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Abstrat

Zeilberger's theory of losed di�erene forms provides with a deeper understanding of the

reative telesoping method used to prove many (q-)hypergeometri (multi-)sum identities,

and of \ompanion" or \dual" identities. By introduing new types of summation domains,

the losed form approah allows to disover new identities of the form \sum equals sum,"

inluding new summatory representations of �(3). A transform similar to a pullbak (hange

of variables) of di�erential forms is introdued, and permits to �nd more new identites. This

summary is freely inspired by [1, 2, 4, 5℄ and the talk.

1. Comparison Between Di�erential and Di�erene Caluli

By mimiking di�erential alulus [2℄, Zeilberger has developped a omplete di�erene alulus

[4℄. This theory, whih we real here, ulminates with a disrete analogue to Stokes's theorem.

Given a C -vetor spae V , whih will take the role of a tangent spae momentarily, an alternate

multilinear p-form on V is just a multilinear map � : V

p

! C that satis�es the rule

�(v

1

; : : : ; v

i+1

; v

i

; : : : ; v

p

) = ��(v

1

; : : : ; v

p

):

This represents a p-volume measure, in the sense that it assigns an (oriented) volume to the par-

alellepipedi polyhedron determined by the vetors v

i

. By a natural onvention, 0-forms are just

onstants. To a p-form � and a q-form  , one assoiates a (p + q)-form, i.e., a (p + q)-volume

measure, by means of the exterior produt � ^  :
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where S

p;q

denotes the set of permutations of f1; : : : ; p+ qg with �(1) < � � � < �(p) and �(p+1) <

� � � < �(p + q), and where �(�) denotes the signature of the permutation �. Consider the diret

sum A(V ) =

L

p�0

A

p

(V ) of the vetor spaes A

p

(V ) of alternate p-forms. By extending the

exterior produt by linearity, we obtain an assoiative multipliation on A(V ), whih beomes a

graded algebra with the produt rule  ^ � = (�1)

pq

� ^  for a p-form � and a q-form  .

Next, an alternate di�erene p-form, or for short a di�erene p-form, is a map ! whih to eah

element � of a real manifoldM assoiates a multilinear p-form !(�) on the tangent spae V = T

�

M .

Exterior produts of di�erene forms are de�ned pointwise. At this point, di�erene forms and

di�erential forms share the same de�nition. In the following however, we fous to the ase when

M is a submanifold of R

d

: eah !(�) is then an alternate form on V = R

d

. By imposing the

additional property !(�

1

; : : : ; �

d

) = !

�

b�

1

; : : : ; b�

d



�

, we obtain forms that are pieewise onstant,

as well as their oeÆients. (Compare this situation with the theory in the di�erential setting,
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where one insists in having C

1

forms and C

1

oeÆients.) The possible variations of forms with �

is at the origin of the notions of exterior di�erential and exterior di�erene introdued below.

In the di�erential setting, a kind of a derivation is de�ned on di�erential forms in the following

way. One starts with the usual derivative !

0

, whih satis�es the asymptoti relation !(� + v) =

!(�) + !

0

(�)(v) + o(v) as v ! 0. Eah !

0

(�) is a linear map from V = R

d

to the vetor spae

A

p

(V ), and an be viewed as a multilinear map from V

p+1

to C that is not alternate, but alternate

in its last p variables only. Making it alternate by an averaging tehnique, we obtain the exterior

di�erential d! given by

(d!)(�)(v
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p
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In the di�erene ase, we start with another linearization instead of the derivative !

0

to de�ne

the exterior di�erene of !, namely by seants instead of tangents. Let !

�

(�) be the linear map

on V de�ned by !(� + v) = !(�) + !

�

(�)(v) + R(v) and R(v) is zero for eah element v = e

i

of

the anonial basis of V = R

d

. Again, (v

0

; : : : ; v

p

) 7! !

�

(�)(v

0

)(v

1

; : : : ; v

p

) is alternate in its last

p variables only, but the full alternate nature is reovered by the exterior di�erene d! de�ned by

(d!)(�)(v

0

; : : : ; v

p
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p

X
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As opposed to the lassial exterior di�erential, exterior di�erene heavily depends on the hoie

of a basis on V ; but like it, it satis�es d Æ d = 0.

Denote (n

1

; : : : ; n

d

) the dual basis of the anonial basis of the manifold R

d

that ontains M .

