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Abstrat

In the 1960's, Malgrange made use of D-module theory for studying linear systems of

PDEs [2℄. Several aspets of this approah, now alled algebrai analysis, have then been

made e�etive in the 1990's, owing to the extension of the theory of Gr�obner bases to rings

of di�erential operators. Correspondingly, algorithms have also been implemented in several

systems. Reently, the introdution of algebrai analysis to ontrol theory has allowed to

lassify linear multidimensional ontrol systems aording to algebrai properties of assoi-

ated D-modules, to rede�ne their strutural properties in a more intrinsi fashion, and to

develop e�etive tests for deiding these strutural properties [3, 6, 7, 8, 9, 10, 12, 14℄.

1. From Linear Multidimensional Control Systems to Algebrai Analysis

A ontrol system relates the state x of a physial proess with an external ommand u and some

output y. Eah of u, x, and y is a vetor of funtions of the time t, and the system desribes their

evolution with t. Several lasses of suh systems an be represented by matries with oeÆients

in a ring of operators. Sample lasses are the following:

1. Kalman systems are �rst-order linear (ordinary) di�erential systems

_x = Ax+Bu; y = Cx+Du;

where A, B, C, and D are matries with real entries [5℄. For example, RLC iruits an be

desribed by Kalman systems.

2. Polynomial systems are higher-order di�erential systems expressed without the help of any

state variable, in the form

(1) P (d=dt)y(t) +Q(d=dt)u(t) = 0:

Here P and Q are matries with oeÆients that are salar linear di�erential operators with

real oeÆients [5℄. For example, a harmoni osillator ommanded by a fore is desribed by

a seond-order polynomial system. By Laplae transform, an equivalent formulation of (1) is

P (s)ŷ(s) +Q(s)û(s) = 0;

the matries P and Q are now matries of polynomials in s with real oeÆients [5℄.

3. Di�erential-delay systems with onstant delays are a generalization ommon to Kalman sys-

tems and polynomial systems by introduing the onstant-delay operators Æ

i

de�ned by
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(Æ

i

f)(t) = f(t� t

i

) for some real t

i

. The generalized forms are

_x(t) =

r

X

i=0

A

i

x(t� t

i

) +B

i

u(t� t

i

); y(t) =

r

X

i=0

C

i

x(t� t

i

) +D

i

u(t� t

i

);

and

P (d=dt; Æ

1

; : : : ; Æ

r

)y +Q(d=dt; Æ

1

; : : : ; Æ

r

)u = 0;

respetively. A typial ourrene of delay is when transmitting a signal u through a hannel.

4. Multivariate linear di�erential systems with real oeÆients appear frequently to desribe

physial phenomena, like eletromagnetism, (linear) elastiity, hydrodynamism, and so on

[7, 8, 12℄.

In eah ase, the olumn vetor � = (y; x; u)

T

satis�es R� = 0 for a (retangular) matrix R

with oeÆients in some ring A . Thus, we heneforth onsider a linear ontrol system as de�ned

by a matrix R with oeÆients in an entire ring A . To give simple examples, the matrix forms

orresponding to Kalman and polynomial systems respetively are

R =

�

0 A� d=dt Id B

Id C D

�

and R =

�

P Q

�

:

In these di�erential ases, the ring A is R[d=dt℄ or a multivariate generalization, but more general

rings of oeÆients are also onsidered in plae of R in appliations, like the ring R(t) of rational

funtion, or the ring C

1

(I) of in�nitely di�erentiable funtions over some real interval I. In

the equivalent formulation by Laplae transform or in the mixed di�erential-delay situation with

onstant oeÆients, the ring is isomorphi to the polynomial ring R[s℄ or a multivariate analogue.

Here again, more general rings of funtions often appear in appliations, like: R

�

s; exp(�s)

�

, for

situations related to the wave equation; or the ring H

1

(C

+

) of omplex-analyti funtions bounded

in the right half omplex plane C

+

(Hardy spae) and its subring RH

1

(C

+

) of real rational funtions

with no pole on the right half omplex plane, for the study of the stability of some distributed

systems [11℄.

