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Abstract

Zeilberger’s theory of closed difference forms provides with a deeper understanding of the
creative telescoping method used to prove many (g-)hypergeometric (multi-)sum identities,
and of “companion” or “dual” identities. By introducing new types of summation domains,
the closed form approach allows to discover new identities of the form “sum equals sum,”
including new summatory representations of ((3). A transform similar to a pullback (change
of variables) of differential forms is introduced, and permits to find more new identites. This
summary is freely inspired by [1, 2, 4, 5] and the talk.

1. Comparison Between Differential and Difference Calculi

By mimicking differential calculus [2], Zeilberger has developped a complete difference calculus
[4]. This theory, which we recal here, culminates with a discrete analogue to Stokes’s theorem.

Given a C-vector space V', which will take the role of a tangent space momentarily, an alternate
multilinear p-form on V is just a multilinear map ¢ : VP — C that satisfies the rule

A(U1, .05 Vi1, 05y, 0p) = —P(V1, ..., Up).
This represents a p-volume measure, in the sense that it assigns an (oriented) volume to the par-
alellepipedic polyhedron determined by the vectors v;. By a natural convention, O-forms are just
constants. To a p-form ¢ and a ¢-form 1), one associates a (p + ¢)-form, i.e., a (p + ¢)-volume
measure, by means of the exterior product ¢ A :

(¢ A 1/}) ('Ulu s avp+q) = Z 6(0’)(,25 (va(l)a s 7'Uzr(p)) 1/} (va(p+1)7 s a'UU(p+q))

0ESpq

where S, ;, denotes the set of permutations of {1,...,p+¢} with o(1) <--- < o(p) and o(p+1) <
-+ < o(p + q), and where €(o) denotes the signature of the permutation o. Consider the direct
sum A(V) = €D, Ap(V) of the vector spaces A,(V) of alternate p-forms. By extending the
exterior product by linearity, we obtain an associative multiplication on A(V'), which becomes a
graded algebra with the product rule ) A ¢ = (—1)P9¢p A9 for a p-form ¢ and a g-form 1.

Next, an alternate difference p-form, or for short a difference p-form, is a map w which to each
element ¢ of a real manifold M associates a multilinear p-form w() on the tangent space V' = T¢ M.
Exterior products of difference forms are defined pointwise. At this point, difference forms and
differential forms share the same definition. In the following however, we focus to the case when
M is a submanifold of R?: each w(£) is then an alternate form on V = R?. By imposing the
additional property w(&y,...,&) = w([&1],. .., [€a]), we obtain forms that are piecewise constant,
as well as their coefficients. (Compare this situation with the theory in the differential setting,
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where one insists in having C* forms and C* coefficients.) The possible variations of forms with £
is at the origin of the notions of exterior differential and exterior difference introduced below.

In the differential setting, a kind of a derivation is defined on differential forms in the following
way. One starts with the usual derivative o', which satisfies the asymptotic relation w({ + v) =
w(é) + w'(€)(v) + o(v) as v — 0. Each w'(¢) is a linear map from V = R? to the vector space
A,(V), and can be viewed as a multilinear map from VP*1 to C that is not alternate, but alternate
in its last p variables only. Making it alternate by an averaging technique, we obtain the ezterior
differential dw given by

P
(dw) (&) (v, -+, vp) = D (= 1) (&' (E)(03)) (v0, - -+ By - 0p).
i=0

In the difference case, we start with another linearization instead of the derivative w’ to define
the exterior difference of w, namely by secants instead of tangents. Let w™(¢) be the linear map
on V defined by w(é +v) = w(é) + w?(€)(v) + R(v) and R(v) is zero for each element v = ¢; of
the canonical basis of V = R?. Again, (v,...,v,) = w™(€)(vo)(v1,...,vp) is alternate in its last
p variables only, but the full alternate nature is recovered by the exterior difference dw defined by

P
(dw)(f)(vo, s 7Up) = Z(_I)Z(WA(g)(UZ)) (1)07 v 761'7 v 7”17)'
i=0
As opposed to the classical exterior differential, exterior difference heavily depends on the choice
of a basis on V; but like it, it satisfies dod = 0.

