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Abstra
t

Zeilberger's theory of 
losed di�eren
e forms provides with a deeper understanding of the


reative teles
oping method used to prove many (q-)hypergeometri
 (multi-)sum identities,

and of \
ompanion" or \dual" identities. By introdu
ing new types of summation domains,

the 
losed form approa
h allows to dis
over new identities of the form \sum equals sum,"

in
luding new summatory representations of �(3). A transform similar to a pullba
k (
hange

of variables) of di�erential forms is introdu
ed, and permits to �nd more new identites. This

summary is freely inspired by [1, 2, 4, 5℄ and the talk.

1. Comparison Between Di�erential and Di�eren
e Cal
uli

By mimi
king di�erential 
al
ulus [2℄, Zeilberger has developped a 
omplete di�eren
e 
al
ulus

[4℄. This theory, whi
h we re
al here, 
ulminates with a dis
rete analogue to Stokes's theorem.

Given a C -ve
tor spa
e V , whi
h will take the role of a tangent spa
e momentarily, an alternate

multilinear p-form on V is just a multilinear map � : V

p

! C that satis�es the rule

�(v

1

; : : : ; v

i+1

; v

i

; : : : ; v

p

) = ��(v

1

; : : : ; v

p

):

This represents a p-volume measure, in the sense that it assigns an (oriented) volume to the par-

alellepipedi
 polyhedron determined by the ve
tors v

i

. By a natural 
onvention, 0-forms are just


onstants. To a p-form � and a q-form  , one asso
iates a (p + q)-form, i.e., a (p + q)-volume

measure, by means of the exterior produ
t � ^  :

(� ^  )(v

1

; : : : ; v

p+q

) =

X

�2S

p;q

�(�)�

�

v

�(1)

; : : : ; v

�(p)

�

 

�

v

�(p+1)

; : : : ; v

�(p+q)

�

where S

p;q

denotes the set of permutations of f1; : : : ; p+ qg with �(1) < � � � < �(p) and �(p+1) <

� � � < �(p + q), and where �(�) denotes the signature of the permutation �. Consider the dire
t

sum A(V ) =

L

p�0

A

p

(V ) of the ve
tor spa
es A

p

(V ) of alternate p-forms. By extending the

exterior produ
t by linearity, we obtain an asso
iative multipli
ation on A(V ), whi
h be
omes a

graded algebra with the produ
t rule  ^ � = (�1)

pq

� ^  for a p-form � and a q-form  .

Next, an alternate di�eren
e p-form, or for short a di�eren
e p-form, is a map ! whi
h to ea
h

element � of a real manifoldM asso
iates a multilinear p-form !(�) on the tangent spa
e V = T

�

M .

Exterior produ
ts of di�eren
e forms are de�ned pointwise. At this point, di�eren
e forms and

di�erential forms share the same de�nition. In the following however, we fo
us to the 
ase when

M is a submanifold of R

d

: ea
h !(�) is then an alternate form on V = R

d

. By imposing the

additional property !(�

1

; : : : ; �

d

) = !

�

b�

1


; : : : ; b�

d




�

, we obtain forms that are pie
ewise 
onstant,

as well as their 
oeÆ
ients. (Compare this situation with the theory in the di�erential setting,
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where one insists in having C

1

forms and C

1


oeÆ
ients.) The possible variations of forms with �

is at the origin of the notions of exterior di�erential and exterior di�eren
e introdu
ed below.

In the di�erential setting, a kind of a derivation is de�ned on di�erential forms in the following

way. One starts with the usual derivative !

0

, whi
h satis�es the asymptoti
 relation !(� + v) =

!(�) + !

0

(�)(v) + o(v) as v ! 0. Ea
h !