Several strutural properties of systems are all-important in ontrol theory. An observable of a

ontrol system is any salar funtion of its ommand u, state x, and output y and of their derivatives

up to a ertain order. An observable is alled autonomous if it satis�es a non-trivial PDE. A ontrol

system is alled ontrollable if no observable is autonomous. The study of strutural properties of

a system turns out to lead to linear algebra: ontrollability and observability are related to various

notions of primeness of the linear maps

z 7! Rz and z 7! zR;

in the polynomial systems ase, stability is related to poles and zeroes of the system, that are

invariant fators of the matrix R; similarly with the existene of generalized B�ezout identities and

atness of a ontrol system; et.

By assoiating an A-module M to the matrix R, another interpretation of the strutural proper-

ties is in terms of module-theoreti and homologial properties ofM (torsion, torsion-free, reexive,

and projetive modules; extension and torsion funtors). In fat, a full lassi�ation of modules by

homologial algebra methods translates into a lassi�ation of linear ontrol systems.

2. Duality Between Di�erential Operators and D-Modules

Let us turn to the formal theory of PDEs [13℄. Starting with a naive viewpoint on di�erential

operators (so as to avoid the formalism of jet bundles), we introdue formally exat sequenes of

di�erential operators. For eah k, let F

k

denote the algebra of funtions in k variables, and onsider
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a di�erentiel operator D from F

m

to F

l

(of �nite order). Given � 2 F

n

, the neessary onditions

for the existene of � 2 F

m

suh that D� = � are alled ompatibility onditions of D; they take

the form D

1

� = 0 for some di�erential operator D

1

. Writing D

0

= D, we have D

1

Æ D

0

= 0. When

D

1

enapsulates all ompatibility onditions, the sequene

F

m

D

0

! F

l

0

D

1

! F

l

1

of di�erential operators is alled formally exat (at F

l

0

). Formally exat sequenes an always be

extended (to the right) into longer sequenes, so that denoting the solution set of D = D

0

in F

m

by �, we obtain a formally exat sequene

0! �! F

m

D

0

! F

l

0

D

1

! F

l

1

D

2

! F

l

2

! � � �

(at � and eah F

l

k

) where the �rst two maps denote inlusions. Under tehnial onditions (regu-

larity and involutivity), the formal theory of PDEs proves the existene of a �nite formally exat

sequene for D, in the sense that F

l

n

= 0 from some n on, by exhibiting a anonial, formally exat

sequene

(2) 0! � = kerD

0

! F

m

D

0

! F

l

0

D

1

! F

l

1

D

2

! F

l

2

! � � �

D

r

! F

l

r

! 0

alled the Janet sequene of D, in whih eah (non-zero) D

i

is of order 1 (and involutive) for i � 1,

and r is the number of derivatives.

A dual, more algebrai ounterpart to this di�erential viewpoint is in terms of exat sequenes of

D-modules. To this end, we now view eah D

i

as de�ned by an l

i

� l

i�1

matrix R

i

of multivariate

linear di�erential operators in

A = R(x

1

: : : ; x

r

)[�

1

; : : : ; �

r

℄:

(We set l

�1

=m.) In terms of matries,

D

i

= R

i

� = (� 7! R

i

�);

so that R

i+1

R

i

� = 0. We then onsider the maps � R

i

from A

l

i

to A

l

i�1

, whose elements are

viewed as row vetors. To start with, the map �R

0

de�nes an algebrai representation of a generi

solution � the PDE system D

0

� = 0 in the following way. Let (e

1

; : : : ; e

m

) be the anonial basis

of A

m

and onsider the maps

(3) 0 M = A

m

=A

l

0

R

0

�

 A

m

�R

0

 A

l

0

;

where � denotes the anonial projetion �(v) = v + A

l

0

R

0

. The okernel

M = oker( � R

0

) = A

m

=A

l

0

R

0

of �R

0

ontains the announed generi solution: setting

�

i

= �(e

i

) = e

i

+ A

l

0

R

0

;

we get D

0

� = �R

0

= 0. Other members of M orrespond to linear ombinations of the �

i

and their

derivatives, i.e., to the observables de�ned above. We now proeed to follow up with the next D

i

's.

