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Abstract

A. P�eladan-Germa deals with extensions of di�erential rings by solutions of systems of

PDE's. In the case of ODE's, the problem of equality testing in the extension ring has been

solved [2, 3]. The author gives an algorithm for the more general case of PDE's [6]. It is

based on the theory of di�erential algebra, and in particular on the concept of auto-reduced

coherent sets [5, 8].

1. Outline of the algorithm

Let R be the polynomial ring k[x

1

; : : : ; x

n

] endowed with the usual partial derivatives @

x

i

. The

work described here gives an algorithm for e�ective equality testing in di�erential extensions of R

by series de�ned by algebraic partial di�erential equations. More precisely, let f

i

2 k[[x

1

; : : : ; x

n

]]

be formal power series de�ned by equations of the form

Q

h

(x

1

; : : : ; x

n

; f@

�

f

i

g) = 0;(1)

for polynomials Q

h

in �nitely many derivatives @

�

f

i

. Given these polynomials Q

h

and similar

polynomials P

h

, the problem is to decide whether the f

i

's satisfy the equations represented by

the P

h

's, and in case they do not, to return one of the P

h

's that is not satis�ed.

The viewpoint adopted here is to consider the formal power series P

h

(x

1

; : : : ; x

n

; f@

�

f

i

g) as

elements of the di�erential extension of R by the f

i

's. However, she requires an assumption on

these power series, namely that they are de�ned by a complete system. Informally, a complete

system provides with su�ciently many equations and initial conditions so as to be able to compute

any coe�cient of any of the power series f

i

(see Theorem 2 below). The same also applies to all

series P

h

(x

1

; : : : ; x

n

; f@

�

f

i

g). The algorithm decides whether all coe�cients are zero. Moreover,

a complete system makes sure that the algorithm will work for any set of P

h

's, even for badly

conditioned ones. Given the set A of all P

h

's and all Q

h

's, the algorithm is:

(1) Compute an autoreduced coherent set B associated to A and an additional polynomial H ,

the product of all initials and separants of the elements of B. (These notions are de�ned

below.) Informally, the set B de�nes the same series as A, up to possible singularities

described by H : the algorithm has to decide whether H(f) = 0.

(2) To this end:

{ if H(f)(0) 6= 0 (regular case), then the P

h

(f) are all zero if and only if @

�

B(f)(0) = 0

for a computable �nite set of derivatives and all B 2 B;

{ otherwise, the algorithm is applied recursively to decide whether all P

h

(f)'s and H(f)

are zero; then:
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� if H(f) 6= 0 (semi-regular case), the problem reduces again to testing B(f) = 0;

B(f) continuously depends on the initial conditions de�ning f , and decision is

done by computing a Groebner basis in an usual non-di�erential algebra to �nd

the closure of an appropriate algebraic variety;

� if one of the P

h

's, say P

k

, is not cancelled, return the answer P

k

(f) 6= 0;

� otherwise (singular case), return the answer that all P

h

(f)'s are zero.

Termination of this recursive algorithm is ensured by Theorem 1 below.

2. Di�erential algebra

A suitable theory to work with equations like (1) is the theory of di�erential algebra [5, 8].

Polynomials like the P

h

's and the Q

h

's are called partial di�erential polynomials , in short pdp's,

and form the ring of partial di�erential polynomials R = R [f@

�

y

i

g]. Note that this ring is a

commutative ring in in�nitely many indeterminates.

Di�erential algebra theory introduces di�erential ideals, i.e. ideals closed under all di�erentia-

tions. Usual ideals are called algebraic ideals. For given polynomials P

i

, the algebraic ideal of R

is denoted (P

1

; : : : ; P

t

), while the di�erential ideal is denoted [P

1

; : : : ; P

t

]. In fact, the di�erential

ideal [P

1

; : : : ; P

t

] is the algebraic ideal generated by all @

�

P

i

's.

