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Fr�ed�eri Chyzak

(Editor)

Abstrat

These seminar notes onstitute the proeedings of a seminar devoted to the analysis of

algorithms and related topis. The subjets overed inlude ombinatoris, symboli om-

putation, probabilisti methods, and average-ase analysis of algorithms and data strutures.

This is the tenth in our series of seminar proeedings. The previous ones have appeared as Inria

Researh Reports numbers 1779, 2130, 2381, 2669, 2992, 3267, 3504, 3830, and 4056. The ontent

of these annual proeedings onsists of summaries of the talks, usually written by a reporter from

the audiene.

2

The primary goal of the seminar is to over the major methods for the average-

ase analysis of algorithms and data strutures. Neighbouring topis of study are ombinatoris,

symboli omputation, asymptoti analysis, probabilisti methods, and omputational biology.

The study of ombinatorial objets|their desription, their enumeration aording to various

parameters|arises naturally in the proess of analysing algorithms that often involve lassial

ombinatorial strutures like strings, trees, graphs, and permutations. Beside the traditional topis

of ombinatoris of words and algorithmis on words, over the years an inreasing interest has

been given in the seminar to biologial appliations of ombinatoris. Symboli omputation, and

in partiular omputer algebra, plays an inreasingly important role in these areas. It provides

a olletion of tools that allows one to attak omplex models of ombinatoris and the analysis

of algorithms via generating funtions; at the same time, it inspires the quest for developing ever

more systemati solutions and deision proedures for the analysis of well-haraterized lasses of

problems. Our seminar shares a large part of its audiene with Al

�

ea, a working group dediated to

the analysis of algorithms and to the analysis of properties of disrete random strutures. This year's

workshop, Alea'2001, started with a series of short ourses on various aspets of probability and

enumerative ombinatoris. It was deided to inlude leture notes for the ourses in the seminar

proeedings.

The thirty-one artiles inluded in this book represent snapshots of urrent researh in the areas

mentioned above. A tentative organization of their ontents is given below. Three Al

�

ea leture

notes follow.

PART I. COMBINATORICS

Sand piles are integer partitions that an be obtained from a olumn of grains by moving grains

from left to right aording to a spei� set of rules; their enumeration for several models is attaked

in [1℄. The abelian sand-pile model is a di�erent, 2-dimensional model, with an underlying group-

theoreti struture; several algorithms to determine the identity of this group, whih presents fratal

aspets, are onsidered in [2℄. The \s-tennis ball problem" is a ombinatorial model of a tennis

1

Partially supported by the Future and Emerging Tehnologies programme of the EU under ontrat number

IST-1999-14186 (ALCOM-FT).

2

The summaries for the past nine years are available on the web at the URL http://algo.inria.fr/seminars/.
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player who reeives s (labeled) new balls at eah of his servies. The problem of the enumeration of

all orders balls may be served is explored in [3℄ together with a generalization in whih several balls

are served simultaneously. The lassial oupon-olletor problem is extended in [4℄ to the ase

where the olletor shares his harvest with other members of his phratry. In a di�erent diretion,

e�etive manipulations of sums is a very ative researh topi. An old method by Ma Mahon

for the evaluation of sums over indies onstrained by linear homogeneous diophantine inequalities

and equations is revitalized in [5℄ and given an algorithmi status. Another intriguing type of

expansions of q-series is the topi of [6℄ and is another example of ombinatoris that reeived

reent nie symboli developments. A ombinatorial problem on permutation statistis is solved by

omputer algebra alulations in [7℄.

[1℄ Enumeration of Sand Piles. S. Corteel.

[2℄ On the Group of a Sandpile. D. Rossin.

[3℄ The Tennis Ball Problem. D. Merlini.

[4℄ Hyperharmoni Numbers and the Phratry of the Coupon Colletor. D. Foata.

[5℄ Ma Mahon's Partition Analysis Revisited. P. Paule.

[6℄ Engel Expansions of q-Series. P. Paule.

[7℄ Eulerian Calulus: a Tehnology for Computer Algebra and Combinatoris. D. Foata.

PART II. ANALYSIS OF ALGORITHMS AND COMBINATORIAL

STRUCTURES

Probalisti methods are at the heart of the analysis of several ombinatorial strutures or pro-

esses on ombinatorial strutures: the asymptoti shape of \large" random partitions is studied

in [8℄; the overing time of random walks on graphs satisfying self-avoiding properties is addressed

in [9℄; various tail bounds for oupany problems are derived in [10℄, with appliations to the

determination of the onjetured satis�ability threshold in the random k-sat problem. Dynami-

al systems are a di�erent approah used in [11℄ to analyse parameters of the data struture of

Patriia tries. Pattern mathing methods and their analysis are surveyed in [12℄. More reent

is the interest of our seminar to biologial appliations of ombinatoris, and in partiular to the

ruial problem in genomi analysis of distinguishing \biologially signi�ant" signals in sequenes

from those that are part of the ground noise. This problem has been disussed in two talks this

year, both from the biologist's point of view [13℄ and from the ombinatorial point of view [14℄.

NP-hard problems annot be solved exatly and eÆiently at the same time, and polynomial-time

algorithms for these problems an only return approximate solutions. A general method to design

polynomial-time approximate algorithms for solving suh problems is desribed in [15℄, together

with a survey on appliations. Sheduling loads between n agents trying to ahieve a global goal is

a diÆult task; the ase when no ommuniation is allowed between agents is studied in [16℄.

[8℄ Asymptotis for Random Combinatorial Strutures. A. Dembo.

[9℄ Random Walks and Heaps of Cyles. Ph. Marhal.

[10℄ Tail Bounds for Oupany Problems. P. Spirakis.

[11℄ Patriia Tries in the Context of Dynamial Systems. J. Bourdon.

[12℄ New and Old Problems in Pattern Mathing. W. Szpankowski.

[13℄ Genome Analysis and Sequenes with Random Letter Distribution. M. Termier.

[14℄ Random Sequenes and Genomi Analysis. A. Denise.

[15℄ The Primal-Dual Shema for Approximation Algorithms: Where Does It Stand, and Where

Can It Go? V. Vazirani.

[16℄ Distributed Deision Making: The Case of No Communiation. P. Spirakis.
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PART III. COMPUTER ALGEBRA AND APPLICATIONS

After integers, whose long-studied question of fatorization is surveyed in [17℄, the most funda-

mental data strutures in omputer algebra are (sorted) polynomials and series. Fast algorithms

for them are disussed in [18℄ in the univariate ase, and in [19℄ in the ase of multivariate series.

E�etive manipulations of sums by a ounterpart for reurrenes to the theory of di�erential forms

are desribed in [20℄. A new linear algebra algorithm for matries with entries in skew rings is

presented in [21℄, and has many appliations to the solving of linear ordinary di�erential equa-

tions. Examples of Hamiltonian systems are onsidered in [22℄, whih is a showase for algorithms

to solve linear ordinary di�erential equations. Two talks disuss e�etive methods for ontrol the-

ory, a new topi in the seminar: e�etive tests to apture strutural properties of ontrol systems

are desribed in [23℄, leading to Gr�obner basis alulations, while series expansions and Newton

iteration are used in [24℄ to address the question of observability.

[17℄ Thirty Years of Integer Fatorization. F. Morain.

[18℄ Variations on Computing Reiproals of Power Series. A. Sh�onhage.

[19℄ Fast Multivariate Power Series Multipliation in Charateristi Zero. G. Leerf.

[20℄ A Tutorial on Closed Di�erene Forms. B. Zimmermann.

[21℄ Transformations Exhibiting the Rank for Skew Laurent Polynomial Matries. M. Bronstein.

[22℄ A Criterion for Non-Complete Integrability of Hamiltonian Systems. D. Bouher.

[23℄ E�etive Algebrai Analysis in Linear Control Theory. A. Quadrat.

[24℄ E�etive Test of Loal Algebrai Observability | Appliations to Systems and Control

Theory. A. Sedoglavi.

PART IV. PROBABILISTIC METHODS

Brownian motion is a entral tool in probability. The area under a variant, the reeted Brow-

nian bridge, is analysed in details in [25℄. Brownian motion an be viewed as the limit of some

simple random walk on integers. Two talks study other kinds of random walks: onjetures on

the frequene of visits of points in a planar random walk are proved in [26℄; random walks on

groups are viewed in [27℄ from the point of view of probability theory, statistial physis, ergodi

theory, harmoni analysis, and group theory. A model of queues is studied in [28℄, together with

a link to random matries. The information-theoreti problem of soure oding had already been

onsidered in great generality over the past years in the seminar, the key question being to analyse

the redundany of a soure; in [29℄, di�erent models for redundany are detailed, and a general-

ized Shannon ode is introdued in order to solve the minimax redundany problem for a single

memoryless soure.

[25℄ Reeted Brownian Bridge Area Conditioned on its Loal Time at the Origin. G. Louhard.

[26℄ Cover Time and Favourite Points for Planar Random Walks. A. Dembo.

[27℄ Introdution to Random Walks on Groups. Y. Guivar'h.

[28℄ Random Matries and Queues in Series. Y. Baryshnikov.

[29℄ Information Theory by Analyti Methods: The Preise Minimax Redundany. W. Sz-

pankowski.

PART V. ASYMPTOTICS AND ANALYSIS

Linear funtional equations and their speial funtions solutions are a ommon denominator

to various topis addressed in the seminar|ombinatoris, the analysis of algorithms, omputer

algebra. Two talks in this year's seminar are analyti studies of some properties of solutions of linear

funtional equations: onnetion formulae for a q-analog to the Bessel funtion equation are derived

iii



in [30℄, generalizing the asymptoti expansion of the Bessel J

�

funtions; the Borel summation

tehnique is used in [31℄ to reover onvergent representations for everywhere divergent formal

power series solutions to some \irregular singular" problems oming from di�erential equations.

[30℄ On Jakson's q-Bessel Funtions. C. Zhang.

[31℄ On the Convergene of Borel Approximants. D. Lutz.

PART VI. ALEA'2001 LECTURE NOTES

General algebrai methods to solve ombinatorial enumeration problems with nie deompos-

ability properties are desribed in [32℄, where a entral role is played by generating funtions.

The modern view of ombinatorial analysis also makes enumerative generating funtions its entral

objets: the singularity struture of the latter, now regarded as analyti funtions of the omplex

variable, ontains all information essential to the asymptoti enumeration of the ombinatorial ob-

jets. The basis of this approah, nowadays known by the name of analyti ombinatoris, are

introdued in [33℄. Connetions between Brownian motion and related proesses (meander, bridge,

exursion) on the one hand, and ombinatorial objets like Dyk words, trees, bi-sorted permuta-

tions, ombinatorial and algorithmi problems like hashing and the parking problems on the other

hand make the partial review of the numerous properties of Brownian motion proposed in [34℄ very

welome.

[32℄ Enumerative Combinatoris: Combinatorial Deompositions and Funtional Equations.

M. Bousquet-M�elou.

[33℄ Symboli Enumerative Combinatoris and Complex Asymptoti Analysis. Ph. Flajolet.

[34℄ Al�ea disret et mouvement brownien (Disrete Randomness and Brownian Motion). Ph.

Chassaing.

Aknowledgements. The letures summarized here emanate from a seminar attended by a om-

munity of researhers in the analysis of algorithms, from the Algorithms Projet at Inria (the

organizers are Philippe Flajolet and Bruno Salvy) and the greater Paris area. The editor expresses

his gratitude to the various people who have atively supported this joint enterprise and o�ered to

write summaries. Thanks are also due to the speakers and to the authors of summaries. Many of

them have ome from far away to attend a seminar and kindly aepted to write the summary. We

are also greatly indebted to Virginie Collette for making all the organization work smoothly.

The editor,

F. Chyzak
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Enumeration of Sand Piles

Sylvie Corteel

Prism, Universit�e de Versailles - Saint-Quentin-en-Yvelines (Frane)

Otober 16, 2000

Summary by Mihel Nguy

~

ên-Th

�

ê

Abstrat

Sand piles are integer partitions that an be obtained from a olumn of n grains by moving

grains from left to right aording to rules de�ned by a model. We try to better understand

the struture of those objets by deomposing and ounting them. For the model introdued

by Goles, Morvan, and Phan, we �ng generating funtions aording to area, height, and

width. We establish a bound for the number of the sand piles onsisting of n grains in

IPM(k) for large n. We present the series aording to area and height for Phan's model

L(�). We introdue a more general model, where grains an also go to the left, that we all

Frobenius sand piles. (Joint work of S. Corteel with D. Gouyou-Beauhamps (LRI, Orsay)).

1. Preliminaries and SPM(k) Model

After the neessary basi onepts, we present here the simplest model of sand pile, i.e., the

SPM(k) model, from whih all other models are derived.

1.1. De�nitions. A sand pile made of n grains is a partition of the integer n. A partition of an

integer n is a non-inreasing sequene of positive integers � = (�

1

; : : : ; �

l

). The �

i

are alled the

parts of the partition. The area of the sand pile is the sum j�j = �

1

+ � � �+ �

l

= n. The height of

the sand pile is the number h(�) = l of parts of the partition. For any partition �, we will onsider

that �

i

= 0 for i < 1 and i > h(�). The width w(�) of the sand pile � is the largest part �

1

. The

Ferrers diagram of a partition � is a drawing of � suh that the ith olumn is a pile of �

i

paked

squares (alled grains). The rows are labelled from bottom to top. The onjugate �

0

of � is the

partition whose ith part is the number of squares in the ith olumn of the Ferrers diagram of �.

Let � = (�

1

; : : : ; �

l

) be a sand pile and �

0

=

�

�

0

1

; : : : ; �

0

�

1

�

be its onjugate. The moves of the

sand grains are of two types (see Figure 1):

1. Vertial rule: a grain an move from olumn i to olumn i+ 1 if �

0

i

� �

0

i+1

� 2, so that

�

�

0

1

; � � � ; �

0

�

1

�

is replaed with

�

�

0

1

; � � � ; �

0

i

� 1; �

0

i+1

+ 1; � � � ; �

0

�

1

�

:

2. Horizontal rule: a grain an move from olumn i to olumn j if j > i+1 and �

0

i

�1 = �

0

i+1

=

� � � = �

0

j

= �

0

j+1

+ 1, so that

�

�

0

1

; � � � ; �

0

�

1

�

is replaed with

�

�

0

1

; � � � ; �

0

i

� 1; �

0

i+1

; � � � ; �

0

j

; �

0

j+1

+ 1; � � � ; �

0

�

1

�

:

The shift is said to have length 0 or or j � i� 1, respetively.

In the SPM(k) model (Sand Pile Model), introdued by Goles and Kiwi [3℄, the initial on�gu-

ration is made of one olumn of n grains, and the only available rule is the vertial rule.



4 Enumeration of Sand Piles

(a) (b)

Figure 1. (a) Appliation of horizontal rule to (5,4,2,1) and (4,3,2,1,1); (b) appli-

ation of vertial rule to (4,4,2,1) and (4,3,2,1,1,1).

Figure 2. L

B

(6)

1.2. Generating funtion. Let p(n; k) denote the number of partitions of n of width k. Then:

F (q; x) = 1 +

X

n;k�1

p(n; k)q

n

x

k

= xqF (q; x) + F (q; xq) =

1

Y

i=1

1

1� xq

i

:

1.3. Example of bijetion. There is a bijetion between partitions with odd parts and partitions

with distint parts, as is reeted by the generating funtions identity

1

Y

i=1

1

1� q

2i+1

=

1

Y

i=1

1� q

2i

1� q

i

=

1

Y

i=1

�

1 + q

i

�

:

1.4. Order on partitions. Let � = (�

1

; �

2

; : : : ) and � = (�

1

; �

2

; : : : ) be two partitions of n. We

say that � � � if and only if there exists a sequene of moves of n indued by the rules to go

from � to �. In the SPM(k) model, this order is equivalent to the dominane order L

B

(n) [1℄ on

the onjugates: � � � if and only if

P

j

i=1

�

0

i

�

P

j

i=1

�

0

i

for all j � 1. Brylawski [1℄ showed:

Theorem 1. Let n be an integer. The set of partitions of n with the previously de�ned order is a

lattie, where the maximal element is (1; 1; : : : ; 1), and the minimal element is (n). Moreover, the

in�mum and the supremum of two partitions an be respetively de�ned as follows:

1. inf(�; �) = � suh that �

0

j

= min

�

P

j

i=1

�

0

i

;

P

j

i=1

�

0

i

�

�

P

j

i=1

�

0

i

for all j � 1.

2. sup(�; �) = � suh that �

0

j

= max

�

P

j

i=1

�

0

i

;

P

j

i=1

�

0

i

�

�

P

j

i=1

�

0

i

for all j � 1.

In Figure 2, the maximal element (1; 1; 1; 1; 1; 1) is on the left.

Length of a maximal hain. The length of a maximal hain is greater than 2n� 3 [1℄, and smaller

than 2

�

l+1

3

�

+ lj + 1 [3℄, where l and j are de�ned by n = j + l(l + 1)=2 and 0 � j � l. For n = 6,

the two bounds are equal to 9, whih shows that they both an be attained. The orresponding

maximal hain is displayed in Figure 2.
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Figure 3. Deomposition of a sand pile in IPM(1).

2. IPM(k) Model

A more realisti generalization of SPM(k) model limits the lengths of the possible horizontal

shifts of a grain.

2.1. De�nition. In [4℄, the sand piles in IPM(k) are haraterized in the following way:

Proposition 1. A sand pile in IPM(k) is a partition � = (�

1

; : : : ; �

l

) of n suh that

{ for 1 � i � l, 0 � �

i

� �

i+1

� k + 1;

{ for any i < j with �

i

� �

i+1

= k + 1 and �

j

� �

j+1

= k + 1, there exists z with i < z < j

suh that �

z

� �

z+1

< k.

2.2. Generating funtions.

2.2.1. Area and height.

Theorem 2. The generating funtion S

k

(q; x) of IPM(k) sand piles, with q and x respetively

ounting area and height, satis�es

S

k

(q; x) = 1 +

X

�2IPM(k)

x

l(�)

q

j�j

= 1 +

k

X

i=1

xq

i

1� xq

i

S

k

(q; xq

i

) + xq

k+1

S

k

(q; xq

k

):

Proof. A sand pile in IPM(k) is either the empty partition, or a partition in IPM(k) where one

dupliates i times the highest olumn and adds to it at least one part i (1 � i � k), or a partition

in IPM(k) where one dupliates k times the highest olumn and adds to it one part of length k+ 1.

This deomposition yields the last expression for S

k

(q; x) in the statement of the theorem, after

noting that S

k

(q; xq

r

) is the generating funtion obtained by dupliating r times the highest olumn

in eah sand pile. �

Note the partiular ases:

S

1

(q; x) = 1 +

X

n�1

x

n

q

n(n+1)=2

n

Y

i=1

�

q +

1

1� xq

i

�

; S

1

(q; x) =

n

Y

i=1

�

q +

1

1� xq

i

�

:

2.2.2. Area and width.

Theorem 3. The generating funtion S

k

(q; y) of IPM(k) sand piles, with q and y respetively

ounting area and width, satis�es:

S

k

(q; y) =

�

1� (yq)

k+1

1� yq

+ y

k

q

k�1

�

S

k

(q; yq) + y

k

q

k�1

�

S

k

(q; yq)� S

k

(q; yq

2

)

�

:
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Figure 4. Evolution of the smallest root of the polynomial 1� 2x� 3x

k+2

+ x

k+3

+ x

k+1

.

In partiular:

S

1

(q; y) = 1 +

X

n�1

y

n

q

n(n�1)=2

n

Y

i=1

1 + q � q

i�1

1� q

i

:

2.2.3. Height and width. Let p

k

(h;w) be the number of sand piles in IPM(k) of height h and

width w and P

k;h

(y) the generating funtion

P

w�0

p

k

(h;w)y

w

.

Theorem 4. The generating funtion P

k;h

(y) follows the reurrene:

P

k;0

(y) = 1; P

k;1

(y) = y

1� y

k+1

1� y

; P

k;2

(y) = y

1� y

k+1

1� y

1� y

k+2

1� y

� y

2(k+1)

;

P

k;h

(y) =

�

1� y

k+1

1� y

+ y

k

�

P

k;h�1

(y)� y

k

P

k;h�2

(y) for h � 3.

Now, let P

k

(x; y) be the width (variable x) and the height (variable y) generating funtion

P

h�0

P

k;h

(y)x

h

. From the previous reurrene one gets:

Theorem 5. The generating funtion P

k

(x; y) is given by:

P

k

(x; y) =

1� x(y

k

+ 1� y

k+1

) + x

2

y

k

(1� y)

1� x

�

1�y

k+1

1�y

+ y

k

(1� x)

�

:

Let p

k

(n) be the number of sand piles in IPM(k) of half perimeter (width + height) n, and

P

k

(x) =

P

n�0

p

k

(n)x

n

be its generating funtion. As P

k

(x) = P

k

(x; x), its expression is:

P

k

(x) =

(1� x)

2

(1� x

k+1

+ x

k+2

)

1� 2x� 3x

k+2

+ x

k+3

+ x

k+1

:

When k grows, the quantity p

k

(n), asymptotially equal for large n to 

k

=�

n

k

with 

k

2 R and �

k

the smallest root of the denominator 1� 2x� 3x

k+2

+ x

k+3

+ x

k+1

, gets loser to 2

n

, the number

of partitions of semi-perimeter n.
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2.3. Asymptotis. De�ne

p

k

= [q

n

℄

Y

i�1

1� q

ki

1� q

i

; B

k

=

r

k � 1

6k

; and C

k

=

1

2

�

k � 1

6k

3

�

1=4

:

Then p

k

(n) = C

k

n

�3=4

exp

�

B

k

n

1=2

�

O

�

1 + n

�1=4

�

. If I

k

(n) is the number of partitions of n in

IPM(k), then p

k+1

(n) � I

k

(n) � p

k+2

(n).

3. The Model L(�)

The model L(�) generalizes the SPM(k) by restriting its vertial rule, instead of the horizontal

rule as IPM(k). Namely, the di�erene between the two onseutive olumns involved must be

greater then �.

3.1. De�nition. In [4℄, the sand piles in L(�) are haraterized in the following way:

Proposition 2. A sand pile in L(�) is a partition � = (�

1

; : : : ; �

l

) of n suh that

{ for 1 � �

1

, �

0

i

� �

0

i+1

� � � 1;

{ for any i < j with �

0

i

��

0

i+1

= �� 1 and �

0

j

��

0

j+1

= �� 1, there exists z with i < z < j suh

that �

z

� �

z+1

> �.

Let L

�

(q; x) = 1 +

P

�2L(�)

x

l(�)

q

jpij

the generating funtion of sand piles in L(�) aording to

their height and area.

Lemma 1. L

�

(q; x) satis�es the q-equation:

L

�

(q; x) =

1� (xq)

��1

1� xq

+

�

(xq)

��1

1� xq

+ x

��1

q

�

�

L

�

(q; xq):

Theorem 6. L

�

(q; x) is given by:

L

�

(q; x) =

X

n�0

x

�n

q

�n(n+1)=2

1� (xq

n+1

)

�

1� xq

n+1

n

Y

i=1

�

q +

1

1� xq

i

�

:

Bounds an be obtained for all � for the number l

n;�

of partitions in L(n; �).

4. Frobenius Model

Another generalization onsists in allowing the grains to move both to the left and to the right.

In [2℄, Corteel de�nes suh a model, alled the Frobenius sand pile, in the following way:

De�nition 1. Let l be an integer. A Frobenius sand pile is a pair onsisting of a pivot indie

p(a) � l and a sequene of integers (a

1

; a

2

; : : : ; a

l

) suh that

a

1

� a

2

� � � � � a

p(a)

� a

p(a)+1

� � � � � a

l

:

4.1. Order on Frobenius sand piles.

De�nition 2. Let a =

�

p(a); (a

1

; a

2

; : : : ; a

l

)

�

and b =

�

p(b); (b

1

; b

2

; : : : ; b

l

)

�

be two Frobenius sand

piles. Then a �

F

b if and only if, for all i; j � 0,

p(a)+j

X

l=p(a)�i

a

l

�

p(b)+j

X

l=p(b)�i

b

l

:

Proposition 3. Let L

F

(n) be the set of Frobenius partitions ordered by �

F

. Then L

B

(n) is a

suborder of L

F

(n).
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Length of a maximal hain. For n � 3, the length of a maximal hain is greater than 2n� 4, and

smaller than 2

�

l+1

3

�

+ lj + 1, where l and j are de�ned by n = j + l(l + 1)=2 and 0 � j � l.

De�nition 3. Let a =

�

p(a); (a

1

; a

2

; : : : ; a

l

)

�

be a sand pile. a

<

, a

>

, a

�

, and a

�

are de�ned by

a

<

=

�

a

p(a)�1

; a

p(a)�1

; : : : ; a

1

�

; a

>

=

�

a

p(a)+1

; a

p(a)+2

; : : : ; a

l

�

;

a

�

=

�

a

p(a)

; a

p(a)�1

; : : : ; a

1

�

; a

�

=

�

a

p(a)

; a

p(a)+1

; : : : ; a

l

�

:

If we onstrain horizontal shifts to be smaller than k, we an reate an inreasing sequene

of orders IFPM(k) with the relations of order �

k

. The Frobenius sand piles of IFPM(k) are

haraterized by:

Proposition 4. Let a =

�

p(a); (a

1

; a

2

; : : : ; a

l

)

�

be a sand pile. This sand pile belongs to IFPM(k)

if and only if both of a

<

and a

>

, and at least one of a

�

and a

�

belong to IPM(k).

4.2. Generating funtions. The only available generating funtion is the series of F -partitions

given by

1 +

X

k�1

q

k

k

Y

i=1

1

(1� q

i

)

2

:

For IFPM(k), we must so far satisfy ourselves with the bound F

k

(n) �

�

�

IFPM(n; k)

�

�

� F

k+1

(n) for

F

k

(n) = [q

n

℄

0

�

1 +

X

j�1

q

j

j

Y

i=1

1� q

(k+1)i

(1� q

i

)

2

1

A

:

5. Conlusion and Open Questions

We have studied di�erent sand pile models related to integer partitions, and in partiular we

have omputed generating funtions and asymptoti bounds. A question of interest would onsist

in getting exat asymptotis instead of asymptoti bounds only. One ould start with the area

generating funtion in the SPM ase, given by

X

n�0

x

n

q

n(n+1)=2

n

Y

i=1

�

q +

1

1� q

i

�

:
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Abstrat

The abelian sandpile model is a ellular automaton. Its rules generalize the sandpile rules for

general graphs. This model has been introdued by Bak, Tang, and Wiesenfeld [1℄ in 1987.

Dhar [9℄ showed that the set of reurrent on�gurations of this automaton has the struture

of a �nite abelian group.

In this talk, we desribe several algorithms to determine the identity in the group. This

element presents fratal aspets that we are not able yet to explain. These algorithms

allow us to introdue relationships between the sandpile group and well-known algebrai or

ombinatorial objets.

Details may be found in the reent works of R. Cori, D. Rossin, and B. Salvy [6℄, and D. Rossin

[12℄. The papers [1, 10℄, the book [2℄, and the thesis [13℄ are good introdutions to sandpiles.

1. Introdution

Let G = (V;E) be a non-oriented and onneted multi-graph with V = f1; : : : ; ng its set of

verties and E a symmetri n� n matrix whose entry e

i;j

is the number of edges with endpoints

i, j. It is assumed that for any i, e

i;i

= 0 so that the multi-graph has no loops. Frequently, G is a

graph, and hene e

i;j

is either 0 or 1. The degree of vertex i in G is d

i

=

P

n

j=1

e

i;j

. A multi-graph

is rooted if one of its verties is distinguished, it is alled the sink and is numbered n.

A on�guration u = (u

1

; : : : ; u

n

) 2 N

n

of G is a vetor of non-negative integers. In the ontext

of the sandpile model, the verties of the graph are ells, and the number u

i

may be interpreted

as the height of a pile of grains of sand standing in ell i. In the rest of this talk, the number of

grains in the sink is not taken into aount. Thus two on�gurations u and v whih di�er only in

position n are onsidered as equal; we write u = v if u

i

= v

i

for all 1 � i < n. This translates the

fat that the sink ollets all grains of sand getting out of the system.

A toppling of the vertex i, 1 � i < n, in on�guration u onsists in dereasing the number of

grains in this vertex by its degree while the number of those of eah of its neighbours j inreases

by e

i;j

. This is equivalent to the addition to u of the vetor �

i

suh that (�

i

)

i

= �d

i

and

(�

i

)

j

= e

i;j

for j 6= i. The notation u �! v means that v is obtained from u by toppling a vertex,

so that there exists an 1 � i < n suh that v = u + �

i

. The transitive losure of the toppling

operation �! is denoted

�

�!: u

�

�! v if v is obtained from u by a sequene of topplings. An

avalanhe is a sequene of topplings (see Figures 1, 2 and 3).

The sandpile model has been introdued by Bak, Tang, and Wiensenfeld [1℄ in 1987. In a

reent book, Bak [2℄ gives an overview of many physial problems|earthquakes and solar ares for
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Figure 1. Multi-graph orresponding to the 4� 4 grid.

2 1 0 3

3 4 3 2

1 2 3 1

2 1 0 2

2 2 0 3

4 0 4 2

1 3 3 1

2 1 0 2

3 2 1 3

0 2 0 3

2 3 4 1

2 1 0 2

3 2 1 3

0 2 1 3

2 4 0 2

2 1 1 2

3 2 1 3

0 3 1 3

3 0 1 2

2 2 1 2

Figure 2. Topplings and avalanhe on the 4� 4 grid.

1

4 3

1

2 0

2

0 4

0

3 1

0

1 5

1

3 1

1

2 0

2

4 2

1

3 2

0

0 4

Figure 3. Topplings and avalanhe on a graph.

example|whose models are based on the sandpile one. All these models follow the Gutemberg{

Rihter law: logN = a � bM , logE =  + dM , and N � E

1��

(� � 2) where M is the

magnitude, N is the number of topplings, and E is the energy. In three dimensions, N � E

1��

(� � 2:5). A very similar automaton was introdued independently by other authors under the

name of the hip-�ring game [4, 11℄. Biggs [3℄ found many algebrai and ombinatorial properties

of the hip-�ring game, some of whih orrespond to Dhar's results on sandpiles [10℄. In [5℄, we

also showed a lose relationship between reurrent on�gurations of the omplete graph and the

parking funtions.

2. The Sandpile Group

A vertex is stable if it ontains a number of grains less than its degree, otherwise this vertex is

unstable. A stable on�guration is a on�guration where all verties are stable. It is not diÆult

to prove that for every on�guration u there exists a stable on�guration û suh that u

�

�! û.

Moreover this on�guration is unique, and the number of topplings is independent of the way in

whih û is obtained from u [9℄.
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*
2 2 2

3 1 3

0 2 1

2 1 2

1 0 1

2 1 2

4 3 4

4 1 4

2 3 3

2 2 2

3 1 3

0 2 1

Figure 4. A reurrent on�guration.

Let u, v be two on�gurations. Let u

i

(resp. v

i

) be the number of grains on vertex i in on�gura-

tion u (resp. v). We will denote by u+v the on�guration w suh that w

i

= u

i

+v

i

. A on�guration u

is reurrent if it is stable and if there exists a on�guration v 6= 0 suh that u + v

�

�! u (see Fig-

ure 4). The simplest example of a reurrent on�guration is Æ = (d

1

� 1; d

2

� 1; : : : ; d

n�1

� 1; 0).

The set of reurrent on�gurations is isomorphi to the set of equivalene lasses de�ned by the

symmetri losure � of

�

�!.

Let T

G

(x; y) be the Tutte polynomial of the graph G. Then T

G

(1; y) is the the generating funtion

(a polynomial) of the reurrent on�gurations aording to the number of sand grains.

We an assoiate to the set of reurrent on�gurations the operator � de�ned by u� v =

[

u+ v

where u and v are two reurrent on�gurations. The set of reurrent on�gurations with the

operation � is an abelian group G [8℄, this group is equal to the produt G =

Q

n

i=1

Z=d

i

Z and the

group struture does not depend on the sink hoie in the graph G.

Let u = (u

1

; : : : ; u

n

) be a reurrent on�guration. We denote �u the reurrent on�guration

(d

1

� 1 � u

1

; d

2

� 1 � u

2

; : : : ; d

n�1

� 1 � u

n�1

; 0). Then the identity of the sandpile group is

Id = Æ � (Æ � Æ) and the opposite of a reurrent on�guration u is 	u = Id� (Æ � u).

3. Toppling Ideal, Set Topplings and Minimal Gr�obner Basis

Con�gurations and topplings are easily translated from the linear algebra setting into polyno-

mial operations by assoiating to a on�guration u = (u

1

; u

2

; : : : ; u

n

) 2 N

n

a monomial x

u

=

x

u

1

1

x

u

2

2

: : : x

u

n

n

2 Q [x

1

; : : : ; x

n

℄. To a toppling �

i

is assoiated the binomial T (x

i

) = x

d

i

i

�

Q

j

x

e

i;j

j

.

The addition of two on�gurations translates into the multipliation of the orresponding monomi-

als and toppling vertex i in u translates into the division of x

u

by x

d

i

i

followed by the multipliation

by

Q

n

j=1

x

e

i;j

j

. We de�ne the toppling ideal I

G

as the ideal generated by x

n

� 1 and the toppling

polynomials T (x

i

) for i 2 f1; : : : ; ng.

A toppling polynomial an also be assoiated to a subset X of the set V of verties as follows.

For a vertex i of V , de�ne

d

i

(X) =

X

j2X

e

i;j

;

the number of edges with endpoints i and a vertex of X. The set toppling of the set X in on�gu-

ration u onsists in adding the vetor �

X

to u, where

(�

X

)

i

=

(

�d

i

(

�

X); for i 2 X;

d

i

(X); for i 2

�

X;

where

�

X denotes V nX.
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Aordingly, the toppling polynomial of the subset X of V is de�ned by

T (X) =

Y

i2X

x

d

i

(

�

X)

i

�

Y

i2

�

X

x

d

i

(X)

i

:

Gr�obner bases are a lassial omputational tool for dealing with polynomial ideals. Given an

ordering on monomials whih is ompatible with the produt (a so-alled admissible ordering) and

a set of generators of an ideal I, one an ompute a Gr�obner basis for I and from there test ideal

membership and more generally ompute normal forms in the quotient of the algebra by I. The

rest of this work makes use of the notation and basi results from [7, Chapter 2℄.

The graded reverse lexiographi order (grevlex) denoted �, is de�ned as follows. If A =

Q

n

i=1

x

�

i

i

and B =

Q

n

i=1

x

�

i

i

are two monomials in the variables x

i

, i = 1; 2; : : : ; n, then A � B if

j�j =

n

X

i=1

�

i

< j�j =

n

X

i=1

�

i

or j�j = j�j and in (�

1

; : : : ; �

n

)� (�

1

; : : : ; �

n

) the right-most non-zero entry is positive.

From there a toppling order is de�ned as follows: let � be a permutation of f1; : : : ; ng suh

that �(n) = n and if the distane from vertex i to the sink is larger than the distane from vertex j

to the sink, then �(i) > �(j). The toppling order is the graded reverse lexiographi order on x

�(1)

,

x

�(2)

, . . . , x

�(n)

.

Theorem 1. A Gr�obner basis of the ideal I

G

with respet to a toppling order is given by

T =

�

T (X)

�

�

X � f1; : : : ; ng

	

[ fx

n

� 1g:

A Gr�obner basis is minimal when its elements have leading oeÆient 1 and no leading monomial

divides another leading monomial in the basis. A subset X of verties of the graph G = (V;E) is

well-onneted if both subgraphs of G indued by X and

�

X are onneted.

Theorem 2. The set S



of toppling polynomials orresponding to the sets X � f1; 2; : : : ; n � 1g

whih are well-onneted is a minimal Gr�obner basis for the toppling order.

In the worst ase, the minimal Gr�obner basis still ontains 2

n�1

elements for the omplete graph.

As mentioned before, the quotient Q [x

1

; x

2

; : : : ; x

n

℄=I

G

is a Q-vetor spae whose dimension is

the order of the group of reurrent on�gurations. From a Gr�obner basis for I

G

, a basis of this

vetor spae is given by the set of monomials that do not redue to 0 by the basis. We all these

redued monomials. Theorem 3 below gives a simple bijetion between redued monomials for the

toppling order and reurrent on�gurations.

Let � be the mapping from the set of stable on�gurations onto itself given by �(u) = Æ � u.

We also denote �(M) = �(a

1

; a

2

; : : : ; a

n

) for a monomial M = x

a

1

1

x

a

2

2

: : : x

a

n

n

.

Theorem 3. The mapping � de�nes a bijetion between the set of redued monomials with respet

to the toppling order and the set of reurrent on�gurations.

For a on�guration u, let �(u) denote the redued on�guration obtained from the monomial

assoiated to u by performing redutions by the Gr�obner basis of I

G

assoiated with the toppling

order.

Proposition 1. If u is a on�guration then the reurrent on�guration equivalent to u is

�

�

�

�

�

�

�(u)

�

�

�

:

The identity in the group of reurrent on�gurations is �

�

�(Æ)

�

.
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2 3

1

Figure 5. Multigraph with 4 verties.

3
2

X

X  X2 3

X2
3

X  X1 2

X1
3

X

X

X

1

2

3

X  X3 1
2

Figure 6. Representation of irreduible monomials.

Corollary 1. For two reurrent on�gurations u and v,

u� v = �

�

�

�

�(u) + �(v)

�

�

:

Proposition 1 yields the following algorithm to ompute the identity on a graph G with sink s: be-

ginning with the on�guration Æ, perform the set topplings for all well-onneted subgraph ofG n fsg

(this is equivalent to reduing by the Gr�obner basis for the toppling order). When no further set

toppling an be performed, for eah ell i replae its number of grains n

i

with d

i

�n

i

. The resulting

on�guration is the identity.

4. Examples

Our �rst example orresponds to the graph displayed on Figure 5. The struture of the graph is

reeted by the toppling polynomials for the verties:

x

3

1

� x

2

2

x

3

; x

3

2

� x

2

1

x

4

; x

2

3

� x

1

x

4

; x

2

4

� x

2

x

3

; x

4

� 1:
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The minimal Gr�obner basis for the graded reverse lexiographi order on monomials is

x

2

3

� x

1

; x

3

2

� x

2

1

; x

3

1

� x

2

; x

2

x

3

� 1; x

2

x

1

� x

3

; x

3

x

2

1

� x

2

2

; x

4

� 1:

Apart from the last, these polynomials orrespond respetively to well-onneted subgraphs with

verties

f3g; f2g; f1g; f1; 2; 3g; f1; 2g; f1; 3g:

Given a Gr�obner basis G = fp

1

; p

2

; : : : ; p

k

g � K [x

1

; x

2

; : : : ; x

n

℄ for some �eld K , it is usual to

represent the leading monomials of the p

i

on an integer lattie in n dimensions. Eah polynomial p

is assoiated to a point (p) whose oordinates are the exponents of its leading monomial. The

leading terms of the p

i

generate the ideal of leading terms of polynomials in the ideal. These

leading terms are thus exatly represented by

S

(p

i

) + N

n

. This removes from N

n

a stairase

shape whose lattie points orrespond to the quotient (see Figure 6). Their number is exatly the

order of the group of reurrent on�gurations. Note that in our example, those seven monomials

are f1; x

1

; x

2

1

; x

2

; x

2

2

; x

3

; x

1

x

3

g, none of whih orrespond to a reurrent on�guration. However,

applying � yields the reurrent on�gurations as explained above.

Our seond example is the 2� 2 grid onsisting of 4 ells, eah onneted twie to the sink. The

sandpile group of this grid, omputed for instane in [9℄, is the produt of two yli group of orders

24 and 8.

After the omputation of the Gr�obner basis of the ideal generated by the toppling polynomials of

verties, it follows that x

4

is of order 24 and that any element an be expressed as a produt x

i

3

x

j

4

where 0 � i � 7 and 0 � j � 23, whih gives that the order of the group is 192. Also, sine x

1

and x

2

an be expressed in terms of x

3

and x

4

, it is seen that the group has two generators.
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Summary by Cyril Banderier

Abstrat

Our objet is to explore the \s-tennis ball problem" (at eah round s balls are available and

we play with one ball at a time). This is a natural generalization of the ase s = 2 onsidered

by Mallows and Shapiro. We show how this generalization is onneted with s-ary trees and

employ the notion of generating trees to obtain a solution expressed in terms of generating

funtions. Then, we present a variation in whih at eah round we have 4 balls and play

with 2 balls at a time. To solve this problem we use the onepts of Riordan arrays and

strethed Riordan arrays, and a generalization of generating trees. This is a joint work by

D. Merlini with D. G. Rogers, R. Sprugnoli and M. C. Verri.

1. Introdution

Let 1 � t < s be two integer numbers. A tennis player begins a math with 0 ball in the poket.

At eah round, he is given s new balls, that he puts in the poket, and throws away t balls, and so

on until the nth round. The balls are labelled from 1 to sn and are served in inreasing order. The

tn balls thrown away form a sequene of tn labels. Two sequenes whih are equal one sorted are

onsidered equivalent. The tennis ball problem onsists in evaluating the following two quantities:

the number f

n

of nonequivalent on�gurations after n rounds and the umulative sum �

n

(i.e., the

sum|over all the possible on�gurations|of the labels of the tn balls that the player threw away).

Turns Balls reeived Balls in the poket Balls thrown away

n = 1 1 and 2 1 and 2 1

n = 2 3 and 4 2, 3, and 4 3

n = 3 5 and 6 2, 4, 5, and 6 2

n = 4 7 and 8 4, 5, 6, 7, and 8 6

sum = 1 + 3 + 2 + 6 = 12

Turns Balls reeived Balls in the poket Balls thrown away

n = 1 1 and 2 1 and 2 2

n = 2 3 and 4 1, 3, and 4 3

n = 3 5 and 6 1, 4, 5, and 6 4

n = 4 7 and 8 1, 5, 6, 7, and 8 1

sum = 2 + 3 + 4 + 1 = 10

Figure 1. Two senarios for the (s = 2; t = 1)-tennis ball player.
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The on�guration after 4 rounds is (1; 2; 3; 6) for the �rst example and (1; 2; 3; 4) for the seond

example. In fat, for the (2; 1)-ase, one has f

1

= 2, f

2

= 5, f

3

= 14, f

4

= : : : do you guess what?

There is indeed 42 di�erent on�gurations (after 4 rounds), and if one adds all the sums, one gets

�

1

= 1 + 2 = 3, �

2

= (1 + 2) + (1 + 3) + (1 + 4) + (2 + 3) + (2 + 4) = 23, �

3

= 131, �

4

= 664, . . .

In the next setion, it is shown how the (s; 1)-ase an be solved in terms of s-ary trees (by

symmetry, this also solves the (s; s� 1)-ase). Then, the last setion is dediated to the (4; 2)-ase,

that the authors solved with Riordan arrays and a bilabelled generating tree tehnique.

Turns Balls reeived Balls in the poket Balls thrown away

n = 1 1, 2, 3, 4 1, 2, 3, 4 2, 3,

n = 2 5, 6, 7, 8 1, 4, 5, 6, 7, 8 1, 7

n = 3 9, 10, 11, 12 4, 5, 6, 8, 9, 10, 11, 12 10, 12

n = 4 13, 14, 15, 16 4, 5, 6, 8, 9, 11, 13, 14, 15, 16 5, 16

2 + 3 + 1 + 7 + 10 + 12 + 5 + 16 = 56

Figure 2. A senario for the (4; 2)-tennis ball problem.

This is the only ase solved with t 6= 1. The general (s; t)-tennis ball problem remains open.

2. The (s; 1)-Tennis Ball Problem

Generating trees are a onvenient way to reexpress the problem. Consider an in�nite rooted

tree T . The root (labelled 0 and orresponding to level 0) has t hildren (labelled 1; : : : ; t). Eah

path in this tree orresponds to a senario, thus eah node at level n has a label whih orresponds

to the ball thrown away at round n. As we are ounting the sorted on�gurations (that is, one

does not are for the order of the balls thrown away), we an without loss of generality suppose

that the labels inrease with the depth.

0

1

2

3 4 5 6

3

4 5 6

4

5 6

2

3

4 5 6

4

5 6

1

1

1

1 2

2

1 2 3

2

1

1 2

2

1 2 3

3

1 2 3 4

Figure 3. The generating tree T for the (2; 1)-ase and an isomorphi tree

e

T .

More generally, the rewriting rule

(

root : (1)

rule : (k) 7! (1) : : : (k + s� 2) : : : (k + s� 1)

desribes the

formation of a tree

e

T whih is isomorphi to the generating tree T of the (s; 1)-ase: a node with

label b at level i in the generating tree T beomes a node with label si� b+ 1 in the tree

e

T .

Theorem 1. The number f

n

of on�gurations for the (s; 1)-tennis ball problem is the number T

n+1

of s-ary trees with n+ 1 nodes. One has

T

n

=

�

sn

n

�

1 + (s� 1)n

and T (z) = 1 + zT (z)

s

:
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Proof. The problem an be seen as the enumeration of walks on the integers (with an unbounded set

of jumps desribed by the rewriting rule), for whih the generating funtion an be made expliit [1℄.

Merlini et al. used Riordan array tehniques [4℄. �

Theorem 2. The umulative sum (i.e., the sum over all the on�gurations of the labels of the

thrown balls) is

�

n�1

=

sn

2

+ (s� 1)n+ 1

2

�

sn

n

�

(s� 1)n+ 1

�

1

2

n

X

k=0

�

sk

n

��

s(n� k)

n� k

�

:

Proof. Consider A

n

=

P

n

i=0

`

i;n

, the sum of all the labels (with multipliity) at level i in the tree T .

The umulative sum �

n

satis�es

�

n

= A

n

�

(sn+ 2)(n+ 1)

2

T

n+1

:

The generating funtion for the sequene A

n

is:

A(z) =

s(s� 1)zT

0

(z)

2

2T (z)

+ T

0

(z):

From these two equations, one gets the almost losed form of the theorem.

Note that the asymptotis of �

n

an easily be dedued from the asymptotis of A

n

. �

These theorems are onsistent with the fat that the (2; 1)-ase leads to Catalan numbers f

n

=

(

2n

n

)

n+1

(proven in [2℄) and to �

n

=

2n

2

+5n+4

n+2

�

2n+1

n

�

�2

2n+1

(as it was found in [3℄ by hand manipulations

of sums of binomial oeÆients).

3. The (4; 2)-Tennis Ball Problem

Here again, as one does not are for the order (of the balls thrown away), one an without loss of

generality suppose that any on�guration is represented by the smallest equivalent sequene with

respet to lexiographial order. Thus the on�guration (1; 4); (5; 8); (2; 10) is onsidered to be the

same as the on�guration (1; 2); (4; 5); (8; 10).

Let M

[n℄

m

be the number of pairs at level n (in the bilabelled generating tree of the (4; 2)-ase)

with larger element equal to m; one has the reurrene

M

[n+1℄

m

=

m�2

X

r=2n

(m� r � 1)M

[n℄

r

:

De�ning f

n;k

= M

[n℄

4n+1�k

gives an in�nite lower-triangular array:

n/k 1 2 3 4 5 6 7 8 9

0 1

1 3 2 1

2 22 16 10 4 1

3 211 158 105 52 21 6 1

4 2306 1752 1198 644 301 116 36 8 1

One has the relation f

n+1;k+2

=

P

1

j=0

(j + 1)f

n;k+j

: The sums f

n

=

P

k�1

f

n;k

give the sequene

(1; 6; 53; 554; : : : ), the number of on�gurations for the (4; 2)-tennis ball problem.
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It is onvenient to transform the above array into a proper Riordan array. A proper Riordan

array is an in�nite lower triangular array (D

n;k

)

n;k2N

whih satis�es

d

n+1;k+1

=

1

X

j=0

a

j

d

n;k+j

for all n and k in N :

The generating funtion A(z) =

P

j

a

j

z

j

allows to express d

n;k

by a Lagrangean-like formula

d

n;k

= [z

n

℄g(z)

�

zh(z)

�

k

where h(z) = A

�

zh(z)

�

:

The above array an be embedded in the array

n/k 0 1 2 3 4 5 6 7

0 1

1 0 1

2 1 1 1

3 0 3 2 1

4 6 6 6 3 1

5 0 22 16 10 4 1

6 53 53 53 31 15 5 1

whih satis�es A(z) =

1

1�z

, h(z) = C(z) (the generating funtion of Catalan numbers), and

g(z) =

2

2�zC(z)+zC(�z)

. In partiular, the funtion g(z) generates the �rst olumn of this array and

orresponds to the number of nonequivalent on�gurations one wants to enumerate: f

n

= g

n

=

3(n+2)

(n+3)((2n+3)

�

2n+4

n+2

�

�

4

(n+1)=2

n+2

�

n+3

(n+3)=2

�

(for even n). The umulative sum in the tree with root (0; 0)

and rewriting rule (k

1

; k

2

) 7! (0; 0)(0; 1) : : : (k

1

+ 2; k

1

+ 2) is then given by

�

n

=

n

X

h=0

X

r

�

[2n�2h℄

r

w

[2h℄

r

=

X

r

n

X

h=0

�

[2n�2h℄

r

w

[2h℄

r

:

Here, �

[2n�2h℄

r

is the number of nodes at level n � h in the subtree starting with (r; �), and w

[2h℄

r

the total weight that the ouples (r; �) have at level h. (Note that a label (k

1

; k

2

) at level n in the

new tree orresponds to a label (4n� k

2

� 1; 4n� k

1

) in the generating tree of the (4; 2)-ase.) The

Riordan array property yields �

r

(z) = g(z)C(z)

r+2

and w

r

(z) = g(z)z

r

C(z)

r+1

(zC(z)

2

+ 2r), thus

�(z) =

1

4

X

r

�

�

r

(z) + �

r

(�z)

��

w

r

(z) +w

r

(�z)

�

= 12z

2

+ 284z

4

+ 5436z

6

+ 96768z

8

+O(z

10

):

The next nontrivial open ases are the (5; 2)- and (5; 3)-tennis ball problems. This is related to

the enumeration of 2- and 3-dimensional onstrained disrete random walks for whih no losed

form (or even reurrene) is known. Artiles and slides related to this summary an be found at

Donatella Merlini's web page http://www.dsi.unifi.it/~merlini/Publiations.html.
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Abstrat

The lassial oupon-olletor problem is here extended to the ase where the olletor

shares his harvest with other members of his phratry. She (!) remains the single buyer, but

she gives to his brothers all the pitures that she got in double. When her album is �lled,

her brothers' albums have some empty plaes. How many in average? Dominique Foata (in

a joint work with Guoniu Han and Bodo Lass) answers this question via an expression for

the multivariate generating funtion. The problem is related to hyperharmoni numbers,

that are studied here as solutions of �nite di�erenes equations.

1. Coupons Colletor

A leaver �rm sells hoolate, with a piture (or \oupon") of a famous riket player in eah bar.

In total, there are m di�erent pitures to ollet and eah piture appears with probability 1=m.

Mr. and Mrs. Brown have r sons and one daughter, hoolate and riket addits. The girl (she's

the oldest) is the only one to buy hoolate. She tries to omplete her olletion. When she gets

a new piture, she puts it in her album, and when she gets a double, she gives it to her oldest

brother, and when this one gets a double, he gives it to the remaining oldest brother, and so on.

After having bought T bars of hoolate, the girl has ompleted her album, and it remains M

(i)

T

empty plaes in the album of the ith brother (i = 1; : : : ; r). Let X

(k)

n

be the number of oupons

whih appeared exatly k times until time n. As M

(k)

T

= X

(1)

T

+ � � � + X

(k)

T

, the distribution of

(T;M

(1)

T

; : : : ;M

(r)

T

) is then totally determined by the distribution of (T;X

(1)

T

; : : : ;X

(r)

T

).

The question is to �nd formulae and asymptotis for M

(i)

T

, or equivalently for X

(k)

T

.

There is a lot of ways to solve oupon-olletor-like problems. One an distinguish three main

approahes:

{ formal approah: ombinatoriians indeed used a language-theory approah (shu�e produts

and Laplae transforms [2℄ or manipulation of regular expressions [6℄);

{ probabilisti approah: a lot of folklore results are established via basi probabilisti onsid-

erations, and more sophistiated tools suh as martingales theory were also useful [5℄;

{ matriial approah: this is in fat a mixture of the two preedent approahes, whih is

exploited to solve a Markovian generalization of the oupon-olletor problem in [1℄ (with

Perron{Frobenius theory and approximation of integrals).

This is with a ombinatorial approah (enumeration of surjetions and formal Laplae transform)

that Foata et al. obtain in [4℄ the multivariate generating funtion of the oupon-olletor problem,

from whih they derive the formulae for the expetations of E[T ℄ and E[X

(k)

T

℄.
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2. The Multivariate Generating Funtion

Theorem 1. The generating funtion of the random variables T , X

(1)

T

, . . . , X

(r)

T

is

X

l�m;n

PfT = l;X

(1)

T

= n

1

; : : : ;X

(r)

T

= n

r

gt

l

u

n

1

1

: : : u

n

r

r

=

u

1

t

X

�

m� 1

a; b; 

1

; : : : ; 

r

�

(�1)

b

�

r

Y

k=1

�

u

k

� 1

k!

�



k

�

(t=m)

P

k

k

k

(1� at=m)

1+

P

k

k

k

�

X

k

k

k

�

!:

The proof follows from setting u

i

= 1 (for i � r + 1), expanding (with Newton multinomial

formula), and applying the Laplae transform to

X

l�m

t

l�1

(l � 1)!

X

n

X

s2S(l;m;n)

�(s) = mu

1

�

X

i�1

u

i

t

i

i!

�

m�1

:

The formal Laplae transform is de�ned as a linear map suh that L

�

g

n

t

n

n!

�

= g

n

t

n

. This implies

L

�

exp(at)t

n

�

= n!

t

n

(1�at)

n+1

. The set S(l;m;n) is de�ned as a subset of the surjetions from

[ 1; : : : ; l ℄ to [ 1; : : : ;m ℄ for whih s 2 S(l;m;n) implies i is reahed n

i

times and the restrition

of s to [ 1; : : : ; l � 1 ℄ is still a surjetion from [ 1; : : : ; l � 1 ℄ to [ 1; : : : ;m ℄ n

�

s(l)

	

. The weight � of

a surjetion S 2 S(l;m;n) is de�ned by �(s) =

Q

u

i

n

i

.

3. Hyperharmoni Numbers

In order to omplete one olletion, it is well known that the average number of needed bars is

E[T ℄ = mH

m

where H

m

=

m

X

k=1

1

k

:

For example, when there are m = 50 di�erent pitures, E[T ℄ = 50H

50

� 50 � 4:5 � 225 and thus

the daughter has a lot of doubles and we an expet that the oldest brother has almost ompleted

his album with the 175 remaining pitures.

Pintauda [5℄ proved with martingale theory that E[M

(1)

T

℄ = H

m

. Foata et al. prove

Theorem 2. For k � 2, the average number of empty plaes in the kth brother's album is

E[M

(k)

T

℄ = 1 +

k

X

i=1

K

(i)

m

where K

(k)

m

=

m

X

i=2

K

(k�1)

i

i

; (k � 1;m � 3)

with the following initial onditions K

(k)

2

=

1

2

k

(for k � 0) and K

(0)

m

= 1 (for m � 2).

A �rst derivation of this result follows of Theorem 1. Another proof is in two steps: �rst get the

generating funtion for the K

(k)

m

(end of this setion) and then prove that this generating funtion

is also the one of the oupon-olletor problem (next setion).

Consider the rising fatorial de�ned by (a)

n

= a(a + 1) : : : (a + n � 1) if n � 1 and (a)

0

= 1.

An hypergeometri funtion with respet to two lists (a

1

; : : : ; a

r

) and (b

1

; : : : ; b

s

) is de�ned as the

funtion given by the series

r

F

s

�

a

1

;:::;a

r

b

1

;:::;b

s

;x

�

:=

X

n�0

(a

1

)

n

: : : (a

r

)

n

(b

1

)

n

: : : (b

s

)

n

x

n

n!

:
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The authors prove that the numbers K

(k)

m

(that they all \hyperharmoni numbers") satisfy

K

(k)

m

=

m(m� 1)

2

k+1

k+2

F

k+1

�

�m+ 2; 2; : : : ; 2

3; : : : ; 3

�

�

�

�

1

�

:

Comparing the reurrenes satis�ed by both sides and then summing gives the generating funtion

(1)

X

k�0

K

(k)

m

t

k

=

m

X

n=2

(�m)

n

(n� 2)!

1

n

1

1� t=n

=

1

(1� t=2)(1 � t=3) : : : (1� t=m)

(the last equality following from a partial fration deomposition).

Thus K

(k)

m

= h

k

(

1

2

; : : : ;

1

k

), the symmetri homogeneous polynomial of (total) degree k in m� 1

variables. Reexpressing h

k

in the basis of the power symmetri funtions p

k

:=

P

x

k

i

gives

K

(k)

m

�

p

k

1

k!

�

(lnm)

k

k!