A sequene

L

u

! L

0

v

! L

00

of linear maps (between modules) is said to be exat (at L

0

) if imu = ker v. (Thus (3) is exat at

M and A

l

0

.) It an be shown that any Janet sequene (2) gives rise to the exat sequene

(4) 0 M

�

 A

m

�R

0

 A

l

0

�R

1

 A

l

1

�R

2

 A

l

2

 � � �

�R

r

 A

l

r

 0
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(at M and eah A

l

k

). Here, � R

i+1

R

i

= 0 by exatness. Sine A has no zero divisor, this means

that R

i+1

R

i

= 0. The sequene (4) of (left) D-modules is alled a free resolution of M : it enap-

sulates the obstrution of M to be free (as the module ker � = im( � R

0

)), then the obstrution

of ker � to be free (as the module ker( � R

0

) = im( � R

1

)), et. (A module is alled free when it is

isomorphi to some A

r

, whene the name \free resolution.")

3. Parametrization and Controllability

A problem dual to the searh of ompatibility onditions is, for a given di�erential equation

D� = 0, to determine whether the solutions an be parametrized by ertain arbitrary funtions

whih, in physial systems, play the role of potentials. In other words, the problem is to determine

whether there exists another operator

D

�1

: F

l

�1

! F

l

0

whose ompatibility onditions are desribed by D = D

0

, i.e., to look for a formally exat sequene

F

l

�1

D

�1

! F

l

0

D

0

! F

l

1

:

In this situation, for any � 2 F

l

0

the existene of � 2 F

l

�1

satisfying D

�1

� = � is equivalent to

the fat that � solves the di�erential equation D

0

� = 0, and so D

�1

\parametrizes"|in the usual

sense|all its solutions.

The existene of a parametrization has a nie appliation to optimal ommand : assume one needs

to minimize a ost funtion provided by the integral

R

�

0

F (t) dt of an observable F of some systemD

0

.

The optimization problem is then to minimize over all tuples � = (y; x; u)

T

of funtions onstrained

by D

0

� = 0. On the other hand, one the solutions � are given by a parametrization � = D

�1

�, the

optimization problem redues to the non-onstrained problem of minimizing the integral

R

�

0

G(t) dt

of a new observable G of D

�1

over unonstrained � [12℄.

To study the ontrol-theoreti properties of the di�erential operator D, starting with the existene

of a parametrization, we in fat study the module-theoreti properties of M , whih in turn are

derived from the study of the right D-module de�ned by

(5) A

l

�1

R

0

�

! A

l

0

! N = oker(R

0

� ) = A

l

0

=R

0

A

l

�1

! 0

(reall that l

�1

= m and ompare with (3)). The key ingredient to be used omes from linear

algebra: dualization, whih maps a left A -module L to the right module hom

A

(L; A ) of A -linear

appliations from L to A . Correspondingly, any linear map L

u

! L

0

indues a map from the dual

of L

0

to the dual of L: to � 2 hom

A

(L

0

; A ), one assoiates � Æ u 2 hom

A

(L; A ). This takes a simple

form when the modules are free and of �nite rank (i.e., L = A

m

and L

0

= A

l

, viewed as left modules

of row vetors). Indeed, the linear map u is just the appliation of an m � l matrix U : u = � U .

Elements � 2 hom

A

(A

k

; A ) are de�ned by their values on the anonial basis (e

i

) of A

k

by

� = �

�

�(e

1

); : : : ; �(e

k

)

�

T

;

so that the dual of A

k

is isomorphi to A

k

(now viewed as a right module of olumn vetors). In

this setting, the dual of a map A

m

�U

! A

l

is A

m

U �

 A

l

. The same ideas apply mutatis mutandis for

the dual of right modules.

To searh for a parametrization, one thus extends the exat sequene (5) into an exat sequene

A

l

�2

R

�1

�

! A

l

�1

R

0

�

! A

l

0

! N ! 0:



A. Quadrat, summary by F. Chyzak 109

An algorithm for this purpose will be given in Setion 5. By dualization (i.e., appliation of the

hom

A

( � ; A ) funtor), it beomes a sequene

A

l

�2

�R

�1

 A

l

�1

�R

0

 A

l

0

 hom

A

(N; A )  0

of left D-modules that is usually no longer exat. In partiular, we may well have ker( �R

�1

) stritly

larger than im( �R

0

). Upon forgetting the map �R

0

and prolonging �R

�1

into

A

l

�2

�R

�1

 A

l

�1

�R

0

0

 A

l

0

0

;

we obtain an \exat" representation of ker( �R

�1

) as im( �R

0

0

). It an be proved that the quotient

im( �R

0

0

)= im( � R

0

) �M

is the torsion module t(M) of M , i.e., the set of all its members m for whih there exists a non-zero

salar a 2 A suh that am = 0. Thus we have obtained that a (linear) ontrol system system

is ontrollable if and only if its assoiated module M of observables is torsion-free, whih an be

tested algorithmially. Moreover, a basis for the module t(M) of autonomous elements is obtained

from the rows of R

0

0

(that are elements of im( �R

0

0

)), viewed modulo im( �R

0

).