Denote (n1,...,n4) the dual basis of the canonical basis of the manifold R? that contains M.
As in the differential setting, the exterior difference dn; of the restriction of n; to M (i.e., or the
ith coordinate function on M) plays a special role: the dn; form a basis for the ring of difference

form, and the dni1 A--- Ndng, for i; < --- < iy span the vector space (respectively, free module)
of p-forms. Exterior differential and exterior difference share a formally simple, easy-to-memorize
formulation on the canonical basis (dny,...,dng): for w = fdn; A--- Adn;,, we get

dw=df Adn;; A---Adn;,

where the exterior differential is df = Zgzl g—édni, and the exterior difference df = Egzl (A; f)dng,

where A; is the finite difference operator defined by (A;f)(&1,...,&0) = f(é1,..., &+ 1,..., &) —
f(gla' e 7§d)'

In order to make the link between difference forms and summation, we restrict to hypercubic
manifolds given by setting some of the coordinates &; to 0 and letting all others vary freely in [0, 1),
and to the manifolds obtained after translating the latter by vectors with integer entries. Note that
all those elementary manifolds (in various dimensions) have volume 1, and that we have restricted
difference forms to be constant on such sets. As a consequence, the integral of a form f dniA---Adngy
on [0,1)%is just £(0,...,0), asis for 4; < --- < i, the integral of f dn; A---Adn;, on the hypercube
defined by 0 < ¢; < 1 for each j = 75 and {; = 0 for all other j. By integration over a union of
elementary manifolds, we are naturally led to integral representing sums; for example:

dfdnl/\---/\dnd: Z f(ny, ..., ng).
R

(nl,...,nd)EZd

We are now ready to derive a difference variant of Stokes’s theorem: consider the oriented hypercube
Q =10,1)¢ and its boundary 92 defined as usual as a formal linear combination of 2d faces,

N =F =0-F(&=0++(-1)"F&=0)-F(& = 1)+F(& =1+ +(-1)F(& =1),



B. Zimmermann, summary by F. Chyzak 91

where F(¢; = a) is the (oriented) face QN {¢ | & = a }. Boundaries of other elementary manifolds
are obtained by translating 0(2, keeping the same coefficients. In this way, we can define the integral
of a form over a linear combination of manifolds to be the very same linear combination of integrals
of the same form over the manifolds. For

d
(1) w:Zfidnl/\---/\dhi/\---/\dnd
we get
d
/ w:Z(—l)i/ fidnl/\---/\d;zi/\---/\dnd
o0 i—1 F(&=1)-F(£=0)
d d
= (Z ,1,...,0)—Z(—l)ifi(o,...,0)> dni A--- Adng
=1 =1
d
:Z ) (A f;)(0 ,O)dnl/\---/\dnd:/dw.
i=1 Q

We could have as well considered forms w defined on the integer lattice Z¢, and defined their sums
> qw on a manifold Q by the integrals [, w of the form w extended to R? by w(éy,...,&) =
w([&], . Lé‘dJ). We shall adopt this equivalent viewpoint from the next section on. By linearity
with respect to manifolds, we obtain the following discrete variant of Stokes’s formula [4].

Theorem 1 (Zeilberger-Stokes formula). For any difference p-form w such that w(&y,...,&q) =
w(l&],...,&]) on any manifold Q that is a linear combination of elementary hypercubic mani-

folds, we have ) 55w =) dw.

2. Closed Form Identities (Pun Intended!)

An interesting situation is that of a closed (difference) form, which by definition is a difference
form w such that dw = 0. In this case, the sum )5, w = 0 for any manifold  on all of which § is
defined, owing to Theorem 1 above. If more specifically w is given by (1), we obtain

d
Zz.fidnl/\"'/\d';Li/\"'/\dndZOa
i=1 090
in other words a relation between a priori infinite sums! Using the leeway available in the choice
of ) yields several kinds of identities: sum equals constant, sum equals sum, etc. In the following,
we detail this situation in the special case r = 2. Let us denote dn and dk for dn; and dns,
respectively, and consider a closed 1-form w = gdn + f dk, so that A, f = Agg.

2.1. Stripe-shaped manifolds. Consider @ = R" x [0,n] = {(z,y) | 2 >0and 0 <y < n}
and the closed form w obtained for

= (D)) e =

Stokes’s theorem on €2 then yields (after elementary manipulations of binomial sums)

20T ) - Bren-gren - (") (1)

k=0 keN keN
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More generally, many closed-form identities like the one above, where “closed form” now means
that both the summand and the sum are hypergeometric sequences, correspond to a “closed form”
that involves the summand as one of its coefficients. Hence Zeilberger’s “pun intended.”