0

(�) is a linear map from V = R

d

to the ve
tor spa
e

A

p

(V ), and 
an be viewed as a multilinear map from V

p+1

to C that is not alternate, but alternate

in its last p variables only. Making it alternate by an averaging te
hnique, we obtain the exterior

di�erential d! given by

(d!)(�)(v

0

; : : : ; v

p

) =

p

X

i=0

(�1)

i

�

!

0

(�)(v

i

)

�

(v

0

; : : : ; v̂

i

; : : : ; v

p

):

In the di�eren
e 
ase, we start with another linearization instead of the derivative !

0

to de�ne

the exterior di�eren
e of !, namely by se
ants instead of tangents. Let !

�

(�) be the linear map

on V de�ned by !(� + v) = !(�) + !

�

(�)(v) + R(v) and R(v) is zero for ea
h element v = e

i

of

the 
anoni
al basis of V = R

d

. Again, (v

0

; : : : ; v

p

) 7! !

�

(�)(v

0

)(v

1

; : : : ; v

p

) is alternate in its last

p variables only, but the full alternate nature is re
overed by the exterior di�eren
e d! de�ned by

(d!)(�)(v

0

; : : : ; v

p

) =

p

X

i=0

(�1)

i

�

!

�

(�)(v

i

)

�

(v

0

; : : : ; v̂

i

; : : : ; v

p

):

As opposed to the 
lassi
al exterior di�erential, exterior di�eren
e heavily depends on the 
hoi
e

of a basis on V ; but like it, it satis�es d Æ d = 0.

Denote (n

1

; : : : ; n

d

) the dual basis of the 
anoni
al basis of the manifold R

d

that 
ontains M .

As in the di�erential setting, the exterior di�eren
e dn

i

of the restri
tion of n

i

to M (i.e., or the

ith 
oordinate fun
tion on M) plays a spe
ial role: the dn

i

form a basis for the ring of di�eren
e

form, and the d

n

i

1

^ � � � ^ dn

i

p

for i

1

< � � � < i

p

span the ve
tor spa
e (respe
tively, free module)

of p-forms. Exterior di�erential and exterior di�eren
e share a formally simple, easy-to-memorize

formulation on the 
anoni
al basis (dn

1

; : : : ;dn

d

): for ! = f dn

i

1

^ � � � ^ dn

i

r

, we get

d! = df ^ dn

i

1

^ � � � ^ dn

i

r

where the exterior di�erential is df =

P

d

i=1

�f

��

i

dn

i

, and the exterior di�eren
e df =

P

d

i=1

(�

i

f)dn

i

,

where �

i

is the �nite di�eren
e operator de�ned by (�

i

f)(�

1

; : : : ; �

d

) = f(�

1

; : : : ; �

i

+ 1; : : : ; �

d

)�

f(�

1

; : : : ; �

d

).

In order to make the link between di�eren
e forms and summation, we restri
t to hyper
ubi


manifolds given by setting some of the 
oordinates �

i

to 0 and letting all others vary freely in [ 0; 1),

and to the manifolds obtained after translating the latter by ve
tors with integer entries. Note that

all those elementary manifolds (in various dimensions) have volume 1, and that we have restri
ted

di�eren
e forms to be 
onstant on su
h sets. As a 
onsequen
e, the integral of a form f dn

1

^� � �^dn

d

on [ 0; 1)

d

is just f(0; : : : ; 0), as is for i

1

< � � � < i

r

the integral of f dn

i

1

^� � �^dn

i

r

on the hyper
ube

de�ned by 0 � �

j

< 1 for ea
h j = i

k

and �

j

= 0 for all other j. By integration over a union of

elementary manifolds, we are naturally led to integral representing sums; for example:

Z

R

d

f dn

1

^ � � � ^ dn

d

=

X

(n

1

;:::;n

d

)2Z

d

f(n

1

; : : : ; n

d

):

We are now ready to derive a di�eren
e variant of Stokes's theorem: 
onsider the oriented hyper
ube