As in the di�erential setting, the exterior di�erene dn

i

of the restrition of n

i

to M (i.e., or the

ith oordinate funtion on M) plays a speial role: the dn

i

form a basis for the ring of di�erene

form, and the d

n

i

1

^ � � � ^ dn

i

p

for i

1

< � � � < i

p

span the vetor spae (respetively, free module)

of p-forms. Exterior di�erential and exterior di�erene share a formally simple, easy-to-memorize

formulation on the anonial basis (dn

1

; : : : ;dn

d

): for ! = f dn

i

1

^ � � � ^ dn

i

r

, we get

d! = df ^ dn

i

1

^ � � � ^ dn

i

r

where the exterior di�erential is df =

P

d

i=1

�f

��

i

dn

i

, and the exterior di�erene df =

P

d

i=1

(�

i

f)dn

i

,

where �

i

is the �nite di�erene operator de�ned by (�

i

f)(�

1

; : : : ; �

d

) = f(�

1

; : : : ; �

i

+ 1; : : : ; �

d

)�

f(�

1

; : : : ; �

d

).

In order to make the link between di�erene forms and summation, we restrit to hyperubi

manifolds given by setting some of the oordinates �

i

to 0 and letting all others vary freely in [ 0; 1),

and to the manifolds obtained after translating the latter by vetors with integer entries. Note that

all those elementary manifolds (in various dimensions) have volume 1, and that we have restrited

di�erene forms to be onstant on suh sets. As a onsequene, the integral of a form f dn

1

^� � �^dn

d

on [ 0; 1)

d

is just f(0; : : : ; 0), as is for i

1

< � � � < i

r

the integral of f dn

i

1

^� � �^dn

i

r

on the hyperube

de�ned by 0 � �

j

< 1 for eah j = i

k

and �

j

= 0 for all other j. By integration over a union of

elementary manifolds, we are naturally led to integral representing sums; for example:

Z

R

d
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1
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X
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d
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We are now ready to derive a di�erene variant of Stokes's theorem: onsider the oriented hyperube


 = [ 0; 1)

d

and its boundary �
 de�ned as usual as a formal linear ombination of 2d faes,
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= 0)�F (�

2

= 0)+� � �+(�1)

d+1

F (�

d

= 0)�F (�
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d

F (�
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= 1);
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where F (�

i

= a) is the (oriented) fae 
 \ f � j �

i

= a g. Boundaries of other elementary manifolds

are obtained by translating �
, keeping the same oeÆients. In this way, we an de�ne the integral

of a form over a linear ombination of manifolds to be the very same linear ombination of integrals

of the same form over the manifolds. For
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We ould have as well onsidered forms ! de�ned on the integer lattie Z

d

, and de�ned their sums

P




! on a manifold 
 by the integrals

R




! of the form ! extended to R

d

by !(�
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; : : : ; �

d

) =

!

�
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1
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�

. We shall adopt this equivalent viewpoint from the next setion on. By linearity

with respet to manifolds, we obtain the following disrete variant of Stokes's formula [4℄.

Theorem 1 (Zeilberger{Stokes formula). For any di�erene p-form ! suh that !(�

1

; : : : ; �

d

) =

!

�

b�

1

; : : : ; b�

d



�

on any manifold 
 that is a linear ombination of elementary hyperubi mani-

folds, we have

P

�


! =

P




d!.

2. Closed Form Identities (Pun Intended!)

An interesting situation is that of a losed (di�erene) form, whih by de�nition is a di�erene

form ! suh that d! = 0. In this ase, the sum

P

�


! = 0 for any manifold 
 on all of whih 
 is

de�ned, owing to Theorem 1 above. If more spei�ally ! is given by (1), we obtain

d
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X
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^
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i

^ � � � ^ dn

d

= 0;

in other words a relation between a priori in�nite sums! Using the leeway available in the hoie

of 
 yields several kinds of identities: sum equals onstant, sum equals sum, et. In the following,

we detail this situation in the speial ase r = 2. Let us denote dn and dk for dn

1

and dn

2

,

respetively, and onsider a losed 1-form ! = g dn+ f dk, so that �

n

f = �

k

g.

2.1. Stripe-shaped manifolds. Consider 
 = R

+

� [ 0; n ℄ =

�
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�
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and the losed form ! obtained for
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�
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Stokes's theorem on 
 then yields (after elementary manipulations of binomial sums)
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More generally, many losed-form identities like the one above, where \losed form" now means

that both the summand and the sum are hypergeometri sequenes, orrespond to a \losed form"

that involves the summand as one of its oeÆients. Hene Zeilberger's \pun intended."

But some magi takes plae here: hanging 
 to [ 0; k ℄ � R

+

and summing with respet to n

instead of k, the same method sometimes yields a ompanion identity. Moreover, the more variables

there are, the more ampli�ed this phenomenon is: for r variables and in luky ases where all

summations make sense, a single losed di�erene (r�1)-form with hypergeometri oeÆients an

be viewed as a simultaneous enoding of r losed form summation identities [4℄.

