
Algorithms Seminar 2001–2002,
F. Chyzak (ed.), INRIA, (2003), pp. 33–36.

Available online at the URL
http://algo.inria.fr/seminars/.

Fast Algorithms for Polynomial Systems Solving

Alin Bostan

Gage, École polytechnique (France)

November 19, 2001

Summary by Frédéric Chyzak

Abstract

Solving a system of polynomial equations with a finite number of solutions can be reduced to
linear algebra manipulations in an algebra A of finite type. We show how to accelerate this
linear algebra phase in order to compute a “rational parameterization” of the zeros of the
polynomial system. We propose new algorithmic solutions by extending ideas introduced by
V. Shoup in the context of the factorization of polynomials over finite fields. The approach
is based on the A-module structure of the dual of A, which translates algorithmically to
techniques of the type “baby steps / giant steps.” This is joint work with B. Salvy and

É. Schost [1].

Given a zero-dimensional ideal I in some polynomial ring k[X1, . . . ,Xn], a nice form for a pa-
rameterization of the solution set V (I) of I is of the type

(1) V (I) =

{(

g1(a)

g(a)
, . . . ,

gn(a)

g(a)

) ∣

∣

∣

∣

m(a) = 0

}

for polynomials m, g, and gi. In other words, solutions are indexed by the zeros of a univari-
ate polynomial m, and the ith coordinate of the solutions is the evaluation of the fixed rational
function gi/g at those zeros. With additional technical constraints, (1) is called a rational parame-
terization of the variety V (I). Note that by the algebraic nature of the problem, polynomials could
be considered in place of rational functions with common denominators, but the choice of rational
parameterizations proves useful to obtain compact expressions and algorithms with low complexity.

An algebraic quantity needed in several works to solve polynomial systems is the minimal poly-
nomial of suitable elements u of the quotient algebra A = k[X1, . . . ,Xn]/I. (By the minimal
polynomial mu of u ∈ A, we mean the unique monic polynomial of minimal degree such that
m(u) = 0.) For example, in the algorithms below, obtaining the polynomials g and gi of rational
parameterizations indirectly requires to compute minimal polynomials.

The goal of this work is to accelerate the computation of minimal polynomials in A and of
rational parameterizations of the variety V (I). Additional motivation is given by the need for
such calculations for polynomial factorization, in cryptography, effective Galois theory, effective
theory of D-modules, when counting and approximating zeros, etc. We present several probabilistic
algorithms with several types of inputs and different complexity. A first class of algorithms takes
as input one or a few matrices of multiplication by selected elements of A. In the case of the
calculation of minimal polynomials, the result is that our approach gains when the degree δ of the
minimal polynomial is relatively small, compared to the dimension D of A as a k-vector space. In
the same way, our algorithm for the calculation of rational parameterizations gains when an a priori
bound δ for the degree of minimal polynomials to be computed as a subtask is sufficiently smaller

34 Fast Algorithms for Polynomial Systems Solving

than D. An additional gain by an order of 2−n
√

δ is made available by algorithms that take the
whole multiplication table of A.

The algorithms presented here have been implemented in the computer algebra system Magma.

1. Computation of Minimal Polynomials

We focus on the computation of the minimal polynomial of an element u of the algebra A. The
cost of the naive algorithm—express the powers of u in terms of a k-basis of A before looking for
a linear dependency—is dominated by the calculations of the successive powers.

A first ingredient to improve the calculation of a minimal polynomial is by projection of powers,
an idea already used in other contexts by Wiedemann and Shoup. Indeed, observe that when
u satisfies an algebraic relation adu

d + · · · + a0 = 0, then

adℓ(u
d+i) + · · · + a0ℓ(u

i) = 0

for any k-linear form ℓ on A and any integer i, making the sequence of the ℓ(ui) linear recurrent. One
thus looks for the minimal polynomial mu,ℓ of the sequence Lu =