 = [ 0; 1)

d

and its boundary �
 de�ned as usual as a formal linear 
ombination of 2d fa
es,

�
 = F (�

1

= 0)�F (�

2

= 0)+� � �+(�1)

d+1

F (�

d

= 0)�F (�

1

= 1)+F (�

2

= 1)+� � �+(�1)

d

F (�

d

= 1);
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where F (�

i

= a) is the (oriented) fa
e 
 \ f � j �

i

= a g. Boundaries of other elementary manifolds

are obtained by translating �
, keeping the same 
oeÆ
ients. In this way, we 
an de�ne the integral

of a form over a linear 
ombination of manifolds to be the very same linear 
ombination of integrals

of the same form over the manifolds. For

(1) ! =

d

X

i=1

f

i

dn

1

^ � � � ^

^

dn

i

^ � � � ^ dn

d

we get

Z

�


! =

d

X

i=1

(�1)

i

Z

F (�

i

=1)�F (�

i

=0)

f

i

dn

1

^ � � � ^

^

dn

i

^ � � � ^ dn

d

=

�

d

X

i=1

(�1)

i

f

i

(0; : : : ; 1; : : : ; 0)�

d

X

i=1

(�1)

i

f

i

(0; : : : ; 0)

�

dn

1

^ � � � ^ dn

d

=

d

X

i=1

(�1)

i

(�

i

f

i

)(0; : : : ; 0) dn

1

^ � � � ^ dn

d

=

Z




d!:

We 
ould have as well 
onsidered forms ! de�ned on the integer latti
e Z

d

, and de�ned their sums

P




! on a manifold 
 by the integrals

R




! of the form ! extended to R

d

by !(�

1

; : : : ; �

d

) =

!

�

b�

1


; : : : ; b�

d




�

. We shall adopt this equivalent viewpoint from the next se
tion on. By linearity

with respe
t to manifolds, we obtain the following dis
rete variant of Stokes's formula [4℄.

Theorem 1 (Zeilberger{Stokes formula). For any di�eren
e p-form ! su
h that !(�

1

; : : : ; �

d

) =

!

�

b�

1


; : : : ; b�

d




�

on any manifold 
 that is a linear 
ombination of elementary hyper
ubi
 mani-

folds, we have

P

�


! =

P




d!.

2. Closed Form Identities (Pun Intended!)

An interesting situation is that of a 
losed (di�eren
e) form, whi
h by de�nition is a di�eren
e

form ! su
h that d! = 0. In this 
ase, the sum

P

�


! = 0 for any manifold 
 on all of whi
h 
 is

de�ned, owing to Theorem 1 above. If more spe
i�
ally ! is given by (1), we obtain

d

X

i=1

X

�


f

i

dn

1

^ � � � ^

^

dn

i

^ � � � ^ dn

d

= 0;

in other words a relation between a priori in�nite sums! Using the leeway available in the 
hoi
e

of 
 yields several kinds of identities: sum equals 
onstant, sum equals sum, et
. In the following,

we detail this situation in the spe
ial 
ase r = 2. Let us denote dn and dk for dn

1

and dn

2

,

respe
tively, and 
onsider a 
losed 1-form ! = g dn+ f dk, so that �

n

f = �

k

g.

2.1. Stripe-shaped manifolds. Consider 
 = R

+

� [ 0; n ℄ =

�

(x; y)

�

�

x � 0 and 0 � y � n

	

and the 
losed form ! obtained for

f(n; k) =

�

m

k

��

n

k

��

p+ n+m� k

n+m

�

and g(n; k) =

mk � p(n+ 1)

(n+m+ 1)(n+ 1� k)

f(n; k):

Stokes's theorem on 
 then yields (after elementary manipulations of binomial sums)

n

X

k=0

�

m

k

��

n

k

��

p+ n+m� k

n+m

�

=

X

k2N

f(n; k) =

X

k2N

f(0; k) +

n

X

l=0

g(l; 0) =

�

m+ p

m

��

n+ p

n

�

:
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More generally, many 
losed-form identities like the one above, where \
losed form" now means

that both the summand and the sum are hypergeometri
 sequen
es, 
orrespond to a \
losed form"

that involves the summand as one of its 
oeÆ
ients. Hen
e Zeilberger's \pun intended."

