Matrix-based methods for solving polynomial systems

Ioannis Emiris Projet SAFIR, Inria Sophia-Antipolis

11 mars, 1996

[summary by Frédéric Chyzak]

Abstract

We present a uniform approach to the elimination of variables between polynomials and the construction of matrices that express resultants. Building a matrix whose determinant is a multiple of the resultant reduces the solving of a polynomial system to a generalized eigenvalues/eigenvectors problem for a square matrix. Several such matrices are of interest, in particular the Newton and Bézout/Dixon matrices, which lead to efficient calculations.

1. Classical resultants versus sparse resultants

Classically, the resultant is a single polynomial which characterizes the solvability of a system of dense polynomials [7]. We introduce another concept of resultant which takes the structure of the coefficients into account.

Let $f_1(\mathbf{c}, x), \ldots, f_{n+1}(\mathbf{c}, x)$ be n + 1 polynomials in the *n* indeterminates x_1, \ldots, x_n and with coefficients that are polynomial in c_1, \ldots, c_N over a field K. A sparse resultant $R(\mathbf{c})$ with respect to a subfield \mathbb{L} of the algebraic closure $\overline{\mathbb{K}}$ is an irreducible polynomial of $\mathbb{K}[c_1, \ldots, c_N]$ that vanishes at a specialization γ of the c_i 's if and only if the corresponding specializations of the f_i 's have a common zero. In other words, the resultant satisfies

$$\forall \gamma \in \mathbb{L}^N \quad (R(\gamma) = 0 \iff \exists \xi \in \mathbb{L}^n \quad \forall i = 1, \dots, n \quad f_i(\gamma, \xi) = 0).$$

For some applications, one requires that the coefficients of the f_i 's be generic, i.e., that one c_i be introduced for each coefficient. Special cases are of particular interest. In the case of dense homogenized polynomials

$$f_i(x_0, x_1, \dots, x_n) = \sum_{a_0 + \dots + a_n = d_i} c_{a_0, \dots, a_n} x_0^{a_0} \dots x_n^{a_n}$$

we recover the classical homogeneous resultant [7]. In the case of two (dense) univariate polynomials, we recover Sylvester's classical notion of the *univariate resultant* [6], whose expression as a determinant is recalled in the next section. In the case of (possibly sparse) polynomials with generic coefficients, i.e., when

$$f_i(x_1, \dots, x_n) = \sum_{j=1}^{r_i} c_{i,j} x_1^{a_{i,j,1}} \dots x_n^{a_{i,j,n}}$$

for non-zero undetermined coefficients $c_{i,j}$ that are transcendental over the field \mathbb{K} , the resultant $R(\mathbf{c})$ is called the *sparse resultant* of the f_i 's.

A major difference between the classical and the sparse resultants is that the former express simultaneous solvability in a *projective* space $\mathbb{P}^n\left(\overline{\mathbb{K}}\right)$ whereas the latter express simultaneous solvability in the *torus* $\left(\overline{\mathbb{K}}^*\right)^n$ which is a proper subset of $\mathbb{P}^n\left(\overline{\mathbb{K}}\right)$.

2. Expression of the resultant as a determinant

Two important examples of classical resultants are given as the determinant of a matrix. First, in the case of dense linear polynomials $f_i = c_{i,0} + c_{i,1}x_1 + \cdots + c_{i,n}x_n$, the corresponding homogeneous resultant [7] is

$$R(\mathbf{c}) = \det \begin{bmatrix} c_{1,0} & \dots & c_{1,n} \\ \vdots & & \vdots \\ c_{n+1,0} & \dots & c_{n+1,n} \end{bmatrix}.$$

Second, in the case of dense univariate polynomials $f(a, x) = a_n x^n + \cdots + a_0$ and $g(b, x) = b_m x^m + \cdots + b_0$, the univariate resultant [6] is the following determinant

$$R(a,b) = \det \begin{bmatrix} a_n & a_{n-1} & a_{n-2} & \dots & a_2 & a_1 & a_0 & 0 & \dots & 0\\ 0 & a_n & a_{n-1} & a_{n-2} & \dots & a_2 & a_1 & a_0 & 0 & 0\\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots\\ 0 & \dots & 0 & a_n & a_{n-1} & a_{n-2} & \dots & a_2 & a_1 & a_0\\ b_m & b_{m-1} & b_{m-2} & \dots & b_2 & b_1 & b_0 & 0 & \dots & 0\\ 0 & b_m & b_{m-1} & b_{m-2} & \dots & b_2 & b_1 & b_0 & 0 & 0\\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots\\ 0 & \dots & 0 & b_m & b_{m-1} & b_{m-2} & \dots & b_2 & b_1 & b_0 \end{bmatrix}$$

where the matrix has constant values on diagonals and each row corresponds to the product of either polynomial times a power of x, written in the basis $(x^{\max(n,m)}, \ldots, x, 1)$. Sparse resultants can be expressed as the determinant of a matrix. More precisely, we proceed to give an expression of a multiple of the resultant in the case of sparse polynomials with generic undetermined coefficients.