One also has expliit asymptotis (for �xed k), e.g.,

K

(3)

m

� 1:1666 ln

3

m� 0:2113 ln

2

m+ 0:4118 lnm� 0:0815:

4. Martingales Resue the Phratry

Let X

(0)

n

be the number of empty plaes in the daughter's album. Now, de�ne the proess X

as X

n

=

�

X

(0)

n

;X

(1)

n

; : : : ;X

(r)

n

�

. For any funtion f , the average inrease of f(X) (knowing all the

previously drawn oupons) is easy to get:

E

�

f(X

n+1

)�f(X

n

)

�

�

Y

0

; : : : ; Y

n

�

=

r

X

k=0

X

(k)

n

m

�

f(X

(0)

n

; : : : ;X

(k)

n

�1;X

(k+1)

n

+1; : : : ;X

(r)

n

)�f(X

n

)

�

;

this simply reets the di�erent possible updates (X

(k)

n

=m is the probability to get a new oupon

whih was already in k-tuple).

If f is suh that the sum is 0, one has also W

n+1

�W

n

= 0 and thus W is a martingale, where W is

the proess f(X) stopped at T , that is W

n

:= f(X

n

) (for n < T ) and W

n

:= f(X

T

) (for n � T ).

More generally, suppose that for r funtions f

(1)

, . . . , f

(r)

from N

k+1

to R one has:

1.

k

X

i=0

x

i

�

f(x

0

; : : : ; x

i

� 1; x

i+1

+ 1; : : : ; x

k

)� f

(k)

(x

0

; : : : ; x

k

)

�

= 0 for x

0

� 1;

2. f

(k)

(0; x

1

; : : : ; x

k

) = x

k

.

Then E

�

X

(k)

T

�

= f

(k)

(m; 0; : : : ; 0).

Proof. 2. implies that X

(k)

T

= f(X

T

) = W

T

; 1. gives a martingale property for W , Doob's

theorem for stopping time of martingales gives E[W

T

℄ = E[W

0

℄ = W

0

, and 2. implies that

W

0

= f

(k)

(m; 0; : : : ; 0). �

Pintauda [5℄ used this result with k = 1 and found f

(1)

(x

0

; x

1

) = H

x

0

+

x

1

1+x

0

. Foata et al.

guessed the general formula:

Proposition 1. For k � 2, the funtion f

(k)

de�ned as

f

(k)

(x

0

; x

1

; : : : ; x

k

) := K

(k)

x

0

+

x

1

K

(k�1)

x

0

+1

+ � � �+ x

k�1

K

(1)

x

0

+1

+ x

k

x

0

+ 1
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is the only solution of 1. and 2. One also has f

(k)

(x

0

; 0; : : : ; 0) = K

(k)

x

0

.

They give two proofs in [4℄, but I prefer to explain what I heard in the meeting Random Stru-

ture and Algorithms (Poznan, August 2001), where Doron Zeilberger explained how to use a lan-

guage theory argument to get a shorter proof. A omplete olletion of oupons an be written

11

�

2f1; 2g

�

3f1; 2; 3g

�

4 : : : f1; 2; : : : ;m � 1g

�

m. Let W be this set of words. This leads to the gen-

erating funtion

f(x

1

; : : : ; x

m

) :=

x

1

m

1

1�

x

1

m

: : :

x

2

m

1

1�

x

1

+x

2

m

x

m�1

m

1

1�

x

1

+���+x

m�1

m

x

m

:

Reall that E[X

(k)

T

℄ is the expeted number of kinds of oupons in k-tuple (at time T , that is

when the daughter has ompleted her album). Thus,

1

X

k=1

E

�

X

(k)

T

�

t

k

=

X

w2W

m

X

k=1

P(w)t

jwj

k

=

m

X

k=1

X

w2W

�

1

m

�

jwj

t

jwj

k

= m!

�

f(t; 0; : : : ; 0) + f(0; t; 0; : : : ; 0) + � � �+ f(0; : : : ; 0; t)

�

= t+ t

m�1

X

k=1

k!

(2� t)(3� 4) : : : (k + 1� t)

= t� 1 +

m!

Q

m

j=2

(j � t)

:

As words of W are ordered (whereas it is in fat irrelevant for the oupon olletor), there is

a fator m! at the seond line takes into aount all the permutations. The generating funtion

obtained at the last line shows that the hyperharmoni numbers generated by Equation (1) indeed

gives the average value of Theorem 2.

5. Conlusion

The oupon-olletor problem (like the m�enage problem, the birthday paradox) belongs to the

large lass of problems that an be modeled by simple urns models. It is very likely that, during

the next years, the symboli method will be applied with suess to all these urns problems, and

analyti ombinatoris will then provide enumeration, omplete asymptotis expansions and limit

laws. The \lassial" oupon-olletor problem waits for his next revisitor!

This summary is related to Foata's artile [4℄ (the more reent preprint [3℄ is also relevant).

These artiles are aessible at http://www-irma.u-strasbg.fr/~foata/paper.
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Summary by Sylvie Corteel

Abstrat

The purpose of this talk is to present the 
 operator introdued by Ma Mahon in 1915 and

to show its power in urrent ombinatorial and partition-theoreti researh. This operator is

implemented in the Mathematia Pakage Omega whih was developped by A. Riese. This

is joint work with G. E. Andrews (Penn State University) and A. Riese (RISC-Linz).

1. Introdution

Ma Mahon devoted many pages of his famous book \Combinatorial Analysis" [9℄ to 
-alulus.

Netherveless this method was not used for 85 years exept by Stanley in 1973 [10℄. The purpose of

this talk is to present the 
 operator and to show its power in urrent ombinatorial and partition-

theoreti researh [1, 2, 3, 4, 5℄. In this summary, we de�ne the 
 operator and exhibit a few of its

elimination rules, before giving two problems where this operator is a powerful tool: leture hall

partitions and k-gons of integer length.

2. The Omega Operator

Let us now de�ne the operator and present a few rules.

De�nition 1. [9℄ The Omega operator




�

is de�ned as follows:




�

1

X

s

1

=�1

: : :

1

X

s

r

=�1

A

s

1

;:::;s

r

�

s

1

1

: : : �

s

r

r

=

1

X

s

1

=0

: : :

1

X

s

r

=0

A

s

1

;:::;s

r

:

To evaluate this operator, Ma Mahon proposed a list of elimination rules. The proof of eah is

straightforward as it uses the simple identity

X

n�0

x

n

= 1=(1 � x):

We list a few of them only:




�

�

�s

(1� �x)

�

1�

y

�

�

=

x

s

(1� x)(1� xy)

; s � 0;




�

1

(1� �x)

�

1�

y

�

� �

1�

z

�

�

=

1

(1� x)(1� xy)(1� xz)

;



24 Ma Mahon's Partition Analysis Revisited




�

1

(1� �x)

�

1�

y

�

s

�

=

1

(1� x)(1 � x

s

y)

; s > 0;




�

1

(1� �

s

x)

�

1�

y

�

�

=

1 + xy

1�y

s�1

1�y

(1� x)(1 � xy

s

)

; s > 0:

For example to �nd the generating funtion of the partitions with three parts and whose parts

di�er by at least two, we use the �rst rule:

f

3

(q) =




�

X

a1;a

2

;a

3

�1

�

a

1

�a

2

�2

1

�

a

2

�a

3

�2

2

q

a

1

+a

2

+a

3

=




�

�

�2

1

�

�2

2

q

3

(1� �

1

q)

�

1�

�

2

q

�

1

��

1�

q

�

2

�

=




�

q

2

�

�2

2

q

3

(1� q) (1� �

2

q

2

)

�

1�

q

�

2

�

=

q

2

q

4

q

3

(1� q) (1� q

2

) (1� q

3

)

:

It is also possible to generalize this result for partitions with k parts and whose parts di�er by

at least two for any k > 0, that is

f

k

(q) =

q

k

2

(1� q)(1� q

2

) : : : (1� q

k

)

:

3. Leture Hall Partitions

The leture hall partition theorem is one of the most elegant reent result in partition analysis

[6, 7℄. Let us state the re�nement of this theorem [8℄.

Theorem 1. The number of partitions of n of the form (b

j

; b

j�1

; : : : ; b

1

) with

b

j

j

�

b

j�1

j�1

� � � � �

b

1

1

� 0 and b

j

� b

j�1

+ � � � + (�1)

j�1

b

1

= m is equal to the number of partitions of n into m odd

parts less than 2j.

This theorem an also be proved with the Omega operator [1℄, whih is what motivated G. E. An-

drews to resusitate the Omega operator. The proof mainly uses the elimination rule




�

1

(1� �x)

�

1�

y

�

s

�

=

1

(1� x)(1 � x

s

y)

Let us illustrate it for j = 3.

X

b

3

3

�

b

2

2

�

b

1

1

�0

x

b

3

�b

2

+b

1

q

b

3

+b

2

+b

1

=




�

X

b

3

;b

2

;b

1

�0

�

2b

3

�3b

2

1

�

b

2

�2b

1

2

x

b

3

�b

2

+b

1

q

b

3

+b

2

+b

1

=




�

1

(1� �

2

1

qx)

�

1�

�

2

q

�

3

1

x

��

1�

qx

�

2

2

�

=




�

1

(1� xq)(1� xq

3

)(1� xq

5

)

:

The Omega operator an also give a bijetive proof of the theorem [5℄. Let us show how to

proeed for j = 3:

X

b

3

3

�

b

2

2

�

b

1

1

�0

q

b

3

3

q

b

2

2

q

b

1

1

=




�

X

b

3

;b

2

;b

1

�0

�

2b

3

�3b

2

1

�

b

2

�2b

1

2

q

b

3

3

q

b

2

2

q

b

1

1

=




�

1 + q

2

q

2

3

(1� q

3

)(1� q

2

2

q

3

3

)(1 � q

1

q

2

2

q

3

3

)

:
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From the previous equation we get that there is a bijetion between the leture hall parti-

tions (b

3

; b

2

; b

1

) of n and the partitions of n into parts f1; 3; 5g with multipliity m

i

for the part i.

This bijetion beomes:

b

3

= 3m

5

+ 2m

3

�

j

m

3

2

k

+m

1

; b

2

= 2m

5

+m

3

; b

1

=

j

m

3

2

k

:

4. k-Gons with Integer Length

The problem an be de�ned as follows. The number

�

�

T

k

(n)

�

�

of k-gons with length n is equal to

the number of solutions of

(1) a

k

� a

k�1

� � � � � a

1

� 1; a

1

+ a

2

+ � � � + a

k

= n; a

1

+ a

2

+ � � �+ a

k�1

> a

k

:

Let F

k

(q) =

P

n

�

�

T

k

(n)

�

�

q

n

be the assoiated generating funtion. For triangles (k = 3) we get

F

3

(q) =

X

n

�

�

T

3

(n)

�

�

q

n

=

q

3

(1� q

2

)(1 � q

3

)(1� q

4

)

:

This is easy to prove as onditions (1) give

F

3

(q) =




�

X

a

1

�1

a

2

;a

3

�0

�

a

3

�a

2

1

�

a

2

�a

1

2

�

a

1

+a

2

�a

3

�1

3

q

a

1

+a

2

+a

3

=




�

q�

�1

1

�

1�

q�

2

�

3

��

1�

q�

1

�

3

�

2

��

1�

q�

3

�

1

�

=

q

3

(1� q

2

)(1� q

3

)(1� q

4

)

We an even be more spei�

F

3

(q

1

; q

2

; q

3

) =

X

a

3

�a

2

�a

1

�1

a

1

+a

2

>a

3

q

a

1

1

q

a

2

2

q

a

3

3

=




�

X

a

1

�1

a

2

;a

3

�0

�

a

3

�a

2

1

�

a

2

�a

1

2

�

a

1

+a

2

�a

3

�1

3

q

a

1

1

q

a

2

2

=




�

q�

�1

1

�

1�

q�

2

�

3

��

1�

q�

1

�

3

�

2

��

1�

q�

3

�

1

�

=

q

1

q

2

q

3

(1� q

2

q

3

)(1 � q

1

q

2

q

3

)(1� q

1

q

2

q

2

3

)

:

This shows there is a bijetion between the 3-tuples (u

1

; u

2

; u

3

) of N

3

and the triangles whose

sides have length u

1

+ u

2

+ 1, u

1

+ u

2

+ u

3

+ 1 and u

1

+ 2u

2

+ u

3

+ 1.

Thanks to the Omega operator we an ompute the generating funtion for larger k:

F

4

(q) =

q

4

(1 + q + q

5

)

(1� q

2

)(1� q

3

)(1 � q

4

)(1� q

6

)

;

F

5

(q) =

q

5

(1� q

11

)

(1� q)(1� q

2

)(1� q

4

)(1 � q

5

)(1� q

6

)(1� q

8

)

;

F

6

(q) =

q

6

(1� q

4

+ q

5

+ q

7

� q

8

� q

13

)

(1� q)(1� q

2

)(1� q

4

)(1 � q

6

)(1� q

8

)(1� q

10

)

:

We then an see that no pattern an be found and the Omega operator was a quik tool to show

that the solutions of this k-gon problem do not have \nie" generating funtions.
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1. Engel Expansions

A real number A > 0 has a unique expansion of the form

A = a

0

+

1

a

1

+

1

a

1

a

2

+

1

a

1

a

2

a

3

+ : : : ;

where the a

i

are positive integers with a

i+1

� a

i

for i � 1. These expansions were alled Engel

expansions by Perron and their study goes bak to Lambert around 1770. Uniqueness of the

expansion is not diÆult to see, together with the following reurrenes from whih an iterative

algorithm derives:

a

k

= br

k

+ 1;

1

r

k

=

1

a

k

+

1

a

k

r

k+1

; k � 1:

The initial onditions are given by a

0

< A � a

0

+ 1 and A � a

0

= 1=r

1

. Rational numbers

are haraterized by the ultimate stationarity of the sequene (a

i

). An obvious example of Engel

expansion of a non-rational number is provided by e = exp(1) for whih a

0

= 2 and a

i

= i + 1

for i > 0.

Arnold and John Knopfmaher de�ned in [4, 5℄ an analogous notion for Laurent series.

De�nition 1. Given a Laurent series A =

P

n��



n

q

n

2 C ((q)), and an integer � � 0, the q-Engel

sequene assoiated with A and � is the unique sequene (a

i

) of polynomials in q

�1

suh that

A = a

0

+

X

n�1

q

��n

a

1

� � � a

n

;

with the degrees of the a

i

obeying deg(a

i+1

) � deg(a

i

) + �+ 1.

This de�nition is motivated by the numerous q-identities involving suh expansions. A sample

is given in Table 1, using the lassial notations

(a; q)

0

= 1; (a; q)

k

= (1� a)(1� aq) � � � (1� aq

k�1

) for k > 0; (a; q)

1

=

Y

k�0

(1� aq

k

):

Again, uniqueness is not diÆult to hek and an iterative algorithm follows from

(1) A

k+1

:= q

�

(a

k

A

k

� 1); a

k

=

�

1

A

k

�

; k � 1;

with A

0

:= A, a

0

= [A℄ and A

1

= q

�

(A

0

� a

0

). The braket notation orresponds to the integral

part of a Laurent series de�ned by [A℄ :=

P

��n�0



n

q

n

2 C [q

�1

℄.
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X

k�0

q

(

k+1

2

)

(q; q)

k

=

Y

k>0

(1 + q

k

); (Euler)(2)

X

k�0

z

k

q

k

2

(q; q)

k

(zq; q)

k

=

1

(z; q)

1

; (Cauhy)(3)

X

k�0

q

k

2

(�q; q

2

)

k

=

X

k�0

(�1)

k+1

q

k

(�q; q)

k

; (Fine)(4)

X

k�0

q

k(3k�1)=2

(q; q)

k

(q; q

2

)

k

=

Y

k�1

(1� q

10k�6

)(1 � q

10k�4

)(1� q

10k

)

1� q

k

; (Rogers)(5)

X

k>0

q

k(3k�1)=2

(q; q)

k�1

(q; q

2

)

k

=

Y

k�1

(1� q

10k�8

)(1 � q

10k�2

)(1� q

10k

)

1� q

k

; (Rogers)(6)

X

k�0

q

k(2k�1)

(q; q)

2k

=

Y

k>0

(1 + q

k

); (Slater)(7)

X

k�0

q

k

2

(q; q)

k

=

1

(q; q

5

)

1

(q

4

; q

5

)

1

; (1st Rogers{Ramanujan)(8)

X

k�0

q

k

2

+k

(q; q)

k

=

1

(q

2

; q

5

)

1

(q

3

; q

5

)

1

; (2nd Rogers{Ramanujan)(9)

X

k�0

q

2k

2

(q; q)

2k

=

Y

k>0; k��2;�3;�4;�5 (mod 16)

1

1� q

k

; (Slater)(10)

X

k�0

q

2k

2

+2k

(q; q)

2k+1

=

Y

k>0 k��1;�4;�6;�7 (mod 16)

1

1� q

k

; (Slater)(11)

Table 1. q-identities involving q-Engel expansions.

2. Engel Guessing

Equipped with (1), it is very natural to implement a pakage omputing q-Engel sequenes of

Laurent series. Suh a pakage opens the way to experimental mathematis with q-Engel expan-

sions [2℄. For instane, starting from a trunation of the series expansion of the right-hand side

of (2) (a speial ase of an identity due to Euler) and using � = 0, the pakage outputs

1 +

q

(q; q)

1

+

q

3

(q; q)

2

+

q

6

(q; q)

3

+O(q

10

);

from whih the left-hand side is easily guessed. The task of proving suh an identity still requires

human work.

Using � = 1 on the same series does not reveal any pattern. However, with � = 2, one gets

1 +

q

(q; q)

2

+

q

6

(q; q)

4

+

q

15

(q; q)

6

+O(q

28

);
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from whih it is easy to onjeture the general formula (7).

3. Identities of Rogers{Ramanujan Type

In one of his independent proofs of the Rogers{Ramanujan identities (8{9), Shur introdued

two sequenes of polynomials

d

m

=

X

k

(�1)

k

q

k(5k�3)=2

�

m� 1

b

m+1�5k

2



�

; e

m

=

X

k

(�1)

k

q

k(5k+1)=2

�

m� 1

b

m�1�5k

2



�

; m � 1;

with e

0

= 0 and d

0

= 1 in terms of the Gaussian polynomials

�

n

k

�

=

(

(q;q)

n

(q;q)

k

(q;q)

n�k

; if 0 � k � n,

0; otherwise.

The sequenes d

m

and e

m

appear in the reent generalization of the Rogers{Ramanujan identities

due to Garrett, Ismail and Stanton [3℄:

(12)

1

X

n=0

q

n

2

+mn

(q; q)

n

=

(�1)

m

q

�

(

m

2

)

d

m

(q; q

5

)

1

(q

4

; q

5

)

1

�

(�1)

m

q

�

(

m

2

)

e

m

(q

2

; q

5

)

1

(q

3

; q

5

)

1

:

Setting m = 0, m = 1 in this formula yields (8) and (9).

The left-hand side of (12) is the q-Engel expansion of the right-hand side for � = 0, whih

motivates [1℄ in looking for a q-Engel \proof" of this identity. For this, it is suÆient to prove that

the sequene a

n

= q

�(2n+m�1)

� q

�(n+m�1)

is the orresponding q-Engel sequene. De�ning

A

0

= A; A

n

= (�1)

m

q

�

(

m

2

)

�(m�1)(n�1)

X

j>m

q

jn

(d

m

e

j

� d

j

e

m

) for n � 1;

the proof onsists in showing that a

n

A

n

= 1 +A

n+1

and a

n

= [1=A

n

℄, together with orret initial

onditions. In view of (14) below, this is not too diÆult, but tehnial (see [1℄ for details).

Shur proved that both d

m

and e

m

satisfy the reurrene

(13) 

m+2

= 

m+1

+ q

m



m

; m � 0:

Nowadays, this identity is proved automatially by invoking the q-WZ algorithm [7℄ and this leads

to the �rst purely automati elementary proof of the Rogers{Ramanujan identity [6℄. In view of

this reurrene, d

m

and e

m

are nothing but q-analogues of the Fibonai numbers. It turns out

that a generalization of the Cassini identity, namely

F

m�1

F

m+k

� F

m+k�1

F

m

= (�1)

m

F

k

;

admits a q-analogue in terms of e

m

and d

m

:

(14) d

m

e

m+k

� d

m+k

e

m

= (�1)

m

q

(

m

2

)

X

j�0

�

k � 1� j

j

�

q

j

2

+mj

:

This identity an be proved automatially from (13) by univariate D-�nite losure properties (m be-

ing �xed). In fat, a non-Engel proof of (12) follows from letting k tend to in�nity in (14) in view

of Shur's limit formulae

d

1

=

1

(q; q)

1

X

k

(�1)

k

q

k(5k�3)=2

=

1

(q

2

; q

5

)

1

(q

3

; q

5

)

1

;

e

1

=

1

(q; q)

1

X

k

(�1)

k

q

k(5k+1)=2

=

1

(q; q

5

)

1

(q

4

; q

5

)

1

:
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The in�nite produts are obtained by Jaobi's triple produt identity, whih also admits a simple

omputer proof [6℄.

4. A New Identity Disovered by Engel Guessing

The identities (10) and (11) an be onjetured by Engel guessing after �rst multiplying the

produt by 1� q. An Engel proof is also available [2℄ using the Santos polynomials de�ned by

S

m

=

X

j

q

4j

2

�j

�

m

b

m+1�4j

2



�

; T

m

=

X

j

q

4j

2

�3j

�

m

b

m+2�4j

2



�

;

whose limits S

1

and T

1

when m!1 are preisely the right-hand sides of (10) and (11).

In view of (12), a natural idea onsists in experimenting with q-Engel expansions of S

n

T

1

�T

n

S

1

or variations of it. It turns out that a pattern readily emerges leading to onjeturing the following

generalization of (10) and (11):

S

n

T

1

� T

n

S

1

= q

n

(q; q

2

)

n

X

k�0

q

2k

2

+2(n+1)k

(q; q)

2k+1

:

Again, a possible proof [2℄ onsists in relying on a �nite version, namely

S

n

T

n+m

� T

n

S

n+m

= q

n

(q; q

2

)

n

X

k�0

�

m

2k + 1

�

q

2k

2

+2(n+1)k

:

5. Conlusion

Engel expansions are a new way of looking at q-identities whih allows for easy omputer experi-

ments and hene should lead to many disoveries. A pending issue is to make q-Engel proving into

an algorithmi task.

Bibliography

[1℄ Andrews (George E.), Knopfmaher (Arnold), and Paule (Peter). { An in�nite family of Engel expansions of

Rogers-Ramanujan type. Advanes in Applied Mathematis, vol. 25, n

�

1, 2000, pp. 2{11.

[2℄ Andrews (George E.), Knopfmaher (Arnold), Paule (Peter), and Zimmermann (Burkhard). { Engel expansions

of q-series by omputer algebra. In Alladi (K.) (editor), q-Series. Kluwer Series Developments in Mathematis. {

Kluwer, 2000. Proeedings of the Conferene \q-Series", Gainesville, November 1999.

[3℄ Garrett (Kristina), Ismail (Mourad E. H.), and Stanton (Dennis). { Variants of the Rogers-Ramanujan identities.

Advanes in Applied Mathematis, vol. 23, n

�

3, 1999, pp. 274{299.

[4℄ Knopfmaher (Arnold) and Knopfmaher (John). { Inverse polynomial expansions of Laurent series. Construtive

Approximation, vol. 4, n

�

4, 1988, pp. 379{389.

[5℄ Knopfmaher (Arnold) and Knopfmaher (John). { Inverse polynomial expansions of Laurent series. II. In Pro-

eedings of the 3rd International Congress on Computational and Applied Mathematis (Leuven, 1988), vol. 28,

pp. 249{257. { 1989.

[6℄ Paule (Peter). { Short and easy omputer proofs of the Rogers-Ramanujan identities and of identities of similar

type. Eletroni Journal of Combinatoris, vol. 1, 1994. { Researh Paper 10. 9 pages.

[7℄ Wilf (Herbert S.) and Zeilberger (Doron). { An algorithmi proof theory for hypergeometri (ordinary and \q")

multisum/integral identities. Inventiones Mathematiae, vol. 108, n

�

3, 1992, pp. 575{633.



Algorithms Seminar 2000{2001,

F. Chyzak (ed.), INRIA, (2002), pp. 31{36.

Available online at the URL

http://algo.inria.fr/seminars/.

Eulerian Calulus: a Tehnology for Computer Algebra and Combinatoris

Dominique Foata

D�epartement de math�ematique, Universit�e Louis Pasteur (Frane)

May 21, 2001

Summary by Dominique Gouyou-Beauhamps

Abstrat

Babson and Steingr��msson have introdued pairs of permutation statistis that they onje-

tured were all Euler{Mahonian, i.e., equidistributed with the pair (des;maj) where des is

the number of desents and maj is the major index. How to prove their onjeture? We

use the so-alled \Umbral Transfer Matrix Method" implemented by Zeilberger and spe-

i� ombinatorial onstrutions leading to new transformations on the symmetri group.

Details may be found in the reent work of D. Foata and D. Zeilberger [2℄.

1. Introdution

We use the Babson{Steingr��msson notation [1℄ for \atomi" permutation statistis. Given a

permutation w = x

1

x

2

: : : x

n

of 1, 2, . . . , n they denote (a � b)(w) the number of ourenes of

the pattern a � b, i.e., the number of pairs of plaes 1 � i < j < n suh that x

i

< x

j

< x

j+1

.

Similary, the pattern (b � a)(w) is the number of ourrenes of x

j+1

< x

i

< x

j

, and in general,

for any permutation �, �,  of a, b, , the expression (� � �)(w) is the number of pairs (i; j),

1 � i < j < n, suh that the orderings of the two triples (x

i

; x

j

; x

j+1

) and �; �;  are idential.

The statisti (ab � ) is de�ned in the same way by looking at the ourenes (x

i

; x

i+1

; x

j

) suh

that i+ 1 < j and x

i

< x

i+1

< x

j

. Of ourse, (ba)(w) denotes the number desw of desents of w

(i.e., the number of plaes 1 � i < n suh that x

i

> x

i+1

) and (ab)(w) denotes the number risew

of rises of w (i.e., the number of plaes 1 � i < n suh that x

i

< x

i+1

).

The lassial permutation statistis inv and maj may be written as (b�a)+(a�b)+(b�a)+(ba)

and (a � b) + (b � a) + ( � ba) + (ba), respetively. This inspired Babson and Steingr��msson

to perform a omputer searh for all statistis that ould be thus written, and look for those that

appear to be Mahonian. They ame up with a list of 18. Some of them turned out to be well-known,

and some were new. Yet eight new onjeturally Mahonian statistis were left open. Here we prove

four of them.

2. Notations

Reall the usual notations

(a; q)

n

=

�

1 if n = 0,

(1� a)(1� aq) : : : (1� aq

n�1

) if n � 1,

(a; q)

1

= lim

n!1

(a; q)

n

=

Y

n�0

(1� aq

n

);
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[n℄

q

=

1� q

n

1� q

=

n�1

X

i=0

q

i

; [n℄

q

! =

(q; q)

n

(1� q)

n

=

n

Y

i=1

[i℄

q

:

A statisti stat on the symmetri group S

n

is said to be Mahonian, if for every n � 0 we have

X

w2S

n

q

statw

= [n℄

q

!

A sequene

�

A

n

(t; q)

�

n�0

of polynomials in two variables t and q, is said to be Euler{Mahonian,

if one of the following equivalent onditions holds:

1. For every n � 0,

1

(t; q)

n+1

A

n

(t; q) =

X

s�0

t

s

([s + 1℄

q

)

n

:

2. The exponential generating funtion for the frations

A

n

(t;q)

(t;q)

n+1

is given by

X

n�0

u

n

n!

A

n

(t; q)

(t; q)

n+1

=

X

s�0

t

s

exp(u[s+ 1℄

q

):

3. The sequene

�

A

n

(t; q)

�

satis�es the reurrene relation:

(1) (1� q)A

n

(t; q) = (1� tq

n

)A

n�1

(t; q)� q(1� t)A

n�1

(tq; q):

4. Let A

n

(t; q) =

P

s�0

t

s

A

n;s

(q). Then the oeÆients A

n;s

(q) satisfy the reurrene:

A

n;s

(q) = [s+ 1℄

q

A

n�1;s

(q) + q

s

[n� s℄

q

A

n�1;s�1

(q):

Now a pair of statistis (stat

1

; stat

2

) de�ned on eah symmetri group S

n

(n � 0) is said to be

Euler{Mahonian, if for every n � 0 we have

X

w2S

n

t

stat

1

w

q

stat

2

w

= A

n

(t; q):

3. Results

Our results are the following:

Theorem 1. The permutation statisti S11 = (a� b) + 2(b� a) + (ba) is Mahonian.

Theorem 2. The permutation statisti S13 = (a� b) + 2(b� a) + (ab) is Mahonian.

Theorem 3. Let S5 = (b � a) + ( � ba) + (a � b) + (ab). Then, the pair (rise; S5) is Euler{

Mahonian.

Theorem 4. Let S6 = (ba � ) + ( � ba) + (a � b) + (ba). Then, the pair (des; S6) is Euler{

Mahonian.

Our Theorems 1, 2, and 4 are the three parts of Conjeture 8 of [1℄, while Theorem 3 is Con-

jeture 10 of [1℄. It turns out that, thanks to Zeilberger's reent theory of the Umbral Transfer

Matrix Method [4℄, the proofs of the �rst three theorems are ompletely automati, using the

general Maple pakage ROTA, together with a new interfaing pakage PERCY that omputes the

appropriate Rota operators for what we will all Markovian Permutation Statistis.

However, ROTA is useless in the ase of S6. So proving Theorem 4 still requires the traditional

ombinatorial method: onstrut a bijetion w 7�! w

0

of S

n

onto itself whih has the property that

(des; S6)w

0

= (des;maj)w
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Figure 1. r s(10; 11; 2; 4; 5; 9; 6; 12; 14; 15; 7; 3; 1; 8; 13) = (8; 13; 1; 4; 5; 12; 14; 15; 7; 6; 9; 3; 2; 10; 11).

holds for every w 2 S

n

.

4. Proof of Theorem 4

Instead of the pair (des;maj) we will take another Euler{Mahonian pair (des;mak), where

mak is a Mahonian statisti that was introdued by Foata and Zeilberger in [3℄. In the Babson{

Steingr��msson notation mak reads

mak := (a� b) + (b� a) + (ba) + (a� b):

First, the desent bottom of a permutation x

1

x

2

: : : x

n

is de�ned to be the set desbotw of all

the x

i

's suh that 2 � i � n and x

i�1

> x

i

. Its ardinality is the number desw of desents of w.

Next, the word statistis U and V are introdued as follows. Let y = x

i

be a letter of the

permutation w = x

1

x

2

: : : x

n

. De�ne

U

y

(w) = (a� b)j

b=y

w; V

y

(w) = (b� a)j

b=y

w:

Thus, U

y

(w) is the number of adjaent letters x

j

x

j+1

to the left of y = x

i

suh that x

j

> x

i

> x

j+1

.

The word statitis U and V are then:

U(w) = U

1

(w)U

2

(w) : : : U

n

(w); V (w) = V

1

(w)V

2

(w) : : : V

n

(w):

Now, reall the traditional reverse image r, whih is an involution that maps eah permutation

w = x

1

x

2

: : : x

n

onto rw = x

n

x

n�1

: : : x

1

. We shall introdue another involution s of S

n

, alled the
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rise-des-exhange, whih exhanges the rises and the desents of a permutation and keeps peaks and

troughs in their original ordering. The involution s is not explained here, but an be immediately

visualized in Fig. 1.

Proposition 1. The involution r s of S

n

has the following properties:

1. desbot r sw = desbotw,

2. (U; V ) r sw = (V;U)w.

Let � -desbotw be the sum of all the letters x

i

of the permutation w = x

1

x

2

: : : x

n

whih belong

to the desent bottom set desbotw.

Proposition 2. For eah permutation w we have:

� -desbotw =

�

(a� b) + (b� a) + (ba)

�

w:

Next, we introdue the omplement to (n + 1), denoted by , that maps eah permutation

w = x

1

x

2

: : : x

n

onto w = (n+ 1� x

1

)(n+ 1�x

2

) : : : (n+ 1� x

n

). Thus the statisti S6 r  reads

S6 r  = (a� b) + (b� a) + (ba) + (b� a):

Taking Proposition 2 into aount, we get the expressions:

makw = � -desbotw + U

1

(w) + � � �+ U

n

(w);

S6 r  = � -desbotw + V

1

(w) + � � �+ V

n

(w):

Therefore, Proposition 1 implies the following orollary.

Corollary 1. The involution r s is an involution of S

n

having the property:

(des;mak)w = (des; S6 r ) r sw:

But (des;mak) is Euler{Mahonian, as proved in [3℄. Therefore, the pair (des; S6 r ) is Euler{

Mahonian, as well as (des,S6), sine we always have des r w = desw. Hene Theorem 4 is proved.

5. Markovian Permutation Statistis

The redution of a sequene w of n distint integers, denoted by red(w), is the permutation

obtained by replaing the smallest member by 1, the seond-smallest by 2, . . . , and the largest

by n. For example red(5 8 3 7 4) = 3 5 1 4 2.

A permutation statisti F : S

n

! Z is said to be Markovian, if there exists a funtion h(j; i; n)

suh that

F (x

1

: : : x

n

) = F

�

red(x

1

: : : x

n�1

)

�

+ h(x

n�1

; x

n

; n):

A Markovian permutation statisti F : S

n

! Z is said to be nie Markovian if the above h(j; i; n)

an be written as

h(j; i; n) =

�

f(j; i; n) if j < i;

g(j; i; n) if j > i;

where f and g are aÆne linear funtions of their arguments, i.e., an be written as ai+ bj+ n+d,

for some integers a, b, , d.

We, and the Maple pakage PERCY, will only onsider nie Markovian statistis. We will denote

them by [f; g; j; i; n℄. For exemple, inv = [n � i; n � i; j; i; n℄, maj = [0; n � 1; j; i; n℄, des =

[0; 1; j; i; n℄, rise = [1; 0; j; i; n℄.

Given a permutation statisti F we are interested in the sequene of polynomials

gf(F )

n

(q) =

X

w2S

n

q

F (w)

(n � 0):
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However, in order to take advantage of Markovity, we need to onsider the more re�ned

GF(F )

n

(q; z) =

X

w=x

1

:::x

n

2S

n

q

F (w)

z

x

n

(n � 0)

that also keeps trak of the last letter x

n

. Now, by using Rota operators [4℄, it is easy to express

GF(F )

n

in terms of GF(F )

n�1

. Let w

0

= x

0

1

: : : x

0

n�1

= red(x

1

: : : x

n�1

); then

GF(F )

n

(q; z) =

n

X

i=1

z

i

X

w2S

n

; x

n

=i

q

F (w)

=

n�1

X

j=1

X

w

0

2S

n�1

; x

0

n�1

=j

0

�

j

X

i=1

q

g(j+1;i;n)

z

i

+

n

X

i=j+1

q

f(j;i;n)

z

i

1

A

q

F (w

0

)

:

Now for i � j � n� 1 we introdue the umbra P,

P(z

j

) =

0

�

j

X

i=1

q

g(j+1;i;n)

z

i

+

n

X

i=j+1

q

f(j;i;n)

z

i

1

A

;

and we extend by linearity, so that P is de�ned on all polynomials of degree less than or equal

to n� 1. In terms of P, we have the very simple reurrene:

GF(F )

n

(q; z) = P

�

GF(F )

n�1

(q; z)

�

:

Maple an ompute the umbra automatially. All the users have to enter is f and g, and PERCY

would onvert it to the Markovian notation.

6. Proof of Theorem 1

Using PERCY and ROTA we get that the umbra P linking GF(S11)

n�1

(q; z) to GF(S11)

n

(q; z)

maps the polynomial a(z) onto

z

n+1

a(1)� za(z)

z � 1

+

z

�

a(qz)� a(q

2

)

�

z � q

:

Hene b

n

(z) = GF(S11)

n

(q; z) satis�es the funtional reurrene

b

n

(z) =

z

n+1

b

n�1

(1)� zb

n�1

(z)

z � 1

+

z

�

b

n�1

(qz)� b

n�1

(q

2

)

�

z � q

;

with the initial ondition b

1

(z) = z. But if we guess (and if we hek) that the sequene



n

(z) = z

z

n

� q

n

z � q

[n� 1℄

q

!

satis�es the same reurrene, we obtain that b

n

(z) = 

n

(z), and �nally that b

n

(1) = 

n

(1) = [n℄

q

!

7. Proof of Theorem 2

Using PERCY and ROTA we get that the umbra P linking GF(S13)

n�1

(q; z) to GF(S13)

n

(q; z)

maps the polynomial a(z) onto

z

�

a(zq) � a(1)

�

qz � 1

+

zqa(z) � q

2n+1

z

n+1

a(q

�2

)

1� zq

2

:
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Hene d

n

(z) = GF(S13)

n

(q; z) satis�es the funtional reurrene

d

n

(z) =

z

�

d

n�1

(zq)� d

n�1

(1)

�

qz � 1

+

zqd

n�1

(z)� q

2n+1

z

n+1

d

n�1

(q

�2

)

1� zq

2

;

with the initial ondition d

1

(z) = z. But if we guess (and if we hek) that the sequene

e

n

(z) = z

(1� z

n

q

n

)

1� qz

[n� 1℄

q

!

satis�es the same reurrene, we obtain that d

n

(z) = e

n

(z), and �nally that d

n

(1) = e

n

(1) = [n℄

q

!:

8. Proof of Theorem 3

PERCY an ompute the Umbra multi-statistis, when the generating funtion is the weight-

enumerator of S

n

aording to the weight

weight(w) = z

x

n

r

Y

j=1

q

F

j

(w)

j

;

where w = x

1

: : : x

n

and F

1

(w), . . . , F

r

(w) are several nie Markovian permutation statistis. De�ne

A

n

(t; q; z) =

X

w2S

n

t

desw

q

majw

z

x

n

; B

n

(t; q; z) =

X

w2S

n

t

risew

q

S5w

z

x

n

:

PERCY and ROTA ompute the following funtional reurrenes

A

n

(t; q; z) =

z(1 � tq

n�1

)A

n�1

(t; q; z) � z(z

n

� tq

n�1

)A

n�1

(t; q; 1)

1� z

;(2)

B

n

(t; q; z) =

z(1� tq

n

)B

n�1

(t; q; z) � z(1� tz

n

)B

n�1

(t; q; q)

z � q

:

By omparing the two funtional reurrenes, we guess and we verify that

B

n

(t; q; z) = q

�n

z

n+1

A

n

(tq; q; q=z):

Hene B

n

(t; q; 1) = q

�n

A

n

(tq; q; q). By plugging t = tq, z = q into Eq. (2), we get that

A

n

(tq; q; q) = q

n

(1� tq

n

)A

n�1

(t; q; 1) � q(1� t)A

n�1

(tq; q; 1)

1� q

:

But, this equals q

n

A

n

(t; q) by Eq. (1). And we have proved that B

n

(t; q; 1) = A

n

(t; q; 1) = A

n

(t; q).

The input and output �les of PERCY an be downloaded from

http://www.math.temple.edu/~zeilberg/programs.html.
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Summary by Philippe Flajolet

Abstrat

What does a random partition of a large integer look like? The talk presents asymptoti

results and variational problems for this question, obtained in a work of A. Dembo jointly

with A. Vershik and O. Zeitouni [4℄. The tehniques involve some ombinatoris and mostly

probability theory. Other appliations onern asymptotis of various random ombinatorial

strutures, suh as permutations, forests of trees, and onvex polygons with integer verties.

This summary is intended as a asual introdution to the reading of the paper [4℄.

1. A Bit of Paleontology

A partition of the integer n is an aditive deomposition of the integer n into some number r of

integer summands,

n = x

1

+ x

2

+ � � �+ x

r

; x

j

� x

j+1

; x

r

> 0:

The quantity r is alled the number of summands (or parts). A partition is said to be strit if

all its summands are distint. A partition is naturally represented by a diagram resembling a

stairase and alled diversely its Ferrers graph or its Young diagram. We shall let P

n

and P

s

n

denote the olletions of all partitions and strit partitions summing to n, and denote with P

n

; P

s

n

the orresponding ardinalities.

Euler started the analyti theory of partitions by providing the expliit generating funtions

P (z) =

X

n

P

n

z

n

=

Y

k�1

1

1� z

k

; P

s

(z) =

X

n

P

n

z

n

=

Y

k�1

�

1 + z

k

�

;

and a good deal more. The next entury mostly foussed on the orresponding theta funtion

identities and their ellipti-modular aspets. Andrews' lassi [2℄ is still a pretty good referene for

many of these aspets.

The asymptoti theory starts 150 years after Euler, with the �rst letters of Ramanujan to Hardy

in 1913; see [7℄. There, Ramanujan stated:

\The oeÆient of x

n

in (1� 2x+ 2x

4

� 2x

9

+ � � � )

�1

is the integer nearest to

1

4n

�

osh �

p

n�

sinh�

p

n

�

p

n

�

:"

This assertion (that in fat needs to be mildly amended) is, in view of Euler's pentagonal number

theorem, diretly relevant to our subjet. In a elebrated series of memoirs published in 1917
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and 1918, Hardy and Ramanujan found very preise estimates for the partition numbers implying

in partiular:

(1) P

n

�

1

4n

p

3

e

�

q

2

3

n

; P

s

n

�

1

4

p

3n

3=4

e

�

q

1

3

n

:

See [7, Ch VIII℄ for an insightful disussion and [2, Ch. 5℄ for the reexamination of the subjet by

Meinardus.

As far as dominant asymptotis goes, it may be worth pointing out that the simply stated

estimates (1) plainly derive from a saddle-point approximation of the Cauhy oeÆient integral,

(2) [z

n

℄C(z) =

1

2i�

Z

jzj=�

C(z)

dz

z

n+1

:

The saddle points to be used here are at the real points � (for P (z)) and �

s

(for P

s

(z)) suh that

� � 1�

�

p

6n

; �

s

� 1�

�

p

12n

;

the reason being that P (z) and P

s

(z) =

P (z)

P (z

2

)

tend to in�nity like exp

�

�

2

6(1�z)

�

and exp

�

�

2

12(1�z)

�

;

as z tends radially to 1.

Later in the last entury, Erd}os and Lehner [6℄ launhed the study of various harateristis of

random partitions. In partiular, they showed that almost all partitions of P

n

have a number a

summands in an interval

(3)

1

C

p

n logn� o

�

p

n log n

�

; C := �

r

2

3

;

while for strit partitions, the interval is

(4)

2

p

n

D

log 2� o

�

p

n

�

; D := �

r

1

3

:

The limit law is an extreme value distribution in the �rst ase, a Gaussian distribution in the

seond ase. (Erd}os and Lehner use a mostly elementary reurrene argument indued by generating

funtions together with the Hardy{Ramanujan estimates.) Note the similarities between the saddle-

point onstants and the normalization onstants C; D in (3) and (4). Also, the saling fator

p

n

is ubiquitous in all suh analyses. Roughly put, these estimates inform us that a random partition

of n is expeted to �t in a retangle with sides about n

1=2+o(1)

.

2. The Shape of Random Partitions

Around 1977, Vershik and Kerov [10℄ and, independently, Logan and Shepp [8℄ studied the shape

of the Young tableau(s) assoiated to a random permutation or a random involution.

1

Thus, in

ontast to what happens in the talk, we are momentarily dealing with a non-uniform distribution

on P

n

. Indeed, the enumerative formulae relative to Young tableaus under these statistis (the

\hook formula," also alled the Robinson{Frame{Thrall formula) renormalize in the sale of

p

n in

suh a way that the probability of a ontinuous shape f(t) (in the asymptoti limit) ouring in

tableaus of size n is found to be of the rough form (see (7) below for a preise statement)

(5) e

�n�(f)

; �(f) := 2

ZZ

t<s

log

�

2e

1=2

(s� t)

�

�

1�

_

f(s)

��

1 +

_

f(t)

�

dt ds

1

These are \�lled" Young diagrams|the �lling rule orresponds to entries inreasing by line and olumn.
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Figure 1. Two partitions of P

1000

drawn at random against the limiting shape 	(t).

with

_

f the derivative of f . Thus, the most likely shape f

0

solves the variational problem of

minimizing the funtional �, and \most" tableaus are expeted to be lose to this partiular

shape f

0

. From the methodologial standpoint, the ontributions [8, 10℄ are espeially important.

They led to a muh wanted solution of Golomb's onjeture to the e�et that the average length

of the longest inreasing subsequene in a random permutation of size n is asymptoti to 2

p

n;

see [1, 3℄ for reent developments in rather di�erent diretions.

We now return to partitions and let Q

n

and Q

s

n

represent the uniform probability models on P

n

and P

s

n

. A partition (or diagram) � an be written under the form � = 1

r

1

2

r

2

3

r

3

� � � . Graphially,

we de�ne the \ontour" or \shape,"

'

�

(t) :=

1

X

k=dte

r

k

; t � 0;

so that '

�

is a monotone dereasing funtion whose integral over R

+

equals n. We normalize any

suh ' by

e'

n

(t) =

1

p

n

'

�

�

�

t

p

n

�

�

:

Under the models indued by Q

n

and Q

s

n

, Vershik [9℄ proved (in the sense of uniform onvergene

on ompat sets) that ontours tend to onverge to deterministi limits,

e'(�) �!

n!1

	(�); e'

s

(�) �!

n!1

	

s

(�); where

(6) 	(t) :=

Z

1

t

du

e

�u

� 1

du; 	

s

(t) :=

Z

1

t

du

e

�u

+ 1

du; � =

�

p

6

; � =

�

p

12

:

Thus, a random partition under Q

n

or Q

s

n

tends to have a limiting shape given by the urves

	(t) or 	

s

; see Fig. 1 obtained with Maple and ombstrut. (Observe that 	 has a logarithmi

singularity at 0, while 	

s

is regular there.) Alternatively, the limit ontours are the urves satisfying

respetively e

��x

+e

��y

= 1, and e

�y

�e

��y

= 1; with the �rst one being symmetrial, as it should.

The main objetive of the talk is to onsider deviations from the limit shapes. What is proved

is a full large deviation priniple, of speed

p

n, muh in the spirit of (5). We reall that a sequene

of measures �

n

over a (ompletely regular Hausdor� topologial) spae X is said to satisfy the

large deviation priniple [LDP℄ with speed b

n

and a rate funtion I if I : X ! [ 0;1) is lower
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semiontinuous, and for any measurable set X � X , there holds:

(7) � inf

x2X

Æ

I(x) � lim inf

n!1

1

b

n

log �

n

(X) � lim sup

n!1

1

b

n

log �

n

(X) � � inf

x2X

I(x):

There, X

Æ

and X denote the interior and the losure of X. It an be reognized that the informally

stated estimate in (5) is of this type (with speed b

n

= n and rate funtion �).

For our purposes, the set X will onsist of funtions that are left ontinuous and of right limits

equipped with the topology of uniform onvergene. Let also AC

[�1;0 ℄

1

be the subset of non-

inreasing absolutely ontinuous funtions f(�) satisfying lim

t!1

f(t) = 0|and hene f(t) =

R

1

t

�

�

_

f(u)

�

du|with derivatives belonging Lebesgue-almost everywhere to the interval [�1; 0 ℄.

This last set represents the olletion of all potential \shapes" of partitions onsidered (after nor-

malization). By want of spae, we refer to the original paper [4℄ for omplete topologial and

measure-theoreti de�nitions and state:

Theorem 1. Under the laws Q

s

n

, the random variable e'(�) satis�es the LDP with speed

p

n and a

rate funtion that, for f 2 AC

[�1;0 ℄

1

and

R

1

0

(�t) df(t) � 1, is expressed by

I

s

(f) = 2� �

Z

1

0

h

�

�

_

f

a

(t)

�

dt;

with h(x) = log

�

x

�x

(1� x)

�(1�x)

�

the entropy funtion and g

a

the absolutely ontinuous part of g.

Theorem 2. Under the laws Q

n

, the random variable e'(�) satis�es the LDP with speed

p

n and a

rate funtion that, for f in a suitable spae and

R

1

0

(�t) df(t) � 1, is expressed by

I

s

(f) = 2��

Z

1

0

�

1�

_

f

a

(t)

�

h

 

�

_

f

a

(t)

1�

_

f

a

(t)

!

dt:

The paper also states some equivalent forms that are expressed in terms of a \distane" to the

most likely ontours of (6). That distane involves various entropy funtions.

3. Boltzmann Models of Combinatoris

The �rst step in the proof of Theorems 1 and 2 is the introdution of a family of models over the

lasses P and P

s

and large deviations are �rst established under these models. Sine the priniples

are of an appliablity that goes well beyond the probabilisti theory of partitions, we depart a bit

from the original paper [4℄ and disuss them �rst at a fair level of generality.

Let generally C be a lass of ombinatorial objets endowed with its size funtion j � j. What

we all here, by virtue of a vague analogy with statistial mehanis, the Boltzmann model of

parameter x (over C) is the model that assigns to any objet  2 C the probability

x

jj

C(x)

with C(x) =

X

2C

x

jj

;

the ounting generating funtion of C. There x is to be restrited to real values less than the

radius � of onvergene of C(x).

The lass C being �xed, we shall let Q

n

denote the uniform probability model over the sublass C

n

of objets of size n and, with a slight abuse of notations, Q

x

represents the Boltzmann model of

parameter x. Clearly, Q

x

is a mixture of the family of models fQ

n

g in the following sense:

(8) Q

x

�

=

Q

N

where N is a random integer seleted with P(N = n) =

C

n

x

n

C(x)

:
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In other words, a randomly hosen objet under Q

x

has a random size N � N

x

distributed aord-

ing to the probability in (8); one the value of size has been drawn aording to its distribution,

say, N = n, a random element of C

n

is hosen uniformly at random, that is, aording to Q

n

. (A-

ordingly, Q

n

is Q

x

onditioned upon size, irrespetive of the value of x 2 (0; �).) The distribution

of the random size N aording to Q

x

is itself given by a simple generi alulation that we now

explain. The probability generating funtion of N is

X

n

P(N = n) z

n

=

C(xz)

C(x)

:

Next, the mean and seond moment of N are found to be

(9) E(N) = x

C

0

(x)

C(x)

; E(N

2

) =

x

2

C

00

(x) + xC

0

(x)

C(x)

:

The mean size inreases as x approahes �

�

, with � the radius of onvergene of C. In partiular,

if the additional ondition C

0

(�

�

) = +1 is met, the Boltzmann model must give preponderane to

objets of larger and larger sizes. (Work in progress by Duhon, Flajolet, Louhard, and Shae�er

shows that similar onsiderations are otherwise of great interest for the random generation of

ombinatorial strutures.)

We now speialize the Boltzmann model to partitions, with the Boltzmann models Q

x

; Q

s

x

,

and the �xed-size models Q

n

; Q

s

n

taken in assoiation to the ombinatorial lasses P; P

s

n

. The

generating funtions P (z); P

s

(z) have radius of onvergene � = 1 and both blow up exponentially

as z ! 1

�

. Thus, the models Q

x

; Q

s

x

must have something to say on the limiting behaviours of

objets in P; P

s

n

. As it is easy to see, the Boltzmann models Q

x

and Q

s

x

orrespond to in�nite

sequenes of independent integer valued random variables R

k

(k = 1; 2; : : :), with laws as follows:

(10)

Q

x

: R

k

2 Z

>0

; P(R

k

= `) = x

k`

(1� x

k

)

Q

s

x

: R

k

2 f0; 1g; P(R

k

= 1) = x

k

=(1 + x

k

):

In other words, the non-indentially distributed (but independent) R

k

are Bernoulli in the ase of

Q

s

x

and geometri in the ase of Q

x

.

A simple alulation based on Equation (9), on Chebyshev's inequalities, and on the usual

approximation tehniques for partition funtions shows that a window narrowly entred around

size N = n is obtained by �xing x = x

n

, x = x

s

n

given by

x

n

= 1�

�

p

n

; x

s

n

= 1�

�

p

n

;

for Q

x

and Q

s

x

, respetively. (Note that these values oinide with the saddle points of the omplex-

analyti approah in Setion 1! This fat is general sine the equations E

x

(N) = n and the saddle-

point ondition for (2) preisely oinide.) Large deviations of sums of Bernoulli or geometri

random variables involve the entropy funtion. The Boltzmann models for partitions then provide

a �rst hint as to the natural ourrene of entropy funtions in the statements of Theorems 1 and 2.

4. The Spirit of Complete Proofs

In this short abstrat, we annot do more than presenting a broad (and vague) outline of what

the full proof of Theorems 1 and 2 requires.

First, under the ontinuous-parameter models Q

x

; Q

s

x

, it is easy to determine information on

single parameters of partitions. The paper under review reovers for instane the analogues of

Erd}os and Lehner's estimates when x = x

n

and x = x

s

n

. It then proeeds by proving the LDP

for these models. What is required is showing that, for any �xed m, and any �xed \instants"
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t

1

, t

2

, . . . , t

m

, the random vetors

�

e'

n

(t

1

); : : : ; e'

n

(t

m

); n

�1

N

�

satisfy a large deviation priniple.

The proof bases itself on the independene granted by the models: one needs to estimate the

probabilities of \slies" of summands in the sale of

p

n to be away from what is expeted; this

is largely based on the approximation of Riemann sums by integrals. As a snapshot of the latter

tehnique, we o�er the simple estimate

E

x

n

�

e'

n

(t)

�

=

X

k=tn

1=2

1

p

n

x

k

n

1� x

k

n

!

Z

1

t

du

e

�u

� 1

du =: 	(t):

Last but not least, the treatment relies on an intensive use of large deviation tehniques as exposed

in [5℄.

In a seond step, a Tauberian type of proess needs to be applied. Indeed, the models Q

x

n

are

a sort of weighted average of various models of a size N , whih is only ontrolled to lie in the

viinity of n but still utuates randomly. However, results at N = n exatly are wanted. Contour

integration is one ommon way of ahieving this, but the authors of [4℄ opt for a more ombinatorial

path. One of the ideas is to appeal to the following area transformation: given a diagram � of

area N at most n, form a new diagram of area n exatly, by ompleting the last row of � by n�N

elements. This establishes a mapping from

S

n

N=1

P

N

to P

n

that does not a�et shape and various

other harateristis of partitions too muh. In this way, large deviation properties established for

values of N slightly smaller than n (as given by the family of Q

x

n

models) an be \transferred" to

partitions of exat size n, that is, to the model Q

n

.

The paper under disussion onludes by noting that several suh large deviation priniples

should hold for various types of partitions with multipliities and onstrained partitions, as well

as labelled trees and set partitions. In the last ase, the objets at stake are enumerated by expo-

nential generating funtions, and suitable adaptations of the Boltzmann models (with the Poisson

distribution replaing the geometri or Bernoulli distribution) are lurking in the bakground.
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Random Walks and Heaps of Cyles

Philippe Marhal

D�epartement de math�ematiques et appliations,

�

Eole normale sup�erieure (Frane)

April 23, 2001

Summary by Cyril Banderier

Abstrat

The problem addressed here is the overing time of random walks on a graph satisfying

\self-avoiding" properties. Appealing to the ombinatoris of heaps of yles, the author

derives expliit expressions of the laws for several algorithms related to loop-erased random

walks (and thus to spanning trees and Hamiltonian yles samplings),  Lukasiewiz walks,

and taboo random walks.

1. Spanning Trees, Hamiltonian Cyles, Spanning Heaps of Cyles

Combinatorial tools (suh as generating funtions, ontext-free grammars) generally have too

little \memory" to deal with \self-avoiding" walks, and thus their enumeration remains a widely

open problem. However, for a few years, an approah via loop-erased random walks has seemed

promising (see [3℄ and also the summary of R. Kenyon's talk in the proeedings of years 99{00).

Philippe Marhal exploits here the theory of determinants related to properties of heaps of yles

1

and then gives the average time needed to generate self-avoiding walks of several kinds.

De�ne a yle as a path beginning and ending at the same point, and not ontaining any subyle.

Given a onneted graph G (where eah edge is oriented and weighted), one wants to �nd

{ a spanning tree T of this graph (i.e., a tree T whose eah edge is an edge from G and eah

vertex of G a node of T );

{ a Hamiltonian yle C (i.e., a yle C whose eah edge is an edge from G, and eah vertex

of G is visited exatly one time by C);

{ a spanning heap H of yles (i.e., a heap H of yles whose eah edge of is an edge from G,

and eah vertex of G is visited by at least one of the yles of H).

In order to get a spanning tree or a Hamiltonian yle of the graph, it is interesting to use

probabilisti algorithms, sine these problems are NP-omplete.

On the onneted edge-weighted oriented graph G (the weights are given by a matrix P ), one

onsiders the Markov hain (X

n

)

n2N

, de�ned by

P(X

n+1

= i j X

n

= j ) = P

ij

:

This means that the probability to go from vertex i (where you are at time n) to vertex j is the

weight P

ij

of edge (i; j). In this talk, one onsiders irreduible Markov hains only (i.e., the random

walk visits eah of the m verties of the graph G an in�nite number of times with probability 1) so

that there always exists a vertex-stationary distribution (�

1

; : : : ; �

m

), where �

j

is the probability

1

The yle deomposition was introdued by Cartier and Foata [2℄ and the modelling via heaps of yles is due to

Viennot [8℄.
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to be at vertex j, after a long enough time. Similarly, there is an edge-stationary distribution for

the edges.

De�ne the weight of the tree T (resp. the yle C, the heap H) as the produt of the weights of

its edges. Consider now a trajetory (a realization) of the Markov hain (X

n

)

n2N

, and whenever

one performs a yle, one erases this yle from the walk and one puts this yle on a heap (by

onstrution, this yle has no subyle). If one stops at time n, one gets a \loop-erased random

walk" (whih is a self-avoiding walk of length less than or equal to n) and a heap of yles. It

will be explained in Setion 3 how to use this loop-erased random walk to get a spanning tree, a

Hamiltonian yle or a spanning heap of yles.