(

ℓ(ui)
)

i≥0
, which for “generic” ℓ

is equal to mu. (For unlucky choices of ℓ, it is only a divisor of mu.)
Specifically, the algorithm chooses a k-linear form ℓ from the dual A∗ of A, then determines

the first 2δ terms of the scalar sequence Lu. Using the Berlekamp–Massey algorithm, it next
determines mu,ℓ, which merely amounts to computing a Padé approximant for the (truncated)

series
∑2δ−1

i=0 ℓ(ui)U i, as one can prove the existence of a relation

(2)

2δ−1
∑

i=0

ℓ(ui)

U i+1
=

Gu,ℓ

mu

for a polynomial Gu,ℓ of degree at most δ. Apart from the projection step, the complexity of this
algorithm decreases from the complexity of linear algebra, in O(δω) for 2 < ω ≤ 3, to O(δ2). The
overall complexity thus remains dominated by the calculations of the successive powers.

A second improvement consists in a better calculation of the powers, and follows a “baby
steps / giant steps” approach: instead of computing the ℓ(ui) in sequence for i to δ, one only

computes t = O
(
√

δ
)

powers ui for 1 ≤ i ≤ t and evaluates them at O
(
√

δ
)

forms of the form

x 7→ ℓ(uitx). Computing those forms efficiently requires a better understanding of the structure
of A∗. Specifically, for any a ∈ A, we consider the k-linear application of multiplication by a from A
to itself, which by transposition induces a k-linear map of A∗ to itself: this transposed product a · ℓ
maps an element x ∈ A to ℓ(xa). The dual A∗ thus turns out to be an A-module. Since (on
suitable bases) the matrix of the (transposed) product by a in A∗ is the transposed of the matrix
of the multiplication by a in A, Tellegen’s transposition principle predicts that the complexity of
computing the transposed product by a is that of computing the multiplication by a. Guided by
this heuristic, Bostan et al. have obtained an algorithm to compute all the projections and have
gained essentially a factor of

√
δ on the naive complexity. For the sake of exposition, the description

of this algorithm is postponed to Section 3.
Detailed complexity analysis leads to the following result.

Theorem 1. Given u ∈ A, the minimal polynomial mu (together with the polynomial Gu,ℓ in (2))
can be computed by a probabilistic algorithm:

1. in O(δD2) operations in k if the matrix of multiplication by u is known;

2. in O(2n
√

δ D2) operations in k if the multiplication table of A is known (and described in
some specific way, see Section 3).

A. Bostan, summary by F. Chyzak 35

This has to be compared with classical algorithms, respectively in O(δD2 + Dω) and Olog(D
ω).

2. Computations of Rational Parameterizations

Elements of the quotient algebra A = k[X1, . . . ,Xn]/I can be viewed as functions on the vari-
ety V (I). The idea behind the representation (1) is to distinguish two points by distinct values of a
suitable polynomial function on V (I). To this end, we introduce the notion of a separating element
of A to refer to polynomial functions with this property.

The following central and, to the eye of the author of this summary, surprizing result from [1]
provides rational parameterizations as a by-product of computations of minimal polynomials.

Theorem 2. Let u be a separating element of A of generic degree and ℓ be a linear form on A
such that mu,ℓ = mu. Then, a rational parameterization of V (I) is given as

V (I) =

{(

Gu,x1·ℓ(a)

Gu,ℓ(a)
, . . . ,

Gu,xn·ℓ(a)

Gu,ℓ(a)

)
∣

∣

∣

∣

mu(a) = 0

}

.

Then, an algorithm for rational parameterizations is the following. An element u is chosen in A,
as well as a k-linear form ℓ in A∗. The minimal polynomial mu and the related polynomial Gu,ℓ

are computed by the algorithm of the previous section. The forms xj · ℓ are then computed. By
projecting powers like in the previous section, the series Ri =

∑

i≥0 ℓ(xju
i)/U i+1 are computed with

precision O(U1−δ). The polynomials Gu,xi·ℓ are then obtained by mere polynomial products from
the formula Gu,xi·ℓ = muRi, which assumes the generically verified identity mu = mu,ℓ = mu,xi·ℓ.
Again, the bottleneck of the calculation is the projection step.

