods with p < q and if p� (q � p)

is not a period, then none of the positive integers p� i(q � p) may be a period.

De�nition 2 (Bakward Propagation Rule). A binary vetor V = (v

0

; v � 1; � � � ; v

n�1

) satis�es

the bakward propagation rule if the following ondition holds. Consider every p and q suh that

p < q � 2p with v

p

= v

q

= 1, but v

2p�q

= 0; then for all t in the range [ 0; 2p � q ℄ suh that

t = p� i(q � p) and i belongs to the interval

h

1;

j

n�p

q�p

ki

we have v

t

= 0.

We now introdue a reursive prediate on binary vetors that is equivalent to the ondition that

the binary vetor is an autoorrelation vetor. In the following, we note the shortest period of a

word v by �(v).

De�nition 3 (Reursive Prediate �). Let V = (v

0

; v

1

; : : : ; v

n�1

) be a non-empty binary vetor.

De�ne p = �(v

0

v

1

� � � v

n�1

). The vetor V satis�es the prediate � if and only if V is suh that

v

0

= 1 and V satis�es one of the following two onditions:

{ Case (A), p �

�

n

2

�

.

Let r = n mod p and q = p+r and let w = w

1

� � �w

q

be the suÆx of v

0

v

1

� � � v

n�1

of length q.

Then:

1. for all j in the range [ 1; n� q ℄, v

j

= 1 if j = ip for some i, and v

j

= 0 otherwise;

2. w

p

= 1 or r = 0;

3. if �(w) < p then �(w) > (q � p) + gd

�

p; �(w)

�

;

4. the vetor (w

1

; : : : ; w

q

) satis�es prediate �.

{ Case (B), p >

�

n

2

�

.

Let w = w

1

� � �w

n�p

be the suÆx of v

0

� � � v

n�1

of length n � p. Then for all j in the range

[ 1; n� p ℄ we have v

j

= 0 and the vetor (w

1

; : : : ; w

n�p

) satis�es prediate �.

The algorithmi hek of the prediate � requires O(n) operations on a vetor V of size n.

Theorem 2. Let V = (v

0

; v

1

; � � � ; v

n

) be a non-empty binary vetor. Then the following four

statements are equivalents:

1. V is a orrelation vetor of a binary string;

2. V is a orrelation vetor of some string;

3. v

0

= 1 and V satis�es the forward and bakward propagation rules;

4. V satis�es the prediate �.

Note that equivalene between statements 1 and 2 implies that the haraterization of an auto-

orrelation vetor is independent of the size of the alphabet.
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Autoorrelations(n)

if n = 1 then return f1g

elif n = 2 then return f11; 10g

else

�(n) := fg

# Case (A), p �

�

n

2

�

for p for

�

n

3

�

to

�

n

2

�

do

r := n mod p

q := p+ r

�(q) := Autoorrelations(q)

j

0

:= min f j j j + p > q + gd(j; p) g

for w in �(q) do

if �(w) > j

0

and p mod �(w) 6= 0 then

�(q) := �(q) [

�

�

10

p�1

�

b

n

p



�1

w

�

�

od

od

# Case (B), p >

�

n

2

�

for p for

�

n

2

�

to n do

�(n� p) := Autoorrelations(n� p)

for w in �(n� p) do

�(n) := �(n) [

�

10

p�1

w

	

od

od

return �(n)

�

end

u

p

is the word u � � �u where u is repeated p times

Figure 1. Reursive algorithm Autoorrelations.

4. An Algorithm to Enumerate all Autoorrelations of Size n

We use the prediate � to build a reursive bottom-up proedure that onstruts autoorrelation

vetors. To this end, note that the ondition (2) of Case (A) of the prediate � is equivalent to

�(w) does not divide p and �(w) > j

0

= minf j j j + p > q + gd(j; p) g:

Algorithm Autoorrelation to enumerate all autoorrelations until size n is given in Figure 1.

Implementation. The autoorrelations are stored as binary vetors. The implementation has been

done as an iterative proedure, although the algorithm presented in Figure 1 is reursive. Note

that in Case (A) of the algorithm the tests of onditions (a) and (b) of the � prediate an be done

in O(1) operations. Moreover only the valid subset of �(q) is omputed.

Complexity and optimality. Eah bit of an autoorrelation is omputed only one. The omplexity

is unknown, no lose formula for the number of autoorrelations of size n being known.
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Asymptoti bounds. Guibas and Odlyzko [3℄ give the following bounds for the logarithm of the

number �(n) of autoorrelations of size n:

b

l

=

�

1

2 log 2

+ o(1)

�

log

2

n � log �(n) �

�

1

2 log(3=2)

+ o(1)

�

log

2

n:

For numerial omputations up to n = 200, Rivals and Rahmann obtain �(n) < b

l

. They onjeture

that the asymptoti value of �(n) is b

l

, the lower bound of Guibas and Odlyzko.

5. Computation of the Populations of Autoorrelations

In this setion, the size n of the autoorrelations vetors is �xed.

