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Abstract

A class of structures has a 0{1 law when any property expressible in a certain logic has

limiting probability 0 or 1 as the size of the structures tends to in�nity. We prove 0{1 laws

for classes of maps of a given genus. This is a joint work with E. Bender and B. Richmond [1].

1. De�nition of the problem

Let S be a set of primitive elements called sorts. A vocabulary � consists of a collection of

constant and relation symbols, together with a mapping from each constant symbol to a sort, and

a mapping from each relation symbol to a sequence of sorts, the arity of the relation (see [4] for an

introduction to model theory). A multi-sorted structure A over � then consists of

{ a collection of disjoints sets (or universes) A

s

, one for each sort s;

{ elements c

A

2 A

s

, one for each constant symbol c of sort s;

{ relations R

A

� A

s

1

� � � � � A

s

p

, one for each relation symbol R of arity (s

1

; : : : ; s

p

).

A class of structures is a set of structures de�ned on the same vocabulary. In the study of random

structures, one says that a class of �nite structures has a 0{1 law when any property expressible

in a certain logic has limiting probability 0 or 1 as the size of the structures tends to in�nity. The

relational signature of a class of structures over � is the common set of relation symbols in the

vocabulary �, together with their arities. A famous theorem by Glebski��, Kogan, Liogon'ki�� and

Talanov [9], and proved independently by Fagin [7], states that if C is the class of all structures

for a given relational signature, then C has a �rst-order 0{1 law. However, deciding the limiting

probability of a given property is a di�cult problem, as formalized by a theorem by Grandjean:

when a class C has a 0{1 law, the set of �rst-order sentences of limiting probability 1 is PSPACE-

complete.

A map M is an embedding of a connected graph G into a closed surface S such that all connected

components of S n G, the faces of M, are homeomorphic to a disc. Let t = 1 � (v � e + f)=2 be

the genus of M, with v, e and f its number of vertices, edges and faces respectively. When t is an

integer, the map is called orientable. The size jMj of a map is e. The purpose of this exposition

is to provide similar results to the theorems mentioned above for maps, even in the non-orientable

case. Our main result is the following theorem [1].

Theorem 1. The class of all maps on surfaces of �xed genus has a 0{1 law. The set of �rst-order

sentences of limiting probability 1 for this class has lower bound complexity of DTIME(exp

1

(cn)),

for some c > 0.
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(Recall that exp

1

(n) = 2

2

�

�

�

2

, with n nested exponentiations.)

The 0{1 law theorem for structures cannot be applied to maps, since the latter do not form a

full class of structures of a given relational since. Besides, we have to explain how maps can be

represented as structures.

2. Representation of maps as structures

Any naive attempt of representing a map M on a surface S by its graph, i.e., by its set of

edges, is bound to fail. Indeed, this representation would not encapsulate any information about

the embedding of M into S: easy examples show that isomorphic graphs need not correspond to

homeomorphic maps, and that the order of edges around a vertex has to be taken into account.

However, on a non-orientable surface there is no consistent way to choose an edge order around

each vertex.

A solution stems from an idea of Edmonds [5], later elaborated by Tutte [10] as a basis for a

combinatorial theory of maps: to each edge, one associates a pair of darts, pointing in opposite

directions. On orientable surfaces, a possible representation of maps is then given by an involution �

on the set of darts, mapping a dart to its opposite dart, together with a permutation � whose cycles

consist of all darts out of a vertex, listed clockwise. Then, �� is a permutation whose cycles consist

of all darts around a face, listed counter-clockwise. One is thus able to determine the embedding

using � and �. In the context of possibly non-orientable surfaces, a map is analogously described

as a structure by the sets U

v

, U

d

and U

f

of its vertices, darts and faces, together with incidence

relations I(x

v

; x

d

) and J(x

f

; x

d

) of darts with vertices and faces, a co-dart relation C(x

d

; x

d

0
) and

a dart adjacency relation A(x

d

; x

d

0
; x

f

). The co-dart relation is an analogue for �, while the dart

adjacency relation encapsulates the information formerly supplied by �, specifying a face to supply

the orientable information.