2. Generating Funtions

Let N

ij

be the number of visits through the edge (i; j) and t

ij

a formal variables assoiated

to the edge (i; j). Note that N

ij

takes also into aount the visits in the yles that get erased,

thus

P

N

ij

= n is the length of the walk. Then, de�ne the formal weight funtion ew as the

funtion whih transforms a path (i.e., a sequene of edges)  =

�

(x

0

; x

1

); : : : ; (x

n�1

; x

n

)

�

into the

polynomial

ew() =

n

Y

i=1

P

x

i�1

x

i

t

x

i�1

x

i

:

This de�nition (as a produt of the formal weights of eah edge) is easily extended to trees, yles,

graphs. De�ne now the formal transition matrix

e

P by

e

P

ij

= P

ij

t

ij

and, for a subset S of the edges

of the graph G, de�ne

e

P

S

as equal to

e

P exepted that (

e

P

S

)

ij

:= 0 whenever i 62 S or j 62 S.

Let C be the set of yles and H the set of heaps of yles from C, then

X

H2H

ew(H) =

 

X

k�1

X

C

1

:::C

k

2C

(�1)

k

ew(C

1

) : : : ew(C

k

)

!

�1

=

1

det(Id�

e

P )

where C

1

, . . . , C

k

are disjoint yles belonging to C. The proof omes from an expansion of the

determinant as a sum over all permutations and then deompose eah permutation in a produt of

yles (eah (�1)

k

is nothing but an avatar of the signature of eah permutation).

If H stands for the set of heap of yles avoiding a subset S of the edges of the graph G, one has

X

H2H

ew(H) =

1

det(Id�

e

P

S

)

:

Whereas if H stands for the set of heaps of yles interseting a set S, one has

X

H2H

ew(H) =

det(Id�

e

P

S

)

det(Id�

e

P )

:

For example, if one stops the random walk X as soon as it reahes a given point v and one onsiders

the assoiated loop-erased walk , one has the following probability generating funtion

E

 

Y

(i;j)

t

N

ij

ij

; 

!

=

ew()

det(Id�

e

P

v

)

:

The right member has to be read as a generating funtion in several variables (the number of edges

in G) whose oeÆient, e.g., [t

4

1;2

: : : t

0

1;4

: : : t

7

3;5

℄ =

ew()

det(Id�

e

P

v

)

, gives the probability that the random

walk X visits edge (1; 2) 4 times, edge (1; 4) 0 time, edge (3; 5) 7 times, ... while the assoiated

loop-erased random walk �nally gives .
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Remark: For queuing theory, assurane, et., a usual model is left-ontinuous random walks

(walks on Z with a �nite set of jumps where the only negative jump is �1). These walks are

sometimes alled  Lukasiewiez walks, due to their orrespondene with simple families of trees,

their nie ombinatorial and analyti properties are well understood, see [1℄. Let p

i

, i � �1,

be the probability to do a jump i and let P

n

be the transition matrix restrited to [ 0; n ℄. Then

D

n

(t) := det(Id� tP

n

) an easily be omputed by the following reurrene:

D

0

(t) = D

�1

(t) = 1; D

k

(t) = D

k�1

(t)�

k

X

n=0

p

n

t(p

�1

t)

n

D

k�n�1

(t):

3. Wilson's Algorithm and Some Variants

By onvention, one onsiders spanning trees whose edges are all oriented to the root. Let T

r

be

the set of spanning trees rooted at r; a well-known result, the matrix-tree theorem implies that

P

T2T

r

w(T )

�

r

= onstant:

The striking fat is that the quotient does not depend on r.

Wilson's algorithm [7℄ allows to onstrut a random spanning tree with a given root r. Speify

an arbitrary order on G. Start the loop-erased random walk from the �rst point (with respet to

the above order) until it reahes r. It gives a self-avoiding walk T

1

. Then, restart from the �rst

remaining point until one reahes T

1

, one got a subtree T

2

, et. Finally, one gets a random spanning

tree, rooted at r.

The probability to get this tree T is proportional to its weight w(T ) and does not depend on

the hosen order. The proof relies on the orrespondene between trajetories and heap of yles

as explained above. The probability generating funtion is

E

 

Y

(i;j)2G

2

t

N

ij

ij

; T

!

=

ew(T )

det(Id�

e

P

r

)

and thus the average time is tr

�

(Id� P

r

)

�1

�

:

Similarly, one an get a Hamiltonian yle. Start the loop-erased random walk from a point

r 2 G and stop the �rst time one gets a Hamiltonian yle C in the heap of yles. Let C be the

set of Hamiltonian yles. Then the probability generating funtion is independent from r:

2

E

 

Y

(i;j)2G

2

t

N

ij

ij

; C

!

=

ew(C)

det(Id�

e

P ) +

P

C

0

2C

ew(C

0

)

:

Finally, one gets also a sampling algorithm for a spanning heap of yles. Choose an arbitrary

order on G. Start the loop-erased random walk from a

1

, stop when it returns to a

1

. Then onsider

the �rst remaining non-visited point a

2

and start a loop-erased random walk from a

2

and stop

when it returns to a

2

, et. Stop when all the points have been visited. Here again, the oupation

measure does not depend on the hosen order. The proof relies on the fat that one gets a minimal

2

Consider a nearest neighbor random walk on a yli graph with m verties, and stop the walk when it omes

bak to the starting point, after having overed all the graph. Then, the oupation measure does not depend on the

starting point. This phenomenon was observed by Pitman in 1996 for Brownian motion.
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spanning heap. The probability generating funtion is

E

 

Y

(i;j)2G

2

t

N

ij

ij

;H

!

= det(Id�

e

P )

X

F�G

(�1)

jF j

det(Id�

e

P

F

)

:

The waiting time W of the algorithm is stohastially less than the �rst time W

v

that the walk

returns to vertex v, after having visited all the verties of the graph:

8v 2 G;8n 2 N P(W � n) � P(W

v

� n)

The proof follows from the fat that any spanning pyramid (see [6℄) ontains a minimal spanning

tiling. The author also derives this inequality:

1

inf

v2G

�

v

� E(W ) �

X

v2G

1

�

v

:

4. Killed Random Walks

Let q 2 (0; 1), to kill X with a probability 1 � q means to add a sink s and to put some

probabilities of transition P

0

ij

= qP

ij

, P

0

is

= 1 � q. Then, if one runs Wilson's algorithm (rooted

at s), one gets a random heap with a probability proportional to ew(H)q

jHj

where jHj is the number

of edges in H. The following proess also provides a random heap (with the same distribution):

onstrut an in�nite random heap and then olor eah edge in red with probability q. Drop the

red yles. Then one gets a red heap with the wanted probability and another heap whose all

minimal yles have at least one non-olored edge. Let q vary ontinuously and thus obtain an

inreasing family of heaps. At a given value q, an upside-down pyramid falls. The probability that

an upside-down pyramid P falls between q and q + dq equals

ew(P )q

jP j�1

dq:

Some generalisations of this idea allow to generate walks onstrained to avoid a spei�ed set,

known as taboo random walks.

This summary is related to Marhal's artiles [4, 5, 6℄. The readers who want to learn more about

\Perfetly Random Sampling with Markov Chains" an have a look at the web site maintained by

David Wilson at http://dimas.rutgers.edu/~dbwilson/exat/.
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Abstrat

The talk was based on [9℄ and onsisted in a presentation of various tail bounds for oupany

problems and appliations to the determination of the onjetured satis�ability threshold in

the random k-sat problem.

1. Bins and Balls and Oupany Problems

In bins and balls games, m balls are plaed independently and uniformly at random among

n bins. Heneforth, a generi alloation will be denoted by ! 2 f1; : : : ; ng

m

: !

k

= j if the k-

th ball is loated in the j-th bin. Let X

n

(!;m) denote the number of empty bins when m balls

have been assigned a position. The pieewise onstant interpolation is de�ned by X

n

(!; t) =

X

n

�

!; dtne

�

. To alleviate notations, we omit ! when this is not a soure of onfusion. The

behavior of the proess X

n

(�) as n beomes large has been the subjet of many investigations in

random ombinatoris. The leture is onerned with di�erent derivations of tail bounds for X

n

(�)

and their appliation to the analysis of the threshold phenomenon for the (random) k-satis�ability

problem.

1.1. Approahes to random alloations. There are many approahes to random alloation

problems. Many early suesses of analyti ombinatoris have been reported in the monograph by

Kolhin, Sevast'yanov and Chystiakov [11℄.

Probabilisti (Martingale-theoretial) approahes have been suessful as well. Let F

t

denote

the �-algebra generated by the �rst bnt alloations (we do not mention n to alleviate notations).

Then it is straightforward to hek the relation

E

"

X

n

�

t+

1

n

�

�

�

�

�

�

F

t

#

=

�

1�

1

n

�

X

n

(t):

From this, one immediately dedues that (1 �

1

n

)

�bnt

X

n

(t) is an F

t

-Martingale. Moreover it has

bounded inrements, and its quadrati variation proess onverges in probability towards t 7!

e

t

� (1 + t). Applying Martingale limit theorems [8℄, one easily dedues:

{ a law of large numbers: X

n

(�)=n onverges in probability towards t 7! e

�t

,

{ a funtional entral limit theorem: t 7!

�

X

n

(t) � ne

�t

�

=

p

n onverges towards a resaled

time-hanged Brownian motion, namely t 7! e

�t

B

�

e

t

� (1 + t)

�

.

Unfortunately, results on onvergene in distribution tell little about asymptoti probability of rare

events: the onvergene rate annot be better than O

�

1=

p

n

�

, and probability of rare events are

espeially relevant to the analysis of extreme values that often onstitute the ore of appliations.
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Nevertheless, entral limit theorems suggest that the tail probabilities of the empty ell statistis

might be Gaussian-like. In omputer siene, sharp upper bounds on tail probabilities are often

desirable.

If instead of throwing a �xed number bnt of balls into the n bins, one �rst draws N aording

to a Poisson distribution with parameter bnt, and then throws N balls into the n bins, the bin

oupanies beome independent Bernoulli random variables with suess probability � exp(�t).

X

n

(t) is now distributed aording to a binomial random variable with parameters n and exp(�t).

Let P denote the original probability distribution on alloations and let Q denote this alternate

probability distribution on N and alloations. Note that onditionally on N = bnt, the distribu-

tions of X

n

(t) under P and Q are idential (the multinomial distribution is a onditioned Poisson

proess). Then

(1) PfX

n

(t) 2 Ag =

QfX

n

(t) 2 A ^N = bntg

QfN = bntg

�

p

2�nt QfX

n

(t) 2 Ag

Inequality (1) provides with an easy tail upper bound for rare events under Q , i.e., for large

deviations of X

n

(t) around its expetation. If A = f! j X

n

(!; t) > ne

�t

+ n� g, then

PfX

n

(t) 2 Ag �

p

2�n exp

�

�nh

�

e

�t

+ �; e

�t

�

�

where h(x; y) = x log

x

y

+ (1 � x) log

1�x

1�y

. It obviously raises two questions: Is the order of the

exponent orret? Can we get rid of the

p

n fator?

1.2. Known results. As alloation are performed independently, a very straightforward yet useful

bound omes from the Azuma { M Diarmid inequality. Namely note that if ! and !

0

are two

alloation shemes that di�er only in one position !

j

= !

j

0

for all j � k = btn exept for j = i,

then

�

�

X

n

(!; t) � X

n

(!

0

; t)

�

�

�

1

n

. As a matter of fat, if the spae of alloations is equipped with

the Hamming distane, the empty bin statistis is 1-Lipshitz. This implies that

(2) P

n

�

�

X

n

(t)�E

�

X

n

(t)

�

�

�

> n�

o

� 2 exp

�

�

2n�

2

t

2

�

:

Inequality (2) is obtained by a Martingale embedding argument. Namely X

n

(t) = E

�

X

n

(t)

�

�

F

t

�

and the proess M

n

(s) = E

�

X

n

(t)

�

�

F

s

�

is an F

s

-martingale, as

E

�

M

n

(s+ h)

�

�

F

s

�

= E

h

E

�

X

n

(t)

�

�

F

s+h

�

�

�

�

F

s

i

= E

�

X

n

(t)

�

�

F

s

�

= M

n

(s):

One may wonder what the best way to apply Azuma's inequality is.

1.3. Painless tail bounds. The �rst bound presented in [9℄ is:

(3) P

n

�

�

X

n

(t)�E

�

X

n

(t)

�

�

�

> n�

o

� 2 exp

 

�

(n� 1=2)n

2

�

2

n

2

�E

�

X

n

(t)

2

�

!

:

When n beomes large, the exponent on the right-hand side is equivalent to

�

n�

2

1� e

�2t

:

The trivial Poisson estimates (1) learly shows that this exponent is rather poor as soon as

t beomes non-negligible. This is not a denial of the merits of Martingale approah. Indeed, this

method provides nearly optimal bounds for smooth Gaussian funtionals and for many disrete

problems. The apparent aw in Equation (3) omes from the fat that we did not use tight enough

bounds on the quadrati variation proess assoiated with E

�

X

n

(t)

�

�

F

s

�

.
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Next the authors of [9℄ proeed to establish what they all a Chernof bound for the oupany

problem. It shows that the Poisson tail estimate (1) is orret even if we do not resort to a

onditioning argument, i.e., that the

p

n fator is spurious.

2. The Large Deviation Approah

The large deviation approah (see [2, 5, 7℄ for reent presentations) aims at identifying the right

exponents for tail probability. It provides the right touhstone for the oupany problem. Rather

than using the martingale struture of the oupany problem, the large deviation approah relies

on the Markovian struture of the oupany problem: onditionally on X

n

(t), X

n

(t + 1=n) does

not depend on F

t�1=n

. The large deviation priniple invoked in [9℄ omes from a ontration

of a funtional large deviation priniple derived by Azenott and Ruget. The latter shows that

asymptotially, the exponent in large deviation probabilities an be represented as a the solution

of a variational problem, namely

(4) lim

n!1

1

n

log P

�

X

n

(t) � nx

	

= � inf

�(0)=1; �(t)=x

Z

t

0

h

�

�

_

�(s); �(s)

�

ds:

The artile [9℄ solves the assoiated variational problem and provides a losed form for the exponent,

on�rming the intuition that the exponent obtained by Poissonization is not optimal.

3. Satis�ability Problems

The seond part of the paper presents an appliation of tail bounds for oupany problems to

the analysis of the random 3-sat problem. An instane of the 3-sat problem is a boolean formula in

onjuntive normal form, where eah lause has at most 3 literals. For eah number n of variables,

and eah problem size k, the set of instanes of the 3-sat problem is provided with the uniform

probability over the m-tuples of 3-lauses over the n variables. At the time of writing [9℄, it was

onjetured that as n goes to in�nity while k=n remains onstant, a phase transition ours. For

k=n < 

3

, random 3-sat formulas are satis�able with overwhelming probability, while for k=n > 

3

random 3-sat formulas are not satis�able formulas with overwhelming probability.

The paper [9℄ proposes an upper-bound on the onjetured satis�ability threshold: 

3

� 4:758.

This result ame in a series of improvement starting from the straightforward 

3

� 5:19, through



3

� 5:08 [6℄, 

3

� 4:64 [3℄, 

3

� 4:601 [10℄, and reently ulminating with 

3

� 4:506 [4℄.

In the sequel, n and k are supposed to be �xed. F denotes a random 3-sat formula, #F

denotes the number of assignments of the n boolean variables that satisfy F . F is satis�able if

#F � 1. T (F ) equals 1 if F is satis�able, 0 otherwise. Let � denote a generi truth assignment.

F (�) equals 1 if � satis�es F , 0 otherwise. 1 denotes the truth assignment where all variables are

set to 1. Then, we have

(5) E

F

�

T (F )

�

= E

F

2

4

X

�:F (�)=1

1

#F

3

5

=

X

�

E

F

�

F (�)

#F

�

= 2

n

E

F

�

F (1)

#F

�

;

where the seond equality omes from the fat that the number of formulae that satisfy a partiular

truth assignment does not depend on the truth assignment. Hene, to get an upper bound on the

probability of satis�ability, it is enough to get an upper bound on

�

7

8

�

n

E

F

0

�

1

#F

�

;
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where F is now piked at random among the

�

7

8

�

n

�

n

3

�

n

formulae that are satis�ed by 1. This

distribution among formulae is a produt distribution where eah lause is piked uniformly at

random among the lauses where at least one literal is not negated.

The main idea of the proof is to establish that onditionally on the fat that it is satis�able, a

3-sat formula with suÆiently many lauses has exponentially many satisfying truth assignments

with overwhelming probability.

What is proved in [9℄ is atually the following. Let #F

1

denote the number of truth assignments �

of F where for eah lause in F , there exists a non-negated variable that evaluates to 1 in �.

Obviously 1=#F � 1=#F

1

. Now to lower bound #F

1

, it is enough to determine a minimum family

of variables I(F ) suh that any truth assignment where all variables in I(F ) evaluates to 1 satis�es

the formula F (I(F ) is sometimes alled a prime impliant of F ). As a matter of fat, we have

#F

1

� 2

n�#I

, and hene

(6) PfF is satis�able g �

�

7

8

�

n

E

F

0

h

2

#I

i

:

Sine the publiation of [9℄, improved upper bounds on 

3

have been derived by re�ning estima-

tions on the utuations of #F for random formulae. Those estimations still rely on statistis for

random alloations. But the empty bins statistis are no more suÆient. The best known upper

bounds [4℄ rely on a statistis that have sometimes been alled empirial oupany measures. As

a matter of fat, an alloation ! de�nes a probability measure on N,

�

X

n

(i; t) denotes the fration

of bins that ontain i balls for i 2 N. The large deviations of this measure-valued random vari-

able may be studied in di�erent ways: by resorting to Azenott{Ruget results and projetive limit

arguments [2℄, or diretly as in [1℄.
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Abstrat

Tries, a generalized form of digital trees, are a data struture widely used in numerous

domains: algorithms for searhing words, ompression, dynamial hashing, ... Their interest

and onstrution lie in the partitioning of a set of words. We present a ompat form of tries,

alled Patriia tries, in whih all unary nodes are suppressed (and thus do not intervene in

the partitioning). We then study the means of the memory oupation and of the ost of

inserting a word for that data struture when words are produed by a probabilisti soure

for whih the dependenies between the emitted symbols an be very important.

1. Size and Path Length of Tries and Patriia Tries: Expressions for Expetations

We de�ne the notions of tries and Patriia tries. We �nd general expressions for the expetations

of the size and path length of tries and Patriia tries in the Bernoulli model, valid for any soure.

1.1. Operations on in�nite words. For a �nite alphabet � = fa

1

; a

2

; : : : ; a

r

g, let �

1

be the set

of in�nite words on that alphabet, � : �

1

! �

1

the map that returns the �rst letter of a word,

and T : �

1

! �

1

the shift that returns the �rst suÆx of a word. Let T

[a℄

denote the restrition

of T to the set �

�1

�

fag

�

of words beginning with symbol a and, for a �nite pre�x w = a

1

: : : a

k

, let

T

[w℄

denote the omposition T

[a

k

℄

ÆT

[a

k�1

℄

Æ � � � ÆT

[a

1

℄

. The notations � and T are kept for operators

ating on reals whih will be used later.

1.2. Tries.

De�nition 1. Let X be a �nite set of in�nite words produed by the same soure. A trie Tr(X)

is a struture de�ned by the following rules:

(R

0

) If X = ? (the empty set), Tr(X) is the empty tree.

(R

1

) If X = fxg, Tr(X) onsists of a single leaf node represented by 2 that ontains x.

(R

2

) If X is of ardinality greater than or equal to 2, Tr(X) is an internal node represented by �

to whih are attahed r subtrees:

Tr(X) =

D

�;Tr

�

T

[a

1

℄

X

�

;Tr

�

T

[a

2

℄

X

�

; : : :Tr

�

T

[a

r

℄

X

�

E

:

The edge that attahes the subtrie Tr

�

T

[a

j

℄

X

�

is labelled by the symbol a

j

. Notie a little abuse

in (R

2

): if there is no word in X beginning with a

j

, then T

[a

j

℄

X is not de�ned, and we onsider

that is equal to the empty set. Hene Tr

�

T

[a

j

℄

X

�

is the empty tree, and it is as though there were

no subtree orresponding to a

j

(see Figure 1).
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abc

b c b bb

cba bbc cab

a b c

a b

c

a b c

c

a

a b c

a b

b c b

b b cabbbccbaabc

b

a

a bc

bca c

ba a c

a cb

Figure 1. Standard trie and orresponding Patriia trie.

1.3. Patriia Tries. A Patriia trie is a trie from whih all unary nodes are eliminated. Hene

with any �nite set X of in�nite words produed by the same soure, we assoiate a Patriia trie

PaTr(X). The �rst two rules are the same, but the last rule (R

0

2

) is more sophistiated:

(R

0

2

) If X is of ardinality greater than or equal to 2, we have two ases:

(R

0

2;1

) if �(X) onsists of a single symbol, then PaTr(X) equals PaTr(TX).

(R

0

2;2

) if �(X) has at least two distint symbols, PaTr(X) is an internal node generially

represented by � to whih are attahed r subtrees,

PaTr(X) =

D

�;PaTr

�

T

[a

1

℄

X

�

;PaTr

�

T

[a

2

℄

X

�

; � � �PaTr

�

T

[a

r

℄

X

�

E

:

The edges of the Patriia trie are labelled by words. These words are obtained from the assoiated

trie by onatenating all the labels of the ollapsed edges.

1.4. Additive parameters. The depth of a node in a tree is the number of edges of the path that

onnets it to the root. The size of a tree is the number of its internal nodes. The path length of a

tree is the sum of the depths of all (nonempty) external nodes.

1.5. Algebrai analysis of additive parameters. In a standard trie built on the set X =

fx

1

; : : : ; x

n

g, the struture of a node labelled by a pre�x w is a �nite string alled a slie given by

� T

[w℄

X :=

�

� T

[w℄

(x

1

); � � � ; � T

[w℄

(x

n

)

�

:

An additive parameter  on X is de�ned by a toll parameter Æ de�ned on �nite strings and the

reursive rule:

[X℄ =

(

0; if jXj � 1,

Æ[�(X)℄ +

P

m2�

[T

[m℄

X℄; if jXj � 2,

Let jsj and #(s) denote the number of symbols of the string s and the number of distint symbols

of s, respetively. The parameters of interest are the size on tries and Patriia tries,

Æ

S

(s) =

�

1 if jsj � 2;

0 otherwise,

Æ

PS

(s) =

�

1 if #(s) � 2;

0 otherwise,

and the internal path length on tries and Patriia tries

Æ

L

(s) =

�

jsj if jsj � 2;

0 otherwise,

Æ

PL

(s) =

�

jsj if #(s) � 2;

0 otherwise.
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Size of Tr

b

S(n) =

X

w2�

�

�

1� (1 + (n� 1)p

w

)(1 � p

w

)

n�1

�

Path Length of Tr

b

L(n) =

X

w2�

�

np

w

�

1� (1� p

w

)

n�1

�

Size of PaTr



S

P

(n) =

X

w2�

�

�

1� (1� p

w

)

n

�

X

i2�

�

�

1� p

w

(1� p

[ijw℄

)

�

n

� (1� p

w

)

n

�

�

Path Length of PaTr



L

P

(n) =

X

w2�

�

np

w

�

1� (1� p

w

)

n�1

�

X

i2�

p

[ijw℄

�

1� p

w

(1� p

[ijw℄

)

�

n�1

�

Table 1. Expetations of size and path length for tries (Tr) and Patriia tries (PaTr).

1.6. Expetation of parameters. Let

�

P

z

;S

�

denote the Poisson model of rate z relative to

the soure S, and p

w

the probability that a given in�nite word begins with the pre�x w. If the

ardinality of X is a random Poisson variable of rate z, the length of the slie �T

[w℄

X is also a

random Poisson variable of rate zp

w

. Hene the expetation of parameter  is a sum of expetations

of parameter Æ, E[;P

z

;S℄ =

P

w2�

�

E[Æ;P

zp

w

; B

w

℄.

The expetation of the parameter is given by E[Æ;P

z

; B℄ = e

�z

�

�u

F

Æ

(z; u; p

1

; � � � ; p

r

)

�

�

u=1

, where

F

Æ

(z; u; x

1

; � � � ; x

r

) =

P

s2�

�

z

jsj

jsj!

u

Æ(s)

x

jsj

1

1

� � � x

jsj

r

r

.

Using algebrai depoissonization [3℄, based on the equalities E[Y ;P

z

℄ = e

�z

P

n�0

E[Y ;B

n

℄

z

n

n!

and thus E[Y ;B

n

℄ = n![z

n

℄e

z

E[Y ;P

z

℄

z

n

n!

, one an return to the Bernoulli model. Finally, the

expetations of interest are given in Table 1.

2. Tools for the Asymptotis of the Expetations

2.1. Mellin analysis and Dirihlet series. To get asymptotis for the expressions found previ-

ously, we �rst note that they belong to the paradigm of harmoni sums. Their Mellin transforms

are given in Table 2, where �(s) =

P

w2M

�

p

s

w

and

�

S

(s) = �

X

w2�

�

p

s

w

�

X

w2�

�

p

s

w

X

i2�

�

(1� p

ijw

)

s

� 1

�

= (s� 1)�(s) � s

X

k�2

(�1)

k

k!

 

k�1

Y

i=2

(s� i)

!

h

(s� 1)�

[k℄

i

;(1)

�

L

(s) =

X

w2�

�

p

s

w

X

i2�

�

(1� p

[ijw℄

)

s�1

� 1

�

=

X

k�2

(�1)

k

(k � 1)!

 

k�1

Y

i=2

(s� i)

!

h

(s� 1)�

[k℄

i

;(2)

with �

[k℄

(s) =

P

w2�

�

p

s

w

P

i2�

p

k

ijw

, for k � 1,

2.2. Dynamial soures. We have to restrit ourselves to a lass of dynamial soures S (see [4℄

for more details and [2℄ for its use in a study of standard tries),

(a) a �nite or denumerable alphabet �,

(b) a topologial partition of I := (0; 1) with disjoint open intervals I

a

, for a 2 �,

() an enoding mapping � whih is onstant and equal to a on eah I

a

,
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Size of Tr S

�

(s) = ��(�s)(s+ 1)�(s)

Path Length of Tr L

�

(s) = ��(�s)�(s+ 1)

Size of PaTr S

�

P

(s) = �(s)�

S

(�s)

Path Length of PaTr L

�

P

(s) = ��(s+ 1)

�

�(�s) + �

L

(�s)

�

Table 2. Mellin transforms of expetations.
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Figure 2. Memoryless soure, Markov hain of order 1, ontinued fration soure,

heterolinal soure.

(d) a shift mapping T whose restrition to to I

a

is a real analyti bijetion from I

a

to I.

Besides, T has to satisfy more preise properties. If we let h

a

be the loal inverse of T restrited

to I

a

and H be the set H = fh

a

j a 2 � g, then we add properties on bounds of the �rst

derivatives, among whih R�enyi's ondition whih plays an important rôle in the study of onditional

probabilities. This ondition states that, if h

a

are the loal inverse of T , supposed to be loally

holomorphi, restrited to I

a

, then there exists a onstant K that bounds the ratio jh

00

a

(x)=h

0

a

(x)j

for all branh h

a

and all x 2 [0; 1℄. With eah h

a

, that are only de�ned on I

a

, we assoiate its

analytial extension

~

h

a

to the whole set I.

IfM maps x 2 [ 0; 1 ℄ to

�

�(x); �T (x); �T

2

(x); : : :

�

2 �

1

, T , and � are linked with the previously

de�ned T and � by �M � � and TM �MT .

Figure 2 displays several types of dynamial soures:

Memoryless soures. We have aÆne branhes of slope 1=p

a

on intervals I

a

:= (q

a

; q

a+1

), where

q

a

=

P

i<a

p

i

.

Markov hains. Eah I

a

of a memoryless soure is divided in r intervals I

a;b

, b 2 �, of length

p

ab

= p

[bja℄

�p

a

on whih T : I

a;b

! I

b

has slope

p

a

p

ab

=

p

b

p

[bja℄

�

1

p

a

. Notie that when the order d of the

Markov hain goes to in�nity in a ertain sense, one obtains at the limit a soure with unbounded

memory.

Continued frations. With � = N, I

a

:=

�

1

a+1

;

1

a

�

, T (x) =

1

x

�

�

1

x

�

, and �(x) =

�

1

x

�

, orre-

sponding to a ontinued fration soure, we obtain a soure with unbounded memory.

Heterolinal soures. A soure for whih derivatives in di�erent intervals an be of di�erent signs

is alled heterolinal. Otherwise the soure is homolinal, like the soures presented before.
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2.3. Ruelle operators, multi-seants and pre�x probabilities. In the ontext of dynamial

systems, with transformations T of loal inverses h

a

are assoiated a transfer operator,

G[f ℄(x) :=

X

a2�

�

�

h

0

a

(x)

�

�

f Æ h

a

(x);

whose interest lies in the following property: if X is a random variable with density funtion f ,

then the density of T (X) is G[f ℄. The Ruelle operator generalizes it by introduing a omplex

parameter s, interpreted in statistial physis as the temperature:

G

s

[f ℄(x) :=

X

a2�

~

h

a

(x)

s

f Æ h

a

(x):

To deal with probabilities of pre�xes of words p

w

and hene with fundamental intervals, we have

to replae tangents with seants H[h℄(x; y) :=

�

�

�

h(x)�h(y)

x�y

�

�

�

, leading to a �rst generalization G

s

of the

Ruelle operator, ating on funtions L of two omplex variables:

G

s

[L℄(x) :=

X

a2�

~

H

a

s

[h

a

℄(x; y)L

�

h

a

(x); h

a

(y)

�

:

To deal with onditional probabilities, we have to resort to a further generalization G

s

of the Ruelle

operator involving multiseants instead of seants:

G

[m℄

s

[L℄ :=

X

a2�

H

[m℄

s

[h

a

℄L Æ V [h

a

℄;

where the multiseants are de�ned by H

[m℄

s

[h℄(x; y; z; t) = H[h℄

s�m

(x; y)H[h℄

m

(z; t), and V by

V [h℄(x; y; z; t) =

�

h(x); h(y); h(z); h(t)

�

.

Let F be the distribution assoiated with the initial density f of a soure (S; f). The proba-

bility p

w

that a word begins with some pre�x w is

�

�

�

F

�

h

w

(0)

�

� F

�

h

w

(1)

�

�

�

�

. For the speial ase

F = Id, it will be denoted p

�

w

. Let Q := H[F ℄ be the seant of the initial distribution. Then the

quasi-inverses of G

s

and G

[k℄

s

are related to Dirihlet series in the following way:

�(s) =

X

w2M

�

p

s

w

= (Id�G

s

)

�1

[Q

s

℄(0; 1); �

[k℄

(s) =

X

i2�

�

Id�G

[k℄

s

�

�1

h

H

[k℄

s

[F ℄

i

�

0; 1; h

i

(0); h

i

(1)

�

:

Thanks to a theorem similar to the Perron{Frobenius theorem, we have the deomposition

(Id�G

s

)

�1

=

�(s)

1� �(s)

P

s

+ (Id�N

s

)

�1

);

and a similar deomposition for the multi-seant operator. We dedue the asymptotis:

lim

s!1

(s� 1)(Id�G

s

)

�1

[L℄(x) =

�1

�

0

(1)

	

1

(x)

Z

1

0

`(t) dt);

where 	

1

(x) is an eigenfuntion assoiated with the dominant eigenvalue and hosen aording to

a proper normalization, and ` is the diagonal mapping of L. We get similar results for the �

[m℄

that also have 1 as pole of order 1, and their respetive residues r

m

are related to the dominant

eigenfuntions 	

[m℄

1

of the operators G

[m℄

1

, whih allows us to �nd the singular expansion

�(s) = �

[1℄

(s) �

�1

�

0

(1)(s� 1)

+ C(S);

where C(S) is a onstant depending on the soure S and the initial density f . Using the equalities

(1) and (2) we an then get asymptotis for �

S

(1) and �

L

(1).
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Size of Tr S(n) �

1

h(S)

n

Path Length of Tr L(n) �

1

h(S)

n log n+

�

C(S)�



h(S)

�

n

Size of PaTr S

P

(n) �

1

h(S)

�

1� C

1

(S)

�

n

Path Length of PaTr L(n) �

1

h(S)

n logn+

�

C(S)�

 + C

2

(S)

h(S)

�

n

Table 3. Asymptotis of expetations.

3. Results: Asymptotis

3.1. General expressions. Let h(S) = ��

0

(1) = lim

`!1

P

w2M

`

p

�

w

�

�

log p

�

w

�

�

be the entropy of

fundamental intervals and, besides C(S) enountered before, de�ne the onstants

C

1

(S) = 1�

X

k�2

1

k(k � 1)

K

[k℄

(S) = 1� lim

`!1

X

w2M

`

p

�

w

X

w2M

`

�

1� p

�

[ijw℄

�

�

�

�

log

�

1� p

�

[ijw℄

�

�

�

�

;

C

2

(S) =

X

k�1

1

k

K

[k+1℄

(S) = lim

`!1

X

w2M

`

p

�

w

X

w2M

`

p

�

[ijw℄

�

�

�

log

�

1� p

�

[ijw℄

�

�

�

�

:

For random tries built from n words emitted by a soure S, asymptotis of expetations are

given in Table 3.

3.2. Example. For a memoryless soure with probabilities fp

i

g:

h(S) =

P

i2M

p

i

�

�

log p

i

�

�

; C(S) =

P

i2M

p

i

log

2

p

i

�

P

i2M

p

i

log p

i

�

2

;

C

1

(S) = 1�

P

i2M

�

1� p

i

�

�

�

log(1� p

i

)

�

�

; C

2

(S) =

P

i2M

p

i

�

�

log(1� p

i

)

�

�

:

Similar formulae are available for Markov hains and ontinued fration soures. Simulations are

in agreement with theory.

4. Conlusion and Open Questions

For the average value of the size, a Patriia trie turns out to be better than a trie, and R�enyi's

ondition is not neessary. For the average value of the path length, there is only a orreting

term C

2

of order 2, and our proofs made use of R�enyi's ondition. An open question (see [1℄ for

details) would be to know whether this orreting term remains valid for soures for whih R�enyi's

ondition does not hold, although all the natural soures we are aware of do satisfy that ondition.
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New and Old Problems in Pattern Mathing

Wojieh Szpankowski

Computer Siene Department, Purdue University (USA)

June 25, 2001

Summary by Mireille R�egnier

Abstrat

This talk presents three problems in pattern mathing and their analysis. Di�erent methods

are used, that rely on omplex analysis and probability theory.

1. Statement of the Problems

Some pattern H (or a set H of patterns) is searhed in a text T . The text T is generated by

a random probabilisti soure that is either a Bernoulli soure or a Markov soure or a mixing

soure. In the string mathing and the subsequene mathing problems, H is given: the model is

deterministi. In the repetitive patterns problem, in Setion 4, H is a string of T repeated elsewhere.

2. String Mathing

One ounts the number of ourrenes of a given word H or a given �nite set of words, H, in a

text of size n. This number is denoted O

n

(H) or O

n

(H). This ounting relies on the deomposition

of the text T onto languages, the so-alled initial, minimal, and tail languages.

De�nition 1. Given two strings H and F , the overlap set is the set of suÆxes of H that are also

pre�xes of F . The suÆxes of F in the assoiated fatorizations of F form the orrelation set A

H;F

.

In the Bernoulli model, one de�nes the orrelation polynomial of H and F as

A

H;F

(z) =

X

w2A

H;F

P (w)z

jwj

:

WhenH is equal to F , A

H;H

is named the autoorrelation set and denotedA

H;H

; the autoorrelation

polynomial is de�ned as

A

H

(z) =

X

w2A

H;H

P (w)z

jwj

:

For example, let H = 11011 and F = 1110. Then the overlap set of H and F is f11; 1g and

the orrelation set is A

H;F

= f10; 110g. Similarly, A

F;H

= f11g. It is worth notiing that

A

F;H

6= A

H;F

. Intuitively, the onatenation of a word in A

H;F

to H reates an (overlapping)

ourrene of F .

De�nition 2. Let H be a given word.

(i) The initial language R is the set of words ontaining only one ourrene of H, loated at

the right end.
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(ii) The tail language U is de�ned as the set of words u suh that Hu has exatly one ourrene

of H, whih ours at the left end.

(iii) The minimal language M is the set of words w suh that Hw has exatly two ourrenes

of H, loated at its left and right ends.

With these notations, any text that ontains exatly k ourrenes of H, k � 1, rewrites

unambiguously as

rm

1

: : : m

k�1

u

where r 2 R, m

i

2 M, and u 2 U . In other words, this set T

k

of words satis�es T

k

= RM

k�1

U .

The power of this approah omes from the equations that an be written on these languages, that

translate into equations on their generating funtions in the Bernoulli model and the Markov model.

Moreover, it turns out that these generating funtions|hene the whole ounting problem|only

depend on the probability of H, denoted P (H), and the so-alled orrelation set.

Theorem 1. Let H be a given pattern of size m, and T be a random text generated by a Bernoulli

model. The generating funtion of the set T

k

satis�es

T

k

(z) = z

m

P (H)

(D

H

(z) + 1� z)

k�1

D

H

(z)

k+1

; k � 1;

T

0

(z) =

A

H

(z)

D

H

(z)

where

D

H

(z) = (1� z)A

H

(z) + z

m

P (H):

Moreover, the bivariate generating funtion satis�es

T (z; u) =

X

k

T

k

(z)u

k

=

u

1� u

D

H

(z)+1�z

D

H

(z)

z

m

P (H)

D

H

(z)

2

These results extend to the Markovian model and to the ase of multiple pattern mathing [3℄.

3. Subsequene Mathing

A pattern W = w

1

: : : w

m

is hidden in a text T if there exist indies 1 � i

1

< � � � < i

m

� n

suh that t

i

1

= w

1

, . . . , t

i

m

= w

m

. For example, date is hidden 4 times in the text hidden pattern

but it is not a substring. We fous on ases where the sequene of indies satis�es additional

onstraints i

j+1

� i

j

� d

j

, where d

j

is either an integer or 1. Suh a sequene is alled an

ourrene. One denotes (d

1

; : : : ; d

m�1

) by D. For example, when D = (3; 2;1; 1;1;1; 4;1) the

set I = (5; 7; 9; 18; 19; 22; 30; 33; 50), satis�es the onstraints.

The number of ourrenes, 


n

, is asymptotially Gaussian. This is proved in [1℄ by the moments

method: all moments of the properly normalized random variable onverge to the orresponding

moments of the Gaussian law. For any sequene I that satis�es the onstraints, one denotes X

I

the random variable that is 1 if t

i

1

= w

1

, . . . , t

i

m

= w

m

. Then,




n

=

X

I

X

I

:

The omputation of the moments relies on a generalization of orrelation sets. Let

U = fu

1

; : : : ; u

b�1

g
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be the subset of indies j for whih d

j

= 1. Any ourrene I satisfying the onstraints an be

divided into b bloks:

[i

1

; i

u

1

℄; [i

u

1

+1

; i

u

2

℄; : : : ; [i

u

b�1

+1

; i

m

℄:

The olletion of these bloks is alled the aggregate of I and denoted �(I). In the example above,

the aggregate �(I) is

�(I) = [5; 9℄; [18; 19℄; [22℄; [30; 33℄; [50℄:

Deriving the mean. The olletion of ourrenes of W an be desribed as

A

�

� fw

1

g � A

�d

1

� fw

2

g � :::�A

�d

m�1

� fw

m

g � A

�

;

where A is the alphabet and A

�d

j

is the olletion of words of size less than or equal to d

j

. It

follows that the generating funtion of expetations is

X

n

E(


n

)z

n

=

1

(1� z)

b�1

�

m

Y

i=1

p

w

i

z �

Y

i 62U

1� z

d

i

1� z

;

where p

w�i

is the probablity of harater w

i

. Hene, the expetation satis�es

(1) E(


n

) =

n

b

b!

Y

i 62U

d

i

m

Y

i=1

p

w

i

�

1 +O

�

1

n

��

Deriving the variane and higher moments. The variane rewrites

Var(


n

) =

X

I;J

E(X

I

X

J

)�E(X

I

)E(X

J

):

In the Bernoulli model, the two random variables X

I

and X

J

are independent whenever the bloks

of I and J do not overlap. Hene, the ontribution to the variane is zero. If �(I) and �(J)

overlap, one de�nes the agreggate �(I; J) as the set of bloks obtained by merging the bloks of

�(I) and �(J) that overlap. The number of bloks in �(I; J), denoted �(I; J), is upper bounded

by 2b� 1. For suh a pair (I; J), the text an be rewritten as an element of the language

A

�

� B

1

�A

�

� � � � � B

�(I;J)

�A

�

and the generating funtion of the ovariane rewrites

X

n

Var(


n

)z

n

=

X

p�1

X

�(I;J)=2b�p

1

(1� z)

2b�p

P

p

(z);

where P

p

are polynomials of the variable z that generalize the orrelation polynomials de�ned in [2℄

(see De�nition 1). The asymptoti order of eah term is n

2b�p

. Hene, the dominating ontribution

is due to the interseting pairs suh that �(I; J) = 2b� 1, and

Var(


n

) � n

2b�1

�

2

where the variane oeÆient � an be easily evaluated for any given pattern by dynami program-

ming.

The proof is similar for higher moments.
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4. Repetitive Pattern Mathing

Given a pattern H found in a text T , one searhes for a seond approximate ourrene of H. A

word F is a D-approximate ourrene of a word H if the Hamming distane between F and H is

smaller than D. Reall that the Hamming distane between two words of size m, say H = H

1

: : : H

m

and F = F

1

: : : F

m

is

d

H

(H;F ) =

m

X

i=1

1

H

i

6=F

i

:

The usual parameters on trees, suh as the depth of insertion, height, �ll-up, . . . , are extended in

the approximate ase. Notably:

De�nition 3. The depth L

n

is the largest integer K suh that

min

n

d

�

T

i�K+1

i

; T

n+K

n

�

�

�

�

1 � i � n�K + 1

o

� D:

R�enyi's entropy is generalized. Given a word H, the D-ball with enter H, denoted B

D

(H), is

the set of words that are within distane D.

De�nition 4. Given a text T , R�enyi's entropy of order 0 is

r

0

(D) = lim

k!1

�E

h

logP

�

B

D

(T

k

1

)

�

i

k

;

when this limit exists.

Asymptoti properties are proved for the depth, the heigth and the �ll-up, that depend on R�enyi's

entropy. Notably, the onvergene in probability of the depth of insertion in a trie extends for this

approximate sheme:

L

n

log n

!

1

r

0

(D)

; n!1:

The proof relies on the subadditive ergodi theorem and asymptoti equipartition property.
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Genome Analysis and Sequenes with Random Letter Distribution

Mihel Termier

Institut de G�en�etique et Mirobiologie, Universit�e de Paris XI (Frane)

April 2, 2001

Summary by Mathias Vandenbogaert

Abstrat

The information ontent of genomes of di�erent organisms reets their mode of physial

organisation. For the last deades the wet lab biologist's researh interests has been to

deipher this information ontent, with the purpose of extrating useful biologial features.

The reliability of the information extration proess, mainly based on the textual nature

of the underlying messages, was hard to ahieve. Therefore, an approah based on the

omparison of naturally ouring sequenes and randomly generated sequenes, is used for

diserning the artefats in sequenes and for improving the power of our genome models.

Introdution

The building plan for vegetative life is based on the assembly and atalyti funtion of proteins

and ative RNAs. The omplete set of instrutions that is needed to generate the building bloks of

the reprodutary system is alled a \genome." Any prodution of living tissue from these building

bloks will give rise to an aumulation of seondary metabolites, whih are of adverse inuene for

the survival of the speies. The seondary e�ets of metabolite prodution are at the basis for the

requirement of the genome to be able to respond to the indued environmental hanges. To ounter

this problem, a ell of an organism will only bring to expression those genes that are required at

some spei� moment in the ell's life yle. For this purpose, a genome disposes of regulatory

systems in the generation proesses of building bloks. These systems an be ompared to logial

gates that are situated in upstream sequenes of most information that needs to be proessed. This

permits a modulation in the usage of information. The genomi information is stoked in a linear

fashion, whih failitates the traking of information. At the time the sequening of the human

genomi sequene is being aomplished, several tasks remain to be addressed:

{ the deomposition of the genomi sequene into streams of messages;

{ the distintion of these \messages" in ontrast to the \non-oding bulk information";

{ assignment of biologially signi�ant funtions to the messages.

Our bioinformatis team is mainly interested in providing an answer to basially two questions:

1. How an messages be extrated from genomi sequenes in order to perform the funtion

assignment task?

2. What is the nature of the message ontained within any linear maromoleular struture?
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1. First Task: Message Extration and Funtion Assignment

The approah onsists in observing the known words in the voabulary of the genome. These

known words have been indexed through many years of geneti experiments, with the use of teh-

niques handled in moleular biology wet labs. Through this biology-related knowledge aumula-

tion, the following fats are at the basis for the study of genomi sequenes:

{ the start and end points (the START and STOP signals) of a nulei aid sequene orrespond

to the beginning and to the end of a di�usible produt (= protein);

{ the information ontent of a nulei aid sequene is translated in a unidiretional fashion

to the orresponding protein through some basi transription rules:

DNA ! messenger (mRNA) ! protein;

{ for the yeast organism, experiments have demonstrated that at least 99 triplets are required

between the START and STOP signals, whih leads to the oding sequene expression [5℄:

START

�

n

3

n STOP

�

99

�

n

3

n STOP

�

�

STOP;

with n = fa; ; g; tg, START = atg, STOP = ftaa; tag; tgag;

{ by replaing the T-based nuleotides with U, this expression proves to be universally true

for the genes desribing the intermediate messenger moleules (mRNA) in the steps between

DNA and protein;

{ for the genomi sequenes of higher euaryotes, the protein-desribing sequenes are inter-

spersed with non-oding introni sequenes (introns, non-oding bulk information);

{ a multitude of other signals exists, regulating the expression of spei� oding regions, and

responsible for the organism's physiologial response in preise environmental onditions.

1.1. Mehanisms for proessing signals in messages. There exist mehanisms for proessing

omplex signals, both within euaryotes as well as within viral speies. The euaryoti mehanism

is desribed as alternative spliing : a protein-enoding sequene an generate di�erent proteins at

the time mRNA is being splied, aording to di�erent translational systems. Sample mehanisms

for this group of organisms are read-through (the transription mahinery is reading through and

beyond the STOP odon), and hopping (the transription mahinery is skipping the STOP odon

and the odons surrounding it). The retro-viral mehanism is alled re-enoding, whih implies that

di�erent proteins an be obtained at the time the mRNA is being translated. Sample mehanisms

for this group are frameshift (the reading frame for translation is hanged, whih indues an alter-

ation of the enoded amino aids), read-through and hopping. Several features an be onferred to

some sequenes that are responsible for a frameshift:

1. Slipping sequenes (struture X XXY YYZ).

2. A badly positioned lassial STOP signal: the ribosome looses his grip on the sequene and

gets positioned again in phase �1.

3. A ribosome-bloking struture.

Regulatory sequenes that are responsible for the modulation of DNA transription in a less error-

prone fashion are:

1. Inhibitor signals. Their role is to bind proteins so that the RNA polymerase an no longer

bind to the sequene to initiate transription.

2. Ativator signals. There exists a multitude of signals per protein-enoding sequene, aord-

ing to the spei� funtion of the protein to be generated.

Usually, these regulatory sequenes are short sequenes, whose observed frequeny is higher (hene

unexpeted) in omparison to a random word omposed of the same letters.
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1.2. Modelling a genomi sequene. A Markov model is frequently used for modelling a ge-

nomi sequene. The number of sequenes that an be generated by this model, inreases with the

order of the Markov model, and reahes a plateau.

For a Bernoulli-type distribution of the nuleotides, the atual sequene follows a Gaussian dis-

tribution. Additionally, when [A+T℄ inreases, the amount of START and STOP signals inreases.

This implies that the ertainty of �nding a gene inreases.

Regulatory signals are words with biased omposition, with respet to the global word distribu-

tion of the sequene. These signals have been seleted for their properties in the ourse of evolution.

They have been generated aording to mehanisms whih inlude random events [2, 3℄.

1.3. The importane of odon usage biases. In the ontext of geneti expression, the odon

usage bias is orrelated with the level of tRNAs available, and with the abundane of protein

generated. The level of protein-enoding sequenes that are signi�antly biased is of the order of

20% of the total amount of sequenes. Within this respet, several observation have been made:

{ the biased struture helps in regulating the transription turnover [6℄;

{ there is a positional odon bias aording to the strand on whih the gene is situated [4℄;

{ there is a odon usage bias aording to the life yle of the organism and the ellular loation

of the metaboli ativity [1℄;

{ there is a bias in relation with mRNA stability problems [9℄;

{ some horizontal transfers an have e�ets on the odon usage [8℄.

The odon usage bias determining the level of odons orresponding to the amino aids of proteins

has a diret e�et in the genomi sequene omposition of the organism. This bias, whih is the

result of an interation of horizontal transfer and metaboli onstraints, is at the basis of the

seletion of eÆient proteins. The odon usage bias reveals information about the nuleotide

triplet usage of the enoded protein and about the eventual external origin of the sequene in the

organism. The signi�ane of the odon usage bias an be evaluated by using weighted linguistis

approahes. This onsists in heuristially weighting the odons used to enode the amino aids,

instead of using an average weight for every amino aid that is enoded by several triplets. This

prevents from having resulting frequenies that diverge from the observed values.

Nevertheless, the probability of �nding reasonable odon ompositions through linguisti meth-

ods is fairly low, beause:

{ global linguistis are alulated on a larger set of oligonuleotides than the number of oligos

that determine the proteins;

{ the number of odons in a gene equals one third of the number of possible triplets;

{ the di�erent genes are built up from odons of di�erent omposition, and this is inreasing

the bakground noise aordingly.

2. Seond Task: Determining the Nature of the Message

Life on any other planet besides Earth an only be detetable for us if it is based on our arbon

hemistry. Any sequential organi maromoleule ontains onstitutional information, if textual

organization an be deteted within it.

Di�erent approahes exist for the detetion of organized information:

1. Complexity analysis of sequenes. The omplexity of sequenes is diÆult to ompute.

Ed Trifonov introdued in 1990 the notion of linguisti omplexity [7℄ that reets the lin-

guisti wealth of a sequene. This omplexity is easily omputable as C =

Q

n�1

i=1

u

i

, with

u

i

the ratio of the words found in a sliding window at position i in a sequene, versus the

total number of di�erent words that ould possibly be found. Computations are made along
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windows, by multiplying the u ratios of words of all possible lengths in the window. This

implies that all redundanies are eliminated. The value of C varies from 0 to 1.

2. Shannon's entropy measure H(X) = �

P

i

P (x

i

) � log

�

P (x

i

)

�

. The entropy H(X) is maximal

in the ase of a random equiprobable sequene. A redution in entropy orresponds to a

generation of information. This implies that the measurement of the amount of information

an be done by:

I(X) = H(without message) �H(with message).

This way, the amount of information an be quanti�ed by omparing a randomly generated

Markovian sequene (sequene without message) with a naturally ourring sequene. This

measure is related to global information ontent, but does not give any idea on the distribu-

tion of the oding zones of the sequene. It is a ommon observation in information-bearing

texts that oding zones are separated from eah other by areas that are more or less deprived

of information. If the hypothesis of a non-terrestrial genome makes sense, then its linguistis

must respond to the following riterions:

{ it must be based on a restrited alphabet;

{ it bears oding subsequenes that are separated from eah other in a way that is reog-

nizable by ertain moleules;

{ the oding subsequenes are likely to share some ommon harateristis;

{ these sequenes are onstruted using linguistis that an vary from one \genome" to

another;

{ the reading diretion of the sequenes is oriented (this should failitate their regulation);

{ the method used to opy the message determines the ordered relation between the oding

sequenes.
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Abstrat

A ruial problem in genomi analysis is to distinguish \biologially signi�ant" signals in

sequenes from those that are part of the ground noise. To this end, biologial sequenes

are ompared with those expeted to be met \by hane." Models of random sequenes

frequently used in this perspetive will be briey desribed, as will be analytial methods

(developped notably in the Algorithms Projet at Inria!) and experimental methods (ran-

dom sequene generation) used to solve these problems. Then, reent works on random

sequene generation aording to a model that is more onstrained that those studied so far

will be presented, together with a framework in whih it applies to the study of genomi

sequenes.
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Introdution

NP-hard problems annot be solved exatly and eÆiently at the same time. Can they be

approximated in polynomial time? When doing so, we want a guarantee: for every instane,

the solution must be within some fator of the optimal solution. Suh questions are disussed

systematially in Vijay Vazirani's book [6℄ on whih the present leture is based.

Linear programming duality theory provides many eÆient algorithms with a good approximation

fator. Designing exat algorithms is a main topi of the paper by Gr�otshel, Lov�asz, and Shrijver

in 1981; see [3℄. As we shall see, the primal-dual sheme provides the broad outline of an algorithm;

working out the details for eah individual problem then often provides a spei� approximate

solution with good omplexity harateristis.

1. The Vertex Cover Problem

Given a graph, a subset of its verties is a vertex over if and only if every edge has at least

one vertex in the subset. Eah vertex has a ost|the over having ost equal to the sum of the

osts of its verties|and we wish to obtain the over of minimum ost. This problem is NP-hard

(as proved by Karp in 1971, see [5℄). We need to ompare the ost of an approximate solution

onstruted by an algorithm to the ost of the optimal solution (OPT), but we do not know the

ost of OPT; so we need a good lower bound on the ost of OPT. This is a key �rst step in the

design of approximation algorithms.

1.1. Linear programming approximation. To the end of obtaining bounds on OPT for vertex

over, we start with an integer programming formulation of it. There is one variable x

v

for eah

vertex v, and it is equal to 0 or 1; there is one onstraint for eah edge fu; vg, i.e., x

u

+x

v

� 1, whih

expresses that the sum of its two endpoint variables is at least 1; it is then required to minimize a

linear ombination of vertex variables times vertex osts, i.e.

P

v

ost(v)� x

v

.

We then do a relaxation of the problem by allowing the variables to be real numbers between 0

and 1 (instead of being integers). Eah feasible solution provides a frational vertex over whose

ost is neessarily a lower bound to OPT. We know sine the works of Khahian and Karamarkar

around 1980 that linear programming is polynomial-time solvable, both theoretially and e�etively.

The best frational solution is thus polynomial-time omputable, whih gives us our lower bound.

The relaxation algorithm is then as follows:

Linear Programming Algorithm. First �nd the optimal frational solution, then put in

the over all verties v suh that x

v

� 1=2. It is easy to see that this is a vertex over, and
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the ost is at most 2 times the lower bound, hene at most 2 times OPT. This algorithm has

the defet of requiring to solve a linear program, a polynomial-time but expensive step.

1.2. A ombinatorial algorithm. The priniple of a ombinatorial algorithm that has an ap-

proximation fator of 2 is as follows. Initially the over C is empty. While C is not a vertex over,

pik an unovered edge fu; vg, look at the smaller of the two urrent osts of u and v, subtrat this

smaller urrent ost from the osts of u and of v, put the orresponding vertex in C, and harge

its ost to the edge. What we harge to the edges turns out (by indution) to be a lower bound on

OPT. The ost of the over is obviously at most twie the amount harged to the edge. Hene this

tehnique gives rise to a ombinatorial algorithm with an approximation fator of 2; the outome

is in fat a very fast linear-time algorithm.

This alternative algorithm is atually related to the LP-based algorithm seen previously. There

is urrently no approximation algorithm known whih beats this fator of 2.

2. LP Relaxation and Dual LP

An original linear programming (LP) problem (the \primal") always admits a \dual" formulation.

Primal linear program (LP). Determine min

P

v

ost(v) � x

v

subjet to 8e x

u

+ x

v

� 1

and 8v x

v

� 0.

One an prove an upper bound on the OPT solution to the primal LP by exhibiting a partiular

solution (x

v

) whih satis�es all the onstraints. One an prove a lower bound by exhibiting a par-

tiular linear ombination of the onstraints whih equals the objetive funtion. This orresponds

to a dual LP solution.

Dual linear program. Determine max

P

e

y

e

subjet to 8v

P

ejv2e

y

e

� ost(v) and

8e y

e

� 0.

Equality of the optimal solutions of the primal and dual programs onstitutes the strong duality

theorem. The idea of a primal-dual algorithm is preisely to use a feasible solution of the dual LP

as a lower bound on OPT. (Note that duality exhanges `min' and `max'.)

How to design the primal-dual algorithm? We need the omplementary slakness theorem, whih

says that if x is a feasible solution to the primal LP and y a feasible solution to the dual LP, then

both are optimal if and only if for every v either x

v

= 0 or

P

ejv2e

y

e

= ost(v), and for every edge

e either y

e

= 0 or x

u

+x

v

= 1. Thus if (x; y) are not both optimal, we an �nd a slak and derease

the orresponding x

v

or inrease the orresponding y

e

. To design an approximation algorithm, we

hange the equality relative to ost(v) into an inequality.