De�nition 4. The population N of an autoorrelation vetor V is de�ned as

N(V ) = Card fw j V is the autoorrelation vetor of w g:

We de�ne a partial order � on the autoorrelation vetors by V = v

0

v

1

� � � v

n�1

� V

0

=

v

0

0

v

0

1

� � � v

0

n�1

if for all i in [ 0; n � 1 ℄, v

0

i

= 1 whenever v

i

= 1. We also de�ne the total order

� by V � V

0

if the word v

0

v

1

� � � v

n�1

preedes lexiographially the word v

0

0

v

0

1

� � � v

0

n�1

. Then

V � V

0

implies V � V

0

. Autoorrelation vetors of size n are sorted along the total order � and

numbered along this order from 1 to �(n). The notation V

k

refers to the vetor at rank k in this

order.

De�nition 5. The number �

k

of free haraters of the autoorrelation V

k

is the number of har-

aters that we an hoose freely to build a word with the orrelation V

k

. The other haraters are

determined by the periods of the autoorrelation.

With an alphabet of size �, for k from � (= �(n)) to 1, we get

N(V

k

) = �

�

k

�

X

k<j<� and V

j

�V

k

N(V

j

):

The implementation is quadrati in �(n).
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Abstrat

Two algorithmi shemes are broadly used to onstrut a tree distane based on a dissim-

ilarity. The �rst one, initially used for hierarhies, onsists in iteratively agglomerating

pairs of leaves until only three leaves remain, whih orresponds to a unique tree struture.

The seond one starts with a tree on three leaves and iteratively grafts the objets on the

previously build tree. On top of those two onstrution shemes, the exhange of subtrees

is used to iteratively improve the trees obtained by either of the shemes above. We show

that, independently of the optimized riterion, these shemes generally indue trees of quite

di�erent shapes. The agglomerative sheme tends to produe ompat trees with low diam-

eter, whereas grafting and exhange tend to generated more outstrethed trees with high

diameter. This phenomenon is explained by the di�erene between prior probability distri-

butions indued by eah of these shemes. We illustrate this very distint di�erene by the

data of the mitohondrial Eve.
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Abstrat

The aim of this work is to design eÆient algorithms for string mathing. For this purpose,

we introdue a new kind of automaton: the fator orale, assoiated with the string p to

be reognized in a text. This leads to simple algorithms whih are as eÆient in time as

already known ones, while using less memory. This is a joint work with Cyril Allauzen and

Maxime Crohemore.

1. Introdution

The eÆieny of string mathing algorithms depends on the underlying automaton whih rep-

resents the string p to be found in the text. Ideally, this automaton A should satisfy the following

properties:

1. A is ayli;

2. A reognizes at least the fators of p;

3. A has the fewer states as possible;

4. A has a linear number of transitions aording to m, the length of p. (Suh an automaton

has at least m+ 1 states.)

The suÆx or fator automaton [3, 5℄ satis�es 1., 2., and 4. but not 3. whereas the subsequene

automaton [2℄ satis�es 1., 2., and 3. but not 4. We present in Setion 2 an intermediate struture

alled fator orale: an automaton with m + 1 states that satis�es all the above requirements.

Setion 3 is devoted to the study of a string mathing algorithm based on the fator orale.

2. Constrution of the Fator Orale

The fator orale of a word p = p

1

p

2

: : : p

m

, denoted Orale(p), is the automaton built by the

algorithm Build Orale (Figure 1). All the states of the automaton are �nal. Figure 2 gives the

fator orale of the word p = abbbaab. On this example, the reader will notie that the word aba is

reognized whereas it is not a fator of p.

Here are some notations whih are used in the following. The set of all pre�xes (resp. suÆxes)

of p is denoted by Pref(p) (resp. Su�(p)). The word pref

p

(i) is the pre�x of length i of p for

0 � i � m. For any u 2 Fat(p), we de�ne

pour(u; p) = min

�

jzj

�

�

z = wu and p = wuv

	

;

the ending position of the �rst ourrene of u in p. For any u 2 Fat(p), we de�ne the set

endpos

p

(u) = f i j p = wup

i+1

: : : p

m

g:
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Build Orale(p = p

1

p

2

: : : p

m

)

For i from 0 to m

Create a new state i

For i from 0 to m� 1

Build a new transition from i to i+ 1 by p

i+1

For i from 0 to m� 1

Let u be a minimal length word in state i

For all � 2 �; � 6= p

i+1

If u� 2 Fat(p

i�juj+1

: : : p

m

)

then build a new transition from i to i+ pour(u�; p

i�juj+1

: : : p

m

) by �

Figure 1. High-level onstrution of the Orale.

0

a

1 2 3 4 5 6 7

aa

b b b

a b

b

a

a

Figure 2. Fator orale of abbbaab.

Given two fators u and v of p, we write u �

p

v if endpos

p

(u) = endpos

p

(v).

The authors prove in [1℄ the following lemmas.

Lemma 1. Given a state i of Orale(p), let u 2 �

�

be a minimal length word among the words

reognized in i. Then u 2 Fat(p) and i = pour(u; p).

Corollary 1. For any state i of Orale(p), there exists an unique minimal length word among the

words reognized in state i.

We denote min(i) the minimal length word of state i.

Corollary 2. Let i and j be two states of Orale(p) suh that j < i. Then min(i) annot be a

suÆx of min(j).

Lemma 2. Let i be a state of Orale(p). Then min(i) is a suÆx of any word  2 �

�

whih is the

label of a path leading from state 0 to state i.

Lemma 3. Any word w 2 Fat(p) is reognized by Orale(p) in a state j � pour(w; p).