But some magi
 takes pla
e here: 
hanging 
 to [ 0; k ℄ � R

+

and summing with respe
t to n

instead of k, the same method sometimes yields a 
ompanion identity. Moreover, the more variables

there are, the more ampli�ed this phenomenon is: for r variables and in lu
ky 
ases where all

summations make sense, a single 
losed di�eren
e (r�1)-form with hypergeometri
 
oeÆ
ients 
an

be viewed as a simultaneous en
oding of r 
losed form summation identities [4℄.

2.2. Triangular-shaped manifolds. Zeilberger observed that for a 
losed form !

1

= g

1

dn+f

1

dk,

the fun
tions f

s

(n; k) = f

1

(sn; k) and g

s

(n; k) = g

1

(sn; k) + g

1

(sn+ 1; k) + � � � + g

1

(sn+ s� 1; k)

provide for ea
h s > 1 with another 
losed form !

s

= g

s

dn+ f

s

dk. Basing on this, Amdeberhan

and Zeilberger [1℄ derived the following representations for �(3):

�(3) =

5

2

1

X

n=1

(�1)

n�1

�

2n

n

�

n

2

=

1

4

1

X

n=1

(�1)

n�1

(56n

2

� 32n+ 5)

(2n� 1)

2

�

3n

n

��

2n

n

�

n

3

=

1

72

1

X

n=0

(�1)

n

(5265n

4

+ 13878n

3

+ 13761n

2

+ 6120n + 1040)

(4n+ 3)(4n+ 1)(3n + 2)

2

(3n+ 1)

2

(n+ 1)

�

4n

n

��

3n

n

�
:

Spe
i�
ally, they 
onsidered 
 =

�

(x; y)

�

�

y � bx+ 1


	

and the fun
tions

f

1

(n; k) = (�1)

k

k!

2

(n� k � 1)!

(n+ k + 1)! (k + 1)

and g

1

(n; k) = 2(�1)

k

k!

2

(n� k)!

(n+ k + 1)! (n+ 1)

2

:

The representations above have respe
tively been obtained for s = 1, 2, and 3; their general terms

de
rease like O(n

�3=2

4

�n

), O(n

�2

27

�n

), O(n

�2

64

�n

), respe
tively|at the 
ost of more and more

operations for ea
h term, though! Changing 
 to 


s

=

�

(x; y)

�

�

y � sbx + 1


	

leads to other

representations [1℄, like, for s = 2,

�(3) =

1

X

n=0

(�1)

n

P (n)

80(5n+ 4)(5n+ 3)(5n + 2)(5n + 1)(4n+ 3)

2

(4n+ 1)

2

(2n+ 1)

2

(n+ 1)

�

5n

n

��

4n

n

�

where P = 1613824n

8

+ 7638016n

7

+ 15700096n

6

+ 18317312n

5

+ 13278552n

4

+ 6131676n

3

+

1763967n

2

+289515n+20782. The general term is now O(n

�2

(27=3125)

�n

), with 27=3125 � 115:74.

To sket
h the proof, we apply Stokes's theorem to !

s

on 


s

, and obtain:

1

X

n=0

g

s

(n; 0) +

1

X

k=0

f

s

(sk + s; k) +

1

X

k=0

�

g

s

(sk; k) + � � �+ g

s

(sk + s� 1; k)

�

= 0:

Next, noting that g

1

(n; 0) = 2=(n+1)

3

and grouping the sums over k yields the announ
ed identity.