Primal-dual algorithm for vertex over. Initially x and y are set to 0. Let C be the set

of \tight" verties. While C is not a over, do: pik an unovered edge e, pik y

e

and raise it

until one of its two endpoints is tight. Iteratively improve the primal and dual solutions until

a primal feasible solution is obtained; ompare the primal and dual solutions to establish the

approximation guarantee.

The set over problem an be solved in the same fashion. In this problem, one has a set U of

elements and a olletion of subsets U

I

, eah with a positive ost, and one wishes to onstrut a

minimum olletion of subsets whose union is U . (Exerise: Let the frequeny of element e be

the number of subsets ontaining e, and let f be the maximal frequeny of an element. Design

a primal-dual approximation algorithm with an approximation fator of f .) By design, the best

approximation fator we an get by these methods is the integrality gap, i.e., the ratio between the

OPT solution to the integer linear program and the OPT solution to the relaxed linear program.
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History. This paradigm started in 1955 (Kuhn) in the ontext of weighted bipartite mathing. The

primal-dual terminology is due to Dantzig, Ford, and Fulkerson in 1956. It was used to design exat

algorithms for many polynomial-time algorithms muh before linear programming was reognized to

be polynomial-time solvable. Examples of this tehnique inlude mathing, network ow, shortest

paths, minimum spanning trees, branhings, and so on.

These exat primal-dual algorithms all use the fat that the polyhedron de�ned by the LP

has integral verties, and so the LP has integral optimal solutions. It is the relaxation of the

omplementary slakness solutions that essentially leads to approximation algorithms.

In 1981 Bar-Yehuda and Even [2℄ gave an approximation algorithm with a fator of 2 for vertex

over. In retrospet, their work an be reframed in the setting of primal-dual algorithms so that it

an be regarded as the �rst primal-dual approximation algorithm.

3. Other Problems

Many other problems an be solved approximately using the primal-dual approah. We give a

short list below and refer to the book [6℄ for details.

Steiner tree problem. Given a graph and a set of red verties in the graph, �nd a tree whih

onnets all the red verties (possibly using the other graph verties in the tree) and has minimal

total ost. Gau� also had a version on the plane (given a set of verties in the plane, onnet them

into a tree, possibly branhing out at other points in the plane).

Steiner network problem. Design a network with a presribed number of edge-disjoint paths be-

tween pairs of verties. There are numerous appliations of this problem in networks.

Steiner forest problem. The onnetivity requirement is 0 or 1 between pairs of verties. In 1991

fator-of-2 algorithms were designed by Agrawal, Klein, and Ravi [1℄ on the one hand, Goemans,

Williamson on the other hand. These authors use the idea of simultaneously raising the violated

minimal onstraints. In 1992 Williamson, Goemans, Vazirani, and Mihail [7℄ found a 2k approx-

imation algorithm for the extended Steiner network problem when the maximum onnetivity

requirement is k; their algorithm has been implemented at Bellore.

Faility loation problem. What is given is a set of loations for installing proxy servers and a

set of lients; the goal is to minimize the sum of server installation ost plus the sum of lient's

onnetion osts. For this problem, in the late 1990s, several primal-dual approximation algorithms

using LP rounding were designed; they are nie but not so pratial. Reently Jain and Vazirani [4℄

got an approximation algorithm with a fator of 3 based on a pratial ombinatorial solution,

whih stems from the primal-dual sheme.

The k-median problem. This problem is like the faility loation problem, exept that failities are

free, one is onstrained to open at most k failities; what is required is to minimize the onnetion

ost. This has appliations to data mining inter alia. In 1998 there was an O(1)-approximation

primal-dual algorithm based on LP-rounding, but that again had the disadvantage of requiring to

solve a linear program. In 1999 Jain and Vazirani designed a ombinatorial algorithm that is more

ompliated and relies on randomized rounding. This last algorithm an then be derandomized

using the method of onditional expetations.
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The tehniques disussed in this talk are very robust in the sense that one you solve one problem,

you an get solutions to many losely related problems as well.

4. Open Problems

Our approximation algorithms always deal with dual variables in a greedy fashion, whereas exat

primal-dual algorithms are muh more sophistiated: there is a long way to go to bring the two

approahes loser!

Some of the main open problems are: get a fator better than 2 for vertex over, and better

than 3/2 for the traveling salesman path; get a fator of 2 for the Steiner network; design a bidireted

ut relaxation for Steiner trees.
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Abstrat

We examine the ase of n agents trying to ahieve a global goal without any ommuniation.

Our analysis for the bottlenek probability of sheduling loads in ommon �nite bu�ers also

inludes the �rst exat expressions for the density of a general sum of uniform random

variables, this being obtained via a new polyhedral ombinatorial approah.
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Abstrat

Fatoring integers is quite an old hallenge. Thirty years ago, two researhers fatored the

mythi number F

7

= 2

2

7

+ 1. A few years later publi-key ryptography was born, and

with it the famous RSA algorithm. Even if the seurity of RSA is not equivalent to integer

fatorization, fatoring the RSA key is the simplest way to deode everything, so a lot of

people tried to fator. In 1990, F

9

= 2

2

9

+ 1, the ninth Fermat number was fatored, with

the help of hundreds of omputers. In august 1999, it was the turn of the �rst ordinary

512-bit integer. What follows is a survey of thirty years of fatorization, desribing the

di�erent methods used and the tehnial problems met.

1. Introdution

Fatoring is of great interest sine it allows to use the properties of prime number in arithmeti.

It is the keystone of the RSA algorithm, the mostly used enryption algorithm. RSA is an asym-

metri publi key algorithm that is based on the fat that the produt of two very large prime

numbers an not be easily fatored, whereas to hek if a number is prime an be done quikly.

The omplexity lass of testing the primality of an integer is NP \ o-NP . Fatoring a number is

in NP , but an be done in polynomial time on a quantum omputer!

Method Complexity

sieve p

�

p

p

ellipti urve method L

p

[1; 1=2℄

quadrati sieve (QS) L

N

[1=2; ℄

number �eld sieve (NFS) L

N

[1=3; ℄

Table 1. Complexity of fatorization methods (N is the integer to be fatored, p

its smallest fator)

A lot of di�erent methods exist to fator a number, starting from the linear sieve up to the

algebrai sieve, inluding methods based on ellipti urves. Their omplexity an be expressed in

terms of the funtion

L

x

[�; ℄ = e

 log

�

x(log log x)

1��

:
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Some omplexities are given in Table 1. The smallest fator p of N is usually of order

p

N .

The letter  stands for a onstant and is not spei�ed as it depends on the algorithm and its

implementation. These methods are detailed in the next setion.

2. Combination of Congruenes

The method of ombination of ongruenes is an extension of Kraithik's method. The latter aims

at �nding an integer x suh that x

2

� 1 modN and x 6= �1 modN , then at testing if pgd(x�1; N)

is non-trivial. If so, it is a fator of N . The quadrati ongruene approah re�nes the way the

square root of 1 is found. The �rst step onsists in �nding pairs of integers (u

i

; v

i

)

i2I

suh that

u

2

i

� v

i

modN and u

2

i

6= �v

i

. The seond step is to �nd a subset J � I suh that

Q

j2J

v

j

is

a square, noted V

2

J

. This step is detailed later. If we note

Q

j2J

u

j

= U

J

then step 2 implies

U

2

J

� V

2

J

modN . As we also assume that V

J

and N are together prime (otherwise we have a fator

of N) then x = U

J

=V

J

modN is well de�ned and is a square root of 1. There is a probability

greater than 1=2 that it gives a non trivial fatorization of N . This extension is interesting beause

in order to �nd the pairs (u

i

; v

i

), we an use an algorithm that eventually rejets or ignore some

valid pairs, to go faster. One solution for this is Dixon's method. The idea is to restrit the searh

to integers v

i

that an be fatored on a small set of given small prime integers P

k

= (p

1

; : : : ; p

k

).

To �nd pairs (u

i

; v

i

) aording to Dixon's method, we hoose an integer u

i

, and try to fator u

2

i

on the set P

k

. If we sueed, then we keep the pair (u

i

; u

2

i

). The integer u

i

has to be greater than

p

N , so as to give a non-trivial pair.

One the pairs (u

i

; v

i

) are found, the seond step is to �nd a subspae J suh that

Q

j2J

v

j

is

a square. As the fatorization of eah v

i

is already known, this an be seen as a linear algebra

problem. Assume that there are k+1 valid pairs available. Consider the matrix M of size (k; k+1)

with oeÆients 0 and 1 viewed in the �eld Z=2Z and suh that M [i; j℄ is equal to the exponent

of p

i

in the fatorization of v

j

. This matrix has a rank smaller than k, so there exists a linear

ombination of the olums equals to 0. The subset J orresponds to the non-zero oeÆients in

the linear ombination, and we an hek that

Q

j2J

v

j

is a square, beause all its fators are of

even degree. To exhibit a onrete linear ombination equal to zero is made easier by the sparsity

of the matrix M . As a matter of fat, the tehniques of Wiedemann or of Lanzos have omplexity

O(k

2+�

) on sparse matries, whereas the Gauss pivot has omplexity O(k

3

). Then we have the

expression of V

J

easily, and a square root of 1 that may give a fatorization of N . This algorithm

has a omplexity L

N

[1=2; ℄, where  is a onstant that depends on the algorithm.

3. Sieves

A sieve algorithm searhes a lot of andidates satisfying a ertain property. Then it makes some

tests systematially on all andidates, and at the end keeps the ones that have passed all the tests

suessfully. One of the �rst sieves onerning primality and fatorization is the Erastothene sieve.

The sieve tehnique is useful in fatorization for the searh of the set of pairs (u; v) suh that

u

2

� vmodN .

The basi quadrati sieve, found by Pomerane in 1981 is an extension of the ombination of

ongruene, with a spei� hoie algorithm for the pairs (u

i

; v

i

). The idea is to hoose u

i

=

i+ b

p

N, whih implies

(1) v

i

=

�

i+

�

p

N

�

�

2

�N:
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The advantage is that v

i

is lose to 2i

p

N , and thus v

i

� N , this inreases the probability that the

prime fators of v

i

are small. To hek that these fators are in the prime number basis P

k

we use

a sieve algorithm. This sieve algorithm an be desribed as follows. First �ll an array S suh that

S[i℄ = v

i

for i from 1 to a bound L, then for every p in the prime number basis P

k

, for the two roots

of the equation

�

i+b

p

N

�

2

� N mod p noted i

�

(p), do i i

�

(p), and while i < L do S[i℄ S[i℄=p

and i  i + p. This algorithm is justi�ed by the equivalene pjv

i

()

�

i + b

p

N

�

2

� N mod p.

Then at the end of the loops, for every i suh that S[i℄ = 1, v

i

is fatored on P

k

. The omplexity

of this algorithm is L

N

[1=2; 3=

p

8℄, and the ost in memory spae is L

N

[1=2; 1=

p

8℄. The algorithm

an be optimized in many ways, for example the large prime or double large prime variation that

we are going to detail in the next paragraph.

The large prime variation owes its name to the use of large primes, not in the prime fator basis,

and smaller than the square of the largest prime in the basis P

k

. The sieving stage of the algorithm

an easily be modi�ed to �nd new relations v

i

= q

Q

p

�

p

, where q is a large prime. Now we an

ombine two relations using the same large prime q, namely v

1

= q

Q

p

�

p

and v

2

= q

Q

p

�

p

, and

see that v

1

v

2

=q

2

is fatored on P

k

. This large prime tehnique allows us to searh for more \good"

pairs (u

i

; v

i

) and so to get more andidates to fator N . In pratie it means a speed-up by a fator

of approximatly 2:5 [5℄. The double large prime variation is quite similar, the di�erene is that

two large primes are allowed in the fatorization of the integers v

i

. For example if v

1

= q

1

q

2

Q

p

�

j

,

v

2

= q

2

q

3

Q

p

�

j

, and v

3

= q

1

q

3

Q

p

�

j

(p

�

stands for any power of p), then v

1

v

2

v

3

=(q

1

q

2

q

3

)

2

is fatored

on the prime basis. The hoie of v

i

, v

j

and v

k

suh that their produt an be fatored upon the

prime basis P

k

modulo squares of large primes an be modelled by a graph problem. Let G be the

graph with vertex q

i

and multiple edges q

i

; q

j

labelled by the multiples v

k

of q

i

q

j

. A useful relation

orresponds to a yle in the graph G. This tehnique was used for the sieving step of a 138-digit

number in 1990, as the non-optimized sieve was too big to be handled [5℄ (see also [4℄).

The algebrai sieve [2℄ or number �eld sieve (NFS) algorithm is based on the fatorization in a

number �eld. Given a polynomial P 2 Z[X℄ irreduible over Q , we will work in the number �eld

Q [X℄=

�

P (X)

�

= Q(�) where � is a root of P . In the ring Z[�℄ we an talk about the primality or the

prime deomposition of an element, and the norm of the number a� b� is

Q

(a� b�

i

) where �

i

are

all the roots of the polynomial P . In partiular the norm does not depend on the partiular hoie

of �. The desription of the algorithm requires the following notation. First let m be an integer

suh that P (m) � 0 modN , then onsider the ring homomorphism � that maps Z[�℄ onto Z=NZ

and that satis�es �(�) = m. We are now looking for a set A of pairs (a; b) suh that

Q

A

(a� b�) =

(A�B�)

2

and

Q

A

(a� bm) = Z

2

. These properties give �

�

(A�B�)

2

�

� (A�Bm)

2

� Z

2

modN .

Then (A � Bm)=Z is a square root of 1, that provides a andidate to fator N . The hoie of

the polynomial P plays a large part in the eÆieny of the algorithm [6℄. If the degree of P is

O

�

(logN)

1=3

(log logN)

2=3

�

then the omplexity is L

N

[1=3; ℄, where  is a onstant.

The way the fatorization is done in Z[�℄ needs to be explained as it is a non trivial part of the

algorithm. The idea is to fator �rst the norm of a� b�, Norm(a� b�) = �

Q

p

�

p

(a;b)

. This helps

beause the fatorization of a� b� follows the fatorization of its norm. If p is a fator of N(a� b�),

and p does not divide b (this being a pathologial ase), then there exists an integer r suh that

a� br � 0 mod p and P (r) � 0 mod p. We denote by [p; r℄ the ideal of Z[�℄ suh that any element

x� y� of [p; r℄ satis�es Norm(x� �y) � 0 mod p and x� yr � 0 mod p. This family of ideals is very

interesting beause (a� b�) =

Q

[p; r℄

�

p

(a;b)

, where (a� b�) is the ideal generated by a� b�.

Now that we know how to fator a number in Z[�℄, we apply the sieve algorithm over the pairs

(a; b). The fatorization algorithm an be optimized by a good hoie of the polynomial P [1℄. The

variant SNFS, Speial Number Field Sieve, targets the numbers b

n

� 1 by the hoie of P . The
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Figure 1. Size in bits of the fatored numbers depending on the year.

general NFS algorithm beomes better than the quadrati sieve with large primes optimizations

for numbers of size around 130 digits.

4. Reords and Conlusion

Figure 1 shows the evolution of the fatorization reords. For eah spei� algorithm, the progress

follows Moore's law that states that the speed of omputers double every 18 months. Then for eah

hange of algorithm, there is a jump. Remark that the SNFS algorithm fators spei� numbers,

that are thus larger than for GNFS that fators general numbers [3℄. The linear algebra is often

the limiting fator, and unless there is a new idea on the subjet, RSA an still be used for some

times if used with a key big enough.
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Abstrat

Fast algorithms for polynomial division with remainder are key tools in omputer alge-

bra. The power series domain de�nes a suitable framework where suh algorithms an be

eÆiently onstruted. While revisiting Kung's artile [5℄, Arnold Sh�onhage disusses al-

gebrai omplexity bounds for the omputation of reiproals of power series and desribes

a new algorithm for this task involving Grae�e's root squaring steps.

1. Introdution

By means of Newton's iteration, reiproals of power series modulo x

n+1

an be omputed

with omplexity O

�

M(n)

�

, where M(n) denotes the omplexity of multipliation (see, e.g., [6℄

for a survey). However, the Bahmann{Landau O-notation hides a multipliative onstant, whih

needs to be investigated, for instane in order to determine ross-over points when a olletion of

algorithms is available.

Setion 2 sets the required bakground by realling a few de�nitions from algebrai omplex-

ity. Setion 3 presents an algorithm for omputing reiproals of power series, while disussing

omplexity bounds. Setion 4 desribes a new algorithm and its implementation over Z.

2. Algebrai Complexity

Let F be a �eld and let A(x) =

P

i�0

a

i

x

i

2 F [[x℄℄ denote a formal power series of the indeter-

minate x. Here, formal means that onvergene matters are out of onern. Let D = F (a

0

; a

1

; : : :)

de�ne a domain where a

i

's are regarded as indeterminates. If D is endowed with the four arith-

meti operations (+, �, �, =) and a salar multipliation, then an algorithm that inputs the power

series A(x) onsists of a �nite sequene of operations in D. Counting these operations de�nes the

algebrai omplexity, whih is an intuitive way of reeting performanes of the algorithm. Two

models of omplexity are worth onsidering. The arithmeti omplexity, denoted by L,

1

harges

one unit of ost for eah operation in D, while the nonsalar omplexity, denoted by C, only ounts

nonsalar multipliations and divisions.

3. Kung's Algorithm Revisited

The underlying algorithm used for the aurate ost alulation is based on Newton's iteration

for reiproals, as disussed by Kung in [5℄.

1

For notational onveniene, arithmeti omplexity is also denoted by M (resp. �) for multipliation (resp. fast

Fourier transform).
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3.1. Kung's algorithm. LetR(x) be the reiproal of the unitA(x) with respet to the �eldD[[x℄℄.

De�ne the funtion f from the subdomain of D[[x℄℄ whose elements have nonzero onstant term

to D[[x℄℄ by f(s) = s

�1

�A(x). Thus R(x) is just the zero of f .

Newton's iteration is a seond-order iteration

2

and onsists of a linear approximation of f . New-

ton's iteration funtion N is given by:

(1) N (s) = s�

f(s)

f

0

(s)

= s

�

2�A(x)s

�

;

where f

0

denotes the derivative of f , whih is de�ned algebraially (see [8℄). Let n be a power

of two and

A

2n

(x) = A(x) mod x

2n+1

;(2)

R

n

(x) = 1=A(x) mod x

n+1

:(3)

Newton's iteration features a quadrati onvergene (see [3, Chap. 4℄): the number of aurate

terms doubles at eah iteration. This may be expressed by

(4) R

2n

(x) = N

�

R

n

(x)

�

mod x

2n+1

:

From (2) and (3), there exists a polynomial P of degree at most n� 1 suh that

(5) R

n

(x)A

2n

(x) = 1 + x

n+1

P (x) mod x

2n+1

:

Combining (1), (5) and the expansion (4) leads to a reursive formula that omputes the reiproal

of A(x) modulo x

2n+1

:

(6)

1

A(x)

= R

2n

(x) = R

n

(x)

�

1� x

n+1

P (x)

�

mod x

2n+1

:

Equations (5) and (6) both harge M(n) +O(n) units of ost. Therefore, the overall arithmeti

omplexity of Kung's algorithm is bounded by

(7) L(2n) � L(n) + 2M(n) +O(n):

Unfolding this reurrene leads to L(n) = O

�

M(n)

�

for all known multipliations.

The derivation of the exat arithmeti omplexity from (7) depends on a spei� algorithm for

multipliation of polynomials. The next setion desribes a multipliation algorithm involving fast

Fourier transfrom (FFT). Originally, Kung derived (7) for nonsalar omplexity, where M(n) =

2n+ 1, and found C(n) < 4n. Atually, the lowest upper bound presently known for the nonsalar

omplexity isC(n) < 3:75n. Kalorkoti derived this latter result from Kung's third-order iteration [4℄

and taking advantage that squaring modulo x

n+1

is less expensive than multiplying modulo x

n+1

(see [2, Chap. 2℄).

3.2. FFT and fast multipliation. The N -point FFT de�nes a ring isomorphism from the quo-

tient F [[x℄℄=(x

N

) to F

N

. It is an evaluation-interpolation map where the evaluation points, also

alled Fourier points, are the Nth roots of unity. Atually, the FFT is the evaluation-interpolation

map whose implementation yields the lowest known omplexity. Indeed, the symmetry properties

of the Nth roots of unity allow a divide-and-onquer implementation [3, Chap. 4℄. The arithmeti

omplexity of N -point FFT is bounded by �(N) � 3=2N logN �N + 1 (see [2, Chap. 2℄).

The FFT performs fast bak and forth onversions from an evaluated form to its interpolated

form. Thus, low omplexity algorithms an be ahieved by taking advantage of eah representation.

In partiular, fast multipliation onsists in onverting both operands into their evaluation forms

with two FFTs, performing a oeÆient-wise multipliation, and delivering the result with one

2

Third-order iteration is mentioned later and onsists of a paraboli approximation.
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bakward FFT. Sh�onhage shows that multipliation of polynomials of degree n (some restritions

on n are needed and disussed later) aording to this method has algebrai omplexity

(8) M(n) =

�

9 + o(1)

�

n logn:

3.3. Kung's algorithm revisited. Diret substitution of (8) into (7) leads to

L(n) �

�

18 + o(1)

�

n log n:

However, Sh�onhage obtains a lower multipliative onstant by deferring the last bakward FFT.

R

n

and A

2n

are �rst onverted into their evaluation forms, requiring two diret N -point FFTs,

whih ost 2�(N). Then, steps (5) and (6) ompute the evaluation form of R

n

P , involving two

oeÆient-wise multipliations and two subtrations, whih add 4N units of ost. One ultimate

bakward N -point FFT interpolates R

n

P with �(N) operations. Therefore, (7) beomes

L(2n) � L(n) + 3�(N) + 4N:

A typial value for N is the lowest power of two that is greater than d = deg

�

R

n

(x)A

2n

(x)

�

= 3n.

However, a signi�ant overhead is expeted when d is slightly greater than the nearest power of two.

In this ase, the arithmeti omplexity for the N -point FFT is �(N) < 3d log(2d). Thus, Sh�onhage

suggests for N a saled power of two of the form N =  2

�

, where � = dlog(d)e � blog log(d + 1)

and  = dd=2

�

e. This latter hoie for N yields a lower bound

�(N) � d

�

3=2 log(d) + 13=5 log log(d + 1) +O(1)

�

:

This preise ount yields the arithmeti omplexity for reiproals

L(n) �

�

27=2 + o(1)

�

n log n:

Surprisingly, Newton's third-order iteration does not yield a better bound for arithmeti om-

plexity, as opposed to the ase of nonsalar omplexity (see Setion 3.1).

4. A New Algorithm over Z

Algorithms for division of polynomials redue the division task to multipliations. However,

while featuring an attrative asymptoti omplexity, suh redutions may involve detours and triks

whose implementations lead to tremendous multipliative onstants. Indeed, earlier algorithms for

division of polynomials shared this drawbak. Therefore, Sh�onhage suggests a new fast algorithm

by means of Grae�e's root squaring with a low onstant and ready for an immediate implementation

due to its extreme simpliity.

4.1. Grae�e's root squaring method. Grae�e's squaring method originates in numerial anal-

ysis for solving polynomial equations [1℄. This method proeeds from any polynomial A(x) in F [x℄

to the even polynomial G(x

2

) = A(x)A(�x).

In F [[x℄℄ the reiproal of A(x) modulo x

n+1

may be written as

(9)

1

A(x)

=

A(�x)

A(�x)A(x)

mod x

n+1

:

In equation (9), the denominator of the right hand-side ontains at most n+ 1 terms, but only half

of them are signi�ant when omputing modulo x

n+1

. Therefore, Grae�e's rule redues the task of

inverting n+ 1 terms to a half-sized problem. Thus, the orresponding algorithm works reursively

as follows (notations are those of (2) and (3)). With k = bn=2, Grae�e's step omputes

G

k

(x

2

) = A

n

(x)A

n

(�x) mod x

n+1

;
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harging at most n+ 1 nonsalar units of ost. Indeed, typially, nonsalar omplexity for suh a

multipliation is C(n) = 2n+1 (see [2, Chap. 2℄). However, the polynomial A

n

may be rewritten as

A

n

(x) = A

(even)

n

(x

2

) + xA

(odd)

n

(x

2

);

whih shows that both A

n

(x

0

) and A

n

(�x

0

), for any x

0

lying in the ground �eld, an be omputed

together as follows

A

n

(�x

0

) = A

(even)

n

(x

2

0

)� x

0

A

(odd)

n

(x

2

0

):

Therefore, Grae�e's step requires at most n + 1 essential multipliations, by evaluation of A

n

for

n+ 1 distint squares. The reiproal of G

k

(x) modulo x

k+1

, denoted by H

k

(x), is determined by

reursive alls. An ultimate multipliation

R

n

(x) = A

n

(�x)H

k

(x

2

) mod x

n+1

delivers the result, harging extra n+2k+1 units of nonsalar ost. Then, the nonsalar omplexity

is bounded by C(n) � 6n+ 2 log(n=2), whih is slightly weaker than Kalorkoti's (see Setion 3.1)

but the implementation of Grae�e's approah is straightforward.

4.2. Appliation to reiproals over Z. This setion deals with units of the ring Z[[x℄℄ of

the form A(x) = 1 +

P

i>0

a

i

x

i

. This form naturally arises with divisions by moni polynomials

omputed via the substitution x 7�! 1=x.

Basially, the implementation of Grae�e's method onsists in mapping polynomials to integers

expressed in some radix r

0

notation, so that multipliation of integers an be used. This idea is

based on Kroneker's trik of enoding polynomials with bounded oeÆients in a single integer.

Let �

r

0

be a ring morphism from Z

n

[x℄ (i.e., polynomials of Z[x℄ of degree less than n) to Z that

evaluates polynomials at r

0

2 N. If there exists a onstant � suh that ja

i

j < �

i

holds for eah i > 0,

then the bit size of the oeÆients of R and G an be bounded. Thus, under this assumption, r

0

2 N

an be hosen suh that the evaluation map �

r

0

is a bijetion and N an be optimally determined.

The arithmeti omplexity an easily be derived

L(n) = 6M(�n

2

);

where � = log(3�) and where the Sh�onhage{Strassen algorithm for multipliation of integers, whih

features the lowest known omplexity M(m) = O

�

m log(m) log log(m)

�

[7℄, is likely to be used.
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Fast Multivariate Power Series Multipliation in Charateristi Zero

Gr�egoire Leerf

Gage,

�

Eole polytehnique (Frane)

June 11, 2001

Summary by Ludovi Meunier

Abstrat

Let S be a multivariate power series ring over a �eld of harateristi zero. The artile [5℄

presents an asymptotially fast algorithm for multiplying two elements of S trunated a-

ording to total degree. Up to logarithmi fators, the omplexity of the algorithm is optimal,

in the sense that it is linear in the size of the output.

1. Introdution

Let k be a �eld of harateristi zero. We write S = k[[x

1

; : : : ; x

n

℄℄ for the multivariate power

series ring in the n variables x

1

; : : : ; x

n

. Let I be any ideal of S. By omputing at preision I in S,

we understand omputing modulo the ideal I in S. In other words, power series in S are regarded

as vetors in the k-algebra S=I. We denote by m the maximal ideal (x

1

; : : : ; x

n

) in S and by d

any positive integer. The paper [5℄ sets the problem of a fast algorithm for multiplying two power

series in S trunated in total degree d, that is omputed at preision m

d+1

.

The general question of a fast algorithm for multivariate multipliation in S modulo any ideal

remains an open problem and has reeived very little attention in the literature. Previous works

(e.g., [2℄) investigated omputation modulo the ideal (x

d+1

1

; : : : ; x

d+1

n

), that is trunation aord-

ing to partial degree with respet to eah variable x

i

. The method used is alled Kroneker's

substitution and is briey disussed in Setion 3.

The need for multipliation routines modulo m

d+1

arises in various �elds, suh as polynomial

system solving [7℄ and treatment of systems of partial di�erential equations.

The eÆieny of the algorithm is measured with respet to the model of nonsalar omplexity.

By nonsalar omplexity, we understand the number of primitive operations in the �eld k needed

to omplete the algorithm, independently of the sizes of the numbers involved (see [3℄). We now

introdue some notation. We denote by D = deg

�

m

d+1

�

the degree of the ideal m

d+1

. D is the

number of monomials in S whih are not in m

d+1

, that is the dimension of the k-algebra S=m

d+1

.

Simple ombinatorial onsiderations give

D = deg

�

m

d+1

�

=

�

d+ n

n

�

:

We set C := deg

�

m

d

�

and denote by M

u

(Æ) the omplexity of the multipliation of two univariate

polynomials of degree Æ in k[t℄.

The next setion presents the algorithm; its omplexity belongs to

(1) O

�

D log

3

D log logD

�

:
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Sine D is the size of the output, the algorithm is optimal, up to the logarithmi fators.

2. The Algorithm

2.1. Desription. The �rst step of the algorithm onsists in translating the multivariate problem

into a univariate one. This is motivated by the fat that fast algorithms for univariate power series

multipliation are known (e.g., [6℄).

Let t be a new variable. We onsider the substitution

~

R

t

: S=m

d+1

�! k[x

1

; : : : ; x

n

℄[[t℄℄=(t

d+1

)

f(x

1

; : : : ; x

n

) 7�! f(x

1

t; : : : ; x

n

t):

If f is an element of S=m

d+1

,

~

R

t

(f) is a univariate power series in the single variable t trunated

at degree d. It an then be written

~

R

t

(f) =

~

f

0

+

~

f

1

t + � � � +

~

f

d

t

d

, where eah oeÆient

~

f

i

is a

homogeneous multivariate polynomial in the variables x

1

; : : : ; x

n

of total degree i. This remark on

the degree suggests that:

1. the substitution

~

R

t

is optimal, in the sense that it provides us with a representation of f

that retains exatly the monomials that form a basis of S=m

d+1

. In partiular, the algorithm

does not su�er from any overhead aused by unneessary terms (see Setion 3);

2. in view of the homogeneity of the

~

f

i

, keeping all of the variables x

i

is redundant. The

substitution de�ned by

R

t

: S=m

d+1

�! k[x

2

; : : : ; x

n

℄[[t℄℄=(t

d+1

) =

�

k[[t℄℄=(t

d+1

)

�

[x

2

; : : : ; x

n

℄

f(x

1

; : : : ; x

n

) 7�! f(t; x

2

t; : : : ; x

n

t)

redues the omplexity in the step of evaluation-interpolation (see below): n� 1 variables,

instead of n variables, are atually needed.

The seond step of the algorithm performs the multipliation. Let f and g be two power series

in S=m

d+1

and h be the produt fg in S=m

d+1

. The equality h = fg turns into

(2) R

t

(h) = R

t

(f)R

t

(g):

Consequently, we onentrate on a fast way to ompute R

t

(h). We use an evaluation-interpolation

sheme. We �rst onsider the evaluation map at the point P = (p

2

; : : : ; p

n

) in k

n�1

de�ned by

E

P

:

�

k[[t℄℄=(t

d+1

)

�

[x

2

; : : : ; x

n

℄ �! k[[t℄℄=(t

d+1

)

f(x

2

; : : : ; x

n

) 7�! f(P ):

We then apply E

P

to equation (2), whih yields

(3) E

P

�

R

t

(h)

�

= E

P

�

R

t

(f)

�

E

P

�

R

t

(g)

�

mod t

d+1

:

Equation (3) holds for any point P and omputes the produt R

t

(h) at P by using a univariate

power series multipliation algorithm. Suh an algorithm is desribed in [6℄.

The last step of the algorithm onsists in reonstruting h from a set of values of R

t

(h). We

regard R

t

(h) as a multivariate polynomial in the variables x

2

; : : : ; x

n

. There exists an interpolation

map

I :

�

k[[t℄℄=(t

d+1

)

�

C

�!

�

k[[t℄℄=(t

d+1

)

�

[x

2

; : : : ; x

n

℄

�

f(P

1

); : : : ; f(P

C

)

�

7�! f(x

2

; : : : ; x

n

);

whih reovers R

t

(h) from a set of C pairwise distint values

�

E

P

1

�

R

t

(h)

�

; : : : ; E

P

C

�

R

t

(h)

�	

. The

evaluation points P

i

, for i in 1; : : : ; C, are hosen to be powers of distint prime numbers, namely

P

i

= (p

i

2

; : : : ; p

i

n

), where p

j

are distint prime numbers. Note the key point is that the harateristi

of the ground �eld k is zero, so that all E

P

i

�

R

t

(h)

�

have pairwise distint values. An implementation
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of both maps E

P

and I is desribed by J. Canny, E. Kaltofen, and Y. Lakshman in [4℄. Their method

relies on fast univariate multipoint evaluation and interpolation (e.g., [1℄).

Finally, we reonstrut h from R

t

(h). If R

t

(h) = h

0

+ h

1

t+ � � �+h

d

t

d

is given, h is obtained by

homogenizing eah h

i

in degree i with respet to the variable x

1

and then evaluating at t = 1.

We are now ready to unfold the algorithm.

MultivariatePS Mult := pro(f,g)

(1) F  R

t

(f); G R

t

(g); == new representation

(2) for i in (P

1

; : : : ; P

C

) do == evaluation

F

P

i

 E

P

i

(F ); G

P

i

 E

P

i

(G);

(3) for i to C do == univariate multipliation

H

P

i

 F

P

i

G

P

i

;

(4) R

t

(h) I(H

P

1

; : : : ;H

P

C

); == interpolation

(5) h homogenization in degree with respet to x

1

== reonstrution

in R

t

(h);

return h;

The next setion derives the omplexity result laimed by (1).

2.2. Complexity. Steps 1 and 5 an be performed in O(C) operations. We examine the ost of

Steps 2, 3, and 4 separately:

{ Step 2 evaluates the d oeÆients of F and G at C points. The C points P

i

are hosen to

be powers of the n� 1 distint prime numbers (p

2

; : : : ; p

n

), namely P

i

= (p

i

2

; : : : ; p

i

n

). Eah

oeÆient an be omputed in O

�

M

u

(C) logC

�

operations, aording to the algorithm for

fast multipoint evaluation given in [4℄. This yields an overall omplexity of O

�

dM

u

(C) logC

�

for Step 2.

{ Step 3 performs C univariate power series produts. Eah multipliation requires O

�

M

u

(d)

�

operations. Complexity of Step 3 is then O

�

CM

u

(d)

�

.

{ Step 4 interpolates the d oeÆients of H. Eah interpolation requires O

�

M

u

(C) logC

�

operations, also using the algorithm presented in [4℄. Step 4 then requires O

�

dM

u

(C) logC

�

operations.

The overall omplexity of the algorithm is then derived by replaing M

u

(C) by its estimate

O

�

C logC log logC

�

obtained in [6℄ and noting that C < D log(D)=d. This yields

O

�

D log

3

D log logD

�

:

2.3. Generalization. We mention that van der Hoeven generalized the algorithm to the ase when

I = (x

d

1

1

: : : x

d

n

n

; for �

1

d

1

+ � � �+ �

n

d

n

> d );

where the �

i

are positive integers, by using the substitution de�ned by

V

t

: S=I �! k[x

2

; : : : ; x

n

℄[[t℄℄=(t

d+1

)

f(x

1

; : : : ; x

n

) 7�! f(t

�

1

; x

2

t

�

2

; : : : ; x

n

t

�

n

)

instead of R

t

. The rest of the algorithm remains unaltered.
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3. Appendix: Kroneker's Substitution

Kroneker's substitution is de�ned by the map

K

t

: S=I �! k[[t℄℄=t

(2d+1)

n

f(x

1

; : : : ; x

n

) 7�! f(t; t

2d+1

; : : : ; t

(2d+1)

n�1

);

where I = (x

d+1

1

; : : : ; x

d+1

n

). This substitution trunates power series in partial degree d with

respet to eah variable x

i

. Let f be a power series in S=I, one reovers the oeÆient of x

e

1

1

: : : x

e

n

n

in f by simply reading o� the oeÆient of t

e

1

+(2d+1)e

2

+���+(2d+1)

n�1

e

n

in K

t

(f). The ost of this

algorithm is the ost of the multipliation of two univariate polynomials of degree (2d)

n

, that is

O

�

M

u

�

(2d)

n

��

. This is the lowest known omplexity for multivariate power series multipliation

modulo the ideal (x

d+1

1

; : : : ; x

d+1

n

). In partiular, when addressed in this ontext, the algorithm

presented above requires preision m

nd+1

and yields a similar omplexity.

Kroneker's substitution may be used to ompute modulo m

d+1

as well. However, it results in a

signi�ant overhead of O(2

n

n!), for �xed n and d� n, with respet to the size of the power series.
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A Tutorial on Closed Di�erene Forms

Burkhard Zimmermann

RISC, Linz (Austria)

January 15, 2001

Summary by Fr�ed�eri Chyzak

Abstrat

Zeilberger's theory of losed di�erene forms provides with a deeper understanding of the

reative telesoping method used to prove many (q-)hypergeometri (multi-)sum identities,

and of \ompanion" or \dual" identities. By introduing new types of summation domains,

the losed form approah allows to disover new identities of the form \sum equals sum,"

inluding new summatory representations of �(3). A transform similar to a pullbak (hange

of variables) of di�erential forms is introdued, and permits to �nd more new identites. This

summary is freely inspired by [1, 2, 4, 5℄ and the talk.

1. Comparison Between Di�erential and Di�erene Caluli

By mimiking di�erential alulus [2℄, Zeilberger has developped a omplete di�erene alulus

[4℄. This theory, whih we real here, ulminates with a disrete analogue to Stokes's theorem.

Given a C -vetor spae V , whih will take the role of a tangent spae momentarily, an alternate

multilinear p-form on V is just a multilinear map � : V

p

! C that satis�es the rule

�(v

1

; : : : ; v

i+1

; v

i

; : : : ; v

p

) = ��(v

1

; : : : ; v

p

):

This represents a p-volume measure, in the sense that it assigns an (oriented) volume to the par-

alellepipedi polyhedron determined by the vetors v

i

. By a natural onvention, 0-forms are just

onstants. To a p-form � and a q-form  , one assoiates a (p + q)-form, i.e., a (p + q)-volume

measure, by means of the exterior produt � ^  :

(� ^  )(v

1

; : : : ; v

p+q

) =

X

�2S

p;q

�(�)�

�

v

�(1)

; : : : ; v

�(p)

�

 

�

v

�(p+1)

; : : : ; v

�(p+q)

�

where S

p;q

denotes the set of permutations of f1; : : : ; p+ qg with �(1) < � � � < �(p) and �(p+ 1) <

� � � < �(p + q), and where �(�) denotes the signature of the permutation �. Consider the diret

sum A(V ) =

L

p�0

A

p

(V ) of the vetor spaes A

p

(V ) of alternate p-forms. By extending the

exterior produt by linearity, we obtain an assoiative multipliation on A(V ), whih beomes a

graded algebra with the produt rule  ^ � = (�1)

pq

� ^  for a p-form � and a q-form  .

Next, an alternate di�erene p-form, or for short a di�erene p-form, is a map ! whih to eah

element � of a real manifold M assoiates a multilinear p-form !(�) on the tangent spae V = T

�

M .

Exterior produts of di�erene forms are de�ned pointwise. At this point, di�erene forms and

di�erential forms share the same de�nition. In the following however, we fous to the ase when

M is a submanifold of R

d

: eah !(�) is then an alternate form on V = R

d

. By imposing the

additional property !(�

1

; : : : ; �

d

) = !

�

b�

1

; : : : ; b�

d



�

, we obtain forms that are pieewise onstant,

as well as their oeÆients. (Compare this situation with the theory in the di�erential setting,
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where one insists in having C

1

forms and C

1

oeÆients.) The possible variations of forms with �

is at the origin of the notions of exterior di�erential and exterior di�erene introdued below.

In the di�erential setting, a kind of a derivation is de�ned on di�erential forms in the following

way. One starts with the usual derivative !

0

, whih satis�es the asymptoti relation !(� + v) =

!(�) + !

0

(�)(v) + o(v) as v ! 0. Eah !

0

(�) is a linear map from V = R

d

to the vetor spae

A

p

(V ), and an be viewed as a multilinear map from V

p+1

to C that is not alternate, but alternate

in its last p variables only. Making it alternate by an averaging tehnique, we obtain the exterior

di�erential d! given by

(d!)(�)(v

0

; : : : ; v

p

) =

p

X

i=0

(�1)

i

�

!

0

(�)(v

i

)

�

(v

0

; : : : ; v̂

i

; : : : ; v

p

):

In the di�erene ase, we start with another linearization instead of the derivative !

0

to de�ne

the exterior di�erene of !, namely by seants instead of tangents. Let !

�

(�) be the linear map

on V de�ned by !(� + v) = !(�) + !

�

(�)(v) + R(v) and R(v) is zero for eah element v = e

i

of

the anonial basis of V = R

d

. Again, (v

0

; : : : ; v

p

) 7! !

�

(�)(v

0

)(v

1

; : : : ; v

p

) is alternate in its last

p variables only, but the full alternate nature is reovered by the exterior di�erene d! de�ned by

(d!)(�)(v

0

; : : : ; v

p

) =

p

X

i=0

(�1)

i

�

!

�

(�)(v

i

)

�

(v

0

; : : : ; v̂

i

; : : : ; v

p

):

As opposed to the lassial exterior di�erential, exterior di�erene heavily depends on the hoie

of a basis on V ; but like it, it satis�es d Æ d = 0.

Denote (n

1

; : : : ; n

d

) the dual basis of the anonial basis of the manifold R

d

that ontains M .

As in the di�erential setting, the exterior di�erene dn

i

of the restrition of n

i

to M (i.e., or the

ith oordinate funtion on M) plays a speial role: the dn

i

form a basis for the ring of di�erene

form, and the d

n

i

1

^ � � � ^ dn

i

p

for i

1

< � � � < i

p

span the vetor spae (respetively, free module)

of p-forms. Exterior di�erential and exterior di�erene share a formally simple, easy-to-memorize

formulation on the anonial basis (dn

1

; : : : ;dn

d

): for ! = f dn

i

1

^ � � � ^ dn

i

r

, we get

d! = df ^ dn

i

1

^ � � � ^ dn

i

r

where the exterior di�erential is df =

P

d

i=1

�f

��

i

dn

i

, and the exterior di�erene df =

P

d

i=1

(�

i

f)dn

i

,

where �

i

is the �nite di�erene operator de�ned by (�

i

f)(�

1

; : : : ; �

d

) = f(�

1

; : : : ; �

i

+ 1; : : : ; �

d

)�

f(�

1

; : : : ; �

d

).

In order to make the link between di�erene forms and summation, we restrit to hyperubi

manifolds given by setting some of the oordinates �

i

to 0 and letting all others vary freely in [ 0; 1),

and to the manifolds obtained after translating the latter by vetors with integer entries. Note that

all those elementary manifolds (in various dimensions) have volume 1, and that we have restrited

di�erene forms to be onstant on suh sets. As a onsequene, the integral of a form f dn

1

^� � �^dn

d

on [ 0; 1)

d

is just f(0; : : : ; 0), as is for i

1

< � � � < i

r

the integral of f dn

i

1

^� � �^dn

i

r

on the hyperube

de�ned by 0 � �

j

< 1 for eah j = i

k

and �

j

= 0 for all other j. By integration over a union of

elementary manifolds, we are naturally led to integral representing sums; for example:

Z

R

d

f dn

1

^ � � � ^ dn

d

=

X

(n

1

;:::;n

d

)2Z

d

f(n

1

; : : : ; n

d

):

We are now ready to derive a di�erene variant of Stokes's theorem: onsider the oriented hyperube


 = [ 0; 1)

d

and its boundary �
 de�ned as usual as a formal linear ombination of 2d faes,

�
 = F (�

1

= 0)�F (�

2

= 0)+� � �+(�1)

d+1

F (�

d

= 0)�F (�

1

= 1)+F (�

2

= 1)+� � �+(�1)

d

F (�

d

= 1);
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where F (�

i

= a) is the (oriented) fae 
 \ f � j �

i

= a g. Boundaries of other elementary manifolds

are obtained by translating �
, keeping the same oeÆients. In this way, we an de�ne the integral

of a form over a linear ombination of manifolds to be the very same linear ombination of integrals

of the same form over the manifolds. For

(1) ! =

d

X

i=1

f

i

dn

1

^ � � � ^

^

dn

i

^ � � � ^ dn

d

we get

Z

�


! =

d

X

i=1

(�1)

i

Z

F (�

i

=1)�F (�

i

=0)

f

i

dn

1

^ � � � ^

^

dn

i

^ � � � ^ dn

d

=

�

d

X

i=1

(�1)

i

f

i

(0; : : : ; 1; : : : ; 0)�

d

X

i=1

(�1)

i

f

i

(0; : : : ; 0)

�

dn

1

^ � � � ^ dn

d

=

d

X

i=1

(�1)

i

(�

i

f

i

)(0; : : : ; 0) dn

1

^ � � � ^ dn

d

=

Z




d!:

We ould have as well onsidered forms ! de�ned on the integer lattie Z

d

, and de�ned their sums

P




! on a manifold 
 by the integrals

R




! of the form ! extended to R

d

by !(�

1

; : : : ; �

d

) =

!

�

b�

1

; : : : ; b�

d



�

. We shall adopt this equivalent viewpoint from the next setion on. By linearity

with respet to manifolds, we obtain the following disrete variant of Stokes's formula [4℄.

Theorem 1 (Zeilberger{Stokes formula). For any di�erene p-form ! suh that !(�

1

; : : : ; �

d

) =

!

�

b�

1

; : : : ; b�

d



�

on any manifold 
 that is a linear ombination of elementary hyperubi mani-

folds, we have

P

�


! =

P




d!.

2. Closed Form Identities (Pun Intended!)

An interesting situation is that of a losed (di�erene) form, whih by de�nition is a di�erene

form ! suh that d! = 0. In this ase, the sum

P

�


! = 0 for any manifold 
 on all of whih 
 is

de�ned, owing to Theorem 1 above. If more spei�ally ! is given by (1), we obtain

d

X

i=1

X

�


f

i

dn

1

^ � � � ^

^

dn

i

^ � � � ^ dn

d

= 0;

in other words a relation between a priori in�nite sums! Using the leeway available in the hoie

of 
 yields several kinds of identities: sum equals onstant, sum equals sum, et. In the following,

we detail this situation in the speial ase r = 2. Let us denote dn and dk for dn

1

and dn

2

,

respetively, and onsider a losed 1-form ! = g dn+ f dk, so that �

n

f = �

k

g.

2.1. Stripe-shaped manifolds. Consider 
 = R

+

� [ 0; n ℄ =

�

(x; y)

�

�

x � 0 and 0 � y � n

	

and the losed form ! obtained for

f(n; k) =

�

m

k

��

n

k

��

p+ n+m� k

n+m

�

and g(n; k) =

mk � p(n+ 1)

(n+m+ 1)(n+ 1� k)

f(n; k):

Stokes's theorem on 
 then yields (after elementary manipulations of binomial sums)

n

X

k=0

�

m

k

��

n

k

��

p+ n+m� k

n+m

�

=

X

k2N

f(n; k) =

X

k2N

f(0; k) +

n

X

l=0

g(l; 0) =

�

m+ p

m

��

n+ p

n

�

:
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More generally, many losed-form identities like the one above, where \losed form" now means

that both the summand and the sum are hypergeometri sequenes, orrespond to a \losed form"

that involves the summand as one of its oeÆients. Hene Zeilberger's \pun intended."

But some magi takes plae here: hanging 
 to [ 0; k ℄ � R

+

and summing with respet to n

instead of k, the same method sometimes yields a ompanion identity. Moreover, the more variables

there are, the more ampli�ed this phenomenon is: for r variables and in luky ases where all

summations make sense, a single losed di�erene (r�1)-form with hypergeometri oeÆients an

be viewed as a simultaneous enoding of r losed form summation identities [4℄.

2.2. Triangular-shaped manifolds. Zeilberger observed that for a losed form !

1

= g

1

dn+f

1

dk,

the funtions f

s

(n; k) = f

1

(sn; k) and g

s

(n; k) = g

1

(sn; k) + g

1

(sn + 1; k) + � � � + g

1

(sn + s� 1; k)

provide for eah s > 1 with another losed form !

s

= g

s

dn+ f

s

dk. Basing on this, Amdeberhan

and Zeilberger [1℄ derived the following representations for �(3):

�(3) =

5

2

1

X

n=1

(�1)

n�1

�

2n

n

�

n

2

=

1

4

1

X

n=1

(�1)

n�1

(56n

2

� 32n+ 5)

(2n� 1)

2

�

3n

n

��

2n

n

�

n

3

=

1

72

1

X

n=0

(�1)

n

(5265n

4

+ 13878n

3

+ 13761n

2

+ 6120n + 1040)

(4n+ 3)(4n+ 1)(3n + 2)

2

(3n+ 1)

2

(n+ 1)

�

4n

n

��

3n

n

�
:

Spei�ally, they onsidered 
 =

�

(x; y)

�

�

y � bx + 1

	

and the funtions

f

1

(n; k) = (�1)

k

k!

2

(n� k � 1)!

(n+ k + 1)! (k + 1)

and g

1

(n; k) = 2(�1)

k

k!

2

(n� k)!

(n+ k + 1)! (n+ 1)

2

:

The representations above have respetively been obtained for s = 1, 2, and 3; their general terms

derease like O(n

�3=2

4

�n

), O(n

�2

27

�n

), O(n

�2

64

�n

), respetively|at the ost of more and more

operations for eah term, though! Changing 
 to 


s

=

�

(x; y)

�

�

y � sbx + 1

	

leads to other

representations [1℄, like, for s = 2,

�(3) =

1

X

n=0

(�1)

n

P (n)

80(5n+ 4)(5n+ 3)(5n + 2)(5n + 1)(4n+ 3)

2

(4n+ 1)

2

(2n+ 1)

2

(n+ 1)

�

5n

n

��

4n

n

�

where P = 1613824n

8

+ 7638016n

7

+ 15700096n

6

+ 18317312n

5

+ 13278552n

4

+ 6131676n

3

+

1763967n

2

+289515n+20782. The general term is now O(n

�2

(27=3125)

�n

), with 27=3125 � 115:74.

To sketh the proof, we apply Stokes's theorem to !

s

on 


s

, and obtain:

1

X

n=0

g

s

(n; 0) +

1

X

k=0

f

s

(sk + s; k) +

1

X

k=0

�

g

s

(sk; k) + � � �+ g

s

(sk + s� 1; k)

�

= 0:

Next, noting that g

1

(n; 0) = 2=(n+1)

3

and grouping the sums over k yields the announed identity.

2.3. Finite triangular-shaped and retangular-shaped manifolds. Other identities like

�(x+ n)�(y + n)

�(n)�(x + y + n)

3

F

2

�

x; y; v + n� 1

v; x+ y + n

�

�

�

�

1

�

=

�(x+ k)�(y + k)

�(k)�(x + y + k)

3

F

2

�

x; y; v + k � 1

v; x + y + k

�

�

�

�

1

�

and

P

n+m=s

�

2n

n

��

2m

m

�

= 4

s

are based on other hoies for 
, like a retangle [ 0; k ℄ � [ 0; n ℄ or a

\triangle"

�

(x; y)

�

�

bx+ by � s

	

for 
 [5℄.
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3. Closed Forms with Holonomi CoeÆients

Consider a losed form ! = g dn + f dk with hypergeometri oeÆients. Sine f is hypergeo-

metri in n, one an �nd some rational funtion R of (n; k) suh that �

k

g = �

n

f = Rf . It is also

well-known that if a hypergeometri sequenes h has a hypergeometri anti-di�erene H, there has

to be some rational funtion S suh that H = Sh. Here we get g = S�

n

f = SRf . This situation

extends to more variables, whih legitimates Zeilberger's fous to losed forms whose oeÆients

are all multiples of the same hypergeometri sequene f by polynomials in the variables; he alled

suh forms WZ forms [4℄. Here we extend this situation to forms whose oeÆients are rational

multiples of the same holonomi sequene, and make the link between losed forms and reative

telesoping expliit.

Let a summation identity

P

b

k=a

f

n;k

= F

n

be given, where both f and F are holonomi �-�nite

sequenes. In view of verifying it, knowing F allows to ompute a non-zero operator P

0

(n; S

n

) suh

that P

0

�F = 0. Proving the identity thus redues to proving

P

b

k=a

(P

0

�f)(n; k) = 0. By restriting

to holonomi hypergeometri summands and right-hand sides, Zeilberger's presentation essentially

only dealt with the ase P

0

= S

n

� 1: F an always be assumed to be 1, otherwise we replae

f(n; k) with f(n; k)=F (n). In this spirit, we now require that P

0

be a right multiple of S

n

� 1 and

write P

0

= (S

n

� 1)R this fatorization.

The holonomy of f ensures that there exists a pair (P;Q) with non-zero P suh that

(2)

�

P + (S

k

� 1)Q

�

� f = 0:

Provided that there exists suh a pair for P = P

0

, the operator Q an be omputed by Chyzak's

�-�nite extension of Gosper's algorithm [3℄. Let A be the algebra of di�erene operators with

respet to n and k with oeÆients that are rational funtions in n and k, and introdue the

module M = A � f . The form

(3) ! = (R � f) dk � (Q � f) dn;

whose oeÆients all lie in M is losed:

d! =

�

(S

n

� 1)R � f

�

dn ^ dk �

�

(S

k

� 1)Q � f

�

dk ^ dn =

�

�

P + (S

k

� 1)Q

�

� f

�

dn ^ dk = 0:

Conversely, assume that there exists a losed form ! (with oeÆients in M) given by (3). By

losedness, we have

�

(S

n

� 1)R+ (S

k

� 1)Q

�

� f = 0, whene after summation over k, and provided

that R involves neither k nor S

k

,

(S

n

� 1)R �

b

X

k=a

f(n; k) = 0:

More generally, if the r-form f dk

1

^ � � � ^ dk

r

+

P

r

i=1

(P

i

� f) dn^ dk

1

^ : : :

^

dk

i

� � � ^dk

r

is losed,

i.e., (S

n

� 1) � f + (S

k

1

� 1)P

1

� f + � � � + (S

k

r

� 1)P

r

� f = 0;

the r-fold summation

P

k

1

;:::;k

r

f yields a onstant with respet to n.

4. Extended WZ Cohomology

Is it easily shown that any 1-form with oeÆients de�ned on Z

r

is exat. Even more is true:

any 1-form with holonomi oeÆients derives from a holonomi sequene. More spei�ally, a

1-form ! given by (3) is exat if and only if there exists a funtion �(n; k) suh that ! = d�, or

more expliitly

�(Q � f) = (S

n

� 1) � � and R � f = (S

k

� 1) � �:
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This always holds if we look for unonstrained �: simply de�ne � by

�(n; k) =

k�1

X

i=0

(R � f)(0; i) �

n�1

X

j=0

(Q � f)(j; k):

The non-trivial problem is to impose � 2 M. (For example, when f is hypergeometri, all

oeÆients of ! as well as � have to be rational multiples of f .) Then, not all 1-forms ! remain

exat. Vieweing losed forms modulo exat forms we are led to a ohomology that Zeilberger named

WZ ohomology in [4℄ in the ase of hypergeometri f , and that we all extended WZ ohomology

in the more general ase of holonomi �-�nite f . Following Zeilberger [4℄, we suggest the following

extended researh problem: haraterize those holonomi �-�nite sequenes f for whih there exists

a non-exat losed form with oeÆients in M = A�f and ompute the orresponding ohomology.

5. Pullbaks

In the di�erential ase, the notion of pullbak propagates a hange of variables in funtions to

the level of di�erential forms, thus permitting hange of variables in integrals: for a di�erentiable

map � from a manifold N to another manifold M , one gets a mapping �

�

that transforms a p-form !

on M to a p-form on N while preserving losedness of forms by simply requiring

(4) (�

�

!)(�)(v

1

; : : : ; v

p

) = !

�

�(�)

��

�

0

(�)(v

1

); : : : ; �

0

(�)(v

p

)

�

:

In the di�erene ase, a simple example of a pullbak has already been given in Setion 2.2: the

losed form !

s

is the pullbak of the losed form !

1

under the map given by �(n; k) = (sn; k).

However, no simple de�nition of a pullbak seems possible: the obvious guess that mimiks (4),

substituting �

�

for �

0

, unfortunately does not preserve losedness (taking �nite di�erenes is not

a loal operation). Zimmermann [5℄ and Gessel independently gave a de�nition for the ase of a

linear mapping � that maps integer points to integer points.

The key observation is that for a linear transform l = �(n), de�ned by l

i

=

P

j

a

i;j

n

j

, shifting by 1

with respet to n

j

after performing the substitution indued by � is equivalent to doing shifts with

respet to eah l

i

before substituting, as detailed by the formula S

l

j

�

�

= �

�

S

a

1;j

n

1

: : : S

a

n;j

n

r

. It then

follows from a tehnial but easy alulation that �

l

j

�

�

= �

�

P

i

P

i;j

�

n

i

for some operators P

i;j

.

Imposing the natural relations �

�

(f) = f Æ � and �

�

(df) = d(�

�

f) for 0-forms f leads to

X

i

�

�

�

(�

n

i

f) dn

i

�

=

X

j

�

�

l

j

(�

�

f)

�

dl

j

=

X

i;j

�

�

(P

i;j

�

n

i

f) dl

j

:

Choosing f suh that df = (�

n

i

f) dn

i

, we get �

�

(g dn

i

) =

P

j

�

�

(P

i;j

g) dl

j

, a de�nition that proves

to preserve losedness.
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Abstrat

This talk presents an algorithm to perform transformations exhibiting the rank (TER) on

a large lass of matries with entries in skew polynomial rings. This algorithm only uses

elementary linear algebra operations and has various appliations in solving very general

linear funtional systems.