4. More Strutural Properties of Control Systems as Extension Modules

Other strutural properties of D will be desribed in terms of the extension modules of N , a

entral tool in homologial algebra. Consider a free resolution

(6) � � �

R

�n

�

! A

l

�n

R

�n+1

�

! � � �

R

�2

�

! A

l

�2

R

�1

�

! A

l

�1

R

0

�

! A

l

0

! N ! 0

(as obtained, for example, with the algorithms of Setion 5). This is an exat sequene of right

D-modules. By dualization it beomes a sequene

(7) � � �

�R

�n

 A

l

�n

�R

�n+1

 � � �

�R

�2

 A

l

�2

�R

�1

 A

l

�1

�R

0

 A

l

0

 hom

A

(N; A )  0

of left D-modules that, again, is usually no longer exat. By dropping hom

A

(N; A ) from (7), we

obtain another non-exat sequene, but of free modules only,

� � �

�R

�n

 A

l

�n

�R

�n+1

 � � �

�R

�2

 A

l

�2

�R

�1

 A

l

�1

�R

0

 A

l

0

 0:

Its defets of exatness are enapsulated by its ohomology sequene, that is to say, by the quotients

ker( � R

�i

)= im( � R

�i+1

):

An all-important fat is that this family depends on N only, and not of the hoie of a free

resolution (6). This motivates the notation

ext

i

A

(N; A ) = ker( �R

�i

)= im( �R

�i+1

)

for extension modules (with in partiular ext

0

A

(N; A ) = ker( �R

0

) = hom

A

(N; A )).

The nullity or non-nullity of the ext

i

's provides with the lassi�ation of modules in Theorem 1

below; in turn this lassi�ation provides with the lassi�ation of ontrol systems in Theorem 3

below. Here are two more module-theoreti notions missing to state Theorem 1. A module L is

projetive whenever there exists a module L

0

suh that L� L

0

is free; it is reexive whenever it is

isomorphi to the dual of its dual through the linear map

� :M ! hom

A

�

hom

A

(M; A ); A

�

de�ned by

�(m)(f) = f(m):
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Then, a free module is always projetive, a projetive module always reexive, and a reexive

module always torsion-free. (For modules over a prinipal ideal, these notions oinide; for modules

over a multivariate polynomial ring with oeÆients over a �eld, free and projetive are equivalent,

a theorem by Quillen and Suslin.)

The following theorems [1, 4℄ make the link between properties of a module and the nullity of

the extension modules of its transposed module.

Theorem 1 (Palamodov, Kashiwara). For the modules M and N de�ned by (3) and (5), we have:

1. M is torsion-free if and only if ext

1

A

(N; A ) = 0;

2. M is reexive if and only if ext

1

A

(N; A ) = ext

2

A

(N; A ) = 0;

3. M is projetive if and only if ext

1

A

(N; A ) = � � � = ext

r

A

(N; A ) = 0.

Theorem 2 (Palamodov, Kashiwara). Let M and N be the two modules de�ned by (3) and (5).

Then there exists an exat sequene

0!M ! A

p

1

! A

p

2

! � � � ! A

p

r

if and only if ext

i

A

(N; A ) = 0 for i = 1; : : : ; r.

We �nally obtain the following lassi�ation of linear ontrol systems, whih admits some re�ne-

ments in the ase of di�erential operators with onstant oeÆients, i.e., matries with entries in

R[�

1

; : : : ; �

r

℄ � A [7, 8, 12℄.