Corollary 3. Let w 2 Fat(p). Every word v 2 Su�(w) is reognized by Orale(p) in a state

j � pour(w).

Lemma 4. Let i be a state of Orale(p). Any path ending by min(i) leads to a state j � i.

Lemma 5. Let w 2 �

�

be a word reognized by Orale(p) in i. Any suÆx of w is reognized in a

state j � i.

Lemma 6. The number T

Or

(p) of transitions in Orale(p = p

1

p

2

: : : p

m

) satis�es m � T

Or

(p) �

2m� 1.

The high-level onstrution of the fator orale is equivalent to the on-line algorithm given in

Figure 3. An example of this onstrution is shown in Figure 4.

Exemple. The on-line onstrution of Orale(abbbaab) is given Figure 4.
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Fontion add letter(Orale(p = p

1

p

2

: : : p

m

), �)

Create a new state m+ 1

Create a new transition from m to m+ 1 labeled by �

k  S

p

(m)

While k > �1 and there is no transition from k by � Do

Create a new transition from k to m+ 1 by �

k  S

p

(k)

End While

If (k = �1) Then s 0

Else s where leads the transition from k by �.

S

p�

(m+ 1) s

Return Orale(p = p

1

p

2

: : : p

m

�)

Orale-on-line(p = p

1

p

2

: : : p

m

)

Create Orale(�) with:

one single state 0

S

�

(0) �1

For i 1 �a m Do

Orale(p = p

1

p

2

: : : p

i

) add letter(Orale(p = p

1

p

2

: : : p

i�1

); p

i

)

End For

Figure 3. On-line onstrution of Orale(p = p

1

p

2

: : : p

m

).

0

(a)

10
a

(b) Add a.

b

0 1 2
a b

() Add b.

b

0 1 2 3
a b b

(d) Add b.

b

0 1 2 3 4
a b b b

(e) Add b.

b

0 1 2 3 4 5
aa b b b

a

a

(f) Add a.

b

0 1 2 3 4 5 6
aa b b b a

a

a

a

(g) Add a.

b

0 1 2 3 4 5 6 7
aa b b b a b

a

a

a

(h) Add b.

Figure 4. On-line onstrution of Orale(abbaba).
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3. String Mathing

The authors replae the suÆx automaton with a fator orale in the BDM (for bakward dawg

mathing) [4, 6℄, obtaining the BOM (for bakward orale mathing) algorithm.

The BOM algorithm onsists in shifting a window of size m on the text. For eah new position

of this window, the fator orale of the mirror image of p is used to searh the suÆx of the window

from right to left. The basi idea is that if this bakward searh fails on a letter � after the reading

of a word u then �u is not a fator of p and the beginning of the window an be shifted just after �.

The worst-ase omplexity of BOM is O(nm).

The average omplexity of the original BDM is in O

�

n log

j�j

(m)=m

�

under a uniform Bernoulli

model. In view of the experimental results (see [1℄), the authors laim that their new BOM algorithm

is also optimal on average:

Conjeture 1. Under a model of independene and equiprobability of letters, the BOM algorithm

has an average omplexity of O

�

n log

j�j

(m)=m

�

.

The authors show in [1℄ how to obtain a linear (in n) worst ase algorithm from the BOM.
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On Random Graph Homomorphisms into Z
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Abstrat

The study of Lipshitz funtions on graphs and metri spaes is rather advaned. Uniform

measure on graph homomorphisms into Z provides a model for looking at typial Lipshitz

funtions. Given a bipartite onneted �nite graph G = (V;E) and a vertex v

0

2 V , we

onsider a uniform probability measure on the set of graph homomorphisms f : V ! Z

satisfying f(v

0

) = 0. This measure an be viewed as a G-indexed random walk on Z,

generalizing both the usual time-indexed random walk and tree-indexed random walk. We

will present several general inequalities for G-indexed random walks, inluding an upper

bound on utuations implying that the distane d

�

f(u); f(v)

�

between f(u) and f(v), is

stohastially dominated by the distane to 0 of a simple random walk on Z having run for

d(u; v) steps. We will also disuss various speial ases, some onjetures and algorithmi

aspets of these models.
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Distributional Analysis of Reursive Algorithms by the Contration Method

Ralph Neininger

University of Freiburg

November 22, 1999

Summary by Elhanan Mossel

1. Basi Algorithms

We onsider reords whih belong to a k-dimensional region D = D

1

� � � � � D

k

� R

k

. A �le

is a �nite subset F of D. Given a query q 2 (D

1

[ f�g) � � � � � (D

k

[ f�g), the objetive is to

�nd all the reords r 2 F suh that r

i

= q

i

when q

i

6= �. The probabilisti assumption is that all

the oordinates of the reords and the queries (whih are not �) are independent uniform random

variables. For the disussion below, it is easy to see that this assumption may be replaed by a

weaker assumption that all variables are independent with the same ontinuous distribution. The

spei�ation pattern onsists of the on�guration in f�; Sg

k

of spei�ed and unspei�ed variables.

There exist several omparison-based trees:

{ Quadtrees. Eah reord x has 2

k

subtrees whih orrespond to all possible elements of

f<;>g

k

. Thus (y

0

; y

1

; y

2

) will belong to the (<;>;<) subtree of (x

0

; x

1

; x

2

) if y

0

< x

0

; y

1

>

x

1

; y

2

< x

2

. See Figure 1.