The problem of working with (algebraic) ideals in usual non-di�erential algebras of polynomials

is solved by Groebner bases computations. Similar tools have been developed in the di�erential

case: �rst, a process of reduction has been introduced by Ritt [8]; second, the non-di�erential notion

of reduced base has its counterpart as auto-reduced sets, i.e. sets, where each element is reduced by

all others; third, syzygies (i.e. critical pairs) and corresponding S-polynomials are also de�ned in

the di�erential case; last, the analogue of Groebner bases are coherent sets , i.e. sets that reduce all

their S-polynomials to 0.

An auto-reduced coherent set associated to a set L of pdp's is an auto-reduced coherent set M

such that [M] � [L], and M reduces all pdp's in L to 0. Computationally, such an associated

set is obtained by introducing the critical pairs one after the other, while keeping the set under

construction auto-reduced. An algorithm by F. Boulier is given in [1, 2]. Classical noetherianity

arguments used in the commutative case to prove termination of algorithms do not extend to the

di�erential case. Instead, an order is de�ned on auto-reduced coherent sets, and the following

theorem ensures the termination of Boulier's algorithm.

Theorem 1. There is no in�nite decreasing sequence of auto-reduced sets.

As already mentioned, the author's algorithm is crucially based on the potential cancellation

of a certain polynomial H . The following de�nitions are needed to explain how this polynomial

is introduced. They also play an important rôle in the de�nition of a complete system. Recall

that Ritt's reduction relies on an order on the indeterminates @

�

y

i

. The leader v

P

of a pdp P is

the highest indeterminate that occurs in it. This notion is the analogue of head terms in usual,

non-di�erential Groebner bases theory. Now, the initial I

P

of P is the coe�cient in v

degP

P

and the

separant S

P

of P is the common initial of all derivatives of P . Finally, given a set A of pdp's,

write S

A

and H

A

for the product of the separants of these pdp's and the product of the initials

and separants of these pdp's respectively.

3. Di�erential extensions by formal power series

The author's crucial assumption is that the f

i

's are uniquely de�ned by systems of PDE's and

�nite sets of initial conditions at the origin.
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Figure 1. To be under a stairs

An indeterminate @

�

y

i

is under the stairs of a set A of pdp's if it is the derivative of the leader

of no element of this set. An example in the case when R = C [x; y] and with a single function f is

graphically treated on Figure 1: assume the leaders of the elements of a set A to be @

8

x

f , @

7

x

@

3

y

f ,

@

6

x

@

y

f , @

6

x

@

7

y

f , @

5

x

@

2

y

f , @

3

x

@

4

y

f , @

3

x

@

6

y

f , and @

6

y

f (large framed circles on the �gure). The indeter-

minates under the stairs of A are then f; : : : ; @

8

x

f , @

y

f; : : : ; @

6

x

@

y

f , @

2

y

f; : : : ; @

5

x

@

2

y

f , @

3

y

f; : : : ; @

4

x

@

3

y

f ,

@

4

y

f; : : : ; @

3

x

@

4

y

f , @

5

y

f; : : : ; @

2

x

@

5

y

f , @

6

y

f (smaller plain circles on the �gure).

When the set of derivatives that are under the stairs of a set A of pdp's is �nite, this set is

called a closed set. The idea is that a closed set makes it possible, under some assumptions, to

recursively compute the values at the origin of all derivatives, provided that the values at the origin

of all derivatives under the stairs are given. A complete system consists of a closed auto-reduced

coherent set A together with a �nite set IC of initial conditions (the values at the origin of the

derivatives that are under the stairs), with the additional property that for all A 2 A, A(f)(0) = 0

but S

A

(f)(0) 6= 0. These conditions make it possible to compute all values at the origin of all

derivatives. This yields the following very old theorem [4, 7].

Theorem 2. For any given complete system (A; IC), there exists a single m-tuple of formal

power series which are solutions of A and which satisfy the initial conditions IC. This tuple is

computable, i.e. each coe�cient of each f

i

is computable.

More precisely, the coe�cients of an f

i

are given by a recursive algorithm. Moreover, it is easily

proved that each coe�cient continuously depends on the initial condition IC, viewed as element of

a �nite dimensional vector space.