1. Motivation

The question of �nding polynomial solutions for linear funtional systems is of partiular inter-

est in treating various problems in di�erential and di�erene algebra, as well as in ombinatoris.

It appears as a basi subtask in algorithms for �nding all rational solutions of di�erential and

(q-)di�erene equations, for omputing liouvillian solutions of di�erential equations and (q-)hyper-

geometri solutions of (q-)di�erene equations. It also applies in fatoring linear di�erential and

di�erene operators, or in designing e�etive Gr�obner basis algorithms in multivariate Ore algebras,

whih in turn are used in generalization of Gosper's algorithm for inde�nite hypergeometri sum-

mation and Zeilberger's \reative telesoping" algorithm for de�nite summation and integration.

The traditional omputer algebra approah to solving funtional systems is via an elimination

method like the yli-vetor method, whih onverts the system to salar equations (this proedure

is alled unoupling). The major problem of this approah is the inrease in size of the oeÆients

of equations.

The algorithm desribed in the next setion o�ers a diret alternative for transforming a linear

system of reurrenes into an equivalent one of a simpler form, well-suited for the purpose of

omputing solutions with �nite support of suh a system. This gives a useful tool for onstruting

polynomial solutions of very general linear funtional systems; see Setions 4.1 and 4.2 below.

The main advantage of this approah is that it does not require preliminary unoupling of linear

systems, but only performs elementary linear algebra operations on the original matrix.

2. Desription of the Algorithm

The existene of anonial forms for matries over various types of rings, suh as prinipal ideal

domains, has been known sine the middle of the last entury; their omputation has important

appliations in both theoretial and pratial areas of mathematis, siene, and engineering.

Suppose that we onsider matries over a ring for whih the notion of rank makes sense. A method

for obtaining anonial forms of a matrix is performing elementary operations on its rows. Here, by

elementary operation we mean permuting two rows, adding a multiple of a row to another row, and

multiplying a row by a nonzero element of the base ring. Suh a �nite sequene of elementary row
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operations on a matrix A an be represented by a matrix E. It will be alled a TER (transformation

exhibiting the rank) if it has the additional property that the rank of A equals the number of nonzero

rows of the matrix EA.

In the ommutative ase, Gaussian elimination is the lassial example of a TER, but it is a very

greedy one, beause of the exponential growth of the intermediate expressions; see [5℄. The Popov

form from linear ontrol theory [8, 9℄ and the redued matrix form [10, 11℄ are two other examples.

In [6℄ Mulders and Storjohann gave a simple algorithm that omputes a simpli�ed, non-anonial

version of the Popov form, alled the weak Popov form of a polynomial matrix. The algorithm

performs only deliate elementary transformations whih avoid intermediate expression swell. As

a by-produt, fast algorithms are obtained for omputing the rank, the determinant, the Hermite

form, the triangular fatorization, and also the Popov form.

In the following, we desribe an algorithm that omputes a TER in a non-ommutative setting.

Let R be an integral domain and � an automorphism of R. Loalizing the skew polynomial

ring R[X;�℄ at the set of powers of X, we obtain the skew Laurent polynomial ring

S = R[X;X

�1

;�℄;

with the ommutation rules X � r = �(r) �X, for all r in R (and therefore X

�1

� r = �

�1

(r) �X

�1

).

It is a left Ore domain, in the sense that any nonzero elements of S have a nonzero ommon left

multiple in S. This implies that for any S-module M , the rank of M , denoted by rk(M) is a

well-de�ned notion; see [4℄. If A is a matrix with entries in S, we will all the rank of A the rank

of the S-module generated by the rows of the matrix A.

We detail an algorithm whih omputes a TER of a n �m matrix A with entries in the skew

Laurent polynomial ring S = R[X;X

�1

;�℄. If we write

A = A

t

X

t

+A

t�1

X

t�1

+ � � �+A

s+1

X

s+1

+A

s

X

s

;

where s � t are integers, A

i

are matries with entries in R, the leading matrix A

t

and the

trailing matrix A

s

are nonzero, we are interested in �nding a TER E suh that the trailing matrix

(respetively the leading matrix) of EA be nonsingular.

Remark that a straightforward appliation of the algorithm given in [6℄ does not do the job, even

in the ommutative ase. The algorithm hereafter is essentially the algorithm proposed in [2℄ for

the partiular ase of reurrene polynomials and improves the EG-elimination method [1℄.

The algorithm onsists in iterating the following two basi steps, as long as the �rst operation

an be performed:

1. look for a nonzero v 2 R

n

in the left kernel of the trailing (respetively leading) matrix of

A, i.e., suh that v

T

A

s

= 0 [respetively v

T

A

t

= 0℄ and suh that v

i

is zero whenever the

ith row of A is zero;

2. hoose i

0

in the set of indies i suh that the maximal degree in X of the polynomials of

the ith row of A be maximal [respetively, its valuation be minimal℄ and replae this row by

X

�1

v

T

A [respetively by Xv

T

A℄.

Remark that

P

i

deg(

i

A) dereases after eah iteration, where

i

A denotes the ith row of A, so

the above algorithm terminates after at most n(t� s+ 1) iterations.

Let N denote the number of iterations neessary for the previous algorithm to terminate and A

(p)

the matrix obtained from A = A

(0)

after p iterations. Then it an easily be seen that the number r

of nonzero rows in the matrix A

(N)

equals its rank, as any linear nontrivial dependeny over S of

these nonzero rows would imply a linear nontrivial dependeny over R of the orresponding rows

of its trailing matrix.
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On the other hand, the ranks of the matries A

(p)

do not hange all along the algorithm. This

is implied by the formula rankA

(p)

= rankA

(p+1)

+ rank

�

M

(p)

=M

(p+1)

�

, where M

(p)

denotes the

S-module generated by the rows of the matrix A

(p)

, and by the fat thatM

(p)

=M

(p+1)

is a torsion

module, therefore of rank zero.

This shows that the previous algorithm provides a TER for A.

3. Complexity

The previous algorithm only needs to ompute nonzero elements of the kernels of matries with

entries in R. When R is a polynomial ring over some �eld K of harateristi 0, whih is the ase for

di�erential and (q-)di�erene equations, one an use modular and probabilisti methods (like [7℄)

to �nd elements of the kernel. Their worst-ase omplexity is O(n

3

d

2

) operations in K, where d is

a bound on the degrees of the entries of A. Sine the algorithm loops at most n(t� s + 1) times,

its omplexity is O

�

(t� s)n

4

d

2

�

. Re�nements are possible; see [2℄.

4. Appliations

4.1. Desingularisation of reurrenes. As mentioned in the �rst setion, linear systems of

reurrenes with variable oeÆients are of interest in ombinatoris and numeri omputation. In

addition, as shown in [3℄, they give a useful tool for onstruting solutions of very general linear

funtional equations.

Consider the system A

t

(n)Y

n+t

+ � � � + A

s+1

(n)Y

n+s+1

+ A

s

(n)Y

n+s

= 0, where A

i

are m �m

matries with entries in the polynomial ring K[n℄. This system is equivalent to AY = 0, where

A = A

t

E

t

+ � � � + A

s

E

s

is now viewed as a matrix with entries in K[n℄[E;E

�1

;�℄, � being the

shift automorphism of K[n℄.

If either the leading matrix A

t

or the trailing matrix A

s

is nonsingular, its determinant is a

nonzero polynomial in K[n℄ and the �nite set of its integer roots gives the singularities of the

reurrene and the possible degrees of polynomial solutions of the initial system. If the matries A

s

and A

t

are singular, one faes the neessity to transform suh a reurrene system into an equivalent

one, with nonsingular leading (or trailing matrix). The following method is taken from [2℄. If

rankA = m > rankA

t

, then applying the previous algorithm to the matrix A yields a new matrix

A

�

= A

�

t

E

t

+ � � �+A

�

s

0

E

s

0

suh that rankA

�

t

= m.

4.2. Solutions with �nite support. As already mentioned, the question of �nding polynomial

solutions of linear funtional systems may be redued to the problem of �nding solutions with �nite

support (Y

0

; Y

1

; : : : ; Y

N

; 0; : : : ) of the previous reurrene system; see [3℄. In [2℄ a similar method

to that of Setion 4.1 was given, in order to �nd onstraints on the set of the possible values of the

bound N for the support of suh a solution.

If rankA = m = rankA

s

then we an �nd a �nite set of andidates for N , given by the rela-

tion Æ(N � s) = 0 for Æ(n) = detA

s

. If rankA = m > rankA

s

, then applying the previous TER to

the matrix A gives a matrix A

�

= A

�

t

0

E

t

0

+ � � �+A

�

s

E

s

where rankA

�

s

= m and (detA

�

s

)(N � s) = 0.

4.3. Hensel lifting for singular linear systems. Let A be a nonsingular matrix with entries

in K[X℄, where K is a �eld. We onsider the problem of reovering a v 2 K(X) suh that Av = b,

or determine that no suh v exists.

X-adi lifting works by omputing a vetor series w = w

0

+w

1

X+w

2

X

2

+� � � , with eah w

i

2 K

n

and suh that

A(w

0

+ w

1

X + w

2

X

2

+ � � � ) = b:
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A rational solution v of the system Av = b is then reonstruted from the trunated series solution

w (mod X

l

) using Pad�e approximation. In general, we an ompute the series solution w, by

undetermined oeÆients method, only when A is nonsingular modulo X.

In the ase A(0) is singular, one an manage by applying the previous TER to the extended

matrix [A j b ℄ to transform the system AY = b into an equivalent one A

�

Y = b

�

, with A

�

(0)

nonsingular. A similar idea already appeared in [7℄.

4.4. Solving linear di�erential systems. We now onsider the problem of solving a linear dif-

ferential system Y

0

= B(x)Y where B is a m�m matrix with entries in K[x℄. By solving suh a

system we mean �nding its formal power solutions. The system may be written in the ompressed

form AY = 0, where A is a matrix with entries in K[X℄[D; d=dx℄.

Using the isomorphism of K-algebras:

R : K[x; x

�1

℄[D; d=dx℄ �! K[n℄[E;E

�1

;�℄

given byRx = E

�1

andRD = (n+1)E, we remark that there is a bijetive orrespondene between

formal power solutions Y =

P

n�0

Y

n

x

n

of the linear di�erential system AY = 0 and sequenes

Y = (Y

n

)

n�0

, solutions of the reurrene system R(A)(Y ) = 0. This redues the problem of �nding

(polynomial) solutions of the di�erential system AY = 0 to �nding solutions (with �nite support)

of the reurrene system R(A)(Y ) = 0.
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Summary by Philippe Dumas and Bruno Salvy

Abstrat

Finding polynomial solutions of linear di�erential equations is a building blok implemented

in several algorithms of omputer algebra systems. In partiular, this is a neessary sub-step

when looking for rational, algebrai or Liouvillian solutions of linear di�erential equations.

When there are no parameters, several algorithms are available, but the general ase with

parameters is undeidable. However, speial families an be handled by ad ho methods.

Suh methods were developed by Bouher who applied them to the nie example of integra-

bility of the 3-body problem. The key idea there is to rely on a reent result of Morales-Ruiz

and Ramis who relate omplete integrability and di�erential Galois group. It turns out that

speial properties of this group an be related to omputable properties of an appropri-

ate linear di�erential equation, whih leads Bouher to a \simple" suÆient ondition for

non-omplete integrability.

1. Polynomial Solutions of Linear Di�erential Equations

The lassial method to �nd polynomial solutions of linear di�erential equations over K (x),

where K is a �eld, starts by determining a bound on the degree of potential solutions. This is a

bound on the integer solutions of the indiial equation at in�nity.

One a bound on the degree has been found, one uses an indeterminate oeÆients method. The

linear system on these oeÆients has a band-matrix struture whih an be exploited to ael-

erate the omputation [1℄. This linear system is retangular, with more equations than unknown

oeÆients, thus existene of solution is related to the vanishing of a determinant.

When parameters our in the equation (K is a �eld of rational funtions), there are two dif-

�ulties: the size of the matrix may depend on the parameters and even when it does not, the

determinant whih must vanish is a polynomial in the parameters. Using Matijasevih's result on

the undeidability of Hilbert's 10th problem (Is there a �nite proess whih determines if a polyno-

mial equation is solvable in integers?), it is possible to show that this problem itself is undeidable.

More preisely, Jaques-Arthur Weil observes that the equation

y

0

(x)�

�

a

1

x� 1

+ � � �+

a

m

x�m

+ P (a

1

; : : : ; a

m

)

�

y(x) = 0

has rational solutions if and only if P (a

1

; : : : ; a

m

) = 0 has integral solutions.

There are still ases where all polynomial solutions an be found: this happens when either the

size of the matrix is bounded independently of the parameters and the vanishing of the required

determinant an be determined or when the struture of the matrix is suÆiently regular to make

the deision possible. Examples of both ases are given in [4℄.
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2. Complete Integrability

2.1. Hamiltonian Mehanis. In the Hamiltonian approah to lassial mehanis, the state of

a system is haraterized by 2n variables, q

i

(positions) and p

i

(momenta), i = 1; : : : ; n, living

in an open subset U of R

2n

(the phase spae). More generally, the phase spae of a system is the

otangent �bre bundle T

?

M of an n-dimensional real manifold M . The formulae we give below are

expressions in a hart of useful quantities. The state variables satisfy

(1) _p

i

=

�H

�q

i

; _q

i

= �

�H

�p

i

;

where a dot denotes a derivative with respet to time and H(p; q; t) is the Hamiltonian. Physially,

the Hamiltonian often represents the energy of the system. The system (1) governs the evolution

of the system (in the phase spae U). Solutions (t) of (1) are the trajetories of the system.

In a more abstrat setting, R

2n

is endowed with a non-degenerate 2-form

! =

n

X

i=1

dp

i

^ dq

i

;

known as Liouville's sympleti 2-form. Sine ! is non-degenerate, it indues an isomorphism

between R

2n

and its dual under whih �dH is the image of a vetor �eld X

H

. In this language,

the Hamiltonian system (1) redues to

_ = X

H

():

First integrals are funtions F (p; q) that are onstant along the solutions (t). A neessary and

suÆient ondition is

fF;Hg :=

X

i

�F

�p

i

�H

�q

i

�

�H

�p

i

�F

�q

i

= 0;

where fF;Hg is known as the Poisson braket of F and H. In partiular, the Hamiltonian itself is

a �rst integral.

Two �rst integrals are in involution if their Poisson braket vanishes. A Hamiltonian system is

ompletely integrable when it possesses a set of n �rst integrals in involution that are independent

(i.e., their Jaobian matrix is regular in the open set U).

Informally, a ompletely integrable system an be \solved" in terms of its �rst integrals. Indeed,

given a �rst integral, a proess known as sympleti redution makes it possible to redue the

number of degrees of freedom by 1, i.e., the dimension by 2 [2, p. 91℄.

2.2. Many-Body Problem. In the many-body problem, n partiles obeying Newton's law are

governed by the following Hamiltonian:

H(p; q) =

1

2

X

i

kp

i

k

2

m

i

�

X

i 6=j

m

i

m

j

kq

j

� q

i

k

:

Note that here eah p

i

and q

i

has oordinates in R

3

, thus the phase spae has dimension 6n.

Apart from the Hamiltonian itself, known �rst integrals for this system are the momentum of

the entre of mass and the angular momentum

P

q

i

^ p

i

. Thus, the number of degrees of freedom

an be redued from 3n to 3n� 6 (or from 2n to 2n� 4 in the planar ase).

For the 3-body problem, Poinar�e proved that there are no other omplex analyti �rst integrals.

Bruns proved a similar result for omplex algebrai �rst integrals.
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2.3. Theorem of Morales-Ruiz and Ramis. We now present a simple version of a result of

Morales-Ruiz and Ramis in [10, 11, 12, 13℄ (see also [3℄) on non-omplete integrability in terms

of meromorphi �rst integrals. The Hamiltonian is analyti over an open set of C

2n

and t (time)

is a omplex variable. Given a non-stationary trajetory �(t), following an idea of Poinar�e, one

onsiders the linear di�erential equation that must satisfy a \small" variation �, suh that �(t)+�(t)

is solution of the Hamiltonian system. This equation

(2) _� = X

0

H

() � �

is alled the variational equation along �. A theorem of Morales-Ruiz and Ramis relates omplete

integrability and Galois group of this equation. (For an introdution to di�erential Galois theory,

see [14℄ or the summary of Ulmer's talk in this seminar in 1994.) However, sine the Galois group

is often very diÆult to ompute, it is useful to onsider a di�erential equation of lower order. This

is ahieved by the following result.

Theorem 1 (Morales-Ruiz and Ramis). If the system possesses n meromorphi �rst integrals in

the neighbourhood of �, independent and in involution, then the onneted omponent of identity

in the di�erential Galois group of the normal variational equation along � is abelian.

Similar earlier results of Ziglin based on the monodromy group and of Churhill, Singer et alii

based on the Galois group did not extend to the ase where the variational equation has an irregular

singular point. In this theorem, the normal variational equation is an equation obtained from the

variational equation through sympleti redution. Indeed, dH

�

�(t)

�

� � is a �rst integral of the

variational equation, as an be seen by a �rst-order expansion.

3. Bouher's Criterion and its Appliation

It is not neessary to ompute the Galois group of a linear di�erential equation in order to detet

that it is not abelian. Thanks to a suÆient riterion [5, 6℄, Bouher has proved that the planar

3-body problem is not ompletely integrable in terms of meromorphi �rst integrals. Unfortunately,

the formulae involved in this derivation are muh too large to be reprodued here. Thus we ontent

ourselves with a sketh of the steps and a desription of the tools used in the alulations.

3.1. Criterion.

Theorem 2. Assume that the linear di�erential operator L an be fatored as KM , with M =

lm(L

1

; : : : ; L

m

) where the L

i

, i = 1; : : : ;m, are irreduible (and lm denotes the least ommon

left multiple). Assume moreover that M(y) = 0 has a formal solution with a logarithm. Then the

onneted omponent of the di�erential Galois group of L(y) = 0 is not abelian.

Given a linear di�erential equation, this theorem redues the task to fatoring and �nding formal

solutions. Fatoring an be done by an algorithm of van Hoeij [19, 20℄, and formal solutions an

be omputed at any singularity, inluding in�nity [15, 20℄.

3.2. Appliation to the 3-Body Problem. Tsygvintsev and Bouher have proved independently

that the planar 3-body problem is not ompletely integrable in terms of meromorphi �rst integrals.

Their approahes [5, 17℄ follow the same initial steps till the normal variational equation. Then [17℄

uses Ziglin's result. We now outline Bouher's approah.
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Redued Hamiltonian. Using the �rst integrals obtained in Setion 2.2, the problem is redued to

a Hamiltonian with three degrees of freedom, given in [17℄. The parameters in this equation are the

three masses m

1

, m

2

, m

3

and the value  of the angular momentum (whih redues to a salar in

this dimension). By homogeneity, we an freely assume m

3

= 1. (Note that these transformations

make the resulting expressions asymmetri with respet to the bodies.)

In order to apply Theorem 1, we need a partiular solution of the system. This is provided by

the elebrated Lagrange solutions. In these solutions, the three partiles have orbits on similar

onis with a ommon fous loated at their entre of mass (see [8, p. 400℄). Sine any partiular

solution an be hosen, Tsygvintsev and Bouher onentrate on the paraboli orbit (for angular

momentum  6= 0).

Variational Equation. The variational equation (2) is a linear system of order n = 6. The normal

variational equation is obtained via a linear hange of sympleti basis as follows. We observe

that X

H

itself is a solution of the variational equation. It will be the �rst vetor e

1

of the new

basis. Next, we ompute a basis (e

1

= X; e

2

; : : : ; e

n

; e

n+2

; : : : ; e

2n

) of the kernel of dH

�

�(t)

�

satisfying !(e

i

; e

n+i

) = 1 for 1 < i � n and !(e

i

; e

j

) = 0 otherwise. Finally, we ompute a

vetor e

n+1

= Y suh that !(e

i

; Y ) = 0 for i 6= 1 and !(X;Y ) = 1. In the new basis (e

1

; : : : ; e

2n

),

the �rst olumn of the matrix of the variational equation is 0, sine X

H

is a solution. Now, for any

vetor �eld �, !(X; �) = �dH

�

�(t)

�

� �, therefore for any solution � of the variational equation,

the value of this �rst integral is the oordinate of � on the vetor Y in the new basis. The normal

variational equation is obtained by setting this oordinate to 0 and onsidering the indued matrix A

on the subspae with basis (e

2

; : : : ; e

n

; e

n+2

; : : : ; e

2n

).

Cyli Vetor. The riterion of Theorem 1 applies to equations rather than systems. A lassial

method to onvert a system of order m into an equation L(u) = 0 is to start from a random

vetor u and �nd a linear dependeny between the m+1 vetors u; u

0

; : : : ; u

(m)

where the derivatives

are omputed using the matrix A. Unfortunately, this proess generially introdues spurious

singularities that are roots of the determinant of the hange of basis (u; u

0

; : : : ; u

(m�1)

). Bouher

therefore selets yli vetors in suh a way that no new singularity ours and this requires

distinguishing two ases depending on the value of the mass m

1

.

Right Fators. In the simplest ase of Bouher's riterion, the operator L has an irreduible

right fator M whose formal solutions exhibit logarithms. This requires M to have order at least 2.

Fators of order k are found by onstruting an auxiliary equation L

^k

of order (

m

k

) whose solutions

are Wronskians of k independent solutions of L [7℄. (Note that this an be omputed diretly

from L.) Indeed, a moni right fator of order k has for oeÆient of order k � 1 the logarithmi

derivative w

0

=w of some partiular Wronskian of its solutions. Finding right fators then amounts

to looking for so-alled exponential solutions of L

^k

(i.e., those with logarithmi derivative that

is rational). From a basis of suh solutions, orresponding to linear ombinations of Wronskians,

Pl�uker's relations help selet those that are indeed Wronskians [16℄. From there, the omplete

fator an be reonstruted. Exponential solutions are found by looking at formal solutions at all

singularities of the equation [19℄. This requires a disussion in the parametri ase. If a fator

is found, the next step is to hek whether this fator is irreduible, or to �nd onditions on the

parameters that make it irreduible. This is done again by searhing for fators of the fator. It

turns out that in this appliation, in all ases an irreduible right fator of order 2 is found.
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Logarithms. Logarithms in formal solutions our when the indiial equation at a singularity has

roots that di�er by an integer. A neessary and suÆient ondition has been given by Frobenius [9,

p. 404{406℄. Again, in all generality nothing an be said when parameters are present but Bouher

manages to show that logarithms are present in all ases for this appliation.

4. Conlusion

This appliation is a very good showase for many of the algorithms that have been developed

in omputer algebra for linear di�erential equations: formal solutions, fatorization, polynomial

solutions, . . .

What Bouher has shown is that, even in the presene of parameters, these algorithms an be

exploited to provide useful information by onentrating on those points where spei� quantities

suh as the indiial equation or its solutions do not depend \too muh" on the parameters.

A reent trend in omputer algebra is to revisit all these algorithms that have been designed

for equations and extend them to deal with systems, without using the yli vetor. It would be

a natural step to try and adapt Bouher's riterion so that the sympleti struture is not lost.

(Work on this has been started by Bouher and Weil.)

Remark. A new result of Tsygvintsev [18℄ shows the stronger result that there is no additional

meromorphi �rst integral. Also, Theorem 2 has been extended to the ase when L is a produt of

irreduible fators one of whih has a solution with logarithms.
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Abstrat

In the 1960's, Malgrange made use of D-module theory for studying linear systems of

PDEs [2℄. Several aspets of this approah, now alled algebrai analysis, have then been

made e�etive in the 1990's, owing to the extension of the theory of Gr�obner bases to rings

of di�erential operators. Correspondingly, algorithms have also been implemented in several

systems. Reently, the introdution of algebrai analysis to ontrol theory has allowed to

lassify linear multidimensional ontrol systems aording to algebrai properties of assoi-

ated D-modules, to rede�ne their strutural properties in a more intrinsi fashion, and to

develop e�etive tests for deiding these strutural properties [3, 6, 7, 8, 9, 10, 12, 14℄.

1. From Linear Multidimensional Control Systems to Algebrai Analysis

A ontrol system relates the state x of a physial proess with an external ommand u and some

output y. Eah of u, x, and y is a vetor of funtions of the time t, and the system desribes their

evolution with t. Several lasses of suh systems an be represented by matries with oeÆients

in a ring of operators. Sample lasses are the following:

1. Kalman systems are �rst-order linear (ordinary) di�erential systems

_x = Ax+Bu; y = Cx+Du;

where A, B, C, and D are matries with real entries [5℄. For example, RLC iruits an be

desribed by Kalman systems.

2. Polynomial systems are higher-order di�erential systems expressed without the help of any

state variable, in the form

(1) P (d=dt)y(t) +Q(d=dt)u(t) = 0:

Here P and Q are matries with oeÆients that are salar linear di�erential operators with

real oeÆients [5℄. For example, a harmoni osillator ommanded by a fore is desribed by

a seond-order polynomial system. By Laplae transform, an equivalent formulation of (1) is

P (s)ŷ(s) +Q(s)û(s) = 0;

the matries P and Q are now matries of polynomials in s with real oeÆients [5℄.

3. Di�erential-delay systems with onstant delays are a generalization ommon to Kalman sys-

tems and polynomial systems by introduing the onstant-delay operators Æ

i

de�ned by
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(Æ

i

f)(t) = f(t� t

i

) for some real t

i

. The generalized forms are

_x(t) =

r

X

i=0

A

i

x(t� t

i

) +B

i

u(t� t

i

); y(t) =

r

X

i=0

C

i

x(t� t

i

) +D

i

u(t� t

i

);

and

P (d=dt; Æ

1

; : : : ; Æ

r

)y +Q(d=dt; Æ

1

; : : : ; Æ

r

)u = 0;

respetively. A typial ourrene of delay is when transmitting a signal u through a hannel.

4. Multivariate linear di�erential systems with real oeÆients appear frequently to desribe

physial phenomena, like eletromagnetism, (linear) elastiity, hydrodynamism, and so on

[7, 8, 12℄.

In eah ase, the olumn vetor � = (y; x; u)

T

satis�es R� = 0 for a (retangular) matrix R

with oeÆients in some ring A . Thus, we heneforth onsider a linear ontrol system as de�ned

by a matrix R with oeÆients in an entire ring A . To give simple examples, the matrix forms

orresponding to Kalman and polynomial systems respetively are

R =

�

0 A� d=dt Id B

Id C D

�

and R =

�

P Q

�

:

In these di�erential ases, the ring A is R[d=dt℄ or a multivariate generalization, but more general

rings of oeÆients are also onsidered in plae of R in appliations, like the ring R(t) of rational

funtion, or the ring C

1

(I) of in�nitely di�erentiable funtions over some real interval I. In

the equivalent formulation by Laplae transform or in the mixed di�erential-delay situation with

onstant oeÆients, the ring is isomorphi to the polynomial ring R[s℄ or a multivariate analogue.

Here again, more general rings of funtions often appear in appliations, like: R

�

s; exp(�s)

�

, for

situations related to the wave equation; or the ring H

1

(C

+

) of omplex-analyti funtions bounded

in the right half omplex plane C

+

(Hardy spae) and its subring RH

1

(C

+

) of real rational funtions

with no pole on the right half omplex plane, for the study of the stability of some distributed

systems [11℄.

Several strutural properties of systems are all-important in ontrol theory. An observable of a

ontrol system is any salar funtion of its ommand u, state x, and output y and of their derivatives

up to a ertain order. An observable is alled autonomous if it satis�es a non-trivial PDE. A ontrol

system is alled ontrollable if no observable is autonomous. The study of strutural properties of

a system turns out to lead to linear algebra: ontrollability and observability are related to various

notions of primeness of the linear maps

z 7! Rz and z 7! zR;

in the polynomial systems ase, stability is related to poles and zeroes of the system, that are

invariant fators of the matrix R; similarly with the existene of generalized B�ezout identities and

atness of a ontrol system; et.

By assoiating an A-module M to the matrix R, another interpretation of the strutural proper-

ties is in terms of module-theoreti and homologial properties of M (torsion, torsion-free, reexive,

and projetive modules; extension and torsion funtors). In fat, a full lassi�ation of modules by

homologial algebra methods translates into a lassi�ation of linear ontrol systems.

2. Duality Between Di�erential Operators and D-Modules

Let us turn to the formal theory of PDEs [13℄. Starting with a naive viewpoint on di�erential

operators (so as to avoid the formalism of jet bundles), we introdue formally exat sequenes of

di�erential operators. For eah k, let F

k

denote the algebra of funtions in k variables, and onsider
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a di�erentiel operator D from F

m

to F

l

(of �nite order). Given � 2 F

n

, the neessary onditions

for the existene of � 2 F

m

suh that D� = � are alled ompatibility onditions of D; they take

the form D

1

� = 0 for some di�erential operator D

1

. Writing D

0

= D, we have D

1

Æ D

0

= 0. When

D

1

enapsulates all ompatibility onditions, the sequene

F

m

D

0

! F

l

0

D

1

! F

l

1

of di�erential operators is alled formally exat (at F

l

0

). Formally exat sequenes an always be

extended (to the right) into longer sequenes, so that denoting the solution set of D = D

0

in F

m

by �, we obtain a formally exat sequene

0! �! F

m

D

0

! F

l

0

D

1

! F

l

1

D

2

! F

l

2

! � � �

(at � and eah F

l

k

) where the �rst two maps denote inlusions. Under tehnial onditions (regu-

larity and involutivity), the formal theory of PDEs proves the existene of a �nite formally exat

sequene for D, in the sense that F

l

n

= 0 from some n on, by exhibiting a anonial, formally exat

sequene

(2) 0! � = kerD

0

! F

m

D

0

! F

l

0

D

1

! F

l

1

D

2

! F

l

2

! � � �

D

r

! F

l

r

! 0

alled the Janet sequene of D, in whih eah (non-zero) D

i

is of order 1 (and involutive) for i � 1,

and r is the number of derivatives.

A dual, more algebrai ounterpart to this di�erential viewpoint is in terms of exat sequenes of

D-modules. To this end, we now view eah D

i

as de�ned by an l

i

� l

i�1

matrix R

i

of multivariate

linear di�erential operators in

A = R(x

1

: : : ; x

r

)[�

1

; : : : ; �

r

℄:

(We set l

�1

= m.) In terms of matries,

D

i

= R

i

� = (� 7! R

i

�);

so that R

i+1

R

i

� = 0. We then onsider the maps � R

i

from A

l

i

to A

l

i�1

, whose elements are

viewed as row vetors. To start with, the map �R

0

de�nes an algebrai representation of a generi

solution � the PDE system D

0

� = 0 in the following way. Let (e

1

; : : : ; e

m

) be the anonial basis

of A

m

and onsider the maps

(3) 0 M = A

m

=A

l

0

R

0

�

 A

m

�R

0

 A

l

0

;

where � denotes the anonial projetion �(v) = v + A

l

0

R

0

. The okernel

M = oker( � R

0

) = A

m

=A

l

0

R

0

of �R

0

ontains the announed generi solution: setting

�

i

= �(e

i

) = e

i

+ A

l

0

R

0

;

we get D

0

� = �R

0

= 0. Other members of M orrespond to linear ombinations of the �

i

and their

derivatives, i.e., to the observables de�ned above. We now proeed to follow up with the next D

i

's.

A sequene

L

u

! L

0

v

! L

00

of linear maps (between modules) is said to be exat (at L

0

) if imu = ker v. (Thus (3) is exat at

M and A

l

0

.) It an be shown that any Janet sequene (2) gives rise to the exat sequene

(4) 0 M

�

 A

m

�R

0

 A

l

0

�R

1

 A

l

1

�R

2

 A

l

2

 � � �

�R

r

 A

l

r

 0
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(at M and eah A

l

k

). Here, � R

i+1

R

i

= 0 by exatness. Sine A has no zero divisor, this means

that R

i+1

R

i

= 0. The sequene (4) of (left) D-modules is alled a free resolution of M : it enap-

sulates the obstrution of M to be free (as the module ker � = im( � R

0

)), then the obstrution

of ker � to be free (as the module ker( � R

0

) = im( � R

1

)), et. (A module is alled free when it is

isomorphi to some A

r

, whene the name \free resolution.")

3. Parametrization and Controllability

A problem dual to the searh of ompatibility onditions is, for a given di�erential equation

D� = 0, to determine whether the solutions an be parametrized by ertain arbitrary funtions

whih, in physial systems, play the role of potentials. In other words, the problem is to determine

whether there exists another operator

D

�1

: F

l

�1

! F

l

0

whose ompatibility onditions are desribed by D = D

0

, i.e., to look for a formally exat sequene

F

l

�1

D

�1

! F

l

0

D

0

! F

l

1

:

In this situation, for any � 2 F

l

0

the existene of � 2 F

l

�1

satisfying D

�1

� = � is equivalent to

the fat that � solves the di�erential equation D

0

� = 0, and so D

�1

\parametrizes"|in the usual

sense|all its solutions.

The existene of a parametrization has a nie appliation to optimal ommand : assume one needs

to minimize a ost funtion provided by the integral

R

�

0

F (t) dt of an observable F of some systemD

0

.

The optimization problem is then to minimize over all tuples � = (y; x; u)

T

of funtions onstrained

by D

0

� = 0. On the other hand, one the solutions � are given by a parametrization � = D

�1

�, the

optimization problem redues to the non-onstrained problem of minimizing the integral

R

�

0

G(t) dt

of a new observable G of D

�1

over unonstrained � [12℄.

To study the ontrol-theoreti properties of the di�erential operator D, starting with the existene

of a parametrization, we in fat study the module-theoreti properties of M , whih in turn are

derived from the study of the right D-module de�ned by

(5) A

l

�1

R

0

�

! A

l

0

! N = oker(R

0

� ) = A

l

0

=R

0

A

l

�1

! 0

(reall that l

�1

= m and ompare with (3)). The key ingredient to be used omes from linear

algebra: dualization, whih maps a left A -module L to the right module hom

A

(L; A ) of A -linear

appliations from L to A . Correspondingly, any linear map L

u

! L

0

indues a map from the dual

of L

0

to the dual of L: to � 2 hom

A

(L

0

; A ), one assoiates � Æ u 2 hom

A

(L; A ). This takes a simple

form when the modules are free and of �nite rank (i.e., L = A

m

and L

0

= A

l

, viewed as left modules

of row vetors). Indeed, the linear map u is just the appliation of an m � l matrix U : u = � U .

Elements � 2 hom

A

(A

k

; A ) are de�ned by their values on the anonial basis (e

i

) of A

k

by

� = �

�

�(e

1

); : : : ; �(e

k

)

�

T

;

so that the dual of A

k

is isomorphi to A

k

(now viewed as a right module of olumn vetors). In

this setting, the dual of a map A

m

�U

! A

l

is A

m

U �

 A

l

. The same ideas apply mutatis mutandis for

the dual of right modules.

To searh for a parametrization, one thus extends the exat sequene (5) into an exat sequene

A

l

�2

R

�1

�

! A

l

�1

R

0

�

! A

l

0

! N ! 0:
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An algorithm for this purpose will be given in Setion 5. By dualization (i.e., appliation of the

hom

A

( � ; A ) funtor), it beomes a sequene

A

l

�2

�R

�1

 A

l

�1

�R

0

 A

l

0

 hom

A

(N; A )  0

of left D-modules that is usually no longer exat. In partiular, we may well have ker( �R

�1

) stritly

larger than im( �R

0

). Upon forgetting the map �R

0

and prolonging �R

�1

into

A

l

�2

�R

�1

 A

l

�1

�R

0

0

 A

l

0

0

;

we obtain an \exat" representation of ker( �R

�1

) as im( �R

0

0

). It an be proved that the quotient

im( �R

0

0

)= im( � R

0

) �M

is the torsion module t(M) of M , i.e., the set of all its members m for whih there exists a non-zero

salar a 2 A suh that am = 0. Thus we have obtained that a (linear) ontrol system system

is ontrollable if and only if its assoiated module M of observables is torsion-free, whih an be

tested algorithmially. Moreover, a basis for the module t(M) of autonomous elements is obtained

from the rows of R

0

0

(that are elements of im( �R

0

0

)), viewed modulo im( �R

0

).

4. More Strutural Properties of Control Systems as Extension Modules

Other strutural properties of D will be desribed in terms of the extension modules of N , a

entral tool in homologial algebra. Consider a free resolution

(6) � � �

R

�n

�

! A

l

�n

R

�n+1

�

! � � �

R

�2

�

! A

l

�2

R

�1

�

! A

l

�1

R

0

�

! A

l

0

! N ! 0

(as obtained, for example, with the algorithms of Setion 5). This is an exat sequene of right

D-modules. By dualization it beomes a sequene

(7) � � �

�R

�n

 A

l

�n

�R

�n+1

 � � �

�R

�2

 A

l

�2

�R

�1

 A

l

�1

�R

0

 A

l

0

 hom

A

(N; A )  0

of left D-modules that, again, is usually no longer exat. By dropping hom

A

(N; A ) from (7), we

obtain another non-exat sequene, but of free modules only,

� � �

�R

�n

 A

l

�n

�R

�n+1

 � � �

�R

�2

 A

l

�2

�R

�1

 A

l

�1

�R

0

 A

l

0

 0:

Its defets of exatness are enapsulated by its ohomology sequene, that is to say, by the quotients

ker( � R

�i

)= im( � R

�i+1

):

An all-important fat is that this family depends on N only, and not of the hoie of a free

resolution (6). This motivates the notation

ext

i

A

(N; A ) = ker( �R

�i

)= im( �R

�i+1

)

for extension modules (with in partiular ext

0

A

(N; A ) = ker( �R

0

) = hom

A

(N; A )).

The nullity or non-nullity of the ext

i

's provides with the lassi�ation of modules in Theorem 1

below; in turn this lassi�ation provides with the lassi�ation of ontrol systems in Theorem 3

below. Here are two more module-theoreti notions missing to state Theorem 1. A module L is

projetive whenever there exists a module L

0

suh that L� L

0

is free; it is reexive whenever it is

isomorphi to the dual of its dual through the linear map

� : M ! hom

A

�

hom

A

(M; A ); A

�

de�ned by

�(m)(f) = f(m):
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Then, a free module is always projetive, a projetive module always reexive, and a reexive

module always torsion-free. (For modules over a prinipal ideal, these notions oinide; for modules

over a multivariate polynomial ring with oeÆients over a �eld, free and projetive are equivalent,

a theorem by Quillen and Suslin.)

The following theorems [1, 4℄ make the link between properties of a module and the nullity of

the extension modules of its transposed module.

Theorem 1 (Palamodov, Kashiwara). For the modules M and N de�ned by (3) and (5), we have:

1. M is torsion-free if and only if ext

1

A

(N; A ) = 0;

2. M is reexive if and only if ext

1

A

(N; A ) = ext

2

A

(N; A ) = 0;

3. M is projetive if and only if ext

1

A

(N; A ) = � � � = ext

r

A

(N; A ) = 0.

Theorem 2 (Palamodov, Kashiwara). Let M and N be the two modules de�ned by (3) and (5).

Then there exists an exat sequene

0!M ! A

p

1

! A

p

2

! � � � ! A

p

r

if and only if ext

i

A

(N; A ) = 0 for i = 1; : : : ; r.

We �nally obtain the following lassi�ation of linear ontrol systems, whih admits some re�ne-

ments in the ase of di�erential operators with onstant oeÆients, i.e., matries with entries in

R[�

1

; : : : ; �

r

℄ � A [7, 8, 12℄.

Theorem 3. For a ontrol system de�ned by the di�erential operator D = R � where R is an l�m

matrix with l � m and entries in

A = R(x

1

: : : ; x

r

)[�

1

; : : : ; �

r

℄;

introdue the two left D-modules M = oker( �R) and N = oker(R � ) of the maps between the free

modules A

m

and A

l

. Then:

1. if M has torsion, the ontrol system has autonomous elements, and in the event R has

onstant oeÆients and full row module, it has no primality property;

2. M is torsion-free if and only if ext

1

A

(N; A ) = 0. In this ase, the ontrol system is ontrol-

lable, and in the event R has onstant oeÆients and full row module, it is prime in the

sense of minors, i.e., there is no ommon fator between the minors of R of order l;

3. M is reexive if and only if ext

1

A

(N; A ) = ext

2

A

(N; A ) = 0;

4. in the event R has onstant oeÆients and full row module, and if

ext

1

A

(N; A ) = � � � = ext

r�1

A

(N; A ) = 0 while ext

r

A

(N; A ) 6= 0;

the ontrol system is weakly prime in the sense of zeroes, i.e., all minors of order l simulta-

neously vanish at �nitely many points only;

5. M is projetive if and only if

ext

1

A

(N; A ) = � � � = ext

r

A

(N; A ) = 0:

In this ase the ontrol system has an inverse generalized B�ezout identity, and in the event

R has onstant oeÆients and full row module, it is prime in the sense of zeroes, i.e., all

minors of order l simultaneously vanish at no point;

6. ifM is free, the ontrol system is at and has diret and inverse generalized B�ezout identities.

Further intermediate situations, ext

1

A

(N; A ) = � � � = ext

k�1

A

(N; A ) = 0 and ext

k

A

(N; A ) 6= 0,

orrespond to further intermediate primeness onditions (desribed in terms of the dimension of

the algebrai variety de�ned by the l � l minors of R).
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5. Gr�obner Basis Calulations for Compatibility Conditions and Parametrizations

The whole mahinery of the previous setions ruially bases on prolongations of exat sequenes.

A point that is important in view of omputations is that these an be obtained by Gr�obner basis

alulations for free modules over A .

The prolongation of a map A

m

�R

 A

l

into an exat sequene A

m

�R

 A

l

�S

 A

k

is done in the

following fashion. Let (e

1

; : : : ; e

m

) and (f

1

; : : : ; f

l

) be the anonial bases of A

m

and A

l

, respetively,

and denote the ith row of R = (r

i;j

) by �

i

. Thus �

i

=

P

m

j=1

r

i;j

e

j

. Prolonging the map amounts

to �nding non-trivial relations

P

l

i=1

s

i

�

i

= 0. Now introdue the submodule Z of A

m+l

generated

by the formal linear ombinations f

i

� �

i

. We ontend that omputing a Gr�obner basis for this

module and for a term order that eliminates the e

i

results in linear ombinations

P

l

i=1

s

i

f

i

2 Z,

eah of whih orresponds to a relation between the �

i

. Additionally, any relation an be obtained

as a linear ombination of the relations thus obtained.

In e�et, onsider an element z =

P

l

i=1

s

i

f

i

2 Z; thus

P

l

i=1

s

i

�

i

is in Z and is a ombination

P

l

i=1

�

i

(f

i

� �

i

), whih is only possible, in view of the oeÆients of the f

i

, if the �

i

are zero, thus

if

P

l

i=1

s

i

�

i

= 0; the onverse property is also true. Sine the Gr�obner basis alulation preisely

omputes a �nite generating set, say of k elements, for all the z's free of the e

i

, it suÆes to onsider

eah of those k elements as a row, and to glue them in olumn to obtain a new matrix S = (S

i;j

)

suh that the sequene A

m

�R

 A

l

�S

 A

k

is exat.

Now, existing pakages often ontain failities to ompute Gr�obner bases for left modules only;

some of our omputations require to deal with right modules. A last ingredient, adjuntion, enables

one to turn any left module into a right module, and vie versa, in a way that preserves the exatness

of sequenes. Indeed, the adjoint map P 7!

~

P de�ned by assoiativity from the rules ~x

i

= x

i

,

~

�

i

= ��

i

, and (PQ)~ =

~

Q

~

P , is an (anti)automorphism of the algebra A whih extends to matries

by mapping itself to the entries of the transpose matrix. Thus, for example, the exat sequene (5)

of right D-modules of olumns in Setion 3 is replaed with the exat sequene

A

l

�1

�

~

R

0

! A

l

0

!

~

N = oker( �

~

R

0

)! 0

of left D-modules of lines, for the purpose of expliit alulations.
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E�etive Test of Loal Algebrai Observability | Appliations to Systems and

Control Theory

Alexandre Sedoglavi
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Abstrat

In ontrol and systems theory, the problem of strutural algebrai observability onsists in

deiding whether the state variables involved in a model an be determined in terms of

ommands and measures supposed perfetly known. Strutural identi�ability is a variant

where one tries to know whether the parameters of a model are observable.

We propose a probabilisti algorithm with polynomial omplexity to answer the question

in the ordinary di�erential framework. This algorithm relies on seminumerial tehniques

(modular omputations, series expansions, and Newton operator) that allow the ompu-

tation of the generi rank of the Jaobian matrix of measures and their derivatives with

respet to time.

To onlude, we present experimental results that illustrate the notion of algebrai ob-

servability and show the eÆieny of our approah.





Part IV

Probabilisti Methods
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Abstrat

Using properties of the Airy funtions, we analyze the reeted Brownian bridge area W

b

onditioned on its loal time b at the origin. We give a losed form expression of the Laplae

transform of W

b

, a reurrene equation for the moments, leading to an eÆient omputation

algorithm and an asymptoti form for the density f(x; b) of W

b

for x! 0.

1. Introdution

Let us �rst introdue the standard Brownian motion denoted by x(t) and a few lassial variants:

the reeted Brownian motion x

+

(t) =

�

�

x(t)

�

�

; the Brownian bridge B(t); the reeted Brownian

bridge B

+

(t) on [ 0,1 ℄; the Brownian exursion e(t).

The objet of interest in this talk is W

b

:=

R

1

0

B

+

(t) dt, the area of the reeted Brownian bridge

onditioned on having a loal time at the origin equal to b. This random variable appeared in [4℄ as

the limit law for m

�3=2

D

m;m�b

p

m

, where D

m;m�b

p

m

denotes the total displaement for a hash table

with m loations and b

p

m empty loations, using linear probing. It also represents the limit law for

the total height of random forests with b

p

m trees and m nodes or leaves. The only desription of

it was given by its moments, related to the lassial Airy funtion Ai(z) :=

1

�

R

+1

0

os

�

1

3

t

3

+ zt

�

dt

(reall Ai

00

= zAi) in the following way:

E

�

W

k

b

�

= k!

k

X

j=1

 

X

k

1

;:::;k

j

�1; �k

i

=k

j

Y

i=1

!

k

j

!

b

j�1

j!

q

3k�j�2

(b);

where the !

k

are de�ned by the asymptoti expansion

Ai

0

(z)

Ai(z)

�

z!+1

P

+1

k=0

!

k

(�1)

k

z

�3(k�1)=2

2

k

; and

q

r

(b) :=

R

+1

0

x

r

r!

e

�bx�x

2

=2

dt.

We will provide a losed form expression for the Laplae transform of W

b

, a better way to

ompute its moments, and an asymptoti form for the density f(x; b) of W

b

when x! 0.

2. Laplae Transform of W

b

Computing the Laplae transform of W

b

essentially requires using Ka's formula [3℄ and a few

tehnialities. Eq. (30) in [5, p. 491℄ states that, if we denote by t

+

(t; a) the loal time of x(t) at a,

(1)

Z

1

0

e

��t

E

0

�

exp

�

�

Z

t

0

x

+

(u) du� Æt

+

(t; 0)

�

�

�

�

�

x(t) = 0

�

dt

p

2�t

=

�

Æ �

2

?

Ai

0

(2

?

�)

Ai(2

?

�)

�

�1

;

where 2

?

:= 2

1=3

. From it we an derive the following theorem:
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Theorem 1. The Laplae transform �(z; b) of W

b

has the losed form expression

�(z; b) = E

�

e

�zW

b

�

=

�z

1=3

e

b

2

=2

i 2

1=6

p

�

Z

i1

�i1

e

bz

1=3

2

1=3

Ai

0

(u)=Ai(u)

(Ai

0

(u)=Ai(u))

0

e

uz

2=3

=2

1=3

du:

Proof. Given [

R

t

0

x

+

(u) du

�

�

x(t) = 0℄

D

� t

3=2

Y and t

+

(t; 0)

D

�

p

tt

+

(1; 0) (saling property), Eq. (1)

leads to

E

0

Z

1

0

e

��t

Z

1

0

e

�t

3=2

W

b

be

�b

2

=2

e

�Æ

p

tb

db dt

p

2�t

= [Æ � 2

?

�(�)℄

�1

;

where �(�) :=

Ai

0

(2

?

�)

Ai(2

?

�)

. The hange of variable v =

p

tb and an inversion on Æ delivers

(2)

Z

1

0

e

�b

2

=2

e

��v

2

=b

2

E

h

e

�v

3

=b

3

W

b

i

2 db

p

2�

= e

v2

?

�(�)

:

After setting b =

v

p

2

?

�

; u = 2

?

�, di�erentiating with respet to u and using

�

Ai

0

Ai

�

0

= u�

�

Ai

0

Ai

�

2

:

1

p

2�

Z

1

0

e

�u�

E

h

e

�

p

2�

3=2

W

v=

p

2

?

�

i

e

�v

2

=(2

4=3

�

)

d�

p

2�

= �e

v2

?

Ai

0

(u)=Ai(u)

(Ai

0

(u)=Ai(u))

0

:

The inversion formula for Laplae transforms then writes:

(3) E

h

e

�

p

2�

3=2

W

v=

p

2

?

�

i

e

�v

2

=(2

4=3

�)

=

p

4�� =

�1

2�i

Z

i1

�i1

e

v2

?

Ai

0

(u)=Ai(u)

(Ai

0

(u)=Ai(u))

0

e

u�

du:

Now set v = b

p

2

?

�, z =

p

2�

3=2

, �(z; b) = E[e

�zW

b

℄. Eq. (3) beomes

2

1=6

�(z; b)e

�b

2

=2

2

p

�

=

�z

1=3

2�i

Z

i1

�i1

e

bz

1=3

2

?

Ai

0

(u)=Ai(u)

(Ai

0

(u)=Ai(u))

0

e

uz

2=3

=2

?

du

whih proves the theorem. �

3. Reurrene Formulae

Using Laplae transforms and inversions of Laplae transforms, we show here how to �nd an

algorithm to ompute the moments  

k

(b) := E[W

k

b

℄ by reurrene. We �rst need:

Lemma 1. De�ne G(�) := 2

?

�(�)=

p

� and s = 1=b

2

; we have

(4)

Z

1

0

e

�1=(2s)

e

�ws

(�1)

k

s

3=2k

 

k

(b)

ds

s

3=2

p

2�k!

= [�

k

℄

e

p

wG

0

w

3=2k

1

X

i=1

�

p

w

�

G(�)�G

0

�

�

i

i!

:

Proof. Set s := 1=b

2

, w = �v

2

, and � = �

�3=2

. Eq. (2) beomes

Z

1

0

e

�1=(2s)

e

�ws

E

h

e

��w

3=2

s

3=2

W

b

i

ds

s

3=2

p

2�

= e

p

wG(�)

;

Set G

0

:= G(0). Eq. (3) leads to

Z

1

0

e

�1=(2s)

e

�ws

E

h

e

��w

3=2

s

3=2

W

b

� 1

i

ds

s

3=2

p

2�

= e

p

wG(�)

� e

p

wG

0

= e

p

wG

0

1

X

i=1

�

p

w

�

G(�) �G

0

�

�

i

i!

:(5)

Upon expanding both sides of (5) with respet to �, this gives the desired formula. �
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To invert the Laplae transforms of the form e

�

p

2w

=w

(j+1)=2

, we will use the following lemmas:

Lemma 2. Set �

(1)

(x) := �(x) :=

1

p

2�

R

x

�1

e

�t

2

=2

dt (lassial Gaussian distribution funtion) and

�

(j+1)

(x) :=

R

x

�1

�

(j)

(u) du. Then

Z

1

0

�

(j)

(�b)e

�ws

(2s)

(j+1)=2

s

ds =

e

�

p

2w

w

(j+1)=2

; j � 1; where b = 1=

p

s.

Sketh of proof. Ones proves the lemma by indution and uses an integration by part and an inte-

gration with respet to w to prove it at rank k + 1 from rank k. �

Lemma 3. The �

(j)

(x) an be expressed in the form:

�

(k)

(z) = p

1

(k; z)�(z) + p

2

(k; z)e

�z

2

=2

=

p

2�;

where p

1

(k; z) is of degree k � 1, p

2

(k; z) is of degree k � 2.

Using integration by parts on

R

z

�1

x

j

�(x) dx and identi�ation of oeÆients, it is possible to

prove the following proposition, enabling us to ompute nie expressions of the �

(j)

(x):

Proposition 1. De�ne, for k � 1, j � 0, P

1

[k; j℄ := [z

j

℄p

1

(k; z), and P

2

[k; j℄ := [z

j

℄p

2

(k; z).

Then the sequenes (P

1

[k; j℄)

k�1;j�0

and (P

1

[k; j℄)

k;j�0

are de�ned by the initial values P

1

[1; 0℄ = 1,

P

2

[1; 0℄ = 0, P

1

[1; j℄ = P

2

[1; j℄ = 0 for j � 1, and the reurrene relations, for k � 1:

P

1

[k + 1; j℄ := P

1

[k; j � 1℄=j; j = 1; : : : ; k;

P

2

[k + 1; j℄ :=

b(k�1�j)=2

X

l=0

P

1

[k; j + 2l℄=(j + 2l + 1)(j + 2l + 1)

l

�

b(k�3�j)=2

X

l=0

P

2

[k; j + 2l + 1℄(j + 2l + 1)

l

; j = 0; : : : ; k � 1;

P

1

[k + 1; 0℄ := �

X

l=1;3;:::;k�1

P

1

[k; l℄=(l + 1)(l + 1)

(l+1)=2

+

X

l=0;2;:::;k�2

P

2

[k; l℄(l)

l=2

:

Determining a reurrene relation for the moments  

k

(b) hene amounts to determining a reur-

rene relation for the Z

j

de�ned by (see (4)):

(�1)

j

b

�3j

Z

j

j!

= [�

j

℄

1

w

3=2j

1

X

i=1

�

p

w

�

G(�) �G

0

�

�

i

i!

:

Indeed, along the mehanial transfer rule

1

w

(l+1)=2

!

�

(l)

(�b)

b

l+1

b

2

2

(l+1)=2

,  

j

(b) is equivalent to

Z

j

p

2�e

b

2

=2

=b

3

. To get a reurrene formula giving Z

k

in funtion of the Z

1

; : : : ; Z

j

, we introdue

S

k

(�) :=

k

X

j=1

(�1)

j

b

�3j

Z

j

j!

w

3j=2

�

j

=

k

X

j=1

�

j

[�

j

℄

0

B

�

P

k

l=1

(�1)

l

(d

l

� 

l

)

�

3�

2

3=2

�

l

P

k

l=0

(�1)

l



l

�

3�

2

3=2

�

l

1

C

A

j

�

�

p

2w

�

j

j!

;

where the oeÆients 

l

and d

l

are de�ned in [1, Eq. (10.4.59) and (10.4.61)℄ by asymptoti expan-

sions of Ai and Ai

0

for jzj large,

�

�

arg(z)

�

�

< �:

Ai(z) �

1

2

p

�

z

�1=4

e

��

1

X

k=0

(�1)

k



k

�

�k

; Ai

0

(z) � �

1

2

p

�

z

1=4

e

��

1

X

k=0

(�1)

k

d

k

�

�k

;
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with � :=

2

3

z

3=2

. More expliitly: 

0

= 1, 

k

= �(3k + 1=2)=

�

�(k + 1=2) � 54

k

k!

�

, d

0

= 1,

d

k

= �

6k+1

6k�1



k

. The relation

[�

k

℄

k

X

j=1

(�1)

j

b

�3j

Z

j

j!

w

3j=2

�

j

 

k

X

l=0

(�1)

l



l

�

3�

2

3=2

�

l

!

k

[�

k

℄

k

X

j=1

 

�

p

2

z

!

j

1

j!

 

k

X

l=1

(�1)

l

(d

l

� 

l

)

�

3�

2

3=2

�

l

!

j

 

k

X

l=0

(�1)

l



l

�

3�

2

3=2

�

l

!

k�j

provides an algorithm that an easily be implemented in Maple and proves more tratable than the

general expressions of the moments given by Janson.

4. Asymptoti Form of Density

4.1. Asymptotis of f(x; b) as b!1. Using E[W

b

℄ �

1

2b

and Var[W

b

℄ �

1

4b

4

as b!1, already

mentioned in [4℄, asymptotis of (log Ai)

0

and (log Ai)

0

, and a saddle point method, we reover the

fat that we obtain a density of a Gaussian distribution when b!1.

4.2. Asymptotis of �(z; b) as jzj ! 1. Using a saddle point again, setting z = �

6

, we obtain

� � e

�

3

�

1

e

��

1

�

4

=2

?

 

2

1=2

�

3=2

2b

3=4

+

b

1=4

2

1=6

�

1

4�

1=2

+O

�

1

�

3=2

�

!

:

4.3. Asymptotis of f(x; b) as x ! 0. The formula f(x; b) =

1

2�i

<

R

+i1

�i1

e

xz

�(z; b) dz,  > 0,

the former asymptotis and a saddle point method lead to:

f(x; b) � e

�

2

=x

2

p

2

p

�

 

3

1=4

�

9=4

1

9x

11=4

b

3=4

�

3

3=4

�

3=4

1

3x

9=4

b

1=4

+

b

1=4

3

1=4

(27 + 16�

3

1

)

x

7=4

�

3=4

1

+O

�

1

x

5=4

�

!