{ kD trees. Eah reord x at level l has two subtrees orresponding to x

l mod k

> y

l mod k

and

x

l mod k

< y

l mod k

, respetively.

{ Randomised kD trees. Eah reord x at level l has two hildren orresponding to x

l(x)

> y

l(x)

and x

l(x)

< y

l(x)

where l(x) are i.i.d. uniform variables in the range 0; : : : ; k � 1.

The Quadtree

The data partition the unit-cube recursively into qua-

drants. The quadtree corresponds to this partitioning.

x
x

x

x

x

1

5

3

4

2

x

x x x

x

1

2 3

4

5I =2 I =0 I =1 I =11 2 3 4

(1)

(2) (4)

(3)

 

Figure 1. A quadtree: the data partition the unit-ube reursively into quadrants;

the quadtree orresponds to this partitioning.
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{ Squarish kD trees. This is another version in whih every node has two subtrees, but the

oordinate with respet to whih we split depends more strongly on the tree struture.

The basi quantity we are after is the limit law of C

n

where C

n

is the random number of nodes

we traverse when �nding all reords whih math the query. Here n is the size of F .

2. Quadtrees in Two Dimensions

We let W = (U; V ) be the �rst key to be inserted and q = (Y; �) be the query. So U , V , and Y

are uniform i.i.d. variables. We also let I

n

be the vetor of ardinalities for the subtrees of the root.

We thus derive the following reursive distributional equation:

C

n

= 1

Y <U

�

C

1

I

n

1

+C

2

I

n

2

�

+ 1

Y >U

�

C

3

I

n

3

+ C

4

I

n

4

�

+ 1;

wherein the variables Y , U , V , and C

j

i

are independent and all the C

j

i

have the distribution of C

i

.

Given (U; V ) the variable I

n

is multi-monomial with parameters (U; V ) and n.

By previous works [1, 2, 6℄ there are known onstants �, �, and  for whih

E[C

n

℄ � n

��1

; Var[C

n

℄ � �n

2��2

:

Looking for a limit, we onsider the variable: X

n

= (C

n

�E[C

n

℄)=n

��1

.

In this way we obtain the equation:

(1) X

n

= 1

Y <U

 

�

I

n

1

n

�

��1

�

X

1

I

n

1

+ 

�

!

+ 1

Y <U

 

�

I

n

2

n

�

��1

�

X

2

I

n

2

+ 

�

!

+ 1

Y >U

 

�

I

n

3

n

�

��1

�

X

3

I

n

3

+ 

�

!

+ 1

Y >U

 

�

I

n

4

n

�

��1

�

X

4

I

n

4

+ 

�

!

�  + o(1):

By the law of large numbers we have

I

n

=n!W =

�

UV;U(1 � V ); (1 � U)V; (1 � U)(1 � V )

�

in probability. We thus obtain the following limiting equation:

(2) X = 1

Y <U

W

��1

1

(X

1

+ ) + 1

Y <U

W

��1

2

(X

2

+ )

+ 1

Y >U

W

��1

3

(X

3

+ ) + 1

Y >U

W

��1

4

(X

4

+ )� ;

where the X

i

are independent opies of X.

This suggests that we should onsider the following operator on random variables Z:

T (Z) = 1

Y <U

W

��1

1

�

Z

1

+ 

�

+ 1

Y <U

W

��1

2

�

Z

2

+ 

�

+ 1

Y >U

W

��1

3

�

Z

3

+ 

�

+ 1

Y >U

W

��1

4

�

Z

4

+ 

�

� ;

where the Z

i

's are independent opies of Z.

We now work with the following metri (on the spae of variables with zero mean and �nite

variane): l

2

(Z;Z

0

) = inf

�

E[Z�Z

0

℄

2

�

1=2

where the in�mum is taken over all ouplings of Z and Z

0

.

It turns out that this spae equipped with this metri is a Banah spae. Moreover, using the

representation of T one an see that T is a ontration on this spae. It therefore follows that there

exists a unique random variable Z whih satis�es T (Z) = Z.

The main tehnial part of the proof is showing that we obtain the same limit if we work with

the exat equations (1) instead of the approximate equations (2). This essentially uses the known

estimates that E[C

n

℄ = n

��1

�

1 + o(1)

�

. In this way we obtain the following theorem.
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Theorem 1. Let X

n

be the normalised number of traversed nodes and X the variable suh that

T (X) = X, then l

2

(X

n

;X)! 0.

3. Other Trees

3.1. Multidimensional quadtree. In a similar manner one an prove the same kind of result for

multidimensional quadtree. One of the di�erenes is that in this ase the variane Var[C

n

℄ is not

known beforehand. Instead, we guess that the right normalisation should be

X

n

=

C

n

�E[C

n

℄

n

��1

:

In this way we obtain again a limit law similar to the above: the limit X depends only on the

number of �'s in the query. Given this limit law we an now ompute a onstant whih depends

only on the number of �'s in the query suh that Var[C

n

℄ = �n

2��2

.

3.2. kD Trees. Vaguely speaking, the di�erene between quadtrees and kD trees, is that for

kD trees di�erent levels behave di�erently. Thus, in order to obtain a theorem similar to the above,

a single reursion step should go k levels forward instead of just one. Doing that, we obtain a result

similar to the above.