But some magic takes place here: changing € to [0,k] x Rt and summing with respect to n
instead of k, the same method sometimes yields a companion identity. Moreover, the more variables
there are, the more amplified this phenomenon is: for r variables and in lucky cases where all
summations make sense, a single closed difference (r — 1)-form with hypergeometric coefficients can
be viewed as a simultaneous encoding of r closed form summation identities [4].

2.2. Triangular-shaped manifolds. Zeilberger observed that for a closed form w; = g1 dn+ f1 dk,
the functions fs(n,k) = fi(sn,k) and gs(n, k) = g1(sn, k) + gi(sn + 1,k) +--- + g1(sn + s — 1, k)
provide for each s > 1 with another closed form ws; = g; dn + fs; dk. Basing on this, Amdeberhan
and Zeilberger [1] derived the following representations for ¢(3):

5= (1)1 1 & ) 1(56n —32n +5)
:EZ 2 ZZ 3n 3
n=1 n n n=1 ( )( )TL

o0

B i Z (—1)"(5265n* 4+ 13878n3 + 13761n? + 61201 + 1040)
T2~ (dn+3)(4n+1)(3n +2)2(3n + 1)2(n + 1) (1) (%)

n

Specifically, they considered 2 = { (z,9) ‘ y> |z +1] } and the functions

E?(n—k—1)!
(n+k+ 1D (k+1)

K12(n — k)!
(n+k+1)(n+1)2

fi(n, k) = (=1)* and gi(n, k) = 2(-1)F
The representations above have respectively been obtained for s = 1, 2, and 3; their general terms
decrease like O(n=3/247"), O(n=227"™), O(n"264~"), respectively—at the cost of more and more
operations for each term, though! Changing Q to @, = { (z,y) ‘ y > s|lz + 1] } leads to other
representations [1], like, for s = 2,

i (=1)"P(n)
= 80(5n + 4)(5n + 3)(5n + 2)(5n + 1) (4n + 3)2(4n + 1)2(2n + 1)2(n + 1) (") (47)

n

((3) =

where P = 1613824n® + 7638016n" + 15700096n5 + 18317312n° + 13278552n* + 6131676n> +
176396712 +289515n+20782. The general term is now O(n~2(27/3125)~"), with 27/3125 ~ 115.74.
To sketch the proof, we apply Stokes’s theorem to ws on 2, and obtain:

ng(n,O) + Zfs(sk +s,k) + Z(gs(sk,k) ot gs(sk+s—1,k)) =
= k=0 k=0

Next, noting that g;(n,0) = 2/(n+1)? and grouping the sums over k yields the announced identity.

2.3. Finite triangular-shaped and rectangular-shaped manifolds. Other identities like

L'z +n)l'(y +n) (ﬂ?,y,ern—l ‘1>_F(l‘+k)r(y+k) (w,y,erk—l ‘1>
F(n)F(x+y+n)3 \vz+y+n _F(k)F(m+y+k)3 vz +y+k

and 7 (>™)(*™) = 4 are based on other choices for {2, like a rectangle [0,k] x [0,n] or a

n m

“triangle” { (z,y) | |z + [y] < s} for Q [5].
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3. Closed Forms with Holonomic Coefficients

Consider a closed form w = gdn + f dk with hypergeometric coefficients. Since f is hypergeo-
metric in 7, one can find some rational function R of (n, k) such that Agg = A, f = Rf. It is also
well-known that if a hypergeometric sequences h has a hypergeometric anti-difference H, there has
to be some rational function S such that H = Sh. Here we get g = SA,,f = SRf. This situation
extends to more variables, which legitimates Zeilberger’s focus to closed forms whose coefficients
are all multiples of the same hypergeometric sequence f by polynomials in the variables; he called
such forms WZ forms [4]. Here we extend this situation to forms whose coefficients are rational
multiples of the same holonomic sequence, and make the link between closed forms and creative
telescoping explicit.

Let a summation identity EZ:(L fnk = Fy be given, where both f and F' are holonomic O-finite
sequences. In view of verifying it, knowing F allows to compute a non-zero operator Py(n, S,) such
that Py-F = 0. Proving the identity thus reduces to proving Zzza(Po - f)(n, k) = 0. By restricting
to holonomic hypergeometric summands and right-hand sides, Zeilberger’s presentation essentially
only dealt with the case Py = S, — 1: F can always be assumed to be 1, otherwise we replace
f(n,k) with f(n,k)/F(n). In this spirit, we now require that Py be a right multiple of S,, — 1 and
write Py = (S, — 1)R this factorization.