2.3. Finite triangular-shaped and re
tangular-shaped manifolds. Other identities like

�(x+ n)�(y + n)

�(n)�(x+ y + n)

3

F

2

�

x; y; v + n� 1

v; x+ y + n

�

�

�

�

1

�

=

�(x+ k)�(y + k)

�(k)�(x+ y + k)

3

F

2

�

x; y; v + k � 1

v; x+ y + k

�

�

�

�

1

�

and

P

n+m=s

�

2n

n

��

2m

m

�

= 4

s

are based on other 
hoi
es for 
, like a re
tangle [ 0; k ℄ � [ 0; n ℄ or a

\triangle"

�

(x; y)

�

�

bx
+ by
 � s

	

for 
 [5℄.
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3. Closed Forms with Holonomi
 CoeÆ
ients

Consider a 
losed form ! = g dn + f dk with hypergeometri
 
oeÆ
ients. Sin
e f is hypergeo-

metri
 in n, one 
an �nd some rational fun
tion R of (n; k) su
h that �

k

g = �

n

f = Rf . It is also

well-known that if a hypergeometri
 sequen
es h has a hypergeometri
 anti-di�eren
e H, there has

to be some rational fun
tion S su
h that H = Sh. Here we get g = S�

n

f = SRf . This situation

extends to more variables, whi
h legitimates Zeilberger's fo
us to 
losed forms whose 
oeÆ
ients

are all multiples of the same hypergeometri
 sequen
e f by polynomials in the variables; he 
alled

su
h forms WZ forms [4℄. Here we extend this situation to forms whose 
oeÆ
ients are rational

multiples of the same holonomi
 sequen
e, and make the link between 
losed forms and 
reative

teles
oping expli
it.

Let a summation identity

P

b

k=a

f

n;k

= F

n

be given, where both f and F are holonomi
 �-�nite

sequen
es. In view of verifying it, knowing F allows to 
ompute a non-zero operator P

0

(n; S

n

) su
h

that P

0

�F = 0. Proving the identity thus redu
es to proving

P

b

k=a

(P

0

�f)(n; k) = 0. By restri
ting

to holonomi
 hypergeometri
 summands and right-hand sides, Zeilberger's presentation essentially

only dealt with the 
ase P

0

= S

n

� 1: F 
an always be assumed to be 1, otherwise we repla
e

f(n; k) with f(n; k)=F (n). In this spirit, we now require that P

0

be a right multiple of S

n

� 1 and

write P

0

= (S

n

� 1)R this fa
torization.

The holonomy of f ensures that there exists a pair (P;Q) with non-zero P su
h that

(2)

�

P + (S

k

� 1)Q

�

� f = 0:

Provided that there exists su
h a pair for P = P

0

, the operator Q 
an be 
omputed by Chyzak's

�-�nite extension of Gosper's algorithm [3℄. Let A be the algebra of di�eren
e operators with

respe
t to n and k with 
oeÆ
ients that are rational fun
tions in n and k, and introdu
e the

module M = A � f . The form

(3) ! = (R � f) dk � (Q � f) dn;

whose 
oeÆ
ients all lie in M is 
losed:

d! =

�

(S

n

� 1)R � f

�

dn ^ dk �

�

(S

k

� 1)Q � f

�

dk ^ dn =

�

�

P + (S

k

� 1)Q

�

� f

�

dn ^ dk = 0:

Conversely, assume that there exists a 
losed form ! (with 
oeÆ
ients in M) given by (3). By


losedness, we have

�

(S

n

� 1)R+ (S

k

� 1)Q

�

� f = 0, when
e after summation over k, and provided

that R involves neither k nor S

k

,

(S

n

� 1)R �

b

X

k=a

f(n; k) = 0:

More generally, if the r-form f dk

1

^ � � � ^ dk

r

+

P

r

i=1

(P

i

� f) dn^ dk

1

^ : : :

^

dk

i

� � � ^dk

r

is 
losed,

i.e., (S

n

� 1) � f + (S

k

1

� 1)P

1

� f + � � � + (S

k

r

� 1)P

r

� f = 0;

the r-fold summation

P

k

1

;:::;k

r

f yields a 
onstant with respe
t to n.

