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Abstract

The algorithm described here extends the algorithm to �nd all polynomial solutions of

di�erential and di�erence equations that was given in [1, 2] to more general operators. It also

takes a more e�cient approach that avoids using undetermined coe�cients. This summary

is based on [4].

Let K be a �eld of characteristic 0 and L : K[x] ! K[x] a K-linear endomorphism of K[x]. A

new algorithm is presented in [4] that �nds all polynomial solutions of homogeneous equations of the

form Ly = 0, of nonhomogeneous equations of the form Ly = f and of parametric nonhomogeneous

equations of the form Ly =

P

m

i=1

�

i

f

i

. The endomorphisms L under consideration in the following

are polynomials in one of the following operators, and with coe�cients in K[x]:

{ the di�erential operator D de�ned by Df(x) = df=dx;

{ the di�erence operator � de�ned by �f(x) = f(x+ 1)� f(x);

{ the q-dilation operator Q used for q-di�erence equations and de�ned by Qf(x) = f(qx).

(In this case, q 2 K, is not zero and not a root of unity.)

The interest of the new algorithm is twofold. First, numerous algorithms need to solve ho-

mogeneous, nonhomogeneous or parametric nonhomogeneous equations in K[x] as subproblems.

Examples are algorithms to �nd all rational, hyperexponential, geometric or Liouvillian solutions,

to perform inde�nite or de�nite hypergeometric summation, to factorize linear operators, etc. (See

for instance [5, 3, 7, 6].) Second, the algorithm that is described here has lower complexity than

the usual algorithms, that are often based on undetermined coe�cients. The approach here is

to �nd a degree bound on the solutions to be computed, and next �nd recurrences to compute

the coe�cients of the solutions e�ciently. The problem with undetermined coe�cients arises with

very concise equations having high degree solutions. Although the number of coe�cients to be

determined is high, the recurrences that are found by the new algorithm in [4] are of small order.

The idea is to view the space K[x] as a subspace of a unusual space of formal power series, and

to embed the space of polynomial solutions into a space of formal power series solutions.

1. Algebraic setup

Let (P

n

(x))

n2N

be a sequence of polynomials satisfying the following conditions:

(H1) degP

n

= n, which makes (P

n

(x))

n2N

a basis of K[x];

(H2) P

n

j P

m

as soon as n < m;
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(H3) there exists (A;B) 2Z

2

, A � 0, A � B, and polynomials �

i

2 K[n] such that for all n

LP

n

=

B

X

i=A

�

i

(n)P

n+i

;

with �

A

and �

B

two non-zero polynomials, and P

n

= 0 when n < 0.

Let (l

n

)

n2N

be the dual basis of the K[x]-basis (P

n

(x))

n2N

. By de�nition, l

n

(P

m

) = �

n;m

and

P

n

P

m

=

X

k2N

l

k

(P

n

P

m

)P

k

:

As a consequence of (H2), computing modulo P

n

and considering degrees yields l

k

(P

n

P

m

) = 0

when k < n. Similarly, l

k

(P

n

P

m

) = 0 when k < m. It follows that

l

k

(P

n

P

m

) = 0 when k < max(n;m) or n+m < k:

The next step is to consider formal power series: let S(x) =

P

1

n=0

c

n

P

n

(x) denote a formal series,

and K[[(P

n

(x))

n2N

]] the vector space of all such series. Let �

n

be the linear forms over (P

n

(x))

n2N

such that �

n

(S) = c

n

. Then K[[(P

n

(x))

n2N

]] is a K-algebra for termwise sum and outer product,

and for the following inner product

ST =

1

X

k=0

0

@

X

n;m�k�n+m

�

n

(S)�

m

(T ) l

k

(P

n

P

m

)

1

A

P

k

:

Thanks to (H3), the operator L is extended to � on K[[(P

n

(x))

n2N

]] by the following rule:

�S =

1

X

n=0

 

�A

X

i=�B

�

�i

(n+ i)�

n+i

(S)

!

P

n

:

Now, for any given f 2 K[[(P

n

(x))

n2N

]], Ly = f is equivalent to

�A

X

i=�B

�

�i

(n+ i)�

n+i

(y) = l

n

(f)(1)

for all n 2 N (with �

k

= 0 when k < 0).

The degree bound and the algorithm follow from the following theorems (see [4]).

Theorem 1. Let Ly = f where y and f are polynomials. Then

deg y � N = max f�B � 1; deg f �B; n 2Zsuch that �

B

(n) = 0g :

Theorem 2. Let N be de�ned as in the previous theorem. Assume N � 0. Then, for any formal

power series y 2 K[[(P

n

(x))

n2N

]], the following are equivalent:

(1) the formal power series y is a polynomial solution of Ly = f ;

(2) the �

n

(y)'s satisfy equation ( 1) for n � N +B and �

n

(y) = 0 for n < N .
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2. The algorithm

The goal is to �nd a basis for the a�ne space of vectors g 2 K

N�A+B+1

that satisfy

�A

X

i=�B

�

�i

(n+ i) g

n+i

(y) = l

n

(f):(2)

Of course, the direction of the a�ne solution space is given by vectors v that cancel the left hand-

side. The vectors g and v represent polynomials in K[x] denoted by

h(g; f) =

N�A+B

X

n=0

g

n

P

n

and s(v) =

N�A+B

X

n=0

v

n

P

n

respectively.