2.2. Triangular-shaped manifolds. Zeilberger observed that for a losed form !

1

= g

1

dn+f

1

dk,

the funtions f

s

(n; k) = f

1

(sn; k) and g

s

(n; k) = g

1

(sn; k) + g

1

(sn+ 1; k) + � � � + g

1

(sn+ s� 1; k)

provide for eah s > 1 with another losed form !

s

= g

s

dn+ f

s

dk. Basing on this, Amdeberhan

and Zeilberger [1℄ derived the following representations for �(3):
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�
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1

72

1

X
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n
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4

+ 13878n

3

+ 13761n

2

+ 6120n + 1040)
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2

(3n+ 1)

2
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�

4n

n

��

3n

n

�
:

Spei�ally, they onsidered 
 =

�

(x; y)

�

�

y � bx+ 1

	

and the funtions

f

1

(n; k) = (�1)

k

k!

2

(n� k � 1)!

(n+ k + 1)! (k + 1)

and g

1

(n; k) = 2(�1)

k

k!

2

(n� k)!

(n+ k + 1)! (n+ 1)

2

:

The representations above have respetively been obtained for s = 1, 2, and 3; their general terms

derease like O(n

�3=2

4

�n

), O(n

�2

27

�n

), O(n

�2

64

�n

), respetively|at the ost of more and more

operations for eah term, though! Changing 
 to 


s

=

�

(x; y)

�

�

y � sbx + 1

	

leads to other

representations [1℄, like, for s = 2,

�(3) =

1

X
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(�1)

n

P (n)

80(5n+ 4)(5n+ 3)(5n + 2)(5n + 1)(4n+ 3)

2
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2
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2
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�
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n

��
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n
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where P = 1613824n

8

+ 7638016n

7

+ 15700096n

6

+ 18317312n

5

+ 13278552n

4

+ 6131676n

3

+

1763967n

2

+289515n+20782. The general term is now O(n

�2

(27=3125)

�n

), with 27=3125 � 115:74.

To sketh the proof, we apply Stokes's theorem to !

s

on 


s

, and obtain:

1

X

n=0

g

s

(n; 0) +

1

X

k=0

f

s

(sk + s; k) +

1

X

k=0

�

g

s

(sk; k) + � � �+ g

s

(sk + s� 1; k)

�

= 0:

Next, noting that g

1

(n; 0) = 2=(n+1)

3

and grouping the sums over k yields the announed identity.

2.3. Finite triangular-shaped and retangular-shaped manifolds. Other identities like

�(x+ n)�(y + n)

�(n)�(x+ y + n)

3

F

2

�

x; y; v + n� 1

v; x+ y + n

�

�

�

�

1

�

=

�(x+ k)�(y + k)

�(k)�(x+ y + k)

3

F

2

�

x; y; v + k � 1

v; x+ y + k

�

�

�

�

1

�

and

P

n+m=s

�

2n

n

��

2m

m

�

= 4

s

are based on other hoies for 
, like a retangle [ 0; k ℄ � [ 0; n ℄ or a

\triangle"

�

(x; y)

�

�

bx+ by � s

	

for 
 [5℄.
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3. Closed Forms with Holonomi CoeÆients

Consider a losed form ! = g dn + f dk with hypergeometri oeÆients. Sine f is hypergeo-

metri in n, one an �nd some rational funtion R of (n; k) suh that �

k

g = �

n

f = Rf . It is also

well-known that if a hypergeometri sequenes h has a hypergeometri anti-di�erene H, there has

to be some rational funtion S suh that H = Sh. Here we get g = S�

n

f = SRf . This situation

extends to more variables, whih legitimates Zeilberger's fous to losed forms whose oeÆients

are all multiples of the same hypergeometri sequene f by polynomials in the variables; he alled

suh forms WZ forms [4℄. Here we extend this situation to forms whose oeÆients are rational

multiples of the same holonomi sequene, and make the link between losed forms and reative

telesoping expliit.

Let a summation identity

P

b

k=a

f

n;k

= F

n

be given, where both f and F are holonomi �-�nite

sequenes. In view of verifying it, knowing F allows to ompute a non-zero operator P

0

(n; S

n

) suh

that P

0

�F = 0. Proving the identity thus redues to proving

P

b

k=a

(P

0

�f)(n; k) = 0. By restriting

to holonomi hypergeometri summands and right-hand sides, Zeilberger's presentation essentially

only dealt with the ase P

0

= S

n

� 1: F an always be assumed to be 1, otherwise we replae

f(n; k) with f(n; k)=F (n). In this spirit, we now require that P

0

be a right multiple of S

n

� 1 and

write P

0

= (S

n

� 1)R this fatorization.