4. Extended WZ Cohomology

Is it easily shown that any 1-form with 
oeÆ
ients de�ned on Z

r

is exa
t. Even more is true:

any 1-form with holonomi
 
oeÆ
ients derives from a holonomi
 sequen
e. More spe
i�
ally, a

1-form ! given by (3) is exa
t if and only if there exists a fun
tion �(n; k) su
h that ! = d�, or

more expli
itly

�(Q � f) = (S

n

� 1) � � and R � f = (S

k

� 1) � �:
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This always holds if we look for un
onstrained �: simply de�ne � by

�(n; k) =

k�1

X

i=0

(R � f)(0; i) �

n�1

X

j=0

(Q � f)(j; k):

The non-trivial problem is to impose � 2 M. (For example, when f is hypergeometri
, all


oeÆ
ients of ! as well as � have to be rational multiples of f .) Then, not all 1-forms ! remain

exa
t. Vieweing 
losed forms modulo exa
t forms we are led to a 
ohomology that Zeilberger named

WZ 
ohomology in [4℄ in the 
ase of hypergeometri
 f , and that we 
all extended WZ 
ohomology

in the more general 
ase of holonomi
 �-�nite f . Following Zeilberger [4℄, we suggest the following

extended resear
h problem: 
hara
terize those holonomi
 �-�nite sequen
es f for whi
h there exists

a non-exa
t 
losed form with 
oeÆ
ients inM = A�f and 
ompute the 
orresponding 
ohomology.

5. Pullba
ks

In the di�erential 
ase, the notion of pullba
k propagates a 
hange of variables in fun
tions to

the level of di�erential forms, thus permitting 
hange of variables in integrals: for a di�erentiable

map � from a manifoldN to another manifoldM , one gets a mapping �

�

that transforms a p-form !

on M to a p-form on N while preserving 
losedness of forms by simply requiring

(4) (�

�

!)(�)(v

1

; : : : ; v

p

) = !

�

�(�)

��

�

0

(�)(v

1

); : : : ; �

0

(�)(v

p

)

�

:

In the di�eren
e 
ase, a simple example of a pullba
k has already been given in Se
tion 2.2: the


losed form !

s

is the pullba
k of the 
losed form !

1

under the map given by �(n; k) = (sn; k).

However, no simple de�nition of a pullba
k seems possible: the obvious guess that mimi
ks (4),

substituting �

�

for �

0

, unfortunately does not preserve 
losedness (taking �nite di�eren
es is not

a lo
al operation). Zimmermann [5℄ and Gessel independently gave a de�nition for the 
ase of a

linear mapping � that maps integer points to integer points.

The key observation is that for a linear transform l = �(n), de�ned by l

i

=

P

j

a

i;j

n

j

, shifting by 1

with respe
t to n

j

after performing the substitution indu
ed by � is equivalent to doing shifts with

respe
t to ea
h l

i

before substituting, as detailed by the formula S

l

j

�

�

= �

�

S

a

1;j

n

1

: : : S

a

n;j

n

r

. It then

follows from a te
hni
al but easy 
al
ulation that �

l

j

�

�

= �

�

P

i

P

i;j

�

n

i

for some operators P

i;j

.

Imposing the natural relations �

�

(f) = f Æ � and �

�

(df) = d(�

�

f) for 0-forms f leads to

X

i

�

�

�

(�

n

i

f) dn

i

�

=

X

j

�

�

l

j

(�

�

f)

�

dl

j

=

X

i;j

�

�

(P

i;j

�

n

i

f) dl

j

:

Choosing f su
h that df = (�

n

i

f) dn

i

, we get �

�

(g dn

i

) =

P

j

�

�

(P

i;j

g) dl

j

, a de�nition that proves

to preserve 
losedness.
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