Detailed complexity analysis leads to the following result. For non-zero characteristic, a technical
condition is given in terms of the radical

√
I of the ideal I, in other words, the set of polynomials

that, when raised to some power, lie in the ideal I.

Theorem 3. Given a separating element u ∈ A of generic degree. Assuming that the field k is
a perfect field of characteristic zero or at least min{ s |

√
I

s ⊂ I }, a rational parameterization
of V (I) can be computed by a probabilistic algorithm:

1. in O(δD2 +nD2) operations in k if the matrices of multiplication by u and the xi are known;

2. in O(n2n
√

δ D2) operations in k if the multiplication table of A is known (and described in
some specific way, see Section 3).

This has to be compared with Rouillier’s RUR algorithm in O(D3 + nD2).

3. Algorithm for Effective Transposed Product

In this section, we show that both multiplications in A and transposed products in A∗ can
be performed in O(2nD2) operations in k when the multiplication table of A is known. More
specifically, we require that the multiplication table be described in terms of a special vectorial
basis of A. A basis {ωi}i=1,...,D of the quotient algebra A = k[X1, . . . ,Xn]/I is called a monomial
basis when the ωi are given as ωi = mi + I for a collection M of monomials mi “under the stairs”
of a Gröbner basis for I. (In particular, if m is a monomial in this collection, all its monomial
divisors are there as well; this property is in fact sufficient to obtain the subsequent results.) The
property of being a monomial basis, not just any basis, has a strong consequence on products: the
set M ·M of the products mimj has cardinality bounded above by 2nD. After fixing orders on M
and M · M , the multiplication table of A is given as a |M | × |M · M | matrix T .

In order to compute the multiplication of u =
∑D

i=1 uiωi ∈ A and v =
∑D

i=1 viωi ∈ A, just

compute the product of
∑D

i=1 uimi with
∑D

i=1 vimi in k[X1, . . . ,Xn], write the vector V of the

36 Fast Algorithms for Polynomial Systems Solving

coefficients of this product with respect to the basis M · M , and compute the product TV to get
the coefficients with respect to the basis M of the product uv. This uses O(D2) operations for the
first step and O(2nD2) for the second, so in total O(2nD2) operations in k for multiplication in A.

We now turn to the computation of transposed products, in which certain truncations of gener-
ating series play a crucial role. We introduce the notation

S(ℓ, C) =
∑

m∈C

ℓ(m + I)m ∈ k[X1, . . . ,Xn]

for any form l ∈ A∗ and any collection C of monomials. One readily verifies that when M = {mi}D
i=1

corresponds to a monomial basis of A and with u =
∑D

i=1 uimi + I, the polynomial S(u · ℓ,M) is
given as the part with support in M of the product

(3)

(D
∑

i=1

uim
−1
i

)

S(ℓ,M · M).

An algorithm to compute a transposed product u · ℓ is thus the following. Write ℓ =
∑D

i=1 ℓiω
∗
i

in terms of the dual basis {ω∗
i }D

i=1 of the monomial basis of A. Multiply this vector by the trans-
posed of the matrix T that encodes the multiplication table of A. The resulting vector gives the
coefficients of S(ℓ,M · M) with respect to the basis M · M . Compute the product in (3) and
read off the coefficients of the form u · ℓ with respect to the dual basis {ω∗

i }D
i=1. Again, this uses

O(2nD2) operations in k in total.

4. A Note on the Probabilistic Nature of the Algorithms

The algorithms of Sections 1 and 2 are randomized by the choice of the linear form ℓ. If the
coordinates of ℓ are chosen in a finite subset F of k, then the probability of failure of the algo-
rithms is bounded above by δ/|F | (uniformly in the input u in the case of the minimal polynomial
computation).

Bibliography

[1] Bostan (Alin), Salvy (Bruno), and Schost (Éric). – Fast algorithms for zero-dimensional polynomial systems using
duality. – To appear in Applicable Algebra in Engineering, Communication and Computing.