:

5. Open Questions

It remains to �nd an asymptoti form for the density f(x; b) as x ! 1|this not even known

for the lassial Airy density|and an expliit form for the density f(x; b). Are also missing an

analysis of the loal time t

+

(t; a) of B

+

(t) at a, onditioned on its loal time b at the origin, and

some analyti variations on W

b

(see [2℄ for the lassial Airy distribution).
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Abstrat

In this talk, Amir Dembo onsiders random walks on Z

2

and presents a proof of the Erd}os{

Taylor onjeture related to frequently overed points. The Kesten{R�ev�esz onjeture on

the overing time of the two-dimensional torus Z

2

n

= Z

2

=nZ

2

is also solved. These results

are a ommon work of Amir Dembo, Yuval Peres, Jay Rosen, and Ofer Zeitouni.

1. Introdution

Let (X

n

) be a simple random walk on Z

2

and T

n

(x) =

P

n

j=1

1

fX

j

=xg

be the number of visits

to x before time n. Let T

?

n

= max

x2Z

2
T

n

(x) be the number of visits to the most visited point. The

Erd}os{Taylor onjeture asserts that

(1) lim

n!1

T

?

n

(log n)

2

=

1

�

; almost surely.

Erd}os and Taylor [7℄ proved the upper bound 1=� and a lower bound 1=(4�). The main result of

the talk is that the Erd}os{Taylor onjeture is true.

Let (

e

X

j

) be a simple random walk on the two-dimensional torus Z

2

n

= Z

2

=nZ

2

. Consider T (x) =

minf j � 0 j

e

X

j

= x g, the time to attain the point x for the �rst time and

T

n

= max

x2Z

2

n

T (x);

the overing time of the torus. The Aldous-Lawler onjeture asserts than

(2) lim

n!1

T

n

(n log n)

2

=

4

�

; in probability:

Kesten, R�ev�esz, Lawler, and Aldous proved an upper bound 4=� (see [1, Corollary 25, Chapter 7℄)

and a lower bound 2=�. A related question is the Kesten{R�ev�esz onjeture for the simple random

walk on Z

2

(see [4℄).

The proofs for the upper bounds rely on the seond moment method, the approximation of

random walks by Brownian motions, and an underlying tree struture for the oupation of small

disks by a Brownian motion. We give here a sketh of the proofs; see [4, 5℄ for omplete proofs.

2. The Seond Moment Method

Janson gives a short aount of the seond moment method in [2℄. Basially, we onsider a

sequene of non-negative random variables X

n

, and we want to estimate P(X

n

> 0). The seond
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moment method asserts that if

(3)

Var(X

n

)

(EX

n

)

2

! 0; or equivalently,

EX

2

n

(EX

n

)

2

! 1 (as n!1);

then

(4) P(X

n

> 0)! 1:

The method is frequently used in the ontext of random graphs; for example, this method proves

the existene of a Hamilton yle in random graphs satisfying suitable onditions.

The seond moment method is a onsequene of the Chebyshev inequality,

P(jXj > t) �

1

t

2

E(X

2

):

As a onsequene of the latter,

P(X = 0) � P

�

jX � �j � �

�

�

Var(X)

�

2

; for � = EX:

3. Proof of the Erd}os{Taylor Conjeture

3.1. Upper bound. By de�nition, the trunated Green funtion G

n

(x; y) is the expetation of

the number of passages at y in n steps, when starting from x.

We have

G

n

(0; 0) =

n

X

j=0

E

�

1

fX

j

=0g

�

=

n

X

j=0

P(X

j

= 0) �

log n

�

:

(See Feller [8, p. 361℄.) Applying [3, Theorem 8.7.3℄ for the renewal sequene u

n

= P(X

n

= 0), we

dedue that for large n, and �xed small Æ > 0,

P

�

X

j

6= 0 for j = 1; : : : ; n� 1

�

�

(1� Æ)�

log n

:

This implies by the strong Markov property that

(5) P

�

T

n

(0) � ��(log n)

2

�

�

�

1�

(1� Æ)�

log n

�

�(log n)

2

� e

���(log n)(1�Æ)

= n

�(1�Æ)��

:

We now onsider the disk of enter zero and radius n

(1+Æ)=2

. The probability that the random walk

exits this disk before time n tends to zero as n tends to in�nity, and the number of points of Z

2

inside this disk is lose to �n

(1+Æ)

. From Equation (5), we then get

(6) P

�

n

� P

�

max

0�i�n

jX

i

j > n

(1+Æ)=2

�

+ �n

(1+Æ)

n

�(1�Æ)��

;

where P

�

n

= P

�

T

?

n

� �(log n)

2

�

. The �rst term of the right member of Equation (6) vanishes as

n tends to in�nity. Therefore, applying the Borel{Cantelli lemma to the subsequene P

�

2

m

, for

� > 1=�, and using interpolation for all n, we have P

�

limT

?

n

� ��(log n)

2

)

�

! 0. This gives an

upper bound 1=�.
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3.2. Lower bound. We an try to adapt the proof from the upper bound and use the seond

moment method. Let D(x; r) be the disk of enter x and radius r and

Z

n

=

X

x2D(0;

p

n)

1

�

T

n

(x)��(log n)

2

	

:

Adapting the proof of the upper bound (Equation (6)) gives EZ

n

� n

(1���)

. Therefore,

EZ

2

n

(EZ

n

)

2

=

1

E(Z

n

)

+

�

x;y

�

x;y

+ �

x

; where �

x

=

X

x2D(0;

p

n)

�

P

�

T

n

(x) � �(log n)

2

�

�

2

and �

x;y

=

X

x6=y2D(0;

p

n)

P

�

T

n

(x) � �(log n)

2

�

P

�

T

n

(y) � �(log n)

2

�

:

A naive approah would say the following: the number of summand in �

x;y

is O

�

n

2(1���)

�

while it

is only O

�

n

(1���)

�

in �

x

. Therefore, for � < 1=�, EZ

2

n

=(EZ

n

)

2

! 1 and P(T

?

n

�

1

�

(log n)

2

) = 1

almost surely. However, Erd}os and Taylor [7℄ show that the orrelation struture between points x

suh that P

�

T

n

(x) � �(log n)

2

�

is too strong to get this result. They obtain an upper limit 1=(4�).

We move in the following setion to a tree model to overome this diÆulty.

Modelling by a (toy) tree problem. We

1

on-

sider a omplete binary tree B

m

of height m

and a (nearest neighbor) random walk X start-

ing from the left-most leaf a, with probability

1/3 of hoosing any diretion when being at an

internal node. In this model, the starting point

a and the root 0 respetively represent the origin

(0,0) and the boundary of a \disk" of radius m

on Z

2

. Let L

m

be the set of leaves of B

m

. We

onsider T

m

(x), the time spent at leaf x before

hitting the root 0, and

T

?

m

= max

x2L

m

T

m

(x);

�

�

�

�

� �

�
�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

S

S

S

S

S

S

S

S

S

S

S

E

E

E

E

E

E

E

E

�

�

�

�

L

L

L

L

�

�

�

�

�

�

�

�

L

L

L

L

�

�

�

�

6

?

m

0

a

x

its maximum over all leaves.

Let us denote by 0; 1; 2; : : : ; a = m the nodes of the ray going from the root 0 to a and let P

y

denote probability for walks starting from node y. We onsider

H

y

= H

y

(u) =

X

u�0

P

y

(X spends time k at a before hitting 0) u

k

:

For any node i of the ray (0; a), and for any node y of the subtree rooted at the right hild of i, the

probability of k visits to a before hitting 0 of the walk starting from y is the same as if the walk

starts from i; this implies H

y

= H

i

. This last result is true for all i from 1 to m� 1.

We an therefore onsider only the nodes of the ray (0; a), whih provide the set of equations

H

1

=

H

2

3

+

H

1

3

+

1

3

; H

k

=

H

k�1

3

+

H

k

3

+

H

k+1

3

(2 � k � m�2); H

m�1

=

H

m�2

3

+

(1 + u)H

m�1

3

:

1

The elementary proof leading to Equation (7) was not presented by the speaker and is due to the authors of the

summary.
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Solving yields

(7) H

a

(u) = H

m

=

1

m

�

1

1�

�

1�

1

m

�

u

; and H

1

(u) =

m� 1� (m� 2)u

m� (m� 1)u

:

The random variable T

m

(a) therefore has a geometri distribution with mean m� 1, whih indues

(for large m)

P

�

T

m

(a) > �m

2

�

=

��

1�

1

m

�

m

�

�m

' e

��m

and P(T

?

m

> �m

2

) � e

��m

2

m

= e

�(��log 2)m

:

This implies the same upper bound as preedently (up to the hange of model).

We now onsider a variation of the seond moment method. We �x some K large. We denote

by x-ray the ray from the root 0 to a leaf x and N

i

(x) ounts the number of exursions from level i

to level i+ 1 on the ray x. We de�ne the x-ray as �-suessfull if

N

i

(x) ' �i

2

; for i = 0;K; 2K; : : : ;K

j

m

K

k

:

We have

P

�

N

i+K

(x) ' �(i+K)

2

�

�

N

i

(x) ' �i

2

�

' e

��K

) P(x-ray is �-suessfull) ' e

��m

:

We now have

P(x-ray and y-ray are �-suessfull) ' e

�2�m

e

�r(x;y)

;

where r(x; y) is the depth of the �rst ommon anestor of x and y. This indues a redution of

variane. Considering now the random variable Z

m

de�ned by

Z

m

=

X

x2L

m

1

fx-ray �-suessfullg

;

we have

EZ

2

m

(EZ

m

)

2

'

m=K

X

s=1

e

(��log 2)Ks

! 1 for � < log 2;

when �rst m and then K tend to in�nity. There is no obvious way to adapt this result to the

standard random walk, but it is possible to adapt it to the planar Brownian motion that we denote

w = (w

t

).

De�ne � as the �rst time where the Brownian

motion w hits the irle of radius 1 and �

w

�

(A)

as the oupation time of a subset A of the dis

D(0; 1) until this time. We have

� = min

�

t

�

�

jw

t

j = 1

	

and �

w

�

(A) =

Z

�

0

1

A

(w

t

)dt:

The Perkins{Taylor onjeture states for the

Brownian motion that

(8) lim

�!0

sup

jxj<1

�

w

�

(D(x; �))

�

2

(log �)

2

= 2:

x

y

0

ak

2

exursions

x

y

0



A. Dembo, summary by Ch. Friker and P. Niod�eme 125

We shall in a �rst time sketh a proof of this onjeture and apply then the KMT approximation

theorem of the Brownian motion by the standard random walk.

Sketh of proof for the Perkins{Taylor onjeture. In the following, let �D(x; r) be the boundary

of the disk D(x; r).

The proof of the upper bound of the onjeture follows the same line as for the standard random

walk. When onsidering the lower bound, the diÆulty relies again in the orrelation struture.

Let �

k

= e

�k

and de�ne a point x of D(0; 1) as k-suessful if the number of exursions of

the Brownian motion between �D(x; �

k

) and �D(x; �

k+1

) is ak

2

for �xed a. We remark that if x

is suessful, the time spent at the ball D(x; �

k+1

) is ak

2

�

2

' a�

2

(log �)

2

, where � = �

k+1

, with

probability lose to 1.

KMT approximation theorem. The Koml�os{Major{Tusn�ady (KMT) approximation theorem [9℄

states that for eah n it is possible to onstrut a random walk fX

k

g

n

k=1

and the Brownian motion

fw

t

g

0�t�1

on the same probability spae so that for any Æ > 0 and any � > 0

(9) lim

n!1

P

 

max

k=1;:::;n

�

�

�

�

w

k=n

�

p

2

p

n

S

k

�

�

�

�

> Æn

��1=2

!

= 0:

(The original one-dimension KMT approximation has been extended to the multivariate ase by

Einmahl [6℄).

Note that the Brownian motion between two suessful points x and y before reahing the

boundary may again be modelized by a tree struture, and that the same tehnique as for trees

works one more (with many tehnial issues).

Appliation of the KMT approximation theorem. The proof follows by onsidering the lattie

points inside the irle fz : j

p

2z � yj <

p

n(1 + 2Æ)�

n

g whose number is less than

�

2

n(1 + 2Æ)

3

�

2

n

:

4. Covering Time of the Torus

�

�

�

�

� �

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

S

S

S

S

S

S

S

S

S

S

S

E

E

E

E

E

E

E

E

�

�

�

�

L

L

L

L

�

�

�

�

�

�

�

�

L

L

L

L

�

�

�

�

6

?

m

0

x

a

First, we one again onsider the \toy" problem

of the overing time of the binary tree B

m

. Let

X = (X

n

) be the �rst neighbor random walk

starting from the left son a of the root, and on-

sider hits to x, the leftmost leaf. P

x

again refers

to walks starting at point x.

4.1. Upper bound. From Setion 3.2 we get

P

a

(X hits x before 0) = 1�H

1

(0) =

1

m

:

This implies that

P

0

(X does not over x during �rst N visits to 0) '

�

1�

1

2m

�

N

:
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Let �

0

be the probability that the random walk starting at zero does not over the binary tree B

m

during N visits to 0. We have

�

0

� 2

m

�

1�

1

2m

�

N

so that �

0

! 0 for N = 2(1 + Æ)m

2

log 2:

The time needed for N visits to the root is 2

m+1

N ; this implies that

P

0

�

X does not over B

m

before time 2(1 + Æ) log 2�m

2

2

m+1

�

! 0:

4.2. Lower bound. A ray x is alled suessful if the number of exursions from level i to level i+1

in the ray is a(m� i)

2

. Dembo et al. apply a seond moment analysis to the suessful rays to show

that, with probability one, before 2(1� Æ)m

2

log 2 visits to the root, there are points whih are not

overed. Then, the time needed to visit the root that many times is about 2(1� Æ)m

2

(log 2)2

m+1

.

To solve the standard random walk problem on Z

2

, Dembo et al. �rst solve the equivalent problem

for the Brownian motion on the torus T

2

, where T

2

is identi�ed with the set (�1=2; 1=2 ℄

2

.

Let T (x; �) denote the time needed by the Brownian motion to enter the ball D(x; �),

T (x; �) = inf

�

t > 0

�

�

w

t

2 D(x; �)

	

; and C

�

= sup

x2T

2

T (x; �):

Therefore, C

�

is the minimum time needed for the Brownian motion W

t

to ome within � of eah

point of T

2

. Equivalently, C

�

is the amount of time needed for the Wiener sausage of radius � to

ompletely over T

2

. Dembo et al. [4℄ prove that

lim

�!0

C

�

(log �)

2

=

2

�

; almost surely:

Using the KMP strong approximation theorem again provides the result for the standard random

walk on T

2

.
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Introdution to Random Walks on Groups

Yves Guivar'h

Irmar, Universit�e Rennes 1 (Frane)

Marh 5, 2001

Summary by Philippe Robert

Abstrat

In this talk simple examples are presented to illustrate some aspets of random walks on

groups from the point of view of probability theory, statistial physis, ergodi theory,

harmoni analysis, and group theory.

1. Shu�ing Cards

A dek of ards is desribed by J = (a

1

; : : : ; a

r

), where a

i

indiates the position of the ith ard in

the dek. The ards are shu�ed so that the state of the dek of ards is

�

�(a

1

); : : : ; �(a

r

)

�

, where

� 2 � is some permutation on J . Another shu�e would give the dek

�

�(�(a

1

)); : : : ; �(�(a

r

))

�

,

and so on. Of ourse, the permutation is likely to be di�erent from one shu�e to another, but

the habits of a given player will be suh that he will hoose at random among a given set A of

permutations. For � 2 A, the permutation � is hosen with probability p(�) > 0. After a shu�e,

the next permutation is hosen independently of the past. The position of the ith ard is j after

the �rst shu�e with probability

X

�2A:�(a

i

)=j

p(�);

after two shu�es the probability will be

X

(�;�)2A:�(�(a

i

))=j

p(�)p(�):

If p

n

denotes the nth onvolution of p,

p

n

(�) =

X

�

i

2A: �

n

Æ�

n�1

Æ���Æ�

1

=�

p(�

n

)p(�

n�1

) � � � p(�

1

);

the distribution of the position of the ith ard after the nth shu�e is given by

�

i

n

=

X

�2�

p

n

(�)Æ

�(a

i

)

;

where Æ

x

is the Kroneker symbol at x: Æ

x

(x) = 1 and Æ

x

(y) = 0 when y 6= x. A natural question

in this setting is: provided that the set A is rih enough, is the position of the ard a

j

uniformly

distributed on f1; : : : ; rg when n gets large?

The distribution �

n

on � of the on�guration of the dek of ards after n shu�es is given by

�

n

=

X

�2�

p

n

(�)Æ

�

;
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with this notation �

i

n

(j) = �

n

(� : �(i) = j). Does the distribution �

n

on � onverges to the

uniform distribution on the group of permutations as n gets large? The answer to both questions is

positive if the probability p satis�es some assumptions. It an then be shown that the onvergene

to the uniform distribution is exponentially fast with n (see Diaonis [2℄).

This simple problem gives an illustration of the ergodi priniple introdued in statistial physis

after the work of Boltzmann and Gibbs:

{ the limit is independent of the initial state;

{ the limit is independent of the partiular hoie of the probability p;

{ the limit is the most disordered distribution m on �, i.e., the distribution with the maximal

entropy H(m), with

H(m) =

X

�2�

�m(�) log(m(�)):

2. Random Walks in Z

d

This random walk is de�ned as follows: starting from x 2 Z

d

, it jumps to x� e

i

with probability

1=2d, where e

i

is the ith unit vetor. If S

n

denotes the position after n steps it is well known that

when d � 2, the sequene (S

n

) almost surely visits the origin in�nitely often; the random walk is

then said to be reurrent. When d � 3 the random walks visits 0 only a �nite number of times;

the random walk is transient. These results an be expressed in terms of eletrial networks: eah

edge of Z

d

is assumed to have resistane 1, R

d

is the e�etive resistane of Z

d

when the potential

at 0 is 1 and 0 at in�nity. It turns out that for d � 2, R

d

is in�nite and R

d

is �nite when d � 3.

The Laplaian � of the random walk is given by

�(f)(x) =

1

2d

 

d

X

i=1

�

f(x+ e

i

) + f(x� e

i

)

�

!

� f(x);

where f is some funtion on Z

d

. The potential funtion v(x) for the eletrial network should

satisfy �(v) = 0 with v(0) = 1 and lim

x!+1

v(x) = 0.

3. Polymer Dynamis in the Plane

A simpli�ed model of a polymer in the plane is given by a broken line A

0

A

1

: : : A

n

where eah

segment A

i

A

i+1

has length 1 and the angle between A

i�1

A

i

and A

i

A

i+1

is �� 2 [ 0; 2�) with

probability 1=2. If A

0

= (0; 0) and A

1

= (1; 0), the vetor Z

n

= A

0

A

n

an be represented in the

omplex plane as

Z

n

= 1 +

n

X

k=1

e

i�S

k

;

where S

k

= �

1

+ � � � + �

k

and the �

i

are independent Bernoulli random variables with P(�

i

= 1) =

P(�

i

= �1) = 1=2; (S

n

) is the simple random walk on Z. The average quadrati length of the

polymer with N segments is given by

l

n

=

p

E (Z

2

n

):

It has been shown by Eyring that l

n

=

p

n onverges to a onstant as n tends to in�nity. The average

length is onjetured to grow like n

�

with � > 1=2.



Y. Guivar'h, summary by Ph. Robert 129

4. Random Rotations on the Sphere

This problem has been onsidered by Arnold and Krylov [1℄. The ation of two rotations a and b

of R

3

on the unit sphere S

2

entered at 0 is analyzed. If �(a; b) is a produt of n suh rotations,

one writes j�j = n. For p 2 S

2

, the distribution �

n

of �(a; b)(p) is given by

�

n

=

1

2

n

X

j�j=n

Æ

�(a;b)(p)

:

The problem is to determine when �

n

onverges to the uniform distribution on S

2

and, if it ours,

the rate of onvergene. The answer to the �rst point is positive under mild assumptions. The

question onerning the speed is, for the moment, unsolved. This example is in some sense, a

ontinuous analogue of the example of ard shu�ing.

5. Random Walks on the Free Group

The free group with two generators a and b is denoted by �. An element  is a string of letters

a, a

�1

, b and b

�1

where a letter annot be the inverse of the previous letter or the next letter in

the string (otherwise the two letters anel). The distane d(; 

0

) is given by the length of the

string 

�1



0

. The group � an be ompati�ed by adding the set �� of in�nite strings. If � is suh

a string and  2 �, it is easily seen that, if (x

n

) is a sequene of � and e is the empty string (the

neutral element of the group), the quantity

�(; �) = lim

x

n

!�

�

d(; x

n

)� d(e; x

n

)

�

is well de�ned.

The random walk onsidered here just adds a, a

�1

, b or b

�1

at the end of the string, with the

onvention that the inverse of the last letter suppresses this letter. This random walk is equivalent

to a random walk on a homogeneous tree with degree 4. In partiular it is transient and the length

of the string almost surely onverges to in�nity. The Laplaian � of this random walk is given by

�(f)() =

1

4

�

f(a) + f(a

�1

) + f(b) + f(b

�1

)

�

� f();

for  2 � and f a funtion on �. For � 2 ��, h

�

() = (1=3)

�(;�)

is harmoni with respet to

this Laplaian, i.e., �(h

�

) = 0. Dynkin and Malyutov [4℄ have shown that every positive harmoni

funtion f an be expressed as an integral of the elementary funtions h

�

, � 2 ��, i.e.,

f() =

Z

��

h

�

() �(d�);

where � is a positive measure on ��.

This situation has to be ompared with the ase of the random walks on Z

d

with d � 3 whih

are also transient but without non-onstant positive harmoni funtions. Similarly, in a ontinuous

setting, there does not exist any non-onstant positive harmoni funtion f on R

d

, i.e., suh that

d

X

i=1

�

2

f

�x

2

i

= 0:

But restrited to the unit dis of R

2

, suh funtions exist and an be represented as

1

2�

Z

2�

0

P (z; �) �(d�);
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where � is some �nite measure on [ 0; 2�) and P is the Poisson kernel

P (z; �) =

1� jzj

2

je

i�

� zj

2

:

One an hek that z 7! P (z; �) is harmoni: it is the equivalent of the funtion h

�

for the unit dis.
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Summary by Marianne Durand

Abstrat

Queues in series are de�ned as an in�nite sequene of lients queuing in front of an in�nite

sequene of servers where eah time a lient is served by a server, it immediatly enters

the next queue. Simple questions about this model are very hard to solve diretly. This

talk desribes the entralized and normalized law of the departure of the kth lient from

the nth server, as n tends to in�nity while k remains bounded; this law is related to a

sequene of largest eigenvalues of random matries. This relation allows us to use the

numerous asymptoti results known regarding the spetra of random matries and gain

useful informations about the queuing proesses.

1. Queues and Brownian Motions

Consider an in�nite series of queues orresponding to servers, and an in�nity of jobs. At �rst

all the jobs are in the �rst queue; then when a job leaves the server Q

i

, it immediatly enters the

queue orresponding to the server Q

i+1

. The question asked is: When does the ith job leave the

jth server? This an be modeled by pathweights in an in�nite matrix. Let w

k;l

denote the time

needed to proess the kth job on the lth server. The ost of the maximal weight of a path from

(0; 0) to (i; j) in the matrix (w

k;l

) is noted (i; j). The path is made of steps of size one where

only one omponent inreases. Then one observes that (i; j) is equal to the time when the ith

job leaves the jth server. This equality illustrates the fat that server j an proess job i if it has

already proessed job i� 1 and if job i has left queue j � 1.

The problem of queues in series an thus be modeled by an in�nite matrix, where we assume

from now on that the entries are independent identially distributed random variables, with �nite

variane. For the main theorem and for Setion 3 the distribution is assumed to be geometri

with parameter q. The aim of the talk [1℄ is to link the queue problem to the distribution of the

largest eigenvalues of random Hermitian matrix with appropriate distribution. An in�nite matrix

of weights is also a model for a physial problem, the interating partile proess, see [7℄; there we

assume that all the integers orresponds to sites that are apable of ontaining one partile, and

that at �rst all the sites with negative positions are full. In this model the weight w

i;j

is the time

taken by a partile to move from i to i+ j.

A preliminary remark links this queue problem to Brownian motion [3℄. Given (B

k

)

k=1;2;:::

independent standard Brownian motions, and D

(n)

k

=

(k;n)�en

p

vn

, where e is the expetation of w

1;1

and v its variane, the following theorem holds:
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Theorem 1. The proesses D

(n)

=

�

D

(n)

k

�

k=1;2;:::

onverge in law as n ! 1 to the stohasti

proess D = (D

k

)

k=1;2;:::

where D

k

= sup

0=t

0

<t

1

<���<t

k

=1

P

k�1

i=0

�

B

i

(t

i+1

)�B

i

(t

i

)

�

:

This an easily be seen by modeling a path from (0; 0) to (k;N) for large N by k long vertial

lines, where the path uses the ith vertial line from the time t

i

to the time t

i+1

.

We now introdue the Gaussian Unitary Ensemble (GUE) [8℄ as the probability distribution on

the Hermitian matries with the density r

GUE

(H) = Z

�1

e

� trH

2

=2

where Z is a normalizing onstant

equal to

R

e

� trH

2

=2

dH. A useful property is that a Hermitian matrix H is drawn from GUE if

<(h

ij

) and =(h

ij

) are i.i.d. Gaussian random variables with mean 0 and variane 1. Given a

matrix H, let H

k

=

�

h

(i;j)

�

1�i;j�k

be the main minor of size k of H and �

k

the largest eigenvalue

of H

k

.

Theorem 2. The laws of both proesses � = f�

k

g for H drawn from GUE, and D = fD

k

g oinide.

This theorem is proven in the next setions. We �rst exhibit a bijetion between a �nite restrition

of size M of the queue problem and a subspae of N

M(M+1)=2

via Young tableaux. The seond part

of the proof is to relate this subspae of N

M(M+1)=2

to the dominant eigenvalues of minors of the

matrix H.

2. Combinatoris

The bijetion between the matrix H and Young tableaux is a generalization of the Robinson{

Shensted{Knuth orrespondene (see [5℄) between Young tableaux and permutations. The ma-

trix W of size N �M with oeÆients the weights w

i;j

an be represented as a generalized permu-

tation �,

� =

�

i

1

i

2

: : : i

k

j

1

j

2

: : : j

k

�

;

where i

l

2 N

N

, the integers between 1 and N , j

l

2 N

M

and j

l

represents �(i

l

). The integers i

l

are not neessarily distint, this is why the permutation is said to be generalized. The number of

olumns of type

�

i

j

�

is equal to w

i;j

. As the generalized permutation � is written in a lexiograph-

ially sorted fashion, the bijetion is quite obvious. Indeed, given a matrix, the set of olumns

is well de�ned, and sorting gives the uniqueness of the image; onversely given a generalized per-

mutation, one simply has to ount the numbers of olumns of type

�

i

j

�

to reonstrut the matrix.

Reall that a Young diagram � is a dereasing sequene (�

1

; �

2

; : : : ; �

r

) that an be represented as

r rows of boxes of heights �

i

. A semi-standard Young tableau is a �lling of the boxes by positive

integers suh that the �lling is inreasing rightwards in rows and stritly inreasing in olumns.

The Young diagram underlying a Young tableau P is alled the shape and is denoted by sh(P ).

The Robinson{Shensted{Knuth (RSK) orrespondene is a bijetion between the set of general-

ized permutations with k olumns and the set of pairs of semi-standard Young tableaux (P;Q)

having the same shape � suh that

P

i

�

i

= k. With the previous bijetion between matries and

generalized permutations, we thus have a bijetion between matries of size N �M and pairs of

semi-standard Young tableaux (P;Q) with shape �, suh that

P

i

�

i

= k. We denote

�

P (w); Q(w)

�

Young tableaux obtained by the RSK orrespondene from a matrix w.

Some properties make this orrespondene really interesting. We denote by W

N;M;k

the set of

matries of size N �M whose oeÆients add up to k, to state a result on the way the distribution

of the Young tableaux behaves through this orrespondene.

Lemma 1. If the set W

N;M;k

is given the uniform distribution, then the distribution of P (w) for

w 2W

N;M;k

given sh

�

P (w)

�

= � is uniform on the semi-standard Young tableaux of shape �.
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Moreover the shape sh(P ) enodes a few harateristis of w: the length �

1

of the �rst row is

the maximal weight of the monotonous paths from (0; 0) to (M;N) in the table w, beause it is the

length of the longest inreasing subsequene of the seond line of �. This is a diret onsequene

of the RSK algorithm. It is then possible to onsider the Young tableau P as an embedding of

several Young tableaux P

1

; : : : ; P

M

where P

M

equals P and P

i

is obtained from P

i+1

by removing

all boxes �lled with i+ 1. A nie onsequene of the way the tableau P is built is that the sequene

of the lengths of the �rst rows of the embedded Young tableaux oinides with the sequene of

maximal paths from (0; 0) to (i;N) as i goes from 1 to M . Thus we now fous on Young tableaux

instead of the weight matrix. We introdue a representation of the Young tableaux that enodes

the shape of the tableaux, and also the shape of all the embedded tableaux inside. To desribe a

Young tableau P �lled with N

M

, let x

i

j

be the oordinate of the rightmost box �lled with a number

at most i in the jth row of the tableau. Equivalently, this is just the length of the jth row in the

tableau P

i�1

de�ned by the embedding above. The elements x

i

j

, 1 � i �M , 1 � j � i an be seen

as a triangular array of size

M(M+1)

2

. The image x of a tableau P by this transformation has the

property that its last line is equal to � = (�

1

; : : : ; �

M

), and that its �rst olumn is equal to (k;N),

k 2 N

M

, orresponding to the length of maximal paths from (0; 0) to (k;N). This orrespondene

is formalized in the following lemma.

Lemma 2. Let the Gelfand{Cetlin one C

GC

be the set of triangular arrays (x

i

j

) of size

M(M+1)

2

suh that x

i

j�1

� x

i�1

j�1

� x

i

j

for 1 � i � M , 1 � j � i. Then the Young tableaux �lled with N

M

are in one-to-one orrespondene with the integer points in the Gelfand{Cetlin one.

What we have now is a mapping from W

N;M;k

, the set of matries of size N�M whose oeÆients

add up to k, to the set of integers point in the Gelfand{Cetlin one. This mapping has the property

that if W

N;M;k

is given the uniform distribution, then the distribution of x, given that the last line

is equal to � = (�

1

; : : : ; �

M

), is uniform on the integers points of the Gelfand{Cetlin one.

3. Gaussian Unitary Ensemble

From now on we add the restrition that the distributions of the oeÆients w(i; j) are i.i.d.

geometri with parameter q, that is P(w

i;j

= k) = (1� q)q

k

. All the results of the previous setion

still hold in this ontext, as they were obtained in full generality. The aim of this setion is to

�nish the proof of Theorem 2. For this we desribe the distribution of x(w) by its distribution

onditioned upon values of its last line, and the distribution of its last line. This is then linked to

the distribution of the limit proesses D

k

.

The probability that the RSK orrespondene applied to a random matrix w with i.i.d. geometri

entries with parameter q yields a pair of Young tableaux of shape � = (�

1

; : : : ; �

M

) is

(1)

(1� q)

MN

M !

M�1

Y

j=0

1

j!(N �M + j)!

Y

1�i<j�M

(�

i

� �

j

� i+ j)

2

M

Y

i=1

(�

i

+N � i)!

(�

i

+M � i)!

q

k

where k =

P

�

i

. The proof of this formula an be found in [4℄ and is based on the fat that there

are

Q

1�i<j�M

�

i

��

j

�i+j

j�i

semi-standard tableaux of shape � �lled with N

N

. The vetor of entered

and normalized variables �

i

=

�

i

�eN

p

vN

(with e the average and v the variane of w

1;1

), is noted �.

Plugging the Stirling approximation in Equation (1) yields that for �xed q suh that 0 < q < 1,

�xed M and N !1, the distribution of � onverges weakly to Z

�1

Q

i<j

(�

i

� �

j

)

2

Q

i

e

��

2

i

=2

(Z is

a normalizing onstant). This is the distribution of the vetor of ordered eigenvalues of a random

matrix drawn from GUE. This property leads to the following theorem:
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Theorem 3. The distribution of the sequene (D

1

; : : : ;D

M

) de�ned in Theorem 1 is the distribu-

tion of the �rst olumn of the random triangular array x of size M(M + 1)=2 distributed uniformly

for a �xed last line, and the distribution of its last line is the distribution of the eigenvalues of

matries drawn from GUE [6℄.

The distribution of (D

1

; : : : ;D

M

) is the same as the distribution of the �rst olumn of x(w),

up to a proper normalization. And if the distribution on w is uniform, then the distribution on x,

knowing its last line, is uniform. As the probability of getting a Young tableau of shape �, and

thus an array x of last line �, is the same as getting the vetor of ordered eigenvalues of a random

matrix drawn from GUE equal to �, Theorem 3 is proved.

The Gelfand{Cetlin polyhedron GC(�) is de�ned as a subset of C

GC

suh that the last line of

the array is equal to � = (�

1

; : : : ; �

M

). Theorem 3 means that the distribution of (D

1

; : : : ;D

M

) is

uniform on GC(�).

This allows us to state the theorem below, whih is a major step in the proof of Theorem 2.

Theorem 4. Let H = (h

ij

), i, j � M be a random matrix drawn from GUE with eigenvalues

(�

1

; : : : ; �

M

), and

x(H) =

0

B

B

�

x

1

1

: : : : : :

x

M�1

1

: : : x

M�1

M�1

x

M

1

x

M

2

: : : x

M

M

1

C

C

A

where x

i

j

is the jth eigenvalue of the main minor of size i of H. Then the triangular array x(H) is

uniformly distributed in the polyhedron GC(�).

The proof of this theorem is based on the fat that the last line of the array x orresponds

to the eigenvalues of the matrix H, whih is drawn from GUE, and that given this last line, the

distribution is uniform. The last line of x is equal to � and its �rst olumn to the vetor (�

k

) by

de�nition. This together with Theorems 3 and 4 proves Theorem 2.

Theorem 2 an be used to prove the onjeture of Peter Glynn and Ward Witt [3℄ stating that

D

k

=

p

k ! 2. The proof uses the already known fat that the largest eigenvalue of random Hermitian

matrix drawn from GUE resaled by

p

k onverges in distribution to 2, see [2℄.
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Information Theory by Analyti Methods: The Preise Minimax Redundany

Wojieh Szpankowski

Department of Computer Siene, Purdue University (USA)

Marh 5, 2001

Summary by Thomas Klausner

1. Introdution

The redundany-rate problem of universal oding is onerned with determining by how muh the

atual ode length (representation of a word in a ode) exeeds the optimal ode length. Revisiting

the theme of his last year's seminar talk [1℄, Szpankowski went into more detail explaining di�erent

models for redundany, and introdued the generalized Shannon ode in order to solve the minimax

redundany problem for a single memoryless soure.

A ode is de�ned as follows:

De�nition 1. A ode C

n

is a mapping from the set A

n

of all sequenes of length n over the

alphabet A to the set f0; 1g

�

of binary sequenes.

Most of the time we use soure models whih speify probabilities for spei� messages. For

these, P(x

n

1

) is the probability of the message x

n

1

, the ode length of a message x

n

1

= x

1

: : : x

n

, with

x

i

2 A, in the ode C

n

will be denoted by L(C

n

; x

n

1

), and H

n

(P) = �

P

x

n

1

P(x

n

1

) logP(x

n

1

) is the

entropy of the probability distribution, where log is taken to base 2.

2. Basi Results

A pre�x ode or instantaneous ode is a ode in whih no odeword is a pre�x for another

odeword; in other words, if you present the odewords as a binary trie, the valid odewords are

only in the leaves (not in the internal nodes).

For pre�x odes the following inequality holds:

Lemma 1 (Kraft's inequality). For any pre�x ode (over a binary alphabet), the odeword lengths

l

1

, l

2

, . . . , l

m

satisfy the inequality

m

X

i=1

2

�l

i

� 1:

A related problem is to �nd out how many tuples l

1

, . . . , l

m

exist where equality holds. This

has been takled and solved by Flajolet and Prodinger [2℄. Asymptotially, it grows as ��

m

, where

� � 0:254 and � � 1:794.

Another important result is Shannon's lassi lower bound on the average ode length (see [3℄):

Lemma 2 (Shannon). For any ode, the average ode length E

�

L(C

n

;X

n

1

)

�

annot be smaller than

the entropy of the soure H

n

(P):

E

�

L(C

n

;X

n

1

)

�

� H

n

(P)
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Trivially, one an see that there must exist at least one ~x

n

1

with

L(~x

n

1

) � � logP(~x

n

1

):

A lemma by Barron deals with the individual lengths of the ode words:

Lemma 3 (Barron). Let L(X

n

1

) be the length of a odeword in a ode satisfying Kraft's inequality,

where X

n

1

is generated by a stationary ergodi soure. For any sequene of positive onstants a

n

satisfying

P

2

�a

n

<1, the following holds:

P

�

L(X

n

1

) � � logP(X

n

1

)� a

n

	

� 2

�a

n

:

From this we immediately get

L(X

n

1

) � � logP(X

n

1

)� a

n

(almost surely):

3. Redundany

Redundany measures the distane to the optimal ode state, reahing the lower bound given

by the entropy. Sine there are di�erent ways to de�ne the \worst ase," we de�ne three types of

redundany: pointwise R

n

(C

n

;P;x

n

1

), average

�

R

n

(C

n

;P) and maximal R

�

(C

n

;P):

R

n

(C

n

;P;x

n

1

) = L(C

n

; x

n

1

) + logP(x

n

1

) (� �a

n

(a:s:));

�

R

n

(C

n

;P) = E

X

n

1

�

R

n

(C

n

;P;X

n

1

)

�

= E

�

L(C

n

;X

n

1

)

�

�H

n

(P);

R

�

(C

n

;P) = max

x

n

1

�

R

n

(C

n

;P;x

n

1

)

�

:

The redundany-rate problem onsists in �nding the rate of growth of the orresponding minimax

quantities

�

R

n

(S) = min

C

n

sup

P2S

E

�

R

n

(C

n

;P;x

n

1

)

�

;

R

�

n

(S) = min

C

n

sup

P2S

max

x

n

1

�

R

n

(C

n

;P;x

n

1

)

�

;

as n!1 for a lass S of soure models.

There are also other measures of optimality, e.g. for oding, gambling, or preditions. For these,

the following funtions, alled minimax regret funtions, are used:

�r

n

= min

C

n

sup

P2S

X

x

n

1

P(x

n

1

)

�

L

i

+ log sup

P

P(x

n

1

)

�

;

r

�

n

= min

C

n

max

x

n

1

�

L

i

+ log sup

P

P(x

n

1

)

�

:

Note that r

�

n

= R

�

n

. Sometimes, the maximin regret is of interest:

~r

n

= sup

P2S

min

C

n

X

x

n

1

P(x

n

1

)

�

L

i

+ log sup

P

P(x

n

1

)

�

:

These funtions are sometimes alled the average minimax regret (�r

n

), the maximal minimax

regret (r

�

n

), and the average maxmin regret (~r

n

). One an interpret these funtions as target

funtions for the game theoretial problem of hoosing L so that for all x

n

1

, the value of the funtion

gets as good as possible, that is, � log supP(x

n

1

).

In the following, we will only look at the redundany funtions.
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4. Preise Maximal Redundany

In 1978, Shtarkov proved the following bounds for the minimax redundany:

log

�

X

x

n

1

sup

P2S

P(x

n

1

)

�

� R

�

n

(S) � log

�

X

x

n

1

sup

P2S

P(x

n

1

)

�

+ 1:

We want to �nd a preise result for R

�

n

(S). We start with the easier problem of �nding the

optimal ode for maximal redundany for a known soure P

R

�

n

(P) = min

C

n

2C

R

�

(C

n

;P):

We already know that for the average redundany of one known soure

�

R

n

(P) = min

C

n

2C

E

x

n

1

�

R

n

(C

n

;P;x

n

1

)

�

;

the Hu�mann ode is optimal|indeed, it is designed so as to solve this optimization problem. For

the maximal redundany problem we introdue a new ode, the generalized Shannon ode.

In the ordinary Shannon ode, the length of its symbol in the ode for a given P is

�

1=P(x

n

1

)

�

.

In the generalized Shannon ode, on the other hand, we set the length to be

�

1=P(x

n

1

)

�

for some

symbols x

n

1

2 L and

�

1=P(x

n

1

)

�

for the others in suh a way that Kraft's inequality holds. For

non-dyadi odes (dyadi ones ful�ll R

�

n

(P) = 0), we sort the probabilities P(x

n

1

):

0 � h� log p

1

i � h� log p

2

i � � � � �




� log p

jAj

n

�

� 1 (where hxi = x� bx)

and hoose j

0

to be the maximal j suh that Kraft's inequality still holds:

j�1

X

i=0

p

i

2

h� log p

i

i

+

jAj

n

X

i=j

p

i

2

h� log p

i

i�1

� 1:

Then R

�

n

(P) = 1� h� log p

j

0

i and the generalized Shannon ode with L = f1; : : : ; j

0

g is optimal.

Now we generalize to systems of probability distributions S. Let

Q

�

(x

n

1

) =

sup

P2S

P(x

n

1

)

P

y

n

1

2A

n

sup

P2S

P(y

n

1

)

:

Then

R

�

n

(S) = R

�

n

(Q

�

) + log

�

X

x

n

1

2A

n

sup

P2S

P(x

n

1

)

�

;

with

R

�

n

(Q

�

) = 1� h� log q

j

0

i

as above.

If we now take the generalized Shannon ode that minimizes the maximal redundany, we get

for a sequene generated by a single memoryless soure, for n!1, and � = log

1�p

p

irrational:

R

�

n

(P

p

) = �

log log 2

log 2

+ o(1) = 0:5287 + o(1):
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5. Average Minimax Redundany

In the simple ase where S onsists of one distribution P, the omputation of

�

R

H

n

is the Hu�man

problem:

�

R

H

n

(P) = min

C

n

2C

X

x

n

1

P(x

n

1

)R

n

(C

n

;P;x

n

1

):

From known results (where we have

�

R

H

n

� R

�

n

), we onjeture:

Conjeture 1. Under ertain additional onditions, we have, as n!1,

�

R

n

= R

�

n

+ �(1) = log

�

X

x

n

1

2A

n

sup

P2S

P(x

n

1

)

�

+ �(1):

6. Average Redundany for Partiular Codes

For single memoryless soures, we have expliit results for n!1 for some odes. In partiular,

we have for the Hu�man ode

�

R

n

=

(

3

2

�

1

ln 2

if � irrational,

3

2

�

1

M

�

hMn�i �

1

2

�

�

�

M(1� 2

�1=M

)

�

�1

2

�hMn�i=M

if � =

N

M

;

for the Shannon ode

�

R

n

=

(

1

2

if � irrational;

1

2

�

1

M

�

hMn�i �

1

2

�

if � =

N

M

;

and for the generalized Shannon ode

�

R

n

=

3

2

� 2 ln 2 + o(1) � 0:113705639:

For more basis and in-depth knowledge regarding analyti information theory, the interested

reader is referred to Szpankowski's book [4℄.
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Summary by Bruno Salvy

Abstrat

An analyti study of linear q-di�erene equations leads to a simple derivation of some on-

netion formulae, generalizing the asymptoti expansion of the Bessel J

�

funtions.

1. Di�erential and q-Di�erene Equations

Linear di�erential operators are polynomials in x and �

x

= d=dx. These operators an be

disretized using q-di�erene operators expressed in terms of q, x, and �

q

where �

q

(f)(x) := f(qx).

When q ! 1, (�

q

� 1)(f)(x)=(q � 1) tends to xf

0

(x). This disretization is not unique. It gives

rise to several generalizations of lassial funtions and identities relating them. C. Zhang's work

is an analyti study of these operators, of the asymptotis of their solutions and the divergene of

their series expansions.

A simple example of a q-di�erene equation is given by (x�

q

� 1)y(x) = 0. For jqj < 1 and

x 2 C

�

:= C n f0g, a solution of this equation is the Jaobi funtion

�

q

(x) :=

X

n2Z

q

n(n�1)=2

x

n

= (q; q)

1

(�x; q)

1

(�q=x; q)

1

where the last equality is Jaobi's triple produt identity, using the notation

(a; q)

1

= (1� a)(1 � aq)(1� aq

2

) � � � :

The produt form shows that �

q

(x) is analyti in C

�

, and that its set of zeroes is �q

Z

.

Another important solution of the same equation is e

q

(x) := q

log

q

x(log

q

x�1)=2

, equivalent to �

q

(x)

when x ! 0. In the asymptoti behaviour of solutions in the neighbourhood of irregular singular

points, the funtion e

q

plays the same role as the exponential in the di�erential ase. Another

simple equation is (�

q

� x)y(x) = 0, whih has q

� log

q

x(log

q

x�1)=2

and 1=�

q

(x) as solutions. As

opposed to the di�erential ase, inverses of these analogues of the exponential are not obtained by

hanging x into �x.

A omplete lassi�ation of the possible formal loal behaviours of solutions of linear q-di�erene

equations was obtained by Carmihael in 1912. For an equation of order m in �

q

with analyti

oeÆients at the origin, there exists a family of m formal solutions, eah of whih is of the form

(1) y

j

(x) = x

r

j

e

�k

j

q

(x)

m

j

�1

X

�=0

(log

q

x)

�

f

j;�

(x); j = 1; : : : ;m;

where r

j

2 C , k

j

2 Q , m

j

2 N

�

, and f

j;�

(x) 2 C [[x

1=d

℄℄ for some d 2 N

�

. Eah of these an be

omputed from the equation.



142 On Jakson's q-Bessel Funtions

2. Hypergeometri and q-Hypergeometri Connetion Formulae

The onnetion problem lies in expressing (the analyti ontinuation of) one of the above y

j

's

that are de�ned at the origin as a linear ombination in terms of a similar basis at another singular

point. There is no general method to ompute \losed forms" for these onstants, exept in speial

ases suh as the hypergeometri ase.

Hypergeometri series in the lassial (di�erential) ase are series F (x) =

P

n�0

a(n)x

n

suh

that a(n + 1)=a(n) =: r(n) = P (n)=Q(n) is a �xed rational funtion in n. In terms of the shift

operator S

n

this means that the sequene a(n) anels Q(n)�P (n)S

�1

n

from whih it follows that

the generating series F anels the linear di�erential operator Q(x�

x

)� P (x�

x

)x. Introduing the

roots of P and Q, hypergeometri series are lassialy denoted

p

F

q

�

a

1

; : : : ; a

p

b

1

; : : : ; b

q

�

�

�

�

x

�

:=

X

n�0

(a

1

)

n

� � � (a

p

)

n

(b

1

)

n

� � � (b

q

)

n

x

n

n!

;

where (a)

n

= a(a + 1) � � � (a + n � 1). This series is onvergent for q > p and has only regular

singularities if and only if p = q + 1.

The q-analogue of this funtion is known as the

r

�

s

basi hypergeometri series. In this ase the

ratio of two onseutive oeÆients is a �xed rational funtion in q

n

. The general form is

r

�

s

�

a

1

; : : : ; a

r

b

1

; : : : ; b

s

; q; x

�

:=

X

n�0

(a

1

; q)

n

� � � (a

p

; q)

n

(b

1

; q)

n

� � � (b

s

; q)

n

�

(�1)

n

q

n(n�1)=2

�

s+1�r

x

n

;

where (a; q)

n

= (1� a)(1� aq) � � � (1� aq

n�1

).

A simple example is Heine's

2

�

1

(a; b; ; q; x), whih has Gauss's

2

F

1

(�; �; ;x) as a limit when

a = q

�

, b = q

�

,  = q



, and q ! 1. Heine's funtion satis�es a seond-order q-di�erene equation.

This equation has no irregular singularity (it is a Fuhsian equation). A general tehnique to

relate solutions of suh equations at 0 and in�nity in the lassial hypergeometri ase is based on

a Mellin{Barnes integral representation. This approah was extended to the q-di�erene ase by

Watson in 1910, who found that for ab 6= 0,

(2)

2

�

1

(a; b; ; q; x) = C

1

(x)

2

�

1

(a; aq=; aq=b; q; q=abx) +C

2

(x)

2

�

1

(b; bq=; bq=a; q; q=abx);

where

C

1

(x) =

(b; =a; q)

1

(ax; q=ax; q)

1

(; b=a; q)

1

(x; q=x; q)

1

; C

2

(x) =

(a; =b; q)

1

(bx; q=bx; q)

1

(; a=b; q)

1

(x; q=x; q)

1

:

This method is presented in detail in Slater's book [4℄. The onnetion \onstants" C

1

(x) and C

2

(x)

are annihilated by �

q

� 1 and are uniform (they satisfy C

k

(xe

2i�

) = C

k

(x)). Thus they are ellipti,

sine when expressed in (u; �) de�ned by x = exp(2i�u) and q = exp(�2i��) with =(�) > 0 they

are doubly periodi.

3. Jakson's q-Bessel Funtions

Bessel funtions are lassially de�ned as solutions of the Bessel equation

�

(x�

x

� �)(x�

x

+ �) + x

2

�

y(x) = 0:

When � 62 Z, a basis of solutions is given by the Bessel J

�

(x) and J

��

(x) funtions, whih an be

expressed in terms of the hypergeometri series by

J

��

(x) =

(x=2)

��

�(�� + 1)

2

F

1

(1; 1;�� + 1;�x

2

=4):
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The Bessel equation an be derived from the di�erential equation of the

2

F

1

by onuene: this is

ahieved by onsidering

2

F

1

(� + 1=2; �; 2� + 1;x=�) and letting � tend to in�nity. In this proess,

the singularity at in�nity beomes irregular.

Similarly, Jakson introdued in 1905 two q-analogues of the Bessel funtions,

J

(1)

�

(x; q) =

(q

�+1

; q)

1

(q; q)

1

�

x

2

�

�

2

�

1

�

0; 0; q

�+1

; q;�

x

2

4

�

;

J

(2)

�

(x; q) =

(q

�+1

; q)

1

(q; q)

1

�

x

2

�

�

0

�

1

�

; q

�+1

; q;�

x

2

q

�+1

4

�

:

(3)

The lassial J

�

funtion is reovered in two ways by letting q tend to 1 in J

(k)

�

�

x(1 � q); q

�

for k 2 f1; 2g. The radiuses of onvergene of the basi hypergeometri series (in q) given here are

respetively �nite for J

(1)

�

(provided jxj < 2) and in�nite for J

(2)

�

.

These funtions are solutions of two q-di�erene equations of order 2 in �

p

with p =

p

q that are

easily derived from (3). These equations an be seen as arising from the equation of the

2

�

1

by

onuene, but it is not lear how to use this proess in order to obtain a onnetion formula by a

limiting proess from (2). As in the lassial ase, both J

(k)

�

and J

(k)

��

are independent solutions of

their respetive q-di�erene equation, for k = 1; 2. The equations have a regular singularity at the

origin and an irregular singularity at in�nity.

4. Derivation of Connetion Formulae

Connetion formulae between the series expansions (3) and the (unique) basis of formal solutions

at in�nity of the form given by (1) generalize the lassial asymptoti expansion

(4) J

�

(x) =

e

�i

�

4

(2�+1)

p

2�x

e

ix

2

F

0

�

�� +

1

2

; � +

1

2

; ;

2i

x

�

+

e

i

�

4

(2�+1)

p

2�x

e

�ix

2

F

0

�

�� +

1

2

; � +

1

2

; ;�

2i

x

�

:

(A nie appliation of this formula is the derivation of an asymptoti expansion of the loation of

the zeroes of J

�

(x); this generalizes to those of J

(2)

�

.)

We start with J

(1)

�

and its q-di�erene equation

�

�

2

p

� (p

�

+ p

��

)�

p

+ (1 + x

2

=4)

�

y(x) = 0:

By hanging x into 1=t and y(x) into z(1=t), the equation beomes

�

�

1 +

1

4p

4

t

2

�

�

2

p

� (p

�

+ p

��

)�

p

+ 1

�

z(t) = 0:

The exponential part of the behaviour (see Eq. (1)) is sought in terms of E

�

(t) = 1=�

p

(��t), whih

is anelled by �

p

+ �t. The hange of unknown funtion z(t) = E

�

(t)f

�

(t) leads to

�

�

1 +

1

4p

4

t

2

�

�

2

pt

2

�

2

p

� �t(p

�

+ p

��

)�

p

� 1

�

f

�

(t) = 0:

Thus, by hoosing � suh that �

2

= 4p

3

, one gets an equation for f

�

whih has power series solu-

tions. A further simpli�ation is ahieved by onsidering the \p-Borel transform" of the series f

�

:

(5) g

�

(�) := B

p

f

�

(�) =

X

n�0

a

n

p

�n(n�1)=2

�

n

;
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where a

n

are the oeÆients of f

�

. By the ommutation rule B

p

(t

m

�

`

p

) = p

�m(m�1)=2

�

m

�

`�m

p

B

p

,

g

�

is solution of a two-term q-di�erene equation. This is easily solved to �nd

g

�

(�) =

1

(��p

�

� ; q)

1

(��p

��

� ; q)

1

:

It follows that g

�

is meromorphi in C with (simple) poles at f�p

��2n

=�;�p

���2n

=�g for n 2 N,

whih implies that f

�

is an entire funtion.

In order to reover f

�

from g

�

, the p-Borel transform of (5) is reverted by means of a Hadamard

produt of g

�

with �

p

. This leads to a Cauhy integral representation from whih a residue om-

putation yields the onnetion formula. The Cauhy integral is

f

�

(t) =

1

2�i

Z

j� j=r

g

�

(�)�

p

(t=�)

d�

�

;

where r < min

�

jp

�

=�j; jp

��

=�j

�

. The only residues ome from the poles of g

�

. The asymptoti be-

haviour of g

�

implies that this integral is equal to the sum of the residues and an atual omputation

of these residues leads to

f

�

(t) =

�

p

(��q

�=2

t)

(q; q)

1

(q

��

; q)

1

2

�

1

(0; 0; q

�+1

; q;�x

2

=4) +

�

p

(��q

��=2

t)

(q; q)

1

(q

�

; q)

1

2

�

1

(0; 0; q

��+1

; q;�x

2

=4);

where xt = 1 and jxj < 2. With very little rewriting, this is the desired onnetion formula. The

limiting behaviour of this formula when q ! 1 is studied in [5℄.

The seond family of q-Bessel funtions is atually related to the �rst one by a relation disovered

by Hahn in 1949:

J

(2)

�

(x; q) = (�x

2

=4; q)

1

J

(1)

�

(x; q); jxj < 2:

Another way of viewing the relation between these funtions is through the p-Laplae transform

that sends x

n

to p

n(n�1)=2

x

n

. Then the transform of the

2

�

1

in the de�nition of J

(1)

�

is the

0

�

1

in

that of J

(2)

�

. From there, a Cauhy integral representation follows and again a residue omputation

gives the onnetion formula, thanks to extra onsiderations about the asymptoti behaviour of the

integrand.

5. Comments

It has been observed that the onnetion \onstants" possess the nie property that they are

ellipti in the ase of Heine's funtion. This is a general phenomenon [3℄. The formulae in the

q-world imply important identities (after all, Jaobi's triple produt an be seen as a onnetion

formula). Reent work by Changgui Zhang shows that the limiting behaviour of these q-onnetion

formulae when q ! 1 yields the Stokes phenomenon of the di�erential world.
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Summary by Marianne Durand

Abstrat

For some \irregular singular" problems oming from di�erential equations, there exist formal

power series solutions that are everywhere divergent. These power series turn out to make

sense as asymptoti expansions of atual solutions. The Borel summation tehnique is used

to reover onvergent representations for these atual funtions solutions.

1. Resummation

Some \irregular singular" problems oming from di�erential equations have formal power series

solutions that are everywhere divergent. By resummation tehniques, one an obtain onvergent

solutions [7, 10℄. We onsider a power series, solution of a linear di�erential equation, that is

everywhere divergent, noted ~x(z) =

P

1

1

x

n

z

�n

: We assume that it has Gevrey order equal to

one, whih means that there exist onstants A and  suh that jx

n

j � A

n

n!: For a funtion f(z),

holomorphi in an angular setor S extending to in�nity and ontaining the real positive axis, we

say that ~x(z) is the Gevrey expansion of order 1 of f(z) if there exist onstants K and C suh that

�

�

�

f(z)�

N�1

X

1

x

n

z

�n

�

�

�

� CK

N

N ! jzj

�N

when z 2 S and N � 0.

This funtion f is a resummation of ~x, and it exists if the opening angle of S is smaller than �.

The formal Borel transform of ~x(z) is de�ned by y(z) =

P

1

1

x

n

z

n�1

(n�1)!

: It onverges for jzj <

1



.