The holonomy of f ensures that there exists a pair (P, Q)) with non-zero P such that

(2) (P+(Sk—1)Q) - f =0.

Provided that there exists such a pair for P = P, the operator () can be computed by Chyzak’s
O-finite extension of Gosper’s algorithm [3]. Let A be the algebra of difference operators with
respect to n and k with coefficients that are rational functions in n and k, and introduce the
module M = A- f. The form

(3) w=(R-f)dk—(Q- f)dn,

whose coeflicients all lie in 91 is closed:

dw = ((Sp = 1)R- f)dnAdk — ((Sy — Q- f) dk Adn = ((P+(Sk—1)Q)-f>dn/\dk:0.

Conversely, assume that there exists a closed form w (with coefficients in 91) given by (3). By
closedness, we have ((S, —1)R+ (Sx —1)Q) - f = 0, whence after summation over k, and provided
that R involves neither k& nor Sy,

b

(Sn =R f(n,k) =0.

k=a
More generally, if the r-form fdki A---Adk, + Y1 (P~ f)dnAdki A ... dk; - - A dk, is closed,
e, (Sp—1)-f+Sk -1P-f+--+(Sk, —1P-f=0,

the r-fold summation ) ky...k, J yields a constant with respect to n.

4. Extended WZ Cohomology

Is it easily shown that any 1-form with coefficients defined on Z" is exact. Even more is true:
any l-form with holonomic coefficients derives from a holonomic sequence. More specifically, a
1-form w given by (3) is exact if and only if there exists a function ¢(n,k) such that w = d¢, or
more explicitly

-(Q-f)=(n—-1)-¢ and R-f=(S—-1)-¢
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This always holds if we look for unconstrained ¢: simply define ¢ by

k—1 n—1
p(n,k) =Y (R- £)(0,0) = Y (Q- f) (G, k).
1=0 j=0

The non-trivial problem is to impose ¢ € 9. (For example, when f is hypergeometric, all
coefficients of w as well as ¢ have to be rational multiples of f.) Then, not all 1-forms w remain
exact. Vieweing closed forms modulo exact forms we are led to a cohomology that Zeilberger named
WZ cohomology in [4] in the case of hypergeometric f, and that we call extended WZ cohomology
in the more general case of holonomic 0-finite f. Following Zeilberger [4], we suggest the following
extended research problem: characterize those holonomic 0-finite sequences f for which there exists
a non-exact closed form with coefficients in 9t = A- f and compute the corresponding cohomology.

5. Pullbacks

In the differential case, the notion of pullback propagates a change of variables in functions to
the level of differential forms, thus permitting change of variables in integrals: for a differentiable
map ¢ from a manifold N to another manifold M, one gets a mapping ¢* that transforms a p-form w
on M to a p-form on N while preserving closedness of forms by simply requiring

(4) (@ w)(€)(v1,..., vp) = w (&) (¢ () (v1), ..., ¢'(€) (up))-

In the difference case, a simple example of a pullback has already been given in Section 2.2: the
closed form w; is the pullback of the closed form w; under the map given by ¢(n,k) = (sn,k).
However, no simple definition of a pullback seems possible: the obvious guess that mimicks (4),
substituting ¢* for ¢', unfortunately does not preserve closedness (taking finite differences is not
a local operation). Zimmermann [5] and Gessel independently gave a definition for the case of a
linear mapping ¢ that maps integer points to integer points.

The key observation is that for a linear transform [ = ¢(n), defined by [; = > j @i,jnj, shifting by 1
with respect to n; after performing the substitution induced by ¢ is equivalent to doing shifts with
respect to each /; before substituting, as detailed by the formula Sj,¢* = ¢*Snt? ... Sy . It then
follows from a technical but easy calculation that Aj, ¢* = ¢* > i PijAp, for some operators P, ;.

Imposing the natural relations ¢*(f) = f o ¢ and ¢*(df) = d(¢* f) for O-forms f leads to
> ¢ (Anf)dni) =) (A (@) dly =) ¢"(Pijdn,f)dlj.

J 2
Choosing f such that df = (A, f) dni, we get ¢*(gdn;) = >°; ¢*(P;j9) dlj, a definition that proves
to preserve closedness.
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