3.3. Randomised kD tree. The randomisation allows one to use one-level reursion, therefore

obtaining a theorem and a proof similar to the ase of quadtrees.

3.4. Squarish kD tree. It seems like the above methods do not work in this ase. This is beause

the oordinate with respet to whih we split depends on the struture of the tree and on the data

stored in it.

4. Internal Path Length in Random Trees

In the previous setions we studied the ost of a query. In this setion we onsider the ost of

building the tree whih is nothing but the sum of depths of nodes in the tree. For the quadtrees

we obtain the following reursive equation:

Y

n

=

2

d

�1

X

k=0

Y

k

I

n

k

+ n:

The artile [3℄ gives the expetation E[Y

n

℄ = (2=d)n lnn + u

d

n + o(n), but the variane was not

derived there. We guess the normalisation: X

n

=

�

Y

n

�E[Y

n

℄

�

=n. We therefore obtain the equation:

X

n

=

2

d

�1

X

i=0

I

n

k

n

X

k

I

n

k

+ C

n

(I

n

)

where

C

n

(i

0

; : : : ; i

2

d

�1

) = 1 +

1

n

2

d

�1

X

i=0

E[Y

i

k

℄�E[Y

n

℄:

Using the expetation formula we obtain:

C

n

(i) = 1 +

2

d

2

d

�1

X

i=0

i

k

n

ln

i

k

n

+ o(1):

We now ontinue in the same route as before to obtain the l

2

limit and the asymptoti variane.
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5. Find Algorithm

We onsider the following version of quiksort. We want to sort the values f1; : : : ; ng whih are

given in a random uniform permutation. In order to perform the sort we pik a pivotal element

p and ontinue sorting the elements larger than this element, and the elements smaller than this

element. The way to pik p is by taking three independent uniform keys k

1

, k

2

, k

3

and taking p to

be their median. We thus obtain the following reursion equation:

C

n

= 1

Z

n

>M

n

C

0

Z

n�1

+ 1

Z

n

<M

n

C

00

n�Z

n

+ n� 1

where M

n

is uniform in f1; : : : ; ng and Z

n

is a median of three uniform variables in f1; : : : ; ng. We

now ontinue in a similar way: it is known [4, 5℄ that E[C

n

℄ = 5n=2 + O(lnn), we guess that the

normalisation is: Y

n

=

�

C

n

� E[C

n

℄

�

=n to obtain a limit law. This limit law enables us to give

asymptoti form for all the moments: E[C

k

n

℄ � m

k

n

k

where we have a losed formula for m

k

.
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Summary by Philippe Flajolet

1. Information, Entropy, and Codes

One of the most basi problems of information theory [1℄ is that of soure oding. A soure is

by de�nition a mehanism that produes messages over a �nite alphabet A, a message of length n

being onventionally denoted by x

n

1

= (x

1

; : : : ; x

n

). A ode C is a translation mehanism (an

injetive funtion, an algorithm) that, for eah n, takes as input a message from A

n

and transforms

it into a binary sequene. Suh a translation is thus a �xed-length to variable-length enoding.

Messages have some struture. For the English language soure, the sequene `Rzqxwa gkvzzxq

wzd aaaaaaa rxbleurp' is muh less likely than the sequene `It rained yesterday over England'.

Indeed, some letters are more frequent than others, ertain letter ombinations are impossible, et.

It is then ustomary to try and apture the prinipal features of the soure by some probability

distribution of sorts over A

n

. The main models onsidered in the talk are the following.

M1. A memoryless model onsiders letters as independent identially distributed random vari-

ables, with letter i 2 A having probability p

i

. (This is sometimes alled the Bernoulli model.)

M2. A Markov model assumes an underlying �nite set of states with transition probability p

i;j

between states i and j and a mapping from states to letters.

As disovered by Shannon around 1949, information is measured by entropy. The entropy of a

probability distribution P = fp

s

g

s2S

over any �nite set S is de�ned as

H(P ) := �

X

s2S

p

s

lg p

s

;

where lg x = log

2

x. (Roughly, the de�nition extends the fat that an element in a set of ardi-

nality m needs to be enoded by about lgm bits in order to be distinguished from its ompanions

elements.) Most \reasonable" soure models have an entropy rate h; namely, if x

n

1

is randomly

drawn aording to the soure model P , then the following limit exists,

h = lim

n!1

�

1

n

X

x

n

1

2A

n

P (x

n

1

) lgP (x

n

1

):

For instane, the entropy rate of a sequene drawn aording to the memoryless model equals the

entropy of the distribution of individual haraters. For a Markov hain with transition probabili-

ties p

i;j

, the entropy rate is

h =

X

i

�

i

X

j

p

i;j

lg p

i;j

;

with �

i

the stationary probability distribution of the hain. The entropy rate of written English is

estimated to be about 1.3 bits per harater.
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Soures produe messages whih are not uniformly random and this lies at the basis of data om-

pression|the fat that one may �nd odes that tend to be shorter than the original message. (E.g.,

the present summary is ompressed by gzip at a rate of about 3.5 bits per harater.) We annot

ompress arbitrarily however. The most fundamental theorem of information is due to Shannon

and asserts the following: You annot beat entropy. In other words, any ode has an expeted length

per harater that is at least as large as the entropy rate of the soure.