The set of singularities S = fn 2 N j �

A

(n) = 0g and the set N = f0; : : : ; A� 1g [ S play an

important rôle. The algorithm proceeds by iteratively computing the coe�cients of the solutions.

Each time a coe�cient is not fully determined by equation (2) or its left hand-side, i.e. for each

integer in N , a new parameter is added, along with an equation to guarantee consistency between

the elements of the basis under construction.

The algorithm maintains a list of vectors V , a list of indeterminates I, a list of equations E and

an additional vector g. The vectors in V almost form a basis of the direction space of the a�ne

solution set for the homogeneous equation. Indeed, the solutions are linear combinations of them

ruled by the equations in E . The vector g takes the nonhomogeneous part of the equation into

account. The algorithm is the following:

(1) set V , I, E and g to empty lists or vectors;

(2) for each n from 0 to N �A+B, perform Step 3 when n 62 N , or Step 4 when n 2 N , then

go to Step 5;

(3) (extension step) extend all vectors v 2 V (resp. g) by using the appropriate instance of

equation (2) or its left hand-side;

(4) (singularity step) extend all vector v 2 V and g by 0, then add the vector [0; : : : ; 0; 1] (of

length n + 1) to V , add the indeterminate c

n

to the list I, and �nally add equation (2) for

the index n�A (when non-negative), where each g

t

has been replaced by the sum cv

t

over

all pairs (c; v) 2 (I;V) that have been added in a previous singularity step;

(5) let (c

k

; v

k

) be the pairs added into (I;V) during singularity steps and E(f) denote the �nal

list of equations computed by the previous process; perform the following action, according

to the type of equation being solved:

{ homogeneous : solve the system in the c

k

's composed of the equations E(f) and the

equations

P

k

c

k

l

n

(s(v

k

)) = 0, for N < n � N � A + B, and return the general

polynomial solution y =

P

k

c

k

s(v

k

);

{ nonhomogeneous : solve the system in the c

k

's composed of the equations E(f) and

the equations

P

k

c

k

l

n

(s(v

k

)) = �l

n

(h(g; f)), for N < n � N �A+B, and return the

general polynomial solution y =

P

k

c

k

s(v

k

) + h(g; f);

{ parametric nonhomogeneous : solve the system in the c

k

's and �

i

's composed of

the equations E(

P

m

i=1

�

i

f

i

) and the equations

P

k

c

k

l

n

(s(v

k

)) = �l

n

(h (g;

P

m

i=1

�

i

f

i

)),

for N < n � N �A+B, and return the general polynomial solution y =

P

k

c

k

s(v

k

)+

h (g;

P

m

i=1

�

i

f

i

).

3. Choice of the basis (P

n

(x))

n2N

The previous algorithm ends by solving a linear system that consists of at most ��A+B equations

in at most � � A (resp. � � A + m in the parametric case) variables, where � is the number of
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singularities between �A and N �A+B. Therefore, avoiding singularities lessens the complexity.

Let L =

P

r

k=0

p

k

(x) @

r

, where @ is either of D, � or Q, and let d = maxfj j 9k l

j

(p

k

) 6= 0g. The

following choices for the P

n

's satisfy conditions (H1{H3).

{ di�erential case: P

n

= (x�a)

n

=n!, for a such that p

r

(a) 6= 0; with this basis, no singularity

can occur, A = r, B = d, and

�

i

(n) =

d

X

j=0

 

n+ i

j

!

l

j

(p

j�i

);

{ di�erence case: P

n

=

�

x�a

n

�

, for a > maxfn 2 N j p

r

(n) = 0g; with this basis, no singularity

can occur, A = r, B = d, and

�

i

(n) =

r

X

k=0

d

X

j=0

 

n+ i

j

! 

j

i+ k

!

l

j

(p

k

);

{ q-di�erence case: P

n

� x

n

; with this basis, singularity can occur, but A = 0, B = d, and

�

i

(n) =

r

X

k=0

q

nk

l

i

(p

k

):

4. Formal power series solutions

In conclusion, it should be noted that the algorithm that has been discussed can also be used to

compute (a description of) formal power series solutions in (P

n

(x))

n2N

. Indeed, let M = max(S).

Then running the loop of the algorithm for n = 0; : : : ;M and computing the s(v) for v 2 V

yields the set of all polynomials p 2 K[x] of degree less than or equal to M such that Lp(x) = f

modulo P

M+1

(x). Iterating in�nitely many times the extension step (by using equation (2)) yields

a formal power series that is a solution.
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