We assume that the funtion y an be ontinued analytially along a line that does not meet a

singularity. In the partiular ase when x is a solution of a linear di�erential equation with rationnal

oeÆients, so does y, as this property is stable under the Borel transform. Thus y has a �nite

number of singularities and veri�es the above hypothesis. Up to a possible linear hange of variable,

we may assume that there is no singularity on the real axis, whih implies that y an be ontinued

analytially on the positive real axis. If y satisfy the expeted growth onditions at in�nity, we

apply the Laplae transform. This transform is de�ned by

x(z) = L(y) =

Z

1

0

e

�zt

y(t) dt;

and is onvergent for <(z

a

) greater than a ertain positive onstant, the onstant a being made

preise later. The asymptoti expansion of x(z) when z ! 0

+

is equal to

P

1

1

x

n

z

�n

. The funtion x

is a solution of the initial di�erential equation [2, 8℄.
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2. Balser, Lutz, and Sh�afke's Tehnique

The next step is to �nd a way to ompute this funtion x quikly and in a large domain. For

this, Lutz et al. [1℄ reformulate x as a onvergent series of the type x(z) =

P

1

0

d

n

q

n

(z). This series

is obtained by introduing a mapping funtion � that maps [ 0; 1 ℄ onto [ 0;1 ℄, so as to write the

equation

(1) x(z) =

Z

1

0

e

�zt

y Æ � Æ �

�1

(t) dt =

Z

1

0

e

�zt

1

X

0

d

n

�

�1

(t)

n

dt;

where for the seond equality we have used the re-expansion y Æ �(u) =

P

1

0

d

n

u

n

in terms of the

sequene d

n

. The sequene q

n

is thus determined by q

n

=

R

1

0

e

�zt

�

�1

(t)

n

dt, under the assumption

that the interversion of the integral and the sum holds, permitting termwise integration. We observe

that q

n

does not depend on x and on the initial problem, but only on the mapping funtion �. This

means that these oeÆients an be preomputed. On the other hand the oeÆients d

n

orrespond

to a omposition of the funtion � with the Borel transform y. This is formalized in the following

theorem.

Theorem 1 (Balser, Lutz and Sh�afke). Let x(z) =

R

1

0

e

(�zt)

y(t) dt where the funtion y is

holomorphi in the domain

D �

n

�

�

Arg(1 + t=a)

�

�

< �=2p

o

and satis�es

�

�

y(t)

�

�

e

�bjtj

! 0 as jtj ! 1 in D. Choose � holomorphi in � =

�

j� j < 1

	

so that

�(�) � D, �

�

[ 0; 1 ℄

�

= [ 0;1 ℄, and (1��)



�(�)! A as � ! 1 in �. De�ne (d

n

) by its generating

series y

�

�(�)

�

=

P

1

0

d

n

�

n

, and (q

n

) by

q

n

(z) =

Z

1

0

e

�z�(�)

�

n

�

0

(�) d� for z suh that

�

�

Arg(z)

�

�

< �(1 + )=2:

Then for suitable positive onstants (independent of n)

jd

n

j � Ke

Ln

=(+1)

and jq

n

(z)j �

~

Ke

�An

=(+1)

<

(

z

1=(+1)

)

:

So we have x(z) =

1

X

0

d

n

q

n

(z) for <

�

z

1=(+1)

�

large.

Proof. Starting from Equation (1), we obtain x(z) =

R

1

0

P

1

n=0

e

�zt

d

n

�

�1

(t)

n

dt: The saddle-point

method gives upper bounds for d

n

and q

n

that allows us to interhange the order of integrand

and summation in the equation above for <(z

1=(+1)

) large enough. This interhange yields the

expeted result x(z) =

P

1

n=0

d

n

q

n

(z). �

Some other lassial onformal mappings an be found in [6℄. Here is an example. The mapping

(2) � = 1�

2

(1 + t=a)

p

+ 1

with a 2 R and p � 1=2

takes the setorial domain de�ned by

�

�

Arg(1 + t=a)

�

�

< �=(2p) onto the unit disk. The hoie of the

onformal mapping � is important beause it has an e�et on the speed of onvergene and on the

area of onvergene.

In the partiular ase where the di�erential equation is linear with polynomial oeÆients, some

eÆient omputation an be done using reurrenes. We also suppose now that the funtion �

is algebrai. The preomputation of the oeÆients q

n

is based on the fat that they follow a

linear reurrene. We �rst note that the oeÆients q

n

are equal to

R

1

0

e

�z�(u)

u

n

�

0

(u) du as shown
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by a simple hange of variable t = �(u). The funtion e

�z�(u)

�

0

(u) satis�es the �rst-order linear

di�erential equation

(3) G

0

(t) =

�

�

00

(t)

�

0

(t)

� z�

0

(t)

�

G(t):

If we note

P

K

k=0

p

k

(n)a(n + k) = 0 the linear reurrene satis�ed by the Taylor oeÆients at

the origin a(n) of a power series solution of the equation (3), then the integrals q

n

(z) satisfy the

reurrene

P

K

k=0

p

k

(�n)q

n�k�1

(z) = 0. One we have the reurrene satis�ed by the oeÆients q

n

and the initial onditions that are given by q

n

=

R

1

0

e

�zt

�

�1

(t)

n

dt, all the q

n

an be omputed

quikly. A problem is that we seek for numerial and not exat omputations, and so we have,

on eah example, to seek for numerial stability. This point uses a bakward sheme whih is

developped on an example below.

The omputation of the oeÆients d

n

an be done eÆiently by �nding a reurrene for example

using the gfun pakage [9℄, beause it is a omposition of a known algebrai funtion � and a

funtion y known by its di�erential equation. The initial onditions for the d

n

derive diretly from

the initial onditions of the di�erential equation satis�ed by y and so from the initial onditions of

the di�erential equation satis�ed by ~x. This is illustrated by the example of the Heun equation.

3. Heun Equation

The Heun equation is the generi di�erential equation with four regular singular points loated

at 0, 1, , and1; see [5℄. The double onuent Heun equation is obtained by letting the singularity

loated at  tend to the one loated at 1, and the singularity loated at 1 tend to 0. The equation

obtained then has two irregular singular points loated at 0 and 1. The example we study [3℄ is

the onuent Heun equation in the form

(4) z

2

f

00

(z) + (z + �z

2

+ �)f

0

(z) +

(2�z

2

�

1

+ �z

2

+ �

2

z � 2z + 2��

�1

� �)

2z

f(z) = 0:

The aeleration is realised by the funtion � =

1

(1�z)

2

� 1 whih maps from [ 0; 1 ℄ onto [ 0;1 ℄.

The reurrene satis�ed by q

n

is thus

(5) q(n) =

(�6 + 3n)q(n� 1) + (�2z + 6� 3n)q(n� 2) + (n� 2)q(n� 3)

n� 2

:

The initial onditions, that are easily omputed, using the de�nition of q

n

, orrespond to a dom-

inated solution, so any numerial error makes the dominating solution appear. A solution to this

problem is to ompute the reurrene bakwards, whih exhanges the roles of dominating and

dominated regimes. The idea is to hoose arbitrary values for q

N�d

, . . . , q

N

where d is the order of

the reurrene and N is a suÆiently large integer. All the values of q

n

for n � N are then om-

puted from these \�nal" values bakwards. This tehnique is developped in [11℄. The dominating

solution of Reurrene 5 disappears and so the initial values found di�er only by a multipliative

onstant � from the atual initial values. The sequene q

n

thus found has to be multiplied by this

onstant � to give the expeted sequene q

n

.

For the oeÆients d

n

, the reurrene is found easily using gfun. For parameters � = �1,

�

�1

= 1=2, �

1

= 1=2, and  = 1=3, it is

0 = (6n

2

+ 3n

3

)a

n

+ (�93n� 36� 75n

2

� 18n

3

)a

n+1

+ (568n + 404 + 267n

2

+ 42n

3

)a

n+2

+ (�1193n � 1176 � 411n

2

� 48n

3

)a

n+3

+ (1042n+ 1240 + 291n

2

+ 27n

3

)a

n+4

+ (�78n

2

� 336n � 480 � 6n

3

)a

n+5
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with initial onditions a

0

= 0, a

1

= 1, a

2

= 1=3, a

3

= �23=108, and a

4

= �2749=3888.

Now for eah �xed z, we an ompute the value of x(z) to arbitrary preision, by hoosing the

number of terms we take into aount. The bakwards omputation for the q

n

oeÆients implies

that the number of omputable terms is limited by the starting point. If it is too low, we have to

hoose a larger starting point to get more terms. It is generally not possible to deide where a good

starting point for the omputation of the bakward omputation would be. This an be done on

partiular examples, but the starting point strongly depends on z.

4. Appliations

Many problems related to di�erential equations yield formal power series of Gevrey order one.

Whenever the Borel{Laplae transform applies, the results of Setion 2 also applies. A onrete

appliation oming from physis is the one-dimensional omplex heat equation:

u

�

(�; z) = u

zz

(�; z); u(0; z) = �(z):

The Cauhy data �(z) is assumed to be holomorphi near the origin. A formal solution is

~u(�; z) =

1

X

0

�

(2n)

(z)

�

n

n!

:

Lutz et al. have shown that either ~u(�; z) is onvergent, or the method of Setion 2 applies. If

v(�; z) is the Borel transform of ~u(�; z) with respet to � , then applying the Laplae transform in

the variable � to v(�; z) for �xed z gives a onvergent solution u(�; z) of the Cauhy problem. Better

knowledge on the funtion � may easily lead to fast rate onvergene possibly using the mapping

funtion (2). Another appliation is about onvergent Liouville{Green expansions for seond order

linear di�erential equations [4℄.
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Abstrat

The primary purpose of this ourse is the elaboration of methods for providing answers to

problems that arise in enumerative ombinatoris. The main tool to be used in this respet

are (ordinary) generating funtions. The objets that will be dealt with are 2-dimensional

walks (for whih several onvexity onstraints will be taken into aount) and trees. These

objets are more generally desribed as \deomposable" objets. A desription of the prin-

ipal ombinatorial deompositions by means of funtional equations of generating funtions

will be presented as an equivalent but more syntheti approah to the use of reurrenes.

The modelling by generating funtions of ombinatorial strutures like trees and walks will

be disussed. The same priniples hold for maps, animals, and polyominoes. The \ker-

nel method" and \quadrati method" tehniques will be presented. The ourse will be

illustrated by numerous examples.

1. Enumeration Problems and the Way of Solving Them

The approah in solving an enumerative problem onsists in a ombinatorial step that examines

the struture of the objets under onsideration, and a step that resolves the reurrene relations

or funtional equations. By observing the struture of the objets, some (reursively de�nable)

property an be translated into a mathematial, non-tautologial information on a

n

, the number

of objets of size n. Instead of manipulating reurrene relations, generating funtions desribing

the orresponding funtional equations are used:

A(t) =

X

n�0

a

n

t

n

=

X

A2A

t

jAj

is alled the ordinary generating funtion of the ombinatorial lass A endowed with the size

funtion j:j, where the number of objets a

n

are to be �nite. A power series with oeÆients in A

an be written

P

n�0

a

n

t

n

with a

n

2 N. Using ounting generating funtions it an be notied

that paths of various sorts are invariably algebrai funtions, whih are de�ned as solutions of a

polynomial equation [11℄.

There is a simple orrespondene between operations on ombinatorial lasses of objets and

ombinations of the assoiated generating funtions. This allows us to derive diretly funtional

relations between generating funtions starting from de�nitions of ombinatorial objets.

y

Leture notes for a ourse given during the workshop AL

�

EA'01 in Luminy (Frane).
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1. Union: A(z) +B(z) is the enumerative ordinary generating funtion of A [ B. If a

n

and b

n

are the numbers of objets of size n in A and B respetively, then a

n

+ b

n

is the number of

objets of size n in A [ B.

2. Cartesian Produt: A(z)B(z) is the enumerative ordinary generating funtion of A � B.

The number of objets of size n in A � B equals the simple onvolution

P

0�k�n

a

k

b

n�k

.

Alternatively:

X

2A�B

z

jj

=

X

�2A

X

�2B

z

j�j+j�j

= A(z)B(z):

3. Sequenes:

�

1�A(z)

�

�1

is the enumerative ordinary generating funtion of sets of objets of

A =

�

(B

1

; B

2

; : : : ; B

k

)

�

�

B 2 B; k � 0

	

:

The ardinality of A is jAj =

P

k

i=1

jB

i

j, and the generating funtion of A(z) is

A(t) =

X

k�0

B(t)

k

=

�

1�B(t)

�

�1

aording to the statements of union and artesian produt.

It an be proven that a strong algebrai deomposability prevails for direted lattie paths, whih

is obtained by a spei� tehnique, the\kernel method" [2, 6℄. The deomposability enables us to

determine the loation and nature of dominant singularities.

2. Enumeration Example

Fix a �nite set of vetors of Z� Z, S =

�

(a

1

; b

1

); : : : ; (a

m

; b

m

)

	

. A lattie path or walk relative

to S is a sequene v = (v

1

; : : : ; v

n

) suh that eah v

j

is in S. The geometri realization of a

lattie path v = (v

1

; : : : ; v

n

) is the sequene of points (P

0

; P

1

; : : : ; P

n

) suh that P

0

= (0; 0) and

����!

P

j�1

P

j

= v

j

. The quantity n is referred to as the size of the path. The elements of S are alled steps

or jumps. For these paths, the solution F (t; u) (whih is always an algebrai funtion of t and u),

and ombinatorial explanations for the simple formulae obtained from the reurrene relations an

be found in [9℄.

2.1. Dyk paths. A lassial example an be given with Dyk paths. A Dyk path of length 2n

is a path in the plane from (0; 0) to (2n; 0) whih uses only steps (1; 1) (North-East), alled rises,

and (1;�1) (South-East), alled falls. A Dyk path ends on the x-axis and does not go below

the x-axis. A Dyk path therefore has even length, with the number of North-East steps equal to

the number of South-East steps. A lattie point on the path is alled a peak if it is immediately

preeded by a North-East step and immediately followed by a South-East step [10℄. A peak is

at height k if its y-oordinate is k. By D

n

we denote the set of all Dyk paths of half-length n.

Obviously, D

0

= f�g. Every nonempty Dyk path � an be deomposed uniquely in the following

manner [7℄:

� = u�

1

d

1

;

when writing u for a North-East step, and d for a South-East step, and where �

1

and 

1

are possibly

empty Dyk paths. This relation implies that

D

n

= uD

0

dD

n�1

[ uD

1

dD

n�2

[ � � � [ uD

n�2

dD

1

[ uD

n�1

dD

0

; n � 1:

Alternatively, we an write � = �

2

u

2

d in a unique manner, where �

2

and 

2

are possibly empty

Dyk paths. This relation implies that

D

n

= D

0

uD

n�1

d [D

1

uD

n�2

d [ � � � [D

n�2

uD

1

d [D

n�1

uD

0

d; n � 1:
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Both equations have disjoint unions. Thus we obtain

jD

n

j = jD

0

jjD

n�1

j+ jD

1

jjD

n�2

j+ � � �+ jD

n�2

jjD

1

j+ jD

n�1

jjD

0

j; n � 1:

As jD

0

j = 1, this sequene with n � 0 satis�es the same reurrene relation as the sequene

(

n

)

n�0

of Catalan numbers.

2.2. Enumeration of Dyk paths. Let p be a �xed nonnegative integer-valued parameter of a

Dyk path, i.e., a mapping from

S

n�A

D

n

into f0, 1, 2, : : : g. If D is a �nite set of Dyk paths,

then by D(t) we denote the enumerating polynomial of D relative to the parameter p given by

D(t) =

X

n�0

d

n

t

n

with d

n

=

X

Æ2D

t

p(Æ)

:

D(t) is the generating funtion for the enumeration of Dyk paths aording to semi-length (oded

by t). Thus, d

n

is the enumerating polynomial of the set of all Dyk paths of length n.

The reurrene relation for Dyk paths satis�es

�

d

2n

=

P

n�1

k=0

d

2k

d

2n�2k�2

; n � 1;

d

0

= 1:

�

�

�

��

�

�

��

��

�

�

�

�

��

��

��

�

�

��

��

�

2n-2k-2

�

� �

�

2k

2n

This gives on summation:

D(t) =

X

n�0

d

2n

t

2n

= 1 +

�

X

n�1

t

2n

��

n�1

X

k=0

d

2k

d

2n�2k�2

�

= 1 + t

2

D(t)

2

:

This quadrati equation is easily solved for D(t):

D(t) =

1�

p

1� 4t

2

2t

2

:

The solution

1�

p

1�4t

2

2t

2

is hosen in order to asertain the existene of a Taylor series expansion

at t = 0. It is known [2, 7, 8, 10, 11℄ that the number of Dyk paths of length 2n is 

n

, the nth

Catalan number, given by 

n

=

1

n+1

�

2n

n

�

.

2.3. Enumeration of Dyk pre�xes. Let b

n;k

be the number of pre�xes of length n, with �nal

height k. Then

b

n;0

= d

n

(Dyk paths)

F (t; u) =

X

n;t�0

b

n;k

t

n

u

k

2 Q [[t; u℄℄ =

�

X

n�0

t

n

��

n

X

k=0

b

n;k

u

k

�

2 Q [u℄[[t℄℄
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whih is a series in t whose oeÆients are polynomials in u. The last equation is equivalent to:

F (t; u) = 1 + t(u + u

�1

)F (t; u) � tu

�1

F (t; 0);

whih de�nes the generating funtion F (t; u) for these paths, ounted by their length (variable t)

and their height (variable u). This equation uniquely de�nes F (t; u) as a power series in t with

polynomial oeÆients in u.

More onstraints an be imposed on suh Dyk pre�xes.

2.3.1. Dyk Paths with no peaks at height m. Let G

m

(x) =

P

n�0

g(m;n)x

n

be the generating

funtion for Dyk paths of length 2n with no peaks at height m for some �xed m � 1. We proeed

to show that

G

m

(x) =

1

1� xG

m�1

(x)

for m � 2:

This an be illustrated by a path starting with a North-East step followed by a segment whih

represents any Dyk path of length 2k, 0 � k � n � 1, with no peaks at height m � 1. This

segment is followed, after a South-East step, by a seond segment whih represents any Dyk path

of length 2n� 2� 2k with no peaks at height m. Therefore

g(m; 0) = 1

and

g(m;n) =

n�1

X

k=0

g(m� 1; k)g(m;n � 1� k) = [x

n�1

℄

�

G

m�1

(x)G

m

(x)

�

:

Thus,

G

m

(x) = 1 + xG

m�1

(x)G

m

(x);

or equivalently,

G

m

(x) =

1

1� xG

m�1

(x)

:

This way, the number of Dyk paths of length 2n with no peaks at height 1 is the Fine number f

n

for n � 0. Obviously, g(1; 0) = 1 and g(1; 1) = 0. For n � 2, a Dyk path of length 2n with no

peaks at height 1 has a segment representing any Dyk path of length 2k; 1 � k � n � 1, and a

seond segment representing a Dyk path of length 2n�2k�2 with no peaks at height 1. Therefore,

for n � 2, we have

g(w;n) =

n�1

X

k=1



k

g(w;n� k � 1)

= [x

n�1

℄

�

C(x)G

1

(x)

�

� g(1; n � 1)

= [x

n

℄

�

xC(x)G

1

(x)

�

� g(1; n � 1):

Therefore,

G

1

(x) = 1 +

X

n�2

g(1; n)x

n

= 1 + xC(x)G

1

(x)� x� xG

1

(x) + x

= 1 + xG

1

(x)

�

C(x)� 1

�

= 1 + xG

1

(x)xC

2

(x):

That is,

G

1

(x) =

1

1� x

2

C

2

(x)

:
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2.3.2. No peaks at height 2. Another extension establishes that the number of Dyk paths of

length 2n with no peaks at height 2 is the Catalan number 

n�1

, for n � 1. This an be shown [10℄

using the �rst extension, so that

G

2

(x) =

1

1� xG

1

(x)

=

1

1� x

C(x)

1+xC(x)

= 1 + xC(x):

2.4. Bilateral paths or bridges. A bridge is a path whose end point P

n

lies on the x-axis. Given

a lass C of paths, we let C

n

denote the sublass of paths that have size n, and C

n;k

� C those that

have �nal altitude equal to k. We introdue the orresponding ordinary generating funtions:

C(z) =

X

n

C

n

z

n

; uC(z; u) =

X

n;k

C

n;k

u

k

z

n

:

By haraterising these generating funtions, that are algebrai in the ase of bridges, a strong

algebrai deomposition prevails, whih renders the alulation of the generating funtion's e�etive.

The deomposability of generating funtion's makes it possible to extrat their singular struture,

and to solve the orresponding asymptoti enumeration problems.

The equation orresponding to suh a lattie path is:

B(t) = 1 + t

2

D(t)B(t) + t

2

B(t)D(t) =

1

1� 2t

2

D(t)

:

For D(t) =

1�

p

1�4t

2

2t

2

,

B(t) =

1

1� 1�

p

1� 4t

2

=

1

p

1� 4t

2

=

X

n�0

t

2n

�

2n

n

�

:

Alternatively, sine

p

1� 4t

2

= 1� 2t

2

� 2t

4

+O(t

6

), we an �nd for Dyk paths:

D(t) =

1 + 1� 2t

2

� 2t

4

+O(t

6

)

2t

2

=

1

t

2

+ 1� t

2

+O(t

4

)

or

D(t) =

1�

p

1� 4t

2

2t

2

;

whih is the result we found before.

3. Lagrange Inversion Formula

Inherently to the symboli method, the extration of oeÆients of generating funtions de�ned

by funtional equations is a frequently ourring problem. For this purpose, the Lagrange Inversion

Theorem provides a tool that is ommonly used and espeially dediated to the enumeration of trees.

This theorem states that given the generating funtion A(z) =

P

n�0

a

n

z

n

for whih z = f(A(z)),

if f(z) veri�es the ondition f(0) = 0 and f

0

(0) 6= 0, then

a

n

� [z

n

℄A(z) =

1

n

[u

n�1

℄

�

u

f(u)

�

n

:

Additionally,

[z

n

℄

�

A(z)

�

m

=

m

n

[u

n�m

℄

�

u

f(u)

�

n

and

[z

n

℄g

�

A(z)

�

=

1

n

[u

n�1

℄g

0

(u)

�

u

f(u)

�

n

:
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By appliation of the reiproal funtion to both sides of the equation z = f

�

A(z)

�

, it an be

notied that the funtion A(z) is the reiproal of f(z). The surprising e�et of the inversion

theorem resides in the relation it establishes between the powers of a funtion and the oeÆients

of the reiproal funtion.

3.1. Example: Catalan numbers. The language of Dyk words,

D = f�; x�x; xx�x�x; x�xx�x; : : : g;

satis�es the de�ning reurrene D = �+xD�xD. This translates to the algebrai (non-ommutative)

equation

D(x; �x) = 1 + xD(x; �x)�xD(x; �x):

Sine we have an algebrai and non-ambiguous grammar, we an rewrite the system with ommu-

tative variables:

D(x; �x) = 1 + x�xD(x; �x)

2

:

As we know that the length of the words is always even, we will have n for a total length of 2n,

when we only ount x (or �x). Thus, we an substitute �x for �, and x for t.

D(t) = 1 + t (D(t))

2

() tD(t)

2

�D(t) + 1 = 0

By simply solving this seond-order equation, we get D(t) =

1�

p

1�4t

2t

(the other root is negative,

hene not appliable). This solution is to onverted into the form D(t) =

P

n�0

a

n

t

n

, for whih

a

n

gives us the number of Dyk words having n letters t (x), hene the number of Dyk words of

length 2n. Using Taylor series expansion and applying the Lagrange Inversion Formula, we get C

n

1�

p

1� 4t

2t

=

X

n�0

1

n+ 1

�

2n

n

�

t

n

[z

n

℄C(t) = [z

n

℄

1

n

z

n�1

(1 + z)

2n

=

1

n

�

2n

n� 1

�

:

4. Algebrai Strutures and the Kernel Method

4.1. Algebrai equations. The equation desribing sub-diagonal North-East paths,

F (t; u) = 1 + t(u + 1=u)F (t; u) � t=uF (t; 0);

belongs to a lass of equations that share two properties [3℄:

1. The equation uniquely de�nes F (t; u) as a power series in t with polynomial oeÆients in u.

There exist other, non-power-series solutions, for instane the rational funtion

F (t; u) =

2tu� 1

2t

�

u� t(u

2

+ 1)

�

:

Hene, any method for solving the reurrene relation above must use the fat that F (t; u)

is a power series.

2. When trying to derive an equation in F (t; 0) only from the reurrene relation, we end up

with a tautologi expression. In other words, if we �rst multiply F (t; u) by u and diretly

set u = 0, this would give us 0 = tF (t; 0) � tF (t; 0).
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It an be notied that the reurrene relation is linear in F (t; u) and F (t; 0), and we an strongly

expet its solution to be algebrai and to satisfy

F (t; 0) =

1�

p

1� 4t

2

2t

2

=

X

n�0

1

n+ 1

�

2n

n

�

;

sine sub-diagonal walks ending on the main diagonal are well-known to be ounted by Catalan

numbers.

The generi form of equations that share the above properties, is

P

�

F (t; u); F

1

(t); F

2

(t); : : : ; F

k

(t); t; u

�

= 0;

where P is a polynomial in k+3 variables with real oeÆients. We assume that this equation de�nes

uniquely all its unknowns as power series in t: the series F

i

(t) have real oeÆients, while F (t; u)

has its oeÆients in R[u℄. Rewriting our equation aording to this generi form of equations

yields:

F (t; u)

�

u� t(u

2

+ 1)

�

� u + tF

1

(t) = 0;

with F

1

(t) = F (t; 0), by setting u = 0.

In solving this instane, we propose to determine f

n

, the number of exursions of length n and

type 
, the set of jumps whih is a �nite subset of Z, via the orresponding bivariate generating

funtion

F (z; u) =

X

n;k

f

n;k

u

k

z

n

;

where f

n;k

is the number of walks of length n and �nal altitude k. In partiular, F (z) = F (z; 0).

Let � denote the smallest (negative) value of a jump, and d denote the largest (positive) jump.

A funtional role is played by the \harateristi polynomial" of the walk [1, 2, 11℄,

S(y) =

X

!2


y

!

=

d

X

j=�

S

j

y

j

;

whih is a Laurent polynomial. The bivariate generating funtion of generalised walks where

intermediate values are allowed to be negative is rational:

G(z; u) =

1

1� zS(u)

:

The main result to be proven is the following: for eah �nite set 
 � Z, the generating funtion

of exursions is an algebrai funtion that is expliitly omputable from 
. This problem is solved

by an appliation of the kernel method [2℄.

4.2. Kernel method. [2℄. Let f

n

(u) = [z

n

℄F (z; u) be the generating funtion of walks of length n

with u reording the �nal altitude. There is a simple reurrene relating f

n+1

(u) to f

n

(u), namely,

f

n+1

(u) = S(u)f

n

(u)� r

n

(u)

where r

n

(u) is a Laurent polynomial onsisting of the sum of all the monomials of S(u)f

n

(u) that

involve negative powers of u:

r

n

(u) =

�1

X

j=�

�

[u

j

℄S(u)f

n

(u)

�

u

j

= fu

<0

gS(u)f

n

(u);



158 Enumerative Combinatoris: Combinatorial Deompositions and Funtional Equations

where fu

<0

g denotes the singular part of a Laurent expansion:

fu

<0

gf(z) :=

X

j<0

�

[u

j

℄f(u)

�

u

j

:

The idea behind the formula is to subtrat the e�et of those steps that would take the walk

below the horizontal axis. Thus the generating funtion F (z; u) satis�es the fundamental funtional

equation

F (z; u) = 1 + zS(u)F (z; u) � zfu

<0

g

�

S(u)F (z; u)

�

:

Expliitly, we have

F (z; u) = 1 + zS(u)F (z; u) � z

�1

X

j=0

�

j

(u)

�

Æ

j

Æu

j

F (z; u)

�

u=0

;

for Laurent polynomials �

j

(u) that depend on S(u) in an e�etive way by �

j

(u) =

1

j!

fu

<0

gu

j

S(u) [2℄.

Both equations involve an unknown bivariate generating funtion F (z; u) and  univariate gener-

ating funtions, the partial derivatives of F speialized at u = 0. In partiular, the latter funtional

equation determines fully the  + 1 unknowns. The basi tehnique is known as \anelling the

kernel" and relies on strong analytiity properties.

The equation to be used by the basi kernel tehnique starts by grouping on one side the terms

involving F (z; u). The main priniple of the kernel method onsists in oupling the values of z

and u in suh a way that 1 � zS(u) = 0, so that F (z; u) disappears. Consequently, the \kernel

equation" 1�zS(u) = 0, is rewritten as u



= z

�

u



S(u)

�

. This kernel equation de�nes +d branhes

of an algebrai funtion. Coupling z and u by u = u

l

(z) gives that (z; u) is lose to (0; 0) where F

is bivariate analyti, so that substitution gives

1� z

�1

X

j=0

�

j

�

u

l

(z)

�

�

Æ

j

Æu

j

F (z; u)

�

u=0

; l = 0; : : : ; � 1;

whih is a linear system of  equations in  unknowns with algebrai oeÆients that deter-

mines F (z; 0). Therefore, the generating funtion of exursions is expressible as

F (z) =

(�1)

�1

zS

�

�1

Y

l=0

u

l

(z); where S

�

= [u

�

℄S(u)

is the multipliity of the smallest element � 2 
.

More generally the bivariate generating funtion of nonnegative walks is bivariate algebrai and

given by

F (z; u) =

1

u



� z

�

u



S(u)

�

�1

Y

l=0

�

u� u

l

(z)

�

:

In other words, to make expliit the solution F

s

of the reurrene of the sub-diagonal North-East

paths, written as F (t; u)(u�t(u

2

+1))�u+tF

1

(t) = 0, we rewrite it as Q(x)F (x) = K(x)�U(x) [4℄,

where K stands for the unknown initial onditions, and Q is the kernel:

F (t; u)

�

u� t(u

2

+ 1)

�

= u� U(t);

F

s

(t)Q(t) = K(t)� U(t):
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Again, the kernel method onsists in anelling the kernel Q(x), by handling a hoie of algebrai

values a of t, whih yields a system of equations K(a) � U(a) = 0. Solving this system generally

allows to make U expliit. This provides F

s

for generi t:

F

s

(t) =

K(t)� U(t)

Q(t)

:

The funtion U(t) is a sum of m unknown multivariate funtions F

i

(t

1

; : : : ; t

d�1

). Canelling the

kernel with m di�erent values for t

d

(whih then beome funtions of (t

1

; : : : ; t

d�1

)) yields a system

whih allows to make expliit the F

i

's.

Regrouping the terms in F (t; u) by the kernel method yields:

F

s

(t; u) =

u�

1�

p

1�4t

2

2t

u� t� tu

2

:

4.3. The Quadrati Method. An analogous approah is referred to as the \quadrati method,"

used to solve equations of the form

z(x; y)

2

+ P

1

�

x; y; z(x; 0)

�

z(x; y) + P

2

�

x; y; z(x; 0)

�

= 0

with P

i

2 F [[x℄℄[y; u℄, where F is an algebraially losed �eld of harateristi zero.

Rewrite the equation as

�

z +

1

2

P

1

�

2

=

1

4

P

2

1

� P

2

=: � 2 F [[x℄℄[y; u℄:

If some y = y

0

2 F [[x℄℄ is known to kill z +

1

2

P

1

, then this y

0

is a double root of �(x; y; u),

viewed as a polynomial in

�

F [[x℄℄[u℄

�

[y℄. The resultant R(x; u) of � and

��

�y

with respet to y

has to be zero. When we know by an external argument that the quadrati equation admits a

series solutions z(x; y) 2 F [[x; y℄℄, for example when it has a ombinatorial interpretation, and

therefore that z(x; 0) is a series in F [[x℄℄, the polynomial equation R

�

x; z(x; 0)

�

= 0 delivers this

value in F [[x℄℄ for z(x; 0).

After substitution, there only remains to solve an equation of the form z

2

+ P

1

z + P

2

= 0 with

P

i

2 F [[x℄℄[y℄. In [5℄, neessary and suÆient onditions are derived in order that suh an equation

has a solution z in either of the rings F [[x℄℄[y℄ or F [[x; y℄℄. In view of obtaining them, resume

from the relation

�

z +

1

2

P

1

�

2

= �. Sine P

1

2 F [[x℄℄[y℄ � F [[x; y℄℄, we get that there is a solution

in F [[x℄℄[y℄ or F [[x; y℄℄, respetively, if and only if � has a square root in the same ring. Again

in [5℄, it is proved that U 2 F [[x℄℄[y℄ has a square root if and only if it fators under the form

U = P

2

R for a polynomial P 2 F [x; y℄ and a series R 2 1 + yF [[x℄℄[y℄. Therefore, the equation has

a solution in F [[x℄℄[y℄ or F [[x; y℄℄, respetively, if and only if � rewrites under the form P

2

R for

some polynomial P and some series R of the form

R = 1 + yF [[x℄℄[y℄ or R = 1 + xyF [[x℄℄[y℄; respetively.
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Summary by Yvan Le Borgne

Abstrat

Complex analysis is a fruitful soure of asymptoti estimates in enumerative ombinatoris.

This leture starts with a symboli method to enode ounting sequenes of ombinatorial

strutures by omplex funtions. The residue theorem is then applied to extrat from these

funtions the asymptoti behavior of the orresponding sequenes.

1

A lass of ombinatorial strutures (often simply alled a lass) is a �nite or ountable set on

whih a size funtion is de�ned, the size of an element being a nonnegative integer. If A is a lass,

the size of an element � 2 A is denoted by j�j, or j�j

A

in the few ases where the underlying lass

needs to be made expliit. Given a lass A we onsistently let A

n

be the set of elements in A that

have size n and use the same group of letters for the ounts A

n

= CardA

n

. We further assume

that the A

n

are all �nite. The ounting sequene of A is the sequene of integers fA

n

g

n�0

. For

instane, binary sequenes are ombinatorial strutures that form a lass S when the size of a word

is de�ned to be its length. The orresponding ounting sequene is then given by S

n

= 2

n

.

Average-ase analysis of algorithms typially redues to ounting problems for ombinatorial

strutures. Statistial physis is another �eld of appliation of ounting sequenes where the free

energy of a system may be expressed as the logarithm of the number of aessible states whih an

be desribed by a ombinatorial struture.

There are two main approahes to estimate the asymptoti behavior of the ounting sequene

of a lass. The �rst one is to embed the ombinatorial struture in a stohasti model where the

randomly hosen element is representative of the elements of the lass. This allows to eliminate rare

pathologial elements. Then the asymptoti behavior of the ounting sequene is dedued from the

behavior of the stohasti model. The seond approah, whih will be desribed here, is based on the

deomposition of elements of the lass into ombination of elements of simpler lasses and lower size.

Counting sequenes are enoded by formal generating funtions that an have tratable ompat

representations as omplex funtions. A restrition to ertain ombinations, alled admissible

onstrutions, preserves these tratable representations sine they diretly translate into simple

operators on the omplex funtions of the sublasses. The extration of the ounting sequene

enoded by a omplex funtion is sometimes diÆult, but omplex analysis an often be used to

obtain the asymptoti behavior.

This summary presents in the �rst setion a symboli method to ompute a funtion enoding

the ounting sequene of a lass. The seond setion is dediated to omplex analysis. The aim is

y

Leture notes for a ourse given during the workshop AL

�

EA'01 in Luminy (Frane).

1

This summary is inspired by the book in preparation of Flajolet and Sedgewik [2, 3℄.
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to give a method to extrat the asymptoti behavior of a ounting sequene enoded by a omplex

funtion. The �nal setion illustrates these methods throughout two examples: louds and 
-trees.

1. A Symboli Method for Enumerative Combinatoris

A ounting sequene fA

n

g

n�0

an be enoded by di�erent types of formal power series: an ordi-

nary generating funtion

P

n�0

A

n

z

n

, an exponential generating funtion

P

n�0

A

n

n!

z

n

, a Dirihlet

series

P

n�0

A

n

n

z

, . . . The aim of these representations is to lead in some ases to a desription of

a ounting sequene shorter than the sequene itself. For instane the lass N of natural integers,

where the size of n is n, is suh that N

n

= 1. Its ordinary generating funtion is

P

n�0

z

n

=

1

1�z

,

its exponential generating funtion is

P

n�0

1

n!

z

n

= e

z

, its Dirihlet series

P

n�0

1

n

z

= �(z).

Assume that � is a binary onstrution that assoiates to two lasses B and C a new lass

A = �fB; Cg;

in a �nite way (eah A

n

depends on �nitely many of the B

n

and C

n

). Then � is an admissible

onstrution if and only if the ounting sequene fA

n

g of A is a funtion of the ounting sequenes

fB

n

g and fC

n

g of B and C only. In that ase, this funtion may be translated into a simple operator

relating formal power series representing fA

n

g

n�0

, fB

n

g

n�0

, and fC

n

g

n�0

. This setion is devoted

to some partiular admissible onstrutions in the ase of unlabeled and labeled ombinatorial

strutures. The goal is to de�ne a language of elementary ombinatorial onstrutions suh that any

expression of a lass in this language an be translated straightforwardly into a funtion enoding

the ounting sequene of the lass.

1.1. Unlabeled strutures. The priniple of this representation is that an element of size n is

enoded by the monomial z

n

. Thus the lass A is mapped to the ordinary generating funtion

A(z) = ogf(A)(z) =

X

�2A

z

j�j

=

X

n�0

A

n

z

n

:

An additional assumption on the sizes is made: if an element � an be deomposed into a ombi-

nation of elements �

1

, �

2

, . . . , �

k

, then the size of � is the sum of the sizes of the �

i

. Its translation

as regards monomials is the usual produt law:

z

j�j

A

= z

j�

1

j

B

1

z

j�

2

j

B

2

: : : z

j�

k

j

B

k

:

Let us onsider the lass A de�ned as the Cartesian produt of two given lasses B and C.

Following the additional assumption, the size of the element � = (�; ) is j�j

B

+ jj

C

. Thus we have

A(z) =

X

(�;)2B�C

z

j(�;)j

A

=

X

�2B; 2C

z

j�j

B

+jj

C

=

X

�2B

z

j�j

B

�

X

2C

z

jj

C

= B(z)C(z):

Here is the �rst example of an admissible onstrution whih has a simple translation in terms of

ordinary generating funtions:

ogf(B � C)(z) = ogf(B)(z) � ogf(C)(z):

The union of two lasses B and C is translated into the sum of the two ordinary generating

funtions in the ase of a disjoint union. More generally,

ogf(B [ C)(z) =

X

�2B[C

z

j�j

A

=

X

�2B

z

j�j

B

+

X

2C

z

jj

C

�

X

�2B\C

z

j�j

B[C

= ogf(B) + ogf(C)� ogf(B \ C):

The additional assumption on the sizes implies that the size of an element � of B\C is well de�ned

sine j�j

B

= j�j

B[C

= j�j

C

.
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The lass A of �nite sequenes of elements of the lass B is denoted Seq(B). It is well de�ned

if and only if the lass B has no element of size zero, a restrition whih prevents from getting an

in�nite number of sequenes of size zero. Grouping sequenes of the same length yields the relation

Seq(B) = f�g [ B [ (B � B) [ (B � B � B) [ � � � ;

where � is an element of size zero whih has essentially the same meaning as the empty word in the

ontext of languages. Thus, using both previous onstrutions,

ogf

�

Seq(B)

�

= 1 + ogf(B) + ogf(B)

2

+ ogf(B)

3

+ � � � =

X

k�0

ogf(B)

k

=

1

1� ogf(B)

:

The lass A of subsets of the lass B is denoted Set(B). The lass of direted yles of the

lass B is denoted Cyle(B). Direted yles are sequenes de�ned up to yli permutations: two

sequenes (�

1

; : : : ; �

k

) and (�

1

; : : : ; �

k

) represent the same direted yle if and only if there exists

an integer l suh that for all i, �

i

= �

i+l mod k

. These two onstrutions admit almost reasonable

translations mentioned at the end of this setion.

1.2. Labeled strutures. Many objets of lassial ombinatoris present themselves naturally as

labeled strutures whose \atom" (typially nodes in a graph or a tree) bear distintive integer labels.

For instane the yle deomposition of a permutation represents the permutation as an unordered

olletion of yli graphs whose nodes are labeled by integers. More preisely, an element of size n

of a labeled struture an be deomposed in n \atomi" elements of size 1 and these atoms are

labeled by distint elements of f1; : : : ; ng.

Operation on labeled strutures are based on a speial produt, the labeled (or partionnal) produt

that distributes labels between omponents. This operation is a natural analogue of the Cartesian

produt for plain unlabeled strutures. The labeled produt in turn leads to labeled analogues of

the sequene, set, and yle onstrutions.

Let us de�ne the labeled produt A = B ./ C of two lasses B and C. The ordered pair (�; ),

for � 2 B and  2 C, is not a labeled struture sine atoms of �, respetively , have labels in

�

1; : : : ; j�j

	

, respetively

�

1; : : : ; jj

	

, leading to atoms with ommon labels. A natural lift of these

two labelings, is a labeling with labels in

�

1; : : : ; j�j + jj

	

suh that the order relation between

labels of �, respetively , are preserved. These labeled strutures are the elements of the labeled

produt. For instane, onsider the lass of hains whih are total orderings of the elements of

f1; : : : ; kg for all integers k. The pair onsisting of the two hains (2; 1) and (1) is not a labeled

struture:

�

(2; 1); (1)

�

has two atoms labeled 1. On the other hand, three natural expansions lead

to labeled strutures:

�

(2; 1); (3)

�

,

�

(3; 1); (2)

�

, and

�

(3; 2); (1)

�

.

Any element of A has a unique deomposition into elements of B�C. But onversely, the pair of

an element of B of size k and an element of C of size l, is the deomposition of as many elements as

there are possibilities to label (�; ) by f1; : : : ; l + kg in a way that preserves the labeling indued

on � and . So there are

(k+l)!

k! l!

suh deompositions. As regards the ounting sequene, an element

of size n of A deomposes into a pair of elements of size k and l suh that k + l = n, so that

A

n

=

X

k+l=n

n!

k! l!

B

k

C

l

:

This equation an be rewritten as

A

n

n!

=

X

k+l=n

B

k

k!

C

l

l!

:
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Constrution Unlabeled strutures Labeled strutures

Produt ogf(B) � ogf(C) egf(B) � egf(C)

Union ogf(B) + ogf(C) egf(B) + egf(C)

Sequene

1

1� ogf(B)(z)

1

1� egf(B)(z)

Set exp

 

1

X

k=1

(�1)

k+1

k

ogf(B)(z

k

)

!

exp

�

egf(B)(z)

�

Cyle

1

X

k=1

�(k)

k

log

�

1

1� ogf(B)(z

k

)

�

log

1

1� egf(B)(z)

Table 1. Admissible onstrutions and generating funtions interpretations.

The use of exponential generating funtions to enode the ounting sequenes is then natural

beause the previous equation haraterizes the produt of two suh funtions. So the ounting

sequene fA

n

g

n�0

is represented by A(z) = egf(A)(z) =

P

n�0

A

n

n!

, whih was hosen suh that

egf(B ./ C) = egf(B) � egf(C):

The same work as for unlabeled strutures leads to the results summarized in Table 1.

2. Complex Asymptoti Analysis

One a funtion enoding the ounting sequene has been determined, it remains to extrat the

sequene from the funtion. The expliit expansion of the funtion is often too diÆult. To avoid

it, the ruial observation is that most of the generating funtions that our in ombinatorial

enumerations are also analyti funtions: their expansions onverge in a neighborhood of the origin

and Cauhy's integral formula expresses Taylor oeÆients of suh analyti funtions as ontour

integrals.

This setion is dediated to a short presentation of analyti funtions, then to the determination

of the exponential growth of the ounting sequene, and �nally to the subexponential fators.

2.1. Residue theorem. A funtion f(z) of the omplex variable z is analyti at a point z = a if

it is de�ned in a neighborhood of z = a and is given there by a onvergent power series expansion

f(z) =

X

n�0

f

n

(z � a)

n

:

The quotient of two analyti funtions f(z)=g(z) gives the intuition of what is a meromorphi

funtion. More preisely, h(z) is meromorphi at z = a if and only if in a neighborhood of z = a

it is given by an expansion of the form

h(z) =

X

n��M

h

n

(z � a)

n

for z 6= a:

If M � 1 and h

�M

6= 0 then h(z) is said to have a pole of order M at z = a. When h(z) has a pole

of order M � 1 at z = a, then the oeÆient h

�1

is alled the residue of h(z) at z = a and it is

designated by

Res

�

h(z); z = a

�

:

The important residue theorem relates global properties of a meromorphi funtion (its integral

along urves) to its loal properties at designated points, the poles.
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Theorem 1 (Cauhy's residue theorem). Let � be a simple losed urve oriented positively and

situated inside a simply onneted region D (like a disk), and assume g(z) to be meromorphi in D

and analyti on �. Then

1

2i�

Z

�

g(z) dz =

X

s

Res

�

g(z); z = s

�

;

where the sum is extended to all poles of g(z) enlosed in �.

A diret appliation of the residue theorem onerns oeÆients of analyti funtions.

Theorem 2 (Cauhy's oeÆient formula). Let f(z) be analyti in a simply onneted region D

and let � be a losed urve oriented positively and loated inside D that simply enirles the origin.

Then the oeÆient [z

n

℄ f(z) admits the integral representation

f

n

� [z

n

℄ f(z) =

1

2i�

Z

�

f(z)

dz

z

n+1

:

2.2. Singularities and exponential rate. Most of the ounting sequenes enoded by funtions

have an asymptoti behavior that an be desribed by A

n

� G

n

�(n) where �(n) is a subexponential

funtion: the real number G = lim sup

n!+1

jf

n

j

1=n

is alled the exponential rate of growth of the

ounting sequene.

This parameter has a straightforward interpretation as regards the funtion whih enodes the

ounting sequene. A singularity of suh a funtion an be informally de�ned as a point where the

funtion eases to be analyti. Singularities of smallest modulus of a funtion analyti at 0 are

alled dominant singularities. The exponential rate of growth is linked to the modulus of dominant

singularities by the following theorem.

Theorem 3 (Exponential growth formula). If f(z) is analyti at 0 and R is the modulus of a

singularity of f(z) nearest to the origin, then the exponential rate of growth of the oeÆients

[z

n

℄ f(z) is 1=R.

Proof. Cauhy's formula applied to a irle � of enter 0 and radius R

0

< R gives

jf

n

j =

�

�

�

�

1

2i�

Z

�

f(z)

dz

z

n+1

�

�

�

�

�

j2�R

0

j

j2i�j

sup

�

f(z)

�

�

jzj = R

0

	

R

0

�(n+1)

= O

�

R

0

�n

�

;

so that G = lim sup

n

jf

n

j

1=n

�

1

R

0

, and G �

1

R

by letting R

0

approah R.

We now assume G <

1

R

and proeed to get a ontration, proving G =

1

R

in this way. Fix R

0

suh that G <

1

R

0

<

1

R

. For some onstant K and all suÆiently large n, we have jf

n

j �

K

R

0

n

. The

series

P

n�0

f

n

z

n

therefore onverges normally on the set of all z of modulus R, sine 0 <

R

R

0

< 1.

This ontradits the existene of a singularity of modulus R. �

An additional property of funtions de�ned by ounting sequenes is that their oeÆients are

non-negative. This situation allows to loate one dominant singularity more preisely.

Theorem 4 (Pringsheim's theorem). If a funtion has Taylor oeÆients that are real non-negative,

then one of its dominant singularities, if there is a singularity, is real positive.

2.3. Subexponential approximation. If the loation of the singularities of a funtion determines

the exponential rate of growth of its oeÆients, the nature of the singularities determines the way

the dominant exponential term in oeÆients is modulated by a subexponential fator.

For sake of simpliity, we assume that the singularities are isolated. By hange of the variable,

we an assume that all the dominant singularities are of modulus 1. Moreover we assume that there

is a unique dominant singularity whih is 1.
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The notion of �-analyti funtion is de�ned to desribe the sope of the following transfer

theorem whih maps the loal behavior of the funtion around its dominant singularity to the

asymptoti form of its oeÆients. Given two numbers �, R, with R > 1 and 0 < � <

�

2

, the open

domain �(�;R) is de�ned as

�(�;R) =

n

z

�

�

�

jzj < R; z 6= 1;

�

�

Arg(z � 1)

�

�

> �

o

:

A domain is a �-domain if it is a �(�;R) for some R and some �. A funtion is �-analyti if it

is analyti in some �-domain.

Theorem 5 (Big-oh transfer [1℄). Let � be a number not in f0;�1;�2; : : : g. Assume that f(z) is

�-analyti and that it satis�es in the intersetion of a neighbourhood of 1 and of its �-domain the

ondition

f(z) = O

 

(1� z)

��

�

log

1

1� z

�

�

!

:

Then

[z

n

℄ f(z) = O

�

n

��1

(log n)

�

�

:

Proof. The starting point is Cauhy's oeÆient formula. We apply it to a partiular loop around

the origin whih is internal to the �-domain of f : we hoose the positively oriented ontour



n

�  = 

1

+ 

2

+ 

3

+ 

4

, with

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:



1

=

n

z

�

�

�

jz � 1j =

1

n

�

�

Arg(z � 1)

�

�

� �

o



2

=

n

z

�

�

�

1

n

� jz � 1j; jzj � r; Arg(z � 1) = �

o



3

=

n

z

�

�

�

jz � 1j = r;

�

�

Arg(z � 1)

�

�

� �

o



4

=

n

z

�

�

�

1

n

� jz � 1j; jzj � r; Arg(z � 1) = ��

o

If the �-domain of f is �(�;R), we assume that 1 < r < R, and � < � <

�

2

, so that the ontour 

lies entirely inside the domain of analyity of f .

For j = 1, 2, 3, 4, let

f

(j)

n

=

1

2i�

Z



j

f(z)

dz

z

n+1

:

The analysis proeeds by bounding the absolute value of the integral along eah of the four parts.

In order to keep notations simple, we detail the proof in the ase where � = 0.

Inner irle. From trivial bounds, the ontribution there is

�

�

�

f

(1)

n

�

�

�

= O

 

�

1

n

�

1��

!

;

as the funtion f is O

�

�

1

n

�

��

�

, the ontour has length O(

1

n

), and z

�n�1

is O(1) there.

Retilinear parts. Setting ! = e

i�

and performing the hange of variable z = 1 +

!t

n

, we �nd

�

�

�

f

(2)

n

�

�

�

<

1

2�

Z

1

1

K

�

t

n

�

��

�

�

�

�

1 +

!t

n

�

�

�

�

�n�1

dt;

for some onstant K > 0 suh that

�

�

f(z)

�

�

< K(1 � z)

��

\over the �-domain." In fat we have a

onstant for a small neighborhood V of 1 due to the asymptoti assumption and an other onstant
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Funtion f(z) Asymptoti expansion of the oeÆients f

n

1 0

(1� z)

�1

1

(1� z)

�2

n+ 1

(1� z)

�3

1

2

n

2

+

3

2

n+ 1

(1� z)

1=2

�

1

p

�n

3

�

1

2

+

3

16n

+

25

256n

2

+O

�

1

n

3

�

�

(1� z)

�1=2

1

p

�n

�

1�

1

8n

+

1

128n

2

+

5

1024n

3

+O

�

1

n

4

�

�

log(1� z)

�1

1

n

(1� z)

�3=2

log(1� z)

�1

p

n

�

�

2 log n+ 2 + 4 log 2� 2 +

3 log n

4n

+O

�

1

n

�

�

Table 2. Examples of appliations of the transfer theorem.

that omes from the ompaity of a losed set C inluded in � suh that all the used loops are

in C [ V . From the relation

�

�

�

�

1 +

!t

n

�

�

�

�

� 1 +

t

n

os �;

there results

�

�

�

f

(2)

n

�

�

�

<

K

2�

J

n

n

��1

where

J

n

=

Z

1

1

t

��

�

1 +

t os �

n

�

�n

dt:

For a given �, the integrals J

n

are all bounded above by some onstant sine they admit a limit

as n tends to in�nity:

J

n

!

Z

1

1

t

��

e

�t os �

dt:

(The ondition on � that 0 < � <

�

2

preisely ensures onvergene of the integral.) Thus, globally,

on this part of the ontour, we have

�

�

�

f

(2)

n

�

�

�

= O

�

n

��1

�

;

and the same bound holds for f

(4)

n

by symmetry.

Outer irle. There, f(z) is bounded while z

�n

is of the order r

�n

. Thus, f

(3)

n

is exponen-

tially small.

In summary, eah of the four integrals of the split ontour ontributes O(n

��1

). The statement

of the theorem thus follows. �

This theorem an be extended to equivalents giving a fairly mehanial proess to translate

aymptoti information on a funtion into information on its oeÆients. These are simple funtions

that are used as a sale sine any funtion equivalent to it around its dominant singularity as the

same asymptoti expansion. See Table 2.
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3. Examples

3.1. Clouds. Let us onsider n lines in general position in the plane. A loud is a subset of the

set of the intersetion points of the lines suh that:

1. any three points of the loud are not aligned;

2. any line has at least one of its points in the loud;

3. the set is maximal for inlusion among the sets that satis�es points 1 and 2.

The size of a loud is the number of points it ontains.

There is a more ombinatorial desription of a loud sine they are in bijetion with labeled

2-regular graphs (any vertex has degree 2, no loops, no multiple edges). In the bijetion, the line

labeled i is the vertex labeled i of the graph and the intersetion between the line i and j is mapped

to an edge between i and j. Indeed, point 1 in the de�nition exatly means that any vertex of the

graph has degree at most 2 beause three aligned intersetions are neessarily on a ommon line

sine the piture is as general as possible. Point 2 translates the fat that any vertex has degree at

least 1. Assume there are at least two verties i, j of degree 1 in the loud S. Then S [ f(ij)g is a

loud and that is in ontradition with point 3. Finally, there annot be only one vertex of degree 1

sine the sum of the degree of verties of a graph is even (eah edge appears twie). As regards the

size, sine there are two intersetions per line in a loud and that an intersetion is shared by two

lines, the size of the loud is the number of verties. Thus instead of louds we ould equivalently

onsider the lass of labeled 2-regular graphs where the size of an element is its number of verties.

A labeled 2-regular graph is a set of non-oriented yles of size at least 3 and we are interested

in the exponential generating funtion of this struture. Oriented yles of size at least 3 are the

oriented yles that do not ontain 1 or 2 elements only so their generating funtion is

C

>2

+

(z) = log

1

1� z

�

�

1

1!

z +

1

2!

z

2

�

:

A non-oriented yle of at least 3 verties admits exatly 2 distint orientations, so that the gener-

ating funtion of non-oriented yle of at least 3 verties is

C

>2

(z) =

1

2

C

>2

+

(z):

Then the series of the sets of non-oriented yles on at least 3 verties and equivalently of the

louds is

Clouds(z) = expC

>2

(z) =

exp

�

�

1

2

z �

1

4

z

2

�

p

1� z

:

Thus, Clouds(z) is the produt of 1=

p

1� z whih admits 1 as singularity of minimal modulus and

is analyti in C n [ 1;+1), and exp

�

�

1

2

z �

1

4

z

2

�

that is entire. The behavior of Clouds(z) around 1

is the produt of 1=

p

1� z and exp(�3=4)

�

1 + (1 � z) +

1

4

(1 � z)

2

�

1

12

(1 � z)

3

+ O

�

(1 � z)

4

)

�

�

,

the standard Taylor expansion at 1 of exp(�

1

2

z �

1

4

z

2

).

Clouds(z) =

e

�3=4

p

1� z

+ e

�3=4

p

1� z +

e

�3=4

(1� z)

3=2

4

�

e

�3=4

(1� z)

5=2

12

+ � � �

This expansion is valid in a �-domain so that by the priniple of singularity analysis, the as-

ymptoti determination of the oeÆients 

n

= [z

n

℄ Clouds(z) results from a diret translation of

the expansion

Clouds(z) = e

�3=4

1

p

1� z

+ e

3=4

p

1� z +O

�

(1� z)

3=2

�
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into



n

= e

�3=4

�

n� 1=2

�1=2

�

+ e

�3=4

�

n� 3=2

�3=2

�

+O

�

1

n

5=2

�

=

e

�3=4

p

�n

�

1�

1

8n

+

1

128n

2

+ � � �

�

�

e

�3=4

2

p

�n

3

�

1 +

3

8n

+ � � �

�

+O

�

1

n

5=2

�

:

We �nally have the asymptoti behavior of the ounting sequene fC

n

g

n�0

of louds,

C

n

n!

= 

n

=

e

�3=4

p

�n

+

3e

�3=4

8

p

�n

3

+O

�

1

n

5=2

�

as n! +1:

3.2. 
-trees. A subset 
 of N is aperiodi if the greatest ommon divisor of its elements is 1.

Given an aperiodi �nite set 
, the lass T




of 
-trees is the set of rooted trees with a total order

on the hildren of eah node suh that the degree of eah node is in 
. For instane binary trees

are f0; 1; 2g-trees. The size of an 
-tree is its number of nodes. This lass is well de�ned if 0 2 


otherwise there are no �nite 
-trees.

Sine a 
-tree is made of a root and a sequene of length i 2 
 of 
-trees, its ordinary generating

funtion T satis�es

T (z) = z �

X

!2


�

T (z)

�

!

:

Let P (X) be the polynomial

P

!2


X

!

. The equation beomes T (z) = zP

�

T (z)

�

. To hek if the

funtion T is analyti at z we rephrase the above equation as

z = T (z)=P

�

T (z)

�

=  

�

T (z)

�

so that it is a generi instane of the inversion problem for analyti funtions ( (u) =

u

P (u)

).