The holonomy of f ensures that there exists a pair (P;Q) with non-zero P suh that

(2)

�

P + (S

k

� 1)Q

�

� f = 0:

Provided that there exists suh a pair for P = P

0

, the operator Q an be omputed by Chyzak's

�-�nite extension of Gosper's algorithm [3℄. Let A be the algebra of di�erene operators with

respet to n and k with oeÆients that are rational funtions in n and k, and introdue the

module M = A � f . The form

(3) ! = (R � f) dk � (Q � f) dn;

whose oeÆients all lie in M is losed:

d! =

�

(S

n

� 1)R � f

�

dn ^ dk �

�

(S

k

� 1)Q � f

�

dk ^ dn =

�

�

P + (S

k

� 1)Q

�

� f

�

dn ^ dk = 0:

Conversely, assume that there exists a losed form ! (with oeÆients in M) given by (3). By

losedness, we have

�

(S

n

� 1)R+ (S

k

� 1)Q

�

� f = 0, whene after summation over k, and provided

that R involves neither k nor S

k

,

(S

n

� 1)R �

b

X

k=a

f(n; k) = 0:

More generally, if the r-form f dk

1

^ � � � ^ dk

r

+

P

r

i=1

(P

i

� f) dn^ dk

1

^ : : :

^

dk

i

� � � ^dk

r

is losed,

i.e., (S

n

� 1) � f + (S

k

1

� 1)P

1

� f + � � � + (S

k

r

� 1)P

r

� f = 0;

the r-fold summation

P

k

1

;:::;k

r

f yields a onstant with respet to n.

4. Extended WZ Cohomology

Is it easily shown that any 1-form with oeÆients de�ned on Z

r

is exat. Even more is true:

any 1-form with holonomi oeÆients derives from a holonomi sequene. More spei�ally, a

1-form ! given by (3) is exat if and only if there exists a funtion �(n; k) suh that ! = d�, or

more expliitly

�(Q � f) = (S

n

� 1) � � and R � f = (S

k

� 1) � �:
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This always holds if we look for unonstrained �: simply de�ne � by

�(n; k) =

k�1

X

i=0

(R � f)(0; i) �

n�1

X

j=0

(Q � f)(j; k):

The non-trivial problem is to impose � 2 M. (For example, when f is hypergeometri, all

oeÆients of ! as well as � have to be rational multiples of f .) Then, not all 1-forms ! remain

exat. Vieweing losed forms modulo exat forms we are led to a ohomology that Zeilberger named

WZ ohomology in [4℄ in the ase of hypergeometri f , and that we all extended WZ ohomology

in the more general ase of holonomi �-�nite f . Following Zeilberger [4℄, we suggest the following

extended researh problem: haraterize those holonomi �-�nite sequenes f for whih there exists

a non-exat losed form with oeÆients inM = A�f and ompute the orresponding ohomology.

5. Pullbaks

In the di�erential ase, the notion of pullbak propagates a hange of variables in funtions to

the level of di�erential forms, thus permitting hange of variables in integrals: for a di�erentiable

map � from a manifoldN to another manifoldM , one gets a mapping �

�

that transforms a p-form !

on M to a p-form on N while preserving losedness of forms by simply requiring

(4) (�

�

!)(�)(v

1

; : : : ; v

p

) = !

�

�(�)

��

�

0

(�)(v

1

); : : : ; �

0

(�)(v

p

)

�

:

In the di�erene ase, a simple example of a pullbak has already been given in Setion 2.2: the

losed form !

s

is the pullbak of the losed form !

1

under the map given by �(n; k) = (sn; k).

However, no simple de�nition of a pullbak seems possible: the obvious guess that mimiks (4),

substituting �

�

for �

0

, unfortunately does not preserve losedness (taking �nite di�erenes is not

a loal operation). Zimmermann [5℄ and Gessel independently gave a de�nition for the ase of a

linear mapping � that maps integer points to integer points.

The key observation is that for a linear transform l = �(n), de�ned by l

i

=

P

j

a

i;j

n

j

, shifting by 1

with respet to n

j

after performing the substitution indued by � is equivalent to doing shifts with

respet to eah l

i

before substituting, as detailed by the formula S

l

j

�

�

= �

�

S

a

1;j

n

1

: : : S

a

n;j

n

r

. It then

follows from a tehnial but easy alulation that �

l

j

�

�

= �

�

P

i

P

i;j

�

n

i

for some operators P

i;j

.

Imposing the natural relations �

�

(f) = f Æ � and �

�

(df) = d(�

�

f) for 0-forms f leads to

X

i

�

�

�

(�

n

i

f) dn

i

�

=

X

j

�

�

l

j

(�

�

f)

�

dl

j

=

X

i;j

�

�

(P

i;j

�

n

i

f) dl

j

:

Choosing f suh that df = (�

n

i

f) dn

i

, we get �

�

(g dn

i

) =

P

j

�

�

(P

i;j

g) dl

j

, a de�nition that proves

to preserve losedness.
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