Another famous theorem of Shannon goes the other diretion and asserts: The entropy rate

is asymptotially ahievable. This leaves plenty of room for algorithmi design. As a matter

of fat, oding algorithms separate into two groups: (i) odes that are designed for a spei�

(known) probability distribution over the inputs; (ii) universal odes that do not assume suh a

probabilisti distribution to be known a priori and do their best to ome lose to the optimum over

an entire lass of models. Amongst the �rst group, we �nd Hu�man odes [3, pp. 402{406℄ and

Shannon{Fano

1

odes [1, pp. 101{103℄. Amongst the seond group, the best known algorithms are

the ones due to Lempel and Ziv

2

in 1977 and 1978.

2. Redundany of Classial Codes

The odes normally onsidered are at least near-optimal with respet to the entropy lower bound.

De�ne �rst the pointwise redundany of a ode C with respet to a model P as

R

n

(C;P ;x

n

1

) := L

�

C(x

n

1

)

�

+ lgP (x

n

1

);

where L is length. Two ritial parameters are then the average redundany and the maximal

redundany de�ned by

(1)

�

R

n

(C;P ) = E

�

R

n

(C;P ;x

n

1

)

�

; R

�

n

(C;P ) = max

x

n

1

�

R

n

(C;P ;x

n

1

)

�

:

where both average and maximum are meant with respet to x

n

1

. In other words, the question

asked is: How far are we from the information theoreti optimum, either on average or in the worst

ase? There, we assume the soure distribution to be known and the ode to be �xed, and analyse

the redundany parameters of the given ode.

In this perspetive, the talk �rst reviews results relative to the lassial Hu�man ode and to a

version of Fano{Shannon odes, this in the ase of a memoryless soure. Redundany is then O(1)

but with utuations that depend on the �ne arithmeti struture of the parameters of the model

under onsideration; see Figure 1. The methods use Fourier analysis and Gleihverteilung mod 1.

Louhard and Szpankowski (1997), Savari (1997), Wyner (1998), and Jaquet{Szpankowski

(1995) proved that the Lempel{Ziv algorithms under either a memoryless or a Markov model

have rates that are �(n= logn) for LZ'78

3

and �(n log log n= log n) for LZ'77. The proofs provide

detailed asymptoti information on the redundany. The results again involve subtle utuations.

The analysis is lose to that of digital tries, with Mellin transforms playing a prominent rôle.

1

To design a Shannon{Fano ode for the distribution P on S, partition S as S = S

0

[ S

1

in suh a way that the

probabilities of S

0

and S

1

di�er by as little as possible from 1=2. All elements of S

j

are assigned a ode that starts

with j. Proeed reursively.

2

Roughly, the LZ algorithms reognize, as haraters ow, the frequently repeated bloks of letter and avoid

opying these over and over again, but instead output pointers to the loation of the �rst ourrene of suh a blok.

3

LZ'78 parses a sequene into \phrases" and outputs a pointer to the longest phrase already enountered; LZ'77

outputs a pointer to the longest fator already enountered.
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Figure 1. Hu�man ode redundany for a memoryless soure with ontrol param-

eter � = lg(1=p� 1): (a) irrational ase (p = 1=�); (b) rational ase (p = 1=9).

3. Minimax Redundany for Classes of Soure Models

The strong redundany-rate problem asks what an be ahieved when the soure model ranges

over a whole lass of soures S. Thus, the soure model is a bit onstrained but basially unknown

and the question beomes information-theoreti rather than algorithmi (no oding algorithm is

�xed any more). Consider redundanies in the sense of (1) and de�ne the minimax redundanies,

(2)

�

R

n

(S) = min

C

max

P2S

�

R

n

(C;P ); R

�

n

(S) = min

C

max

P2S

�

R

�

n

(C;P );

orresponding to an average-ase or a worst-ase senario, respetively. By their de�nitions, these

quantities represent the additional ost on top of entropy inurred (at least) by any ode (this

is min

C

) in order to be able to ope with all soures (this is max

P2S

).

It would seem that the minimax problem of estimating the quantities in (2) is intratable.

However, Shtarkov proved in 1978 that the (worst-ase) minimax redundany is narrowly bounded

by the (Shtarkov) inequalities

(3) lg

X

x

n

1

2A

n

sup

P2S

P (x

n

1

) � R

�

n

(S) � 1 + lg

X

x

n

1

2A

n

sup

P2S

P (x

n

1

):

There the quantity supP (x

n

1

) ould be termed a \maximum likelihood oeÆient" sine it desribes

the probability of any individual realization x

n

1

under the model P 2 S that assigns to it the

highest probability. Take for instane a binary word x

n

1

2 f0; 1g

n

omprising k letters 0 and n� k

letters 1, and S the lass of all memoryless models with P(0) = p and P(1) = 1 � p. Clearly, the

maximum likelihood oeÆient is given by the Bernoulli distribution whose parameter is p = k=n

(maximum likelihood probabilities equal frequenies), and its value is

�

k=n

�

k

�

(n� k)=n

�

n�k

. The

sum appearing in (3) then evaluates to

A

n

:=

X

x

n

1

2A

n

sup

P2S

P (x

n

1

) =

n

X

k=0

�

n

k

��

k

n

�

k

�

n� k

n

�

n�k

:

This has the same avour as Abel's identities. Indeed, we have

A

n

=

n!

n

n

[z

n

℄

1

�

1� T (z)

�

2

where T (z) = ze

T (z)

is the tree funtion. It is then a simple matter, by singularity analysis of the tree funtion, to get

A

n

�

1

2

n!e

n

n

n

�

r

�n

2

and lgA

n

=

1

2

lgn+ lg

r

�

2

+ o(1):
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The quantity lgA

n

is at most 1 from the minimax redundany as results from inequalities (3).