4. Justi�cation for the algorithm

Henceforth, the formal power series f

i

are assumed to be de�ned by a �xed complete sys-

tem (A; IC), and the ring R is assumed to be e�ective. The problem is to test whether P

i

(f) = 0 for

all P

i

in a given set fP

1

; : : : ; P

t

g of pdp's inRnR. This is equivalent to testing whether f is a solution

of the system fA; P

1

; : : : ; P

r

g. Boulier's algorithm, which was alluded to before, �rst reduces the

problem to computing with auto-reduced coherent sets, as will be detailed below. Let B be an auto-

reduced coherent set associated with fA; P

1

; : : : ; P

t

g, i.e. a set that satis�es [B] � [A; P

1

; : : : ; P

t

],

and Q

B

! 0 for all Q 2 fA; P

1

; : : : ; P

t

g.

Return into pseudo-reduction: given a set Q of pdp's, let H

Q

be the product of the initials and

separants of the elements of Q and S

Q

the product of all separants only. Given an ideal I which is

not necessarily a di�erential ideal and a pdp H , let I : H

1

denote the set of all pdp's P for which

there exists a � 2 N such that H

�

P 2 I. This set is actually an ideal and P

Q

! 0 is equivalent

to P 2 Q : H

1

Q

[2, 5]. With this notation, it is clear that

[B] � [A; P

1

; : : : ; P

t

] � [B] : H

1

B

:(2)
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Therefore if H

B

(f) 6= 0, then when f vanishes at all the elements of B it vanishes at all the P

i

's,

so that the problem reduces to testing whether B(f) = 0. Otherwise H

B

(f) = 0 and the problem

reduces to testing whether f is a solution of the system fA; P

1

; : : : ; P

r

; H

B

g. Provided that the test

for B(f) = 0 is e�ective, this yields a recursive algorithm that terminates because of Theorem 1.

Two cases have to be considered, according to the value of H

B

(f)(0).

Regular case. This corresponds to the case when H

B

(f)(0) 6= 0. For each B 2 B, B(f) is a formal

power series, which is zero if and only if @

�

B(f)(0) = 0 for all derivation @

�

(including the identity).

A rather technical theorem [6] reduces the problem to considering only �nitely many members of

this in�nite set. Because of the non-nullity of H

B

(f)(0), the values at the origin of all the @

�

B(f)'s

are polynomials in the @

�

B(f)(0) for �'s such that v

@

�

B

is under the stairs of A, that is for a �nite

number of initial conditions. More precisely, B(f) = 0 if and only if all these @

�

B(f)(0) equal 0.

Since the zero-test in R is assumed to be e�ective, this solves the problem in the regular case.

Semi-singular case. This corresponds to the case when H

B

(f)(0) = 0 while H

B

(f) 6= 0. Once

again, the initial problem on the P

i

's reduces to testing B(f) = 0, but the algorithm developed in the

regular case cannot be applied as is. An explicit formula for f in terms of the initial conditions IC

shows that f depends continuously on IC. The initial conditions IC provide values of the @

�

f

i

for

all � such that @

�

y

i

is under the stairs ofA. So IC can be viewed as a vector c of a �nite dimensional

space. Call R

0

the ring of polynomials k[x

1

; : : : ; x

n

; @

�

y

i

] where the �'s are such that v

@

�

y

i

is under

the stairs of A and the @

�

y

i

's are viewed as indeterminates. Let now W be the variety de�ned by

the ideal I of R

0

generated by the @

�

B's such that @

�

B is under the stairs of B, and W

0

the variety

de�ned by H

B

= 0. The regular case dealt with the implication c 2 W nW

0

=) B(f) = 0. In the

current case, the following theorem [6] reduces the problem to computing with algebraic varieties.

Theorem 3. Let c be initial conditions such that the system (A; IC) is complete and H

B

(f) 6= 0.

Then B(f) = 0() c 2 W nW

0

.

This condition is tested by computing a Groebner bases for the radical of the ideal I : H

1

B

using

an algorithm described in [2], and testing if each polynomial of the constructed base vanishes at c.

The previous justi�cation yields the algorithm that was outlined before.
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