An important statement of the inversion theorem is that if  is analyti at t = t

0

, then T (z)

is analyti at z =  (t

0

) if and only if  

0

(t

0

) 6= 0. To have an intuition of this result, onsider the

analyti expansion of  near t

0

:

 (t) =  (t

0

) + (t� t

0

) 

0

(t

0

) +

1

2

(t� t

0

)

2

 

00

(t

0

) + � � � :

If  

0

(t

0

) 6= 0, solving formally for t suggests that t� t

0

�

1

 

0

(t

0

)

�

z �  (t

0

)

�

and a full expansion is

obtained by repeated substitutions. If on the ontrary  

0

(t

0

) = 0 and  

00

(t

0

) 6= 0, solving formally

now suggest that (t � t

0

)

2

�

2

 

00

(t

0

)

�

z �  (t

0

)

�

so that the inversion problem should admit two

solutions satisfying

t� t

0

� �

s

2

� 

00

(t

0

)

�

 (t

0

)� z

�

1=2

:

In this ase the point  (t

0

) is a branh point, so that T (z) annot be analyti at this point. If the

�rst nonzero derivative of  at t

0

is of order r � 2, the same remark holds with a loal behavior

for t then of the form

�

 (t

0

)� z

�

1=r

.

Beause of Pringsheim's theorem, if T has a �nite radius, then there is a dominant singularity in

[ 0;+1). Thus �nding a dominant singularity of T results in searhing the smallest positive zero

of  

0

. Let � be this minimal zero of  

0

(x) =

P (x)�xP

0

(x)

P (x)

2

. This number satis�es

P (�)� �P

0

(�) = 0:

Now we have to hek the number of distint dominant singularities. By de�nition a dominant

singularity an be written as � = �e

i�

and satis�es  

0

(�) = 0. Assume there is an integer k � 2
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suh that all ! 2 
 is divided by k. In this ase P (x)�xP

0

(x) =

P

!2


(1�!)x

!

an be rewritten

in

P

!2


(1 � !)(x

k

)

!=k

. Thus if �

k

= �

k

then � is an other dominant singularity so all omplexes

(�e

2i�l=k

)

0�l�k�1

are distints dominant singularities. To apply the tranfert theorems presented in

the previous setion safely we have to ensure that there is a unique dominant singularity,

2

therefore

we made the assumption that the set 
 is aperiodi. We admit that this ondition is suÆient to

have a unique dominant singularity � (there is a proof using the ase of equality in the triangular

inequality).

Sine � satis�es P (�) � �P

0

(�) = 0, we have  

00

(�) =

��

2

P

00

(�)

P (�)

3

. Thus if 
 ontains an element

greater than 1, 	

00

(�) > 0 and

T (z) = T (�)�

s

2P (�)

3

�

2

P

00

(�)

p

�

r

1�

z

�

+O

�

(1�

z

�

)

3=2

�

:

This expansion is valid on a �-domain; thus using a transfer theorem, we obtain the asymptoti

equivalent

[z

n

℄T (z) �

s

2

�

2

	

00

(�)

p

�

1

2

p

�n

3

�

�n

= C

�

�

�n

n

�3=2

:
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Summary by Philippe Chassaing

Les liens entre le mouvement brownien et ses proessus d�eriv�es (m�eandre, pont, exursion)

d'une part et d'autre part des objets ombinatoires omme les mots de Dyk, les permutations

bi-ordonn�ees, le tri Shell's sort, les arbres simples, les fateurs gauhes, le hahage ou parking, les

animaux dirig�es, le graphe al�eatoire, la marhe al�eatoire dans le plan fendu, . . . , rendent opportune

une revue (for�ement partielle) des innombrables propri�et�es du mouvement brownien.

En ombinatoire et analyse d'algorithmes, beauoup d'asymptotiques de statistiques int�eressantes

sont famili�eres aux sp�eialistes du mouvement brownien : la hauteur ou la largeur des arbres sim-

ples normalis�ees onvergent en loi vers une loi li�ee �a la fontion � de Jaobi, onnue pour être la loi

du maximum de l'exursion brownienne. Dans l'asymptotique des nombres de Wright, d�enombrant

les graphes onnexes �a n sommets et k ar�etes en ex�es [19℄, apparaissent les moments de la surfae

sous l'exursion brownienne, dont la distribution s'exprime �a l'aide de la fontion d'Airy

1

. Le pro�l

moyen d'un arbre simple suit asymptotiquement la loi de Rayleigh, qui est la loi du maximum du

pont brownien. Le d�eplaement total dans une table de hahage pleine, est �egalement asympto-

tiquement distribu�ee selon une loi d'Airy. Il est tentant de voir es faits omme les fragments d'un

même tableau : la onvergene des hemins de Bernoulli (resp. de Dyk) et d'objets analogues vers

le mouvement brownien (resp. l'exursion brownienne). Une version arbre en est donn�ee par Aldous

ave sa onvergene des arbres simples vers le ontinuum random tree.

�

A ette premiere expliation de l'omnipr�esene de ertaines lois vient s'ajouter le prinipe

d'invariane [7℄

2

selon lequel la loi limite de di��erentes fontionelles d'une marhe al�eatoire ne

d�epend que tr�es peu (�a un fateur multipliatif pr�es) de la loi d'un pas �el�ementaire : e dernier

prinipe se traduit, par exemple, en informatique fondamentale, par l'apparition de la même loi

limite pour la hauteur de di��erents arbres simples [8, 16℄, ou enore de la meme loi limite pour le

heminement total d'un arbre binaire ou pour le d�eplaement total d'une table de hahage pleine.

Pour beauoup d'autres situations ombinatoires (tailles de omposantes onnexes du graphes

al�eatoires, minimum spanning tree, random mappings, artes planaires, et.), l'existene d'un objet

al�eatoire limite est soup�onn�ee ou av�er�ee, expliquant ainsi les lois limites d�ej�a observ�ees, fournissant

�eventuellement de nouveaux r�esultats asymptotiques en ombinatoire et en analyse d'algorithmes,

et posant de nouvelles questions sur l'omnipr�esent mouvement brownien. Il est sage pour un

mini-ours de se limiter �a la onvergene d'objets ombinatoires tr�es basiques : hemins de Dyk

(bilat�eres ou non) et fateurs gauhes, tous �etant plus g�en�eralement des hemins de Bernoulli, vers

le mouvement brownien et ses avatars, exursion brownienne, m�eandre et pont. Le mouvement

y

Notes de ours pour le ours donn�e pendant le groupe de travail AL

�

EA'01 �a Luminy (Frane).

1

Pour un aper�u agr�eable du lien entre mouvement brownien et fontions sp�eiales, voir [1℄.

2

f. [5℄, lire l'introdution.



172 Al�ea disret et mouvement brownien (Disrete Randomness and Brownian Motion)

brownien, ses propri�et�es, et le th�eor�eme de Donsker requi�erent une trentaine d'heures de ours

pour un traitement rigoureux ; j'�eviterai don les d�emonstrations, et renverrai largement �a la

bibliographie abondante sur le sujet, en partiulier �a [17, 2, 12℄.

Plan.

1. Di��erents types de hemins al�eatoires

2. Changement d'�ehelle brownien (Brownian saling) et onvergene faible

3. Convergene faible : d�e�nition et premi�eres ons�equenes

4. Convergene faible : rit�eres et autres arat�erisations

5. Propri�et�es du mouvement brownien

6. D�eompositions remarquables des trajetoires du mouvement brownien

7. Diverses propri�et�es de l'exursion brownienne normalis�ee, du pont et du m�eandre brownien

8. Conlusion

Les setions 6 �a 8 seront r�edig�ees dans un doument ult�erieur.

1. Di��erents types de hemins al�eatoires

D�e�nition (Chemins de Bernoulli). Un hemin de Bernoulli est un hemin sur le r�eseau engendr�e

par NE = (1; 1) et SE = (1;�1), partant de (0; 0), admettant omme pas �el�ementaires pr�eis�ement

les pas NE et SE. Il y a 2

n

hemins de Bernoulli de longueur n.

D�e�nition (Chemins de Dyk). Un hemin de Dyk de longueur 2n est un hemin de Bernoulli

de longueur 2n qui se termine au point (2n,0) et reste positif ou nul sur toute sa longueur. Il y a

C

n

=

�

2n+1

n

�

2n+ 1

hemins de Dyk de longueur 2n. Un mot de Dyk est la desription d'un hemin de Dyk par

la suite de ses pas, i. e. un mot form�e d'autant de arat�eres `M' (pour < mont�ees >) que de

arat�eres `D' (pour < desentes >), et dont n'importe quel pr�e�xe ontient au moins autant de `M'

que de `D'. Il y a une bijetion privil�egi�ee (entre mots et hemins), alors notons indi��eremment

B

�

2n

l'ensemble des C

n

hemins de Dyk de longueur 2n ou l'ensemble des C

n

mots de Dyk de

longueur 2n.

D�e�nition (Chemins de Dyk bilat�eres). Un hemin de Dyk bilat�ere de longueur 2n est un hemin

de Bernoulli de longueur 2n qui se termine au point (2n; 0). Il y a

�

2n

n

�

hemins de Dyk bilat�eres

de longueur 2n.

D�e�nition (Fateurs gauhes). Un fateur gauhe de longueur n est un hemin de Bernoulli de

longueur n qui reste positif ou nul tout au long de sa trajetoire. Il y a

�

n

bn=2

�

fateurs gauhes de

longueur n.

Variables al�eatoires orrespondantes. Quitte �a identi�er une fontion et son graphe, on peut

voir l'ensemble B

n

des hemins de Bernoulli de longueur n et ses sous ensembles B

�

n

(ensemble

des hemins de Dyk

3

), B

o

n

(ensemble des hemins de Dyk bilat�eres) et B

+

n

(ensemble des fateurs

gauhes) omme des parties �nies de l'espae C[ 0; n ℄ des fontions ontinues. On notera �

n

(resp.

�

�

n

, �

o

n

, �

+

n

) la mesure de probabilit�e sur C[ 0; n ℄ uniforme sur B

n

(resp. B

�

n

, B

o

n

, B

+

n

).

3

Dans la suite, haque fois que 'est n�eessaire, pour les hemins de Dyk p. e., on sous entendra que n est pair,

et dans e as on notera n = 2n

0

.
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( ) Un hemin de Bernoulli

de longueur n = 60 ;

(+) Un fateur gauhe de longueur

n = 20 ;

(o) Un hemin de Dyk bilat�ere

de longueur 2n = 20 ;

(�) Le hemin de Dyk de longueur

2n = 20 assoi�e au mot de Dyk

MMMMDDMDMDMMDDMDDMDD.

Figure 1. Di��erents types de hemins.

D�e�nition. Dans la suite, une variable al�eatoire de loi �

n

(resp. �

�

n

, �

o

n

, �

+

n

) sera appel�ee marhe

al�eatoire simple sym�etrique (resp. exursion de Bernoulli, pont de Bernoulli, m�eandre de Bernoulli)

de longueur n.

Une variable al�eatoire X �a valeur dans un espae de fontions, p. e. dans C[ 0; 1 ℄, C[ 0; n ℄ ou

enore C[ 0;+1), est souvent appel�ee proessus stohastique.

Seule l'appellation < marhe al�eatoire simple sym�etrique > est bien �etablie, les 3 autres �etant in-

spir�ees d'un voabulaire bien �etabli dans le adre du mouvement brownien, o�u l'on parle d'exursion

brownienne, de pont brownien, et de m�eandre brownien. Dans la suite, par un abus de langage sur

lequel on ne s'attardera pas, on identi�era ouramment une suite u = (u

k

)

0�k�n

�a son prolonge-

ment en une fontion f ontinue lin�eaire par moreaux sur [ 0; n ℄, ou enore au graphe de ette

derni�ere fontion. En partiulier, les fontions de B

n

sont bien d�e�nies par leurs �evaluations en 0,

1, 2, . . . , n. La onstrution usuelle d'une marhe al�eatoire simple sym�etrique est plutôt elle de

la suite des n+ 1 �evaluations :

D�e�nition (Marhe al�eatoire simple sym�etrique, d�e�nition �equivalente). Notons (Y

i

)

i�1

une suite

de variables al�eatoires ind�ependantes et de même loi (on abr�egera < ind�ependantes et de même

loi > en i. i. d. dans la suite), ave

P(Y

k

= 1) = P(Y

k

= �1) = 1=2;

et posons

S

0

= 0; S

k

= Y

1

+ Y

2

+ � � �+ Y

k

;

on dit que S = (S

k

)

0�k�n

est la marhe al�eatoire simple sym�etrique de longueur n.
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Remarques.

1. On verra dans la suite que ette onstrution r�ev�ele ertaines propri�et�es ruiales des hemins

de Bernoulli, dont le mouvement brownien va h�eriter par passage �a la limite.

2. Il est naturel, dans e ontexte, de d�e�nir la marhe simple sym�etrique pour tout entier non

n�egatif, i. e. de d�e�nir un hemin de Bernoulli al�eatoire de longueur in�nie.

3. Plus g�en�eralement, une marhe al�eatoire S = (S

k

)

k�0

est d�e�nie sur un groupe (G;�), p. e.

ii (R;+), par

S

k

= Y

1

� Y

2

� � � � � Y

k

;

les Y

i

�etant i. i. d., la loi de probabilit�e ommune aux Y

i

�etant appel�ee < pas > de la marhe.

On peut par exemple assoier aux arbres unaires-binaires al�eatoires, ou aux arbres �etiquet�es

al�eatoires, une marhe al�eatoire dont le pas est di��erent du pas de la marhe al�eatoire simple

sym�etrique, i. e. di��erent de

1

2

Æ

�1

+

1

2

Æ

1

.

Une fois la marhe al�eatoire simple sym�etrique ainsi d�e�nie, on peut voir �

�

n

(resp. �

0

n

, �

+

n

)

omme des lois onditionelles de ette marhe de longueur n, 'est-�a-dire que, pour A � C[ 0; n ℄,

�

n

(A) =

#(A \ B

n

)

2

n

= P(S 2 A);

�

�

n

(A) =

#(A \ B

�

n

)

C

n

0

= P(S 2 A j S

k

� 0; 0 � k � n et S

n

= 0);

�

0

n

(A) =

#(A \ B

0

n

)

�

n

n

0

�

= P(S 2 A j S

n

= 0);

�

+

n

(A) =

#(A \ B

+

n

)

�

n

bn=2

�

= P(S 2 A j S

k

� 0; 0 � k � n):

Ces d�e�nitions de �

n

(resp. �

�

n

, �

0

n

, �

+

n

) fournissent un algorithme eÆae pour la g�en�eration

d'un hemin de Bernoulli al�eatoire, et des algorithmes de rejet parfaitement ineÆaes pour la

g�en�eration des hemins de Dyk (bilat�eres ou non) ou enore des fateurs gauhes.

2. Changement d'�ehelle brownien (Brownian saling) et onvergene faible

D�e�nition (Changement d'�ehelle brownien (Brownian saling)).

�

Etant donn�e une fontion f

d�e�nie sur un intervalle [ a; b ℄ born�e, on note f

[a;b ℄

la fontion d�e�nie sur [ 0; 1 ℄ par

f

[a;b ℄

(t) =

1

p

b� a

f

�

a+ t(b� a)

�

:

En partiulier ette op�eration envoie bijetivement C[ a; b ℄ sur C[ 0; 1 ℄.

Le graphe de f

[a;b ℄

est ainsi obtenu, �a partir de elui de f , en multipliant la largeur par un

fateur

1

b�a

et la hauteur par un fateur

1

p

b�a

. Bahelier en 1900, ou Einstein en 1905 (dans leur

�etude respetivement du ours des ations en bourse, et du mouvement, observ�e par Brown en 1826,

de ertaines partiules en suspension dans un liquide) utilisent expliitement ou impliitement, une

propri�et�e remarquable : le hangement d'�ehelle brownien d'un hemin de Bernoulli de longueur n

onverge vers un objet limite, quand n tend vers +1.

Notons �

n

(resp. �

�

n

, �

o

n

, �

+

n

) l'image de �

n

(resp. �

�

n

, �

o

n

, �

+

n

) par le hangement d'�ehelle

brownien. Le r�esultat l�e de e mini-ours est le

Th�eor�eme. La suite de mesures de probabilit�es �

n

(resp. �

�

n

, �

o

n

, �

+

n

) sur l'espae C[ 0; 1 ℄ poss�ede,

au sens de la onvergene faible, une mesure de probabilit�e limite, � (resp. �

�

, �

o

, �

+

).
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La notion de onvergene faible est d�evelopp�ee Setions 3 et 4. Fixons le voabulaire.

( ) Un hemin de Bernoulli

de longueur n = 2500 ;

(+) Un m�eandre de Bernoulli au hasard

de longueur n = 2500 ;

(o) Un hemin de Dyk bilat�ere au

hasard de longueur n = 1000 ;

(�) Un hemin de Dyk au hasard de

longueur n = 2500.

Figure 2. Chemins de Bernoulli au hasard de longueur 1000 �a 2500 : ils poss�edent

en g�en�eral des utuations d'ordre de grandeur quelques dizaines.

D�e�nition (Mouvement brownien). La mesure de probabilit�e �, d�e�nie sur C[ 0; 1 ℄ muni de sa

tribu de bor�eliens, est appel�ee mesure de Wiener. Une variable al�eatoire B �a valeur dans C[ 0; 1 ℄,

ayant pour loi la mesure de Wiener, est appel�ee mouvement brownien (lin�eaire) (standard).

D�e�nition (Exursion, pont et m�eandre browniens). Une variable al�eatoire e (resp. b, m) �a valeur

dans C[ 0; 1 ℄, ayant pour loi la mesure �

�

(resp. �

o

, �

+

), est appel�ee exursion brownienne (nor-

malis�ee) (resp. pont brownien, m�eandre brownien).

Les hemins de Bernoulli de la Figure 2 donnent une id�ee de l'allure typique du mouvement

brownien ( ), resp. du m�eandre (+), du pont (o), de l'exursion brownienne (�). On peut

r�esumer les d�e�nitions pr�e�edentes en un tableau 2�2, suivant la pr�esene ou l'absene des deux

ontraintes (de positivit�e et de retour en 0 �a la �n) :

Remarques.

{ Le th�eor�eme i-dessus rassemble en fait quatre th�eor�emes et poss�ede quatre auteurs : la on-

vergene des marhes al�eatoires vers la mesure de Wiener �, ou vers le mouvement brownien,

a �et�e d�emontr�ee par Donsker [6℄, la onvergene vers l'exursion brownienne par Kaigh [11℄,

la onvergene vers le m�eandre brownien par Iglehart [9℄, et elle vers le pont brownien par

Liggett [13℄.

{ Les r�esultats de Donsker, Iglehart et autres portent en fait sur la onvergene de marhes

al�eatoires, onditionn�ees ou non, de pas plus g�en�eraux que eux de la marhe al�eatoire simple

sym�etrique : les pas Y

i

sont toujours i. i. d., mais de loi ommune quasiment quelonque
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Figure 3. Les di��erents types de hemins et leurs analogues browniens.

(parfois Y

i

doit être �a valeurs enti�eres, il doit toujours être entr�e (E[Y

i

℄ = 0) et �a variane �nie

(0 < E[Y

2

i

℄ < +1)). Cette g�en�eralit�e est bien sûr int�eressante, mais plus partiuli�erement

en ombinatoire, ou en analyse d'algorithme. Par exemple, il est expliqu�e dans Aldous ou

dans [19℄ que le mot de  Lukasiewiz assoi�e �a un arbre g�en�eral (resp. �etiquet�e) de taille n est

aussi assoi�e �a une marhe al�eatoire de longueur n, onditionn�ee

L

, de pas p = (p

k

)

k��1

g�eom�etrique (donn�e par p

k

= 2

�k�2

) (resp. de pas Poisson, donn�e par p

k

=

1

k+1! e

). Ainsi

le r�esultat de Kaigh permet d'expliquer un faiseau de omportements asymptotiques de

statistiques li�ees aux arbres < g�en�eraux > (resp. aux arbres �etiquet�es, graphes onnexes et,

par exemple, onstantes de Wright, hahage lin�eaire, et.).

{ Une multitude de arat�erisations et onstrutions di��erentes du mouvement brownien, du

pont, de l'exursion et du m�eandre brownien, souvent d�eoulant de propri�et�es ombinatoires

des hemins de Dyk ou de Bernoulli, seront donn�ees aux Setions 5 et 7.

3. Convergene faible : d�e�nition et premi�eres ons�equenes

J'abr�ege enore ii e qui est expliqu�e de mani�ere tr�es laire et assez �eonomique dans le livre

fondamental de Billingsley. On se plaera dans un espae m�etrique (S;S), qui, pour nous, sera

exlusivement R

d

ou C[ 0; 1 ℄, muni de la distane usuelle dans le premier as, de la distane de

la onvergene uniforme dans le seond as ; S d�esignera la tribu engendr�ee par (la plus petite

tribu ontenant les) ouverts de la topologie induite. Les mesures onsid�er�ees seront des mesures

de probabilit�e sur S. Les r�esultats i-dessous s'appliquent �a des espaes m�etriques plus g�en�eraux,

dont on exige parfois qu'il soient omplets et s�eparables (voir [2, 14℄).

D�e�nition (Convergene faible). On dit que la suite de mesures de probabilit�e (�

n

)

n�0

onverge

faiblement vers la mesure de probabilit�e �, si et seulement si, pour toute fontion ontinue born�ee f
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de S dans R,

lim

n

Z

f d�

n

=

Z

f d�:

On dit qu'une suite de variables al�eatoires X

n

�a valeurs dans S onverge faiblement vers la

variable al�eatoire X si et seulement si la suite (�

n

)

n�0

des lois des v. a. X

n

onverge faiblement

vers la loi � de X. La CNS de la d�e�nition se traduit alors ainsi : pour toute fontion ontinue

born�ee f de S dans R,

lim

n

E

�

f(X

n

)

�

= E

�

f(X)

�

:

Il en d�eoule imm�ediatement que

Propri�et�e (Corollaire fondamental). Si X

n

onverge faiblement vers X, et si � est une fontion

ontinue de S dans T (deux espaes m�etriques), alors �(X

n

) onverge faiblement vers �(X).

D�emonstration. Pour toute fontion f ontinue born�ee de T dans R, fo� est ontinue born�ee de S

dans R, don

lim

n

E

h

f

�

�(X

n

)

�

i

= E

h

f

�

�(X)

�

i

:

�

Quelques exemples de fontions ontinues sur S = C[ 0; 1 ℄.

1. Pour T = R ou R

d

, et pour des nombres r�eels t, t

1

, . . . , t

d

�x�es dans [ 0; 1 ℄, les appliations

f 7�! �

t

(f) = f(t) et f 7�! �

~

t

(f) =

�

f(t

1

); : : : ; f(t

d

)

�

sont ontinues, don X

n

(t)

faiblement

�!

X(t) et

�

X

n

(t

1

); : : : ;X

n

(t

d

)

�

faiblement

�!

�

X(t

1

); : : : ;X(t

d

)

�

:

Cette ons�equene de la onvergene faible est appel�ee onvergene des distributions �ni-

dimensionelles de X

n

vers elles de X. La onvergene des distributions �ni-dimensionelles

ne suÆt pas �a assurer la onvergene faible, elle implique seulement que s'il y a onvergene,

alors X est la limite. Pour un exemple simple o�u il n'y a pas onvergene faible, alors qu'il

y a onvergene des distributions �ni-dimensionelles, voir la setion suivante.

2. f 7�!

�

max f;minf;

R

1

0

f(t) dt

�

est ontinue. Dans le as du maximum, la onvergene en loi

de la hauteur des arbres g�en�eraux apparâ�t alors omme une ons�equene du th�eor�eme l�e,

version Kaigh. Dans le même goût, la onvergene en loi de la largeur des arbres simples est

une ons�equene de la onvergene du pro�l, d�emontr�ee par Drmota et Gittenberger.

3. f 7�! argmax f n'est pas ontinue sur C[ 0; 1 ℄, non plus que la suite des longueurs des

intervalles s�eparant les z�eros de f (on parle de longueurs des < exursions > de f).

En partiulier, la onvergene jointe de deux statistiques int�eressantes ne oûte pas plus her que

la onvergene d'une seule. Les derniers ontre-exemples frustrants appellent un th�eor�eme relaxant

l'hypoth�ese de ontinuit�e sur �. Notons D

�

l'ensemble des disontinuit�es de �.

Th�eor�eme (Voir [2, Th. 5.1, p. 30℄). Si X

n

faiblement

�! X, et si P(X 2 D

�

) = 0, alors �(X

n

)

onverge faiblement vers �(X).

La d�emonstration utilise le th�eor�eme < porte-manteau >, qu'on verra un peu plus tard. Donnons

deux exemples d'appliation :

{ posons �(f) = sup

�

x 2 [ 0; 1 ℄

�

�

f(x) = max

[ 0;1 ℄

f

	

. Alors � n'est pas ontinue sur C[ 0; 1 ℄,

D

�

�etant l'ensemble des fontions ontinues qui atteignent leur maximum en plus d'un point.
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Il se trouve que le mouvement brownien standard B, ave probabilit�e 1, atteint son maximum

en un seul point de [ 0; 1 ℄, don

(1) P(B 2 D

�

) = 0:

{ posons T

a

(f) = inf

�

x � 0

�

�

f(x) � a

	

, l'in�mum de l'ensemble vide �etant par onven-

tion pris �egal �a +1 ; D

T

a

est l'ensemble des fontions f satisfaisant f � a sur un inter-

valle

�

T

a

(f); T

a

(f) + h

�

, h > 0. Il se trouve qu'ave probabilit�e 1, T

a

(B) est un point

d'aumulation de f t j B

t

> a g, entrainant que

(2) P(B 2 D

T

a

) = 0:

Les propri�et�es 3. et 4. du mouvement brownien sont des ons�equenes plus ou moins diretes de

la propri�et�e de Markov forte

4

. De nombreux proessus stohastiques h�eritent

5

des propri�et�es (1)

et (2) du mouvement brownien.

Les th�eor�emes de ette setion permettent d'exploiter les r�esultats de Donsker et al., mais

r�eiproquement, joints ave des onsid�erations ombinatoires, ils permettent de trouver ou de

retrouver les lois de fontionelles int�eressantes du mouvement brownien et de ses avatars.

Exeries.

1. Posons M

n

= max

0�k�n

S

k

. Montrer que pour k � 0

P(M

n

� k) = P(S

n

� k + 1) +P(S

n

� k):

Utiliser le Th�eor�eme entral limite (version de Moivre

6

) pour en d�eduire que

max fB

s

j 0 � s � 1 g

loi

= jB

1

j:

Une �etape possible est de aluler

P(M

n

� k et S

n

� `);

e qui permet en prime d'obtenir la densit�e jointe de

�

B

1

;max fB

s

j 0 � s � 1 g

�

.

2. Notons � le lieu o�u le mouvement brownien atteint son maximum. Montrer que � suit la loi

de l'arsinus, i. e. pour 0 � a � b � 1,

P

�

� 2 [ a; b ℄

�

=

Z

b

a

dx

�

p

x(1� x)

=

1

�

�

arsin(2b� 1)� arsin(2a� 1)

�

:

Pour ela, on pourra montrer que le lieu �

n

du premier maximum d'un hemin de Bernoulli

de longueur n satisfait, pour 1 � k � n� 1,

P(�

n

= k) =

�

k � 1

�

k�1

2

�

��

n� k

�

n�k

2

�

�

2

�n

;

et �etablir une onvergene loale �a l'aide de bornes sur le deuxi�eme terme dans la formule de

Stirling (si on veut être ompl�etement rigoureux). On voit que le maximum est atteint ave

une forte probabilit�e hors des intervalles [ a; 1 � a ℄, la densit�e de probabilit�e de � ayant des

pôles en 0 et 1.

4

Pour (1), voir [12, preuve du Th. 2.9.12 p. 107℄. Pour (2), voir la Setion 5 de e mini-ours.

5

en vertu du th�eor�eme de Cameron{Martin{Girsanov, f. [17, Ch. 8℄.

6

Voir Setion 5.
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3. Montrer que la valeur terminale du m�eandre brownien, m(1), suit la loi de Rayleigh, �a savoir,

pour 0 � a � b,

P

�

m(1) 2 [ a; b ℄

�

=

Z

b

a

x exp

�

�

x

2

2

�

dx = exp

�

�

a

2

2

�

� exp

�

�

b

2

2

�

:

4. Montrer que le lieu du maximum du pont brownien est uniform�ement distribu�e sur [ 0; 1 ℄

7

.

Y a-t-il une d�emonstration ombinatoire du fait que la valeur maximale du pont brownien

suit la loi de Rayleigh

8

?

5. D�emontrer la formule (11.5) page 78 de [2℄. En d�eduire la loi du maximum de l'exursion

brownienne

9

.

4. Convergene faible : rit�eres et autres arat�erisations

Th�eor�eme (Th�eor�eme < porte-manteau >, voir [2, Th. 2.1, p. 11℄). X

n

onverge faiblement vers X

si et seulement si une des onditions suivantes est remplie :

1. lim

n

E

�

f(X

n

)

�

= E

�

f(X)

�

pour toute fontion f ontinue born�ee de S dans R ;

2. lim

n

E

�

f(X

n

)

�

= E

�

f(X)

�

pour toute fontion f born�ee, uniform�ement ontinue, de S

dans R ;

3. lim sup

n

P(X

n

2 F ) � P(X 2 F ) pour tout ferm�e F de S ;

4. lim inf

n

P(X

n

2 G) � P(X 2 G) pour tout ouvert G de S ;

5. lim

n

P(X

n

2 A) = P(X 2 A) pour tout A de S qui v�eri�e P(X 2 �A) = 0.

Ii enore on pourra se reporter �a [2℄ pour les d�eveloppements. Une lasse A de fontions de S

arat�erise une loi de probabilit�e si pour tout hoix de deux variables X et Y �a valeurs dans S,

on a

8f 2 A; E

�

f(X)

�

= E

�

f(Y )

�

) X

loi

= Y:

Exemples.

1. Pour S = R, la fontion de r�epartition arat�erise une loi de probabilit�e, e qui revient �a dire

que la lasse A =

�

1

(�1;x℄

�

�

x 2 R

	

est arat�erisante.

2. Pour S = R

d

, la lasse A =

�

�

~

t

�

�

~

t 2 R

d

	

, o�u �

~

t

est d�e�ni par

�

~

t

(~x) = e

i

~

t:~x

est arat�erisante,

~

t 7�! E

�

e

i

~

t�X

�

�etant appel�ee fontion arat�eristique de X.

3. Pour S = C[ 0; 1 ℄, C[ a; b ℄ ou C[ 0;+1) la lasse A =

�

�

~

t

�

�

d � 1;

~

t 2 R

d

	

, o�u �

~

t

est d�e�ni

par

�

~

t

(f) =

�

f(t

1

); : : : ; f(t

d

)

�

est arat�erisante.

4. La lasse A des fontions born�ees et uniform�ement ontinues de S dans R est arat�erisante.

La onvergene de E

�

�(X

n

)

�

vers E

�

�(X)

�

pour toutes les fontions � d'une lasse arat�erisante

A suÆt-elle �a assurer la onvergene faible de X

n

vers X ? La r�eponse est di��erente pour haun

des exemples i-dessus : pour 2. 'est oui, en vertu du Th�eor�eme de ontinuit�e de Paul L�evy [2,

Th�eor�eme 7.6, p. 46℄, et il s'agit d'une CNS. Pour 1. 'est aussi oui, mais la ondition est largement

trop restritive : il s'agit d'une ondition n�eessaire seulement si la loi limite est di�use (i. e.

7

Utiliser le lemme ylique attribu�e parfois �a Raney, parfois �a Dvoretski ou �a Motzkin.

8

f. [2, Setion 11℄, mais on peut sûrement trouver un raouri (je n'ai pas eu le temps de m'en assurer).

9

C'est, en partiulier, la loi limite pour la hauteur ou la largeur des arbres simples [8, 16℄.
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P(X = a) = 0 pour tout a dans R), en vertu du 5. du Th�eor�eme < porte-manteau >, puisque

�(�1; a ℄ = fag ! En�n, la r�eponse est non pour l'exemple 3., omme le montre l'exemple suivant

tir�e de [2℄ : prenons X et X

n

non al�eatoires �a valeur dans C[ 0; 1 ℄, X � 0 et X

n

� f

n

, f

n

ayant

le graphe i-dessous : les distributions �ni-dimensionelles de X

n

onvergent bien faiblement vers

Figure 4. f

n

est ontinue et aÆne par moreau, ave ii pour n = 10,

�

f(0); f(1=2n); f(1=n); f(1)

�

= (0; 1; 0; 0).

les probabilit�es onentr�ees sur 0 2 R

d

, i. e. vers les distributions �ni-dimensionelles de X, mais

�(X

n

) = maxX

n

� 1 ne onverge pas faiblement vers �(X) = maxX � 0.

Il faut don une ondition suppl�ementaire �a la onvergene des distributions �ni-dimensionelles

pour obtenir la onvergene faible des variables al�eatoires �a valeur dans C[ 0; 1 ℄ : 'est la ondition

de tension.

D�e�nition. La suite de variables al�eatoires X

n

est tendue (ou �equitendue) si et seulement si pour

tout " > 0 il existe un ompat K

"

de S tel que

8n; P(X

n

=2 K

"

) � ":

Le Th�eor�eme de Prohorov [2, Setion 6℄ assure que la tension est une CS (et une CNS si S =

C[ 0; 1 ℄) pour la relative ompait�e d'une suite de mesures de probabilit�e (ii les lois des v. a. X

n

).

Il suit que ette suite de variables (X

n

)

n�0

poss�ede au moins une valeur d'adh�erene pour la

onvergene faible. On onnait les distributions �ni-dimensionelles de ette valeur d'adh�erene,

e sont les limites des distributions �ni-dimensionelles de X

n

, don e sont les distributions �ni-

dimensionelles de X, don X est la seule valeur d'adh�erene de X

n

, or une suite relativement

ompate ayant une seule valeur d'adh�erene est onvergente. Finalement :

Th�eor�eme. Si une suite de variables al�eatoires X

n

variables al�eatoires �a valeurs dans C[ 0; 1 ℄ est

tendue, et si ses distributions �ni-dimensionelles onvergent vers elles de X, alors X

n

onverge

faiblement vers X.

Le hapitre 2 de [2℄ donne une foule de rit�eres de tension dans C[ 0; 1 ℄, bas�ees sur la ar-

at�erisation d'Arzel�a{Asoli des ompats de C[ 0; 1 ℄. Par exemple, les d�emonstrations de Donsker,

Iglehart et Kaigh sont bas�ees sur de tels rit�eres, ainsi que la d�emonstration par Drmota et Git-

tenberger de la onvergene du pro�l des arbres simples. Il existe des traitements plus modernes

[10, 14, 15℄, mais [2℄ est d�ej�a tr�es lisible et omplet.
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Il faut aussi parler du lien entre onvergene presque sûre, en probabilit�e, et dans L

p

d'une part,

onvergene faible d'autre part. Les premi�eres it�ees exigent que les variables X

n

et X, �a valeurs

dans le même espae S �a l'arriv�ee, soient aussi d�e�nie sur le même triplet probabiliste (
;A;P)

au d�epart, alors que la onvergene faible, �etant en fait uniquement la onvergene de la mesure

image par X

n

vers la mesure image par X des mesures de probabilit�e des espaes de d�epart, exige

seulement que X

n

et X aient le même espae d'arriv�ee S. Notons d(�; �) la distane sur S.

D�e�nition. Une suite (X

n

)

n�0

onverge :

1. presque sûrement vers X si et seulement si

P

�

n

! 2 


�

�

�

lim

n

d

�

X

n

(!);X(!)

�

= 0

o

�

= 1 ;

2. en probabilit�e vers X si et seulement si

8" > 0; lim

n

P

�

n

! 2 


�

�

�

d

�

X

n

(!);X(!)

�

� "

o

�

= 0 ;

3. vers X dans L

p

si et seulement si

lim

n

E

�

d(X

n

;X)

p

�

= 0:

Th�eor�eme. Les trois onvergenes i-dessus entrainent la onvergene faible.

D�emonstration. Seulement pour le 1., pour une fontion ontinue �, �(X

n

) onverge presque

sûrement vers �(X), et si de plus � est born�ee, le Th�eor�eme de onvergene domin�ee entraine

bien que lim

n

E

�

�(X

n

)

�

= E

�

�(X)

�

. Par ailleurs, 3. entraine 2. en vertu de l'in�egalit�e de Markov.

Pour montrer que 2. entraine la onvergene faible, il faut utiliser la arat�erisation 2. du Th�eor�eme

< porte-manteau > et travailler �a peine un peu plus. �

Finalement il y a une quasi-r�eiproque utile au th�eor�eme pr�e�edent, 'est le

Th�eor�eme (Th�eor�eme de repr�esentation de Skorohod, voir [18, II.86.1, p. 215℄). Si S est un espae

de Lusin (en partiulier pour S = C[ 0; 1 ℄) et si la suite de variables al�eatoires (X

n

)

n�0

, �a valeurs

dans S, onverge faiblement vers X, alors il existe un triplet probabiliste (
;A;P), et, d�e�nies

sur e triplet, des opies (

^

X

n

)

n�0

et

^

X de (X

n

)

n�0

et de X, telles que (

^

X

n

)

n�0

onverge presque

sûrement vers

^

X.

Par < opie >, on entend que X

n

et

^

X

n

, ou enore X et

^

X , ont même loi. Par exemple, il n'est

pas toujours naturel de onstruire des arbres simples al�eatoires, ou des graphes al�eatoires, de tailles

di��erentes, sur le même espae de probabilit�e : il est beauoup plus fr�equent de onsid�erer, par

exemple, l'ensemble T

n

des arbres �etiquet�es de taille n omme un espae de probabilit�e �a lui tout

seul, muni de la probabilit�e uniforme. Plonger tous les T

n

dans un même triplet probabiliste �evite

pourtant parfois ertains aluls de lois �ni-dimensionelles : ils sont rempla�es par des estimations

plus failes onduisant �a une onvergene presque sûre

10

. Par ailleurs, le Th�eor�eme de repr�esentation

de Skorohod est un outil tr�es ommode pour les d�emonstrations de la Setion 6.

5. Propri�et�es du mouvement brownien

Le but ii n'est ertainement pas de donner de d�emonstration, mais, �a titre mn�emotehnique, de

montrer omment le mouvement brownien imite les (ou h�erite des) propri�et�es de la marhe al�eatoire

simple sym�etrique.

10

Voir par exemple [4℄.
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Aroissements ind�ependants et stationnaires. La marhe al�eatoire simple sym�etrique pos-

s�ede des aroissements ind�ependants : sous �

n

, pour 1 � k

1

� k

2

� � � � � k

i

� n,

(Y

1

+ � � � + Y

k

1

) ? (Y

k

1

+1

+ � � � + Y

k

2

) ? � � � ? (Y

k

i�1

+1

+ � � �+ Y

k

i

)

i. e.

S

k

1

? (S

k

2

� S

k

1

) ? � � � ? (S

k

i

� S

k

i�1

)

et stationnaires

(Y

k+1

+ � � �+ Y

k+`

)

loi

= (Y

1

+ � � �+ Y

`

)

i. e.

S

k+`

� S

k

loi

= S

`

:

Le mouvement brownien aussi ! C'est-�a-dire sous �, pour 0 � t

1

� t

2

� � � � � t

i

� 1,

B

t

1

? (B

t

2

�B

t

1

) ? � � � ? (B

t

i

�B

t

i�1

)

et pour t � 0, s � 0,

B

t+s

�B

t

loi

= B

s

:

Cela entraine la propri�et�e de Markov faible.

Propri�et�e (Propri�et�e de Markov faible). Le nouveau proessus W = (W

s

)

0�s�h

, d�e�ni par

W

s

= B

t+s

�B

t

est ind�ependant de (B

s

)

0�s�t

. De plus W a même loi que (B

s

)

0�s�h

.

La d�emonstration requiert seulement de v�eri�er que pour haque k, `, et pour haque suite de

nombres r�eels 0 < t

1

< t

2

< � � � < t

k

� t et 0 < s

1

< s

2

< � � � < s

`

� h,

(B

t

i

)

1�i�k

? (W

s

i

)

1�i�`

et (W

s

i

)

1�i�`

loi

= (B

s

i

)

1�i�`

:

Pour l'ind�ependane, il suÆt de remarquer que (B

t

i

)

1�i�k

? (W

s

i

)

1�i�`

est �equivalent �a

(B

t

1

; B

t

2

�B

t

1

; : : : ; B

t

k

�B

t

k�1

) ? (W

s

1

;W

s

2

�W

s

1

; : : : ;W

s

`

�W

s

`�1

)

et de remarquer que

(W

s

1

;W

s

2

�W

s

1

; : : : ;W

s

`

�W

s

`�1

) = (B

t+s

1

�B

t

; B

t+s

2

�B

t+s

1

; : : : ; B

t+s

`

�B

t+s

`�1

):

Cette derni�ere �egalit�e plus la stationnarit�e des aroissements donne aussi l'�egalit�e en loi.

Remarque. On a bien sûr t > 0, h > 0, et on doit pour le moment imposer t + h � 1, mais

ette derni�ere in�egalit�e est en fait superue ar il est naturel de d�e�nir le mouvement brownien

sur [ 0;+1) (omme de d�e�nir la marhe al�eatoire simple sym�etrique (S

k

)

k�0

pour haque entier

positif).



Ph. Chassaing, summary by Ph. Chassaing 183

Une onstrution possible du mouvement brownien sur la demi-droite des entiers

positifs. Consid�erons par exemple une suite (B

(n)

)

n�0

, B

(n)

= (B

(n)

s

)

0�s�1

de mouvements brow-

niens mutuellement ind�ependants

11

. D�e�nissons alors B = (B

t

)

t�0

omme un �el�ement al�eatoire de

C[ 0;+1), tel que pour n � s � t � n+ 1,

B

t

�B

s

= B

(n)

t

�B

(n)

s

;

'est �a dire qu'on reolle les graphes (trajetoires) des B

(n)

pour former le graphe de B. Il est alors

faile de voir que B h�erite des B

(n)

l'ind�ependane des aroissements. Il en h�erite aussi la statio-

narit�e des aroissements, mais, pour le voir, il faut parler un peu de la loi de es aroissements.

Lois des aroissements du mouvement brownien. La formule de Stirling, fondamentale en

ombinatoire, est n�ee des travaux de de Moivre qui sont en quelque sorte un premier pas vers le

mouvement brownien

12

. Posons

S

k+`

� S

k

= �`+ 2Z:

Alors Z suit la loi binomiale (`;

1

2

), i. e. pour 0 � i � `,

P(Z = i) =

�

`

i

�

1

2

i

:

On sait, depuis que de Moivre

13

a d�emontr�e la formule de Stirling

14

, et l'approximation < gaussien-

ne > de la loi binomiale

15

, que l'on peut �erire, pour ` = 2bsn=2 � ns,

P(S

k+`

� S

k

= 2bx

p

n =2) = P

�

S

k+`

� S

k

p

n

2

�

2bx

p

n=2 � 1

p

n

;

2bx

p

n=2+ 1

p

n

��

�

2

p

n

1

p

2�s

e

�x

2

=2s

� P

�

N

p

s 2

�

x�

1

p

n

; x +

1

p

n

��

;

o�u N est une variable al�eatoire suivant la loi normale (ou gaussienne) entr�ee r�eduite, souvent not�ee

N (0; 1), �a savoir

P

�

N 2 [ a; b ℄

�

=

Z

b

a

1

p

2�

e

�x

2

=2

dx:

En d'autres termes,

S

k+`

�S

k

p

n

a approximativement la même loi que

p

sN , �a savoir, la loi normale

(ou gaussienne) entr�ee de variane s, not�ee traditionellement N (0; s). D'autre part,

S

k+`

�S

k

p

n

est

l'aroissement, entre les points

k

n

et, approximativement,

k

n

+ s, de la fontion obtenue, �a partir

de la marhe al�eatoire simple sym�etrique, par hangement d'�ehelle brownien. Par passage �a la

limite, on en d�eduit que

Propri�et�e (Aroissements gaussiens). Ind�ependemment de t,

B

t+s

�B

t

loi

=

p

sN:

11

On peut par exemple d�e�nir une telle suite omme un �el�ement au hasard de C[ 0; 1 ℄

N

muni du produit in�ni de

mesures de Wiener �


N

.

12

un peu for�e, le rapprohement, non ?

13

Voir http://www-groups.ds.st-andrews.a.uk/~history/Mathematiians/De_Moivre.html.

14

dans Misellanea Analytia, 1730.

15

dans Approximatio ad Summam Terminorum Binomii a+ bj

n

in Seriem expansi, 1733.
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Notons

p

s

(x; y) =

1

p

2�s

e

�

(y�x)

2

2s

:

On peut voir p

s

(x; y) omme la densit�e de probabilit�e de x +

p

sN , i. e., en vertu de la propri�et�e

d'aroissements gaussiens ind�ependants, omme la densit�e onditionelle de B

t+s

, sahant que

B

t

= x. On en d�eduit que

Propri�et�e (Distributions �ni-dimensionelles du mouvement brownien). La densit�e de probabilit�e f

de (B

t

1

; B

t

2

; : : : ; B

t

d

) est donn�ee par la formule

f(x

1

; x

2

; : : : ; x

d

) = p

t

1

(0; x

1

) p

t

2

�t

1

(x

1

; x

2

) : : : p

t

d

�t

d�1

(x

d�1

; x

d

):

Une autre mani�ere de arat�eriser les distributions �ni-dimensionelles du mouvement brownien est

de remarquer que (B

t

1

; B

t

2

; : : : ; B

t

d

) est un veteur gaussien entr�e, dont la loi est don arat�eris�ee

par sa matrie de ovariane. On alule failement le terme g�en�eral :

Cov(B

t

i

; B

t

j

) = min(t

i

; t

j

):

En e�et, pour s � t,

Cov(B

s

; B

t

) = Cov(B

s

; B

s

) +Cov(B

s

; B

t

�B

s

) = Var(B

s

) = Var

�

p

sN

�

= sVar(N) = s;

la deuxi�eme �egalit�e d�eoulant de B

s

? B

t

�B

s

.

Rappelons qu'une variable al�eatoire X = (X

1

;X

2

; : : : ;X

d

) �a valeurs dans R

d

est un veteur

gaussien si et seulement si toutes les ombinaisons lin�eaires de ses omposantes sont gaussiennes

(ont même loi que m+�N , pour un hoix appropri�e de m et �), ou enore, si et seulement si X est

image par une transformation aÆne (disons, X = ~m+A

~

N) d'un veteur

~

N = (N

1

; N

2

; : : : ; N

k

) dont

les omposantes N

i

sont i. i. d. et de loi N (0; 1). Dans le as des distributions �ni-dimensionelles

du mouvement brownien, on a ~m = 0, et on peut exhiber A et

~

N , en posant

N

1

=

B

t

1

p

t

1

; N

i

=

B

t

i

�B

t

i�1

p

t

i

� t

i�1

:

La loi d'un veteur gaussien est arat�eris�ee par l'esp�erane de haune de ses omposantes et par

sa matrie de ovariane. Dans la repr�esentation aÆne i-dessus, ~m est le veteur des esp�eranes

des omposantes, et la matrie de ovariane est � =

t

AA.

D�e�nition. Un proessus X dont les distributions �ni-dimensionelles sont gaussiennes est appel�e

proessus gaussien. La loi du proessus est alors arat�eris�ee par sa fontion moyenne m(t) = E[X

t

℄

et sa fontion ovariane �(s; t) = Cov(X

s

;X

t

).

Le mouvement brownien et, omme on le verra en Setion 7, le pont brownien, sont deux exemples

de proessus gaussiens entr�es (m(t) � 0). La fontion ovariane du mouvement brownien est

�(s; t) = min(s; t):

Th�eor�eme (Transformations des trajetoires du mouvement brownien). Le mouvement brownien

est pr�eserv�e par les transformations suivantes :

{ Sym�etrie : W

(1)

= (�B

t

)

t�0

est un mouvement brownien.

{ D�ealage : Pour t

0

� 0, W

(2)

= (B

t

0

+t

�B

t

0

)

t�0

est un mouvement brownien.

{ Changement d'�ehelle : Pour  > 0, W

(3)

=

�

1

p



B

t

�

t�0

est un mouvement brownien.

{ Inversion du temps : W

(4)

=

�

W

(4)

t

�

t�0

d�e�ni par W

(4)

t

= tB

1=t

, pour t > 0, et par W

(4)

0

= 0,

est un mouvement brownien.



Ph. Chassaing, summary by Ph. Chassaing 185

D�emonstration. Chaun de es proessus est gaussien entr�e : il suÆt de aluler sa fontion

ovariane. Dans les quatre as, on trouve �

(i)

(s; t) = min(s; t). Reste un petit probl�eme : la

ontinuit�e de W

(4)

en 0, qui n'est pas automatique. La loi forte des grands nombres

16

pour le

mouvement brownien, stipule que

P

�

lim

+1

B

t

t

= 0

�

= 1:

En ons�equene

P

�

�

! 2 


�

�

t!W

(4)

t

(!) est ontinue en 0

	

�

= 1:

Le proessus W

(4)

est don presque sûrement ontinu en 0, alors que le mouvement brownien,

tel qu'on l'a d�e�ni, est �a valeurs dans C[ 0; 1 ℄, 'est-�a-dire que t ! B

t

(!) est ontinu en 0 pour

tout !. R�egler e genre de probl�eme rigoureusement est justement e que je veux �eviter dans une

introdution au mouvement brownien pr�evue pour être suinte

17

. �

Temps d'atteinte. Le temps d'atteinte de la hauteur a > 0, not�e T

a

, est d�e�ni par

T

a

=

(

inf f t � 0 j B

t

� a g si l'ensemble n'est pas vide,

+1 si l'ensemble est vide.

Th�eor�eme. T

a

a même loi que

a

2

N

2

, en partiulier P(T

a

= +1) = 0.

D�emonstration. On a

P(T

a

> t) = P

�

max fB

s

j 0 � s � t g < a

�

= P

�

max

�

1

p

t

B

ts

�

�

�

0 � s � 1

�

<

a

p

t

�

= P

�

max fB

s

j 0 � s � 1g <

a

p

t

�

= P

�

jB

1

j <

a

p

t

�

= P

�

a

2

B

2

1

> t

�

;

la troisi�eme �egalit�e par hangement d'�ehelle, la quatri�eme omme ons�equene de l'exerie 1,

Setion 3. �

D�e�nition. Une v. a. T �a valeurs dans [ 0;+1℄ est un temps d'arrêt du mouvement brownien si

et seulement si

�

!

�

�

T (!) � t

	

est dans la tribu engendr�ee par (B

s

)

0�s�t

, en d'autre termes, si on

peut d�eider de la v�erait�e de l'aÆrmation < T (!) � t > en observant la trajetoire du mouvement

brownien seulement jusqu'�a l'instant t (inlus).

En partiulier, les temps d'atteinte T

a

sont des temps d'arrêts.

Propri�et�e (Propri�et�e de Markov forte, f. [12, Setion 2.5℄). T �etant un temps d'arrêt, le nouveau

proessus W

T

= (W

T

s

)

0�s

, d�e�ni par

W

T

s

= B

T+s

�B

T

est ind�ependant de (B

s

)

0�s�T

. De plus W

T

a même loi que le mouvement brownien.

16

Pour une d�emonstration simple, voir [12, Probl�eme 9.3, p. 104 et Remarque 3.10, p. 15℄. On peut être plus

pr�eis sur le omportement du mouvement brownien en +1 : voir, [12, p. 112℄, la loi du logarithme it�er�ee due �a

Khinthine, 1933.

17

Il se trouve que W

(4)

est indistinguable d'un proessus �a valeurs dans C[ 0; 1 ℄, voir [12, Setion 1.1℄.
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Quelques ons�equenes.

{ T

a+b

� T

a

est le temps d'atteinte de b par le proessus W

T

a

, il est don ind�ependant de

T

a

et a la même loi que T

b

. En d'autres termes, le proessus (T

a

)

a�0

est �a aroissements

ind�ependants et stationnaires

18

.

{ Presque sûrement, +1 est un point d'aumulation de l'ensemble des z�eros du mouvement

brownien : posons T le premier z�ero du mouvement brownien apr�es l'instant 1 (i. e. T =

inf f t � 1 j B

t

= 0 g). La loi onditionelle de T sahant que B

1

= a est la loi de T

a

, don

T est presque sûrement �ni ; T est un temps d'arrêt don W

T

est lui-même un mouvement

brownien et poss�ede lui aussi un z�ero apr�es son instant 1 (don B poss�ede un z�ero apr�es

l'instant 2, et.).

{ De la même mani�ere on voit que, presque sûrement, +1 est un point d'aumulation de

l'ensemble f t � 0 j B

t

> 0 g, ou de l'ensemble f t � 0 j B

t

< 0 g. Ainsi, par inversion du

temps, 0 est est un point d'aumulation des ensembles f t > 0 j B

t

= 0 g, f t > 0 j B

t

> 0 g

et f t > 0 j B

t

< 0 g.

{ Ainsi T

a

est est un point d'aumulation des ensembles f t > T

a

j B

t

= a g, f t > T

a

j B

t

< a g

et f t > T

a

j B

t

> a g. Cette toute derni�ere assertion implique la relation (2).

Ce ne sont que quelques exemples d'appliation de la propri�et�e de Markov forte, mais en fait on

l'applique omme on respire, sans s'en rendre ompte. On a ommen�e �a aborder la struture de

l'ensemble des z�eros du mouvement brownien, alors mentionnons que

Th�eor�eme (Struture de l'ensemble des z�eros du mouvement brownien). Presque sûrement, l'en-

semble des z�eros du mouvement brownien est ferm�e, non born�e, sans point isol�e, de mesure de

Lebesgue nulle, et poss�ede 0 omme point d'aumulation

19

.

Finalement, mentionnons

Quelques propri�et�es loales du mouvement brownien. Pour un hemin de Bernoulli f quel-

onque dans C[ 0; n ℄, on a

b�1

X

k=a

�

�

f(k + 1)� f(k)

�

�

2

= b� a;

pour a et b entiers, 0 � a < b � n. Par saling brownien, on obtient que presque sûrement pour la

mesure de probabilit�e �

n

,

n(b�a)�1

X

k=0

�

�

�

�

f

�

a+

k + 1

n

�

� f

�

a+

k

n

�

�

�

�

�

2

= b� a;

si a et b sont dans [ 0; 1 ℄ et de la forme

`

n

, ` entier. Cela se traduit par le fait que le mouve-

ment brownien poss�ede une variation quadratique �egale �a t (toute fontion ontinument d�erivable,

p. e., poss�ede une variation quadratique nulle). Plus pr�eis�ement, pour une subdivision � =

ft

0

; t

1

; : : : ; t

m

g de [ 0; t ℄ (i. e. 0 = t

0

� t

1

� � � � � t

m

= t), notons

V

(2)

t

(�) =

m

X

k=1

�

�

B

t

k

�B

t

k�1

�

�

2

la variation quadratique du mouvement brownien sur la subdivision �, et notons

k�k = max

1�k�m

jt

k

� t

k�1

j

18

mais ses trajetoires ne sont pas ontinues, f. [12, Setion 6.2.A℄.

19

f. [12, Th. 2.9.6℄.
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le pas de la subdivision �. On a alors

Propri�et�e (Variation quadratique, f. [12, Th. 1.5.8 et Probl�eme 2.5.5℄). En probabilit�e, V

(2)

t

(�)

onverge vers t quand k�k tend vers 0, i. e. pour haque "; � > 0, on peut trouver Æ > 0 tel que

k�k < Æ entraine

P

 

�

�

�

V

(2)

t

(�)� t

�

�

�

> "

!

< �:

Cei, ave le fait que presque sûrement sous �

n

une fontion poss�ede une d�eriv�ee dont la valeur

absolue en tout point (sauf en

k

n

) est

p

n, laisse �a penser que le mouvement brownien a peu de

hanes d'être d�erivable en un point donn�e. En fait on a un r�esultat beauoup plus pr�eis :

Th�eor�eme (Paley, Wiener & Zygmund, 1933, f. [12, Th. 2.9.18℄).

P

�

�

! 2 


�

�

la fontion t! B

t

(!) n'est d�erivable nulle part

	

�

= 1:

Une autre propri�et�e, que l'on peut aussi pressentir en g�en�erant des hemins de Bernoulli al�eatoires,

illustre bien le omportement erratique du mouvement brownien :

Th�eor�eme (Dvoretzky, Erd}os & Kakutani, 1961, f. [12, Th. 2.9.13℄).

P

�

�

! 2 


�

�

la fontion t! B

t

(!) n'a auun point de roissane

	

�

= 1:

Un point t est un point de roissane de f si on peut trouver Æ > 0 tel que pour tout y 2 [t� Æ; t℄

et tout z 2 [t; t + Æ℄, f(y) � f(t) � f(z).

Cet aper�u des propri�et�es du mouvement brownien est �a la fois tr�es inomplet et assez d�esordonn�e.

Heureusement la litt�erature sur le sujet est rihe, et on pourra s'y reporter.
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Unit�e de reherhe INRIA Rhône-Alpes, 655, avenue de l'Europe, 38330 MONTBONNOT ST MARTIN

Unit�e de reherhe INRIA Roquenourt, Domaine de Volueau, Roquenourt, BP 105,

78153 LE CHESNAY Cedex

Unit�e de reherhe INRIA Sophia-Antipolis, 2004 route des Luioles, BP 93, 06902 SOPHIA-ANTIPOLIS

Cedex

�

Editeur

INRIA, Domaine de Volueau, Roquenourt, BP 105, 78153 LE CHESNAY Cedex

(Frane)

http://www.inria.fr

ISSN 0249-6399