Renewal soures. Another topi of the talk is to analyse redundany for the lass of renewal

soures de�ned as follows.

M3. A renewal model starts with a random sequene (x

i

)

+1

�1

of `0's and `1's, in�nite in both

diretions and suh that the spaings between the `1's are independent identially distributed

random variables. Then extrat the window orresponding to x

n

1

= x

1

: : : x

n

. (You're sitting

under a bus shelter and reord every minute whether you're seeing a bus passing or not.)

This lass of soures makes for an interesting study sine minimax redundany turns out to

be O(

p

n ); see [2℄ for a omplete analysis.

The maximal likelihood approah leads to the onsideration of the sum

r

n

=

X

k

X

P(n;k)

�

k

k

0

; : : : ; k

n�1

��

k

0

k

�

k

0

�

k

1

k

�

k

1

: : :

�

k

n�1

k

�

k

n�1

:

There, the summation ondition P(n; k) is n = k

0

+2k

1

+ � � � , k = k

0

+k

1

+ � � � . The omputation

heavily involves the tree funtion T (z) and proeeds in several steps.

First, one disposes of the normalizing fator of k!=k

k

� e

�k

p

2�k by introduing as an artefat

a random variable K

n

and relating r

n

to E

�

p

2�K

n

�

. Seond, the distribution of K

n

is desribed

by the bivariate generating funtion

S(z; u) :=

1

Y

i=1

�(z

i

u) where �(z) =

1

1� T (ze

�1

)

:

This has roughly the harater of (the square root of) a partition generating funtion with u

marking the number of parts. Third, the saddle-point method is applied to extrat oeÆients.

Fourth, the saddle-point analysis ondues to a loal analysis near 1 that is solved by Mellin

transform tehniques. The eventual result is that

lg r

n

=

2

log 2

s

�

�

2

6

� 1

�

n�

5

8

lgn+

1

2

lg log n+O(1);

and this quantity losely approximates the minimax redundany of renewal soures by Shtarkov's

inequalities. Note the asymptoti form r

n

� e

p

n

that is typial of partition estimates.

Conlusion. The redundany problem is typial of situations where seond-order asymptotis are

essential. Suh problems of information theory are thus andidates par exellene for the methods

of analyti information theory. By this, it is meant the study of randomness in words and odes by

means of the lassial methods of analyti ombinatoris. The reader interested in these questions

will be well-advised to onsult the forthoming book by Szpankowski [4℄ and referenes therein.
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Iteration of the logisti map

F

�

(x) = 4�x(1� x); � 2 [ 0; 1)

is a lassial example of a disrete dynamial system exhibiting haos. Depending on the value of �,

the iterates of an arbitrary x 2 I = [ 0; 1 ℄ are attrated to a limit yle of size a power of 2 (see [3℄).

Figure 1 displays the values of F

50

�

(1=2); : : : ; F

100

�

(1=2) as � inreases from 0 to 1, where F

k

denotes

the kth iterate of F . Figure 2 shows an example of a trajetory with an attrating 4-yle.

To eah x 2 I is assoiated the in�nite word a(x) 2 f0; 1g

?

whose kth letter is 0 if F

k

�

(x) � 1=2

and 1 otherwise. The aim of Cristopher Moore and Porus Lakdawala [6℄ is to study the language L

formed by the set of pre�xes of all a(x) for x 2 I (the symboli dynamis of F

�

) and its evolution

as � inreases from 0 to 1. For instane, the language orresponding to � in Figure 2 is

L = 0

?

1

?

(10)

?

(1011)

?

:

This an be interpreted as follows: the �rst iterates an be smaller than 1/2, but apart from the

�xed point at 0 (where a(0) = 0

?

) they eventually get larger. Then, apart from the seond �xed

point of F

�

(where a is 1

?

) the iterates are attrated by the 4-yle, but they may �rst have a few

iterates on the other side of 1=2, hene the (10)

?

. One should also aount for those pre�xes whih

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1. The period-

doubling phenomenon.

0
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0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1x

Figure 2. 100 iterates

for � = 0:884.
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Figure 3. Limit yle

for � = 0:887.

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1x

Figure 4. Limit yle

for � = 0:89.

do not end exatly at the end of a period; this is obtained by onatenating (�j1j10j101) at the end

of L and removing (1j10) whih otherwise would be ounted twie. However, these modi�ations

introdue unneessary tehnialities and will be ignored in what follows. When � inreases further,

the 4-yle beomes repelling and gives rise to an attrating 8-yle. This does not hange L until

the third element of the yle beomes smaller than 1/2, and then

L = 0

?

1

?

(10)

?

(1011)

?

(10111010)

?

:

Examples of orresponding 8-yles are given in Figure 3 and 4.

1. Transendentality at the Transition to Chaos

This proess leads to a sequene of languages

(1) L

0

= 0

?