Theorem 3. For a ontrol system de�ned by the di�erential operator D = R � where R is an l�m

matrix with l � m and entries in

A = R(x

1

: : : ; x

r

)[�

1

; : : : ; �

r

℄;

introdue the two left D-modules M = oker( �R) and N = oker(R � ) of the maps between the free

modules A

m

and A

l

. Then:

1. if M has torsion, the ontrol system has autonomous elements, and in the event R has

onstant oeÆients and full row module, it has no primality property;

2. M is torsion-free if and only if ext

1

A

(N; A ) = 0. In this ase, the ontrol system is ontrol-

lable, and in the event R has onstant oeÆients and full row module, it is prime in the

sense of minors, i.e., there is no ommon fator between the minors of R of order l;

3. M is reexive if and only if ext

1

A

(N; A ) = ext

2

A

(N; A ) = 0;

4. in the event R has onstant oeÆients and full row module, and if

ext

1

A

(N; A ) = � � � = ext

r�1

A

(N; A ) = 0 while ext

r

A

(N; A ) 6= 0;

the ontrol system is weakly prime in the sense of zeroes, i.e., all minors of order l simulta-

neously vanish at �nitely many points only;

5. M is projetive if and only if

ext

1

A

(N; A ) = � � � = ext

r

A

(N; A ) = 0:

In this ase the ontrol system has an inverse generalized B�ezout identity, and in the event

R has onstant oeÆients and full row module, it is prime in the sense of zeroes, i.e., all

minors of order l simultaneously vanish at no point;

6. if M is free, the ontrol system is at and has diret and inverse generalized B�ezout identities.

Further intermediate situations, ext

1

A

(N; A ) = � � � = ext

k�1

A

(N; A ) = 0 and ext

k

A

(N; A ) 6= 0,

orrespond to further intermediate primeness onditions (desribed in terms of the dimension of

the algebrai variety de�ned by the l � l minors of R).
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5. Gr�obner Basis Calulations for Compatibility Conditions and Parametrizations

The whole mahinery of the previous setions ruially bases on prolongations of exat sequenes.

A point that is important in view of omputations is that these an be obtained by Gr�obner basis

alulations for free modules over A .

The prolongation of a map A

m

�R

 A

l

into an exat sequene A

m

�R

 A

l

�S

 A

k

is done in the

following fashion. Let (e

1

; : : : ; e

m

) and (f

1

; : : : ; f

l

) be the anonial bases of A

m

and A

l

, respetively,

and denote the ith row of R = (r

i;j

) by �

i

. Thus �

i

=

P

m

j=1

r

i;j

e

j

. Prolonging the map amounts

to �nding non-trivial relations

P

l

i=1

s

i

�

i

= 0. Now introdue the submodule Z of A

m+l

generated

by the formal linear ombinations f

i

� �

i

. We ontend that omputing a Gr�obner basis for this

module and for a term order that eliminates the e

i

results in linear ombinations

P

l

i=1

s

i

f

i

2 Z,

eah of whih orresponds to a relation between the �

i

. Additionally, any relation an be obtained

as a linear ombination of the relations thus obtained.

In e�et, onsider an element z =

P

l

i=1

s

i

f

i

2 Z; thus

P

l

i=1

s

i

�

i

is in Z and is a ombination

P

l

i=1

�

i

(f

i

� �

i

), whih is only possible, in view of the oeÆients of the f

i

, if the �

i

are zero, thus

if

P

l

i=1

s

i

�

i

= 0; the onverse property is also true. Sine the Gr�obner basis alulation preisely

omputes a �nite generating set, say of k elements, for all the z's free of the e

i

, it suÆes to onsider

eah of those k elements as a row, and to glue them in olumn to obtain a new matrix S = (S

i;j

)

suh that the sequene A

m

�R

 A

l

�S

 A

k

is exat.

Now, existing pakages often ontain failities to ompute Gr�obner bases for left modules only;

some of our omputations require to deal with right modules. A last ingredient, adjuntion, enables

one to turn any left module into a right module, and vie versa, in a way that preserves the exatness

of sequenes. Indeed, the adjoint map P 7!

~

P de�ned by assoiativity from the rules ~x

i

= x

i

,

~

�

i

= ��

i

, and (PQ)~ =

~

Q

~

P , is an (anti)automorphism of the algebra A whih extends to matries

by mapping itself to the entries of the transpose matrix. Thus, for example, the exat sequene (5)

of right D-modules of olumns in Setion 3 is replaed with the exat sequene

A

l

�1

�

~

R

0

! A

l

0

!

~

N = oker( �

~

R

0

)! 0

of left D-modules of lines, for the purpose of expliit alulations.
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