3. Ehrenfeucht-Fra��ss�e games

The 0{1 law theorem for structures still does not apply to maps: not all structures of signa-

ture (I; J; C; A) are maps. We overcome this di�culty in the case of the class of all maps on

surfaces of a �xed genus by determining subclasses of limiting probability 1.

The sentences of �rst-order logic under consideration for our 0{1 laws can all be written in

the form S = �

1

x

1

: : : �

r

x

r

�(x

1

; : : : ; x

r

), where the �

i

's are quanti�ers, either 8 or 9, the x

i

's are

variables and � is a boolean expression free from quanti�ers built on the x

i

's using conjunctions

and disjunctions. The rank of the sentence S is the integer r. Let A and B be two structures

with same relational signature. We write A �

m

B when both structures satisfy exactly the same

sentences of rank m. This de�nes an equivalence relation between structures. The next paragraph

describes this equivalence relation by a game-theoretic approach.

The Ehrenfeucht-Fra��ss�e game is anm-round game between two players called Spoiler and Dupli-

cator and played on a pair of structures A and B of same relational signature. In each round, Spoiler

picks any element from either structure and Duplicator responds by picking any element from the

other structure. This yields two substructures A

0

= fa

1

; : : : ; a

m

g � A and B

0

= fb

1

; : : : ; b

m

g � B,

with relations induced in a natural way. Duplicator wins if he is able to choose his responses so as

to make A

0

and B

0

isomorphic; if not, Spoiler wins. Duplicator has a winning strategy if and only if

he is capable of winning for any choices made by Spoiler. A fundamental result used in the sequel

is the Ehrenfeucht-Fra��ss�e theorem [6, 8] which states that Duplicator has a winning strategy in

the m-round �rst-order game played on two structures A and B if and only if A �

m

B.
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Now, the relation �

m

de�nes a �nite number of (possibly in�nite) equivalence classes on the

ambient class. It can be proved that one of these classes has limiting probability 1, and this su�ces

to prove our theorem. For the sake of clarity, we present the idea of the proof on a simpli�ed

example only.

4. A 0{1 law by a 3

r�k

strategy for a simpli�ed problem

For this example, the class of structures under consideration is the set of square toroidal grids

with a unary relation (we simply tag some vertices). We play r-round Ehrenfeucht-Fra��ss�e games

on pairs of grids. The crucial fact we use is that any �xed square plane grid with vertices tagged

at random appears in a toroidal grid with limiting probability 1.

It follows that Duplicator has a strategy to win almost surely, i.e., with limiting probability 1.

De�ne a distance between two vertices of a grid by the minimum number of edges in a connecting

path. The ball N(c

1

; : : : ; c

p

; d) is the set of vertices at distance at most d from any c

i

. Let A

and B be two structures. Assume we are in round k + 1 and that a

1

; : : : ; a

k

have already been

picked out of A, b

1

; : : : ; b

k

out of B in a way such that N(a

1

; : : : ; a

k

; 3

r�k

) and N(b

1

; : : : ; b

k

; 3

r�k

)

are isomorphic, when viewed as substructures with naturally induced relations. Now, Spoiler

picks an element out of either structure, say a

k+1

out of A|the case b

k+1

out of B is symmet-

ric. If N(a

1

; : : : ; a

k+1

; 3

r�k�1

) � N(a

1

; : : : ; a

k

; 3

r�k

), then Duplicator can trivially choose b

k+1

in N(b

1

; : : : ; b

k

; 3

r�k

) so that N(a

1

; : : : ; a

k+1

; 3

r�k�1

) and N(b

1

; : : : ; b

k+1

; 3

r�k�1

) are isomorphic.