; L

1

= L

0

w

?

0

; L

2

= L

1

w

?

1

; : : : ;

with w

0

= 1 and w

n+1

= R(w

n

) where R is the substitution

(2) R : 0 7! 11; 1 7! 10:

Eah of these languages is regular. Their generating funtions are obtained by translation from (1):

L

0

(z) =

1

1� z

; L

n

(z) = L

n�1

(z)

1

1� z

2

n

:

The transition to haos orresponds to letting � approah 1. The limiting value of w

n

is the

�xed point of R, the Morse sequene. The limiting value of L has a generating funtion de�ned by

(3) L

1

(0) = 1; L

1

(z) =

L

1

(z

2

)

1� z

:

From this it follows that L

1

(z) has an in�nite number of singularities on the unit irle, thus L

1

(z)

is not algebrai and the orresponding language is not ontext-free. This generating funtion is

lassial: it is the generating funtion of binary partitions studied by Mahler [5℄ and de Bruijn [2℄
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who showed that the logarithm of the nth Taylor oeÆient of L

1

behaves asymptotially like

1

2 log 2

�

log

n

log n

�

2

+

�

1

2

+

1

log 2

+

log log 2

log 2

�

logn

�

�

1 +

log log 2

log 2

�

log log n+ F

�

logn� log log n

log 2

�

+ o(1);

where F is a periodi funtion with period 1 for whih a full Fourier expansion is known.

2. Staks of Staks

Sine the language L

1

is not ontext-free, it annot be reognized with a �nite amount of

memory. The question addressed by Moore and Lakdawala is to determine how simple a long-

term memory mehanism reognizing L

1

an be. This in turn is expeted to give more preise

information on the nature of the transition to haos. Two natural andidates for the mehanism

are the queue (�rst in{�rst out) and the stak (last in{�rst out).

Sine ontext-free languages are those reognized by automata with a stak (pushed-down au-

tomata) [4℄, a stak is not suÆient to reognize L

1

. A more general lass of languages is provided

by indexed languages [4, p. 389℄, whose grammars look like ontext-free grammars exept for string

indies, whih an be appended to non-terminals. Prodution rule involving an indexed non-

terminal opies this index to all non-terminals it produes. For instane, f a

n

b

n



n

j n � 0 g is not

ontext-free but it is indexed, the grammar being

S ! T

fg

; T ! T

f

; T ! ABC;

A

f

! aA; B

f

! bB; C

f

! C;

A

g

! a; B

g

! b; C

g

! :

From the start state, the �rst rule introdues a �nal g, the seond one staks any number of f 's to

produe T

f

n

g

. The third rule then produes A

f

n

g

B

f

n

g

C

f

n

g

, the rules on the seond line pop these

indies and the �nal g is popped by the rules on the third one. More generally, these languages are

reognized by nested stak automata whih resemble staks of staks.

It turns out that L

1

an be reognized by suh a grammar:

S ! 0S j T; T ! A

g

j A

g

T j T

f

;

A

f

! AB; B

f

! AA;

A

g

! 1; B

g

! 0:

The �rst rule takes are of the initial 0

?

, the seond one �rst staks a number k of f 's at the end

and then either produes an A

f

k

g

or an A

f

k

g

T

f

k

. To this �nal T

f

k

, more f 's an then be staked

by that same rule. To see that L

1

is the end result, it is then suÆient to show why A

f

k

g

atually

produes the word w

k

from (1). This follows from produtions in the seond line performing the

substitution R from (2).

3. Queues

Automata with k queues an simulate the k tapes of a multi-tape Turing mahine. However,

restriting the way the queues are aessed by imposing a bound on the number of transitions per-

formed for eah symbol of the input string leads to the lass of quasi-real-time queue automata [1℄.

The orresponding grammars are breadth-�rst grammars. In these grammars, a prodution of the

form A! sB where s is a string of terminals and B a string of non-terminals rewrites a string xAy

into xsyB and the rule has to be applied to the leftmost non-terminals �rst. Thus the string of
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non-terminals represents the queue and the string of terminals represents the part of the input that

has been read so far.

By storing the urrent w

n

on the queue and applying R when neessary to expand it, Moore and

Lakdawala show that L

1

is reognizable by a real-time deterministi queue automaton with one

queue.

4. Staks

Again, with no time restrition, two staks are suÆient to simulate a universal Turing mahine.

Exploiting the fat that w

n

is a palindrome exept for its last symbol, it an be shown [6℄ that L

1

an be reognized by a real time automaton with two staks.

The onlusion [6℄ is therefore that sine one queue is suÆient while two staks are neessary,

the long-term memory of the system has more of a FIFO harater. It is unlear however how

muh of this work an be generalized to other dynamial phase transitions.
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Abstrat

We will disuss the three-olor model on the square lattie, and the four-olor model on

the triangular lattie, from a physiist's point of view (the so-alled antiferromagneti Potts

models). Both of these have a height representation whih allows us to idealize them, at large

length sales, as being desribed by an elasti surfae. In the latter ase the height is two-

dimensional, leading to a four-dimensional surfae. We will review how suh a representation

gives rise to power-law orrelations in the system, and how defets or vorties of opposite

type attrat eah other with an entropi fore|a fore whih is driven by the fat that there

are more ways for the surrounding lattie to be olored when the defets are loser together.
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