Otherwise, there is almost surely a ball in the complement of N(b

1

; : : : ; b

k

; 3

r�k�1

) in B which is

isomorphic to N(a

k+1

; 3

r�k�1

). Duplicator then chooses b

k+1

to be its center. After r rounds,

the balls N(a

1

; : : : ; a

r

; 1) and N(b

1

; : : : ; b

r

; 1) are almost surely isomorphic. Thus, Duplicator wins

almost surely by following the strategy that we have just described. By the Ehrenfeucht-Fra��ss�e

theorem, A �

r

B almost surely. Therefore, one of the (�nitely many) equivalence classes of �

r

has

limiting probability 1. Call it E

r

.

Consider now a �rst-order sentence S of rank r on toroidal grids. By the Ehrenfeucht-Fra��ss�e

theorem, the set of all grids satisfying S is either contained in E

r

, or disjoint from E

r

. In the former

case S has limiting probability 1, in the latter 0. We have thus proved a 0{1 law for the class of

toroidal grids with a unary relation.

5. A 0{1 law for maps of a given genus

We �rst recall two di�cult results on maps.

The �rst result [2, Sec. 5] plays the rôle of the crucial fact we used in the previous section, namely

the limiting probability 1 of the appearance of a �xed plane grid in a toroidal grid. It states that

for a class C of maps of �xed genus, there is a c > 0 such that for any given planar map P , the

property for maps in C to contain more than cn disjoint copies of P has limiting probability 1.

The second result [3] is about representativity of maps. The representativity of a map M on a

surface S is the smallest number of intersections a non-contractible curve in S has with M. The

result is that for a class of maps of �xed genus, there is a c > 0 such that the property for maps to

have representativity more than c lnn has limiting probability 1. This result is used in the proof

of Theorem 1 to ensure the planarity of certain submaps built on balls playing a rôle similar to

the N(a

1

; : : : ; a

k

; 3

r�k

) of the previous section.

Next, the proof of Theorem 1 runs as for the example of the previous section: we prove a �rst-

order 0{1 law for the class of all maps of a given genus by showing that for each r, Duplicator has

an almost surely winning strategy in r-round Ehrenfeucht-Fra��ss�e games. More speci�cally, this

strategy is a 3

r�k

strategy using balls around elements picked by Spoiler and Duplicator. However,

the notion of distance used is not that of the previous section. The proper distance to prove the
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result is by means of quadrangulations of maps. For a given map M on a surface, add a new point

on each edge and a point in each face. Next add new edges from the new points on the edges to the

new points in the faces. The quadrangulation of M is then the new map on the same surface built

in this way. This construction induces a natural mapping from a mapM to its quadrangulation Q.

We extend this map to the dart representation of M by mapping both co-darts de�ned by an edge

to the image of this edge in Q. A distance is then de�ned on the set U

v

[ U

d

[ U

f

of all vertices,

darts and faces of the dart representation, as the distance between the images in Q. This distance

is not a metric, since two co-darts are at distance 0 for each other. However, the concept of balls

it induces is su�cient for the proof of Theorem 1.

6. Conclusions

Theorem 1 has been re�ned for several classes of maps on a surface of �xed genus [1] (see this

reference for missing de�nitions): the class of all maps; the class of smooth maps; the class of k-

connected maps where k is 2 or 3; the class of k-connected triangulations where k is 1, 2 or 3.

However, the question of a 0{1 law for planar graphs remains open, though we believe it should be

true.

As for complexity results, we proved an exp

1

(cn) lower bound for the complexity of the set of

�rst-order sentences of limiting probability 1 in the case of the dart representation. Another result

holds for an extended dart representation (see [1] for the de�nition): in this extended representation,

we proved undecidability. What we have not been able to prove is an upper bound in the case of

the dart representation, though we feel exp

1

(dn) is a good candidate for such an upper bound.

Finally, all results presented here concern sentences of �rst-order logic. An extension to other

logics seems reasonable, in particular to MSO (monadic second-order) logic, with application to

the theory of databases.
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