To give this expression, define the *support* of a polynomial $f = \sum_{a_1,\ldots,a_n} c_{a_1,\ldots,a_n} x_1^{a_1} \ldots x_n^{a_n}$ as the set $\text{Supp}(f) \subset \mathbb{N}^n$ of those (a_1,\ldots,a_n) such that $c_{a_1,\ldots,a_n} \neq 0$. Note that

$$\operatorname{Supp}(fg) \subset \operatorname{Supp}(f) + \operatorname{Supp}(g)$$
 and $\operatorname{Supp}(f+g) \subset \operatorname{Supp}(f) \cup \operatorname{Supp}(g)$.

With this definition, we now construct matrices that represent the specialization application of polynomials $f_i(\mathbf{c}, x)$ on a point $\xi \in \mathbb{K}^n$. For i = 1, ..., n, let S_i be a subset of \mathbb{N}^n . Next define S_0 to be $\bigcup_{i=1}^n (S_i + \operatorname{Supp}(f_i))$. For i = 0, ..., n, call P_i the set of polynomials $f \in \mathbb{K}[\mathbf{c}, x]$ such that $\operatorname{Supp}(f) \subset S_i$. Then, the application \mathcal{M} from $P_1 \times \cdots \times P_n$ to P_0 given by $\mathcal{M}(l_1, \ldots, l_n) =$ $\sum_{i=1}^n l_i f_i$ is a well-defined linear application. For $i = 0, \ldots, n$, write $S_i = \{s_{i,1}, \ldots, s_{i,N_i}\} \subset \mathbb{N}^n$. Then \mathcal{M} has a matrix representation, $M = [m_{(i,i'),j}(\mathbf{c})]$, where, for convenience, we number the rows of M by (i, i') and the columns by j. This matrix is given by

$$x^{s_{i,i'}}f_i(\mathbf{c},x) = \sum_{j=1}^{N_0} m_{(i,i'),j}(\mathbf{c}) x^{s_{0,j}}, \quad \text{for } i = 1, \dots, n \text{ and } i' = 1, \dots, N_i.$$

Under this representation, the evaluation of \mathcal{M} at the tuple $\left(\sum_{j=1}^{N_1} l_{1,j}(\mathbf{c}) x^{s_{1,j}}, \ldots, \sum_{j=1}^{N_n} l_{n,j}(\mathbf{c}) x^{s_{n,j}}\right)$ of $P_1 \times \cdots \times P_n$ is given by the product:

$$\begin{bmatrix} l_{(1,1)}(\mathbf{c}) & \dots & l_{(n,N_n)}(\mathbf{c}) \end{bmatrix} \begin{bmatrix} m_{(1,1),1}(\mathbf{c}) & \dots & m_{(1,1),N_0}(\mathbf{c}) \\ \vdots & \ddots & \vdots \\ m_{(n,N_n),1}(\mathbf{c}) & \dots & m_{(n,N_n),N_0}(\mathbf{c}) \end{bmatrix} \begin{bmatrix} x^{s_{1,1}} \\ \vdots \\ x^{s_{n,N_n}} \end{bmatrix}.$$

On the other hand, the product of M by a column vector yields the simultaneous specialization of multiples of the f_i 's at a point $\xi \in \mathbb{K}^n$:

$$\begin{bmatrix} m_{(1,1),1}(\mathbf{c}) & \dots & m_{(1,1),N_0}(\mathbf{c}) \\ \vdots & \ddots & \vdots \\ m_{(n,N_n),1}(\mathbf{c}) & \dots & m_{(n,N_n),N_0}(\mathbf{c}) \end{bmatrix} \begin{bmatrix} \xi^{s_{0,1}} \\ \vdots \\ \xi^{s_{0,N_0}} \end{bmatrix} = \begin{bmatrix} \xi^{s_{1,1}} f_1(\mathbf{c},\xi) \\ \vdots \\ \xi^{s_{n,N_n}} f_n(\mathbf{c},\xi) \end{bmatrix}.$$

From this second fact, it follows that if $\xi \in \left(\overline{\mathbb{K}}^*\right)^n$ is a common zero of the specializations of the $f_i(\mathbf{c}, x)$ at $\mathbf{c} = \gamma$, there exists $v_{\gamma} = \left[\xi^{s_{1,1}}, \ldots, \xi^{s_{n,N_n}}\right]^T \neq 0$ such that $M(\gamma)v_{\gamma} = 0$. Moreover, when M is a square matrix, we have that $\det M(\gamma)$ is zero. More is true: in the case when such a v_{γ} exists, $R(\mathbf{c})$ divides $\det M(\mathbf{c})$, and the matrix M is called a *matrix of the resultant*. One thus computes a multiple of the resultant as the determinant of the matrix M above. It only remains to determine suitable sets S_i , for which possible constructions are alluded to in Section 4.

3. Numerically solving polynomial systems

In this section, we assume that $f_1, \ldots, f_n \in \mathbb{K}[x_1, \ldots, x_n]$ is a well-determined system of polynomials with *determined* coefficients, whose variety is zero-dimensional, i.e., the roots are isolated. We assume further that the ideal (f_1, \ldots, f_n) is radical, i.e., that the roots are simple. Then, when the matrix M above is a matrix of the resultant, it can be used to numerically solve the system.

To do so, we look at an over-determined system in place of the well-determined system, so as to introduce genericness in the coefficients. Two such over-determined systems are available:

- (1) either we add $f_{n+1} = r_1 x_1 + \cdots + r_n x_n + u$ for r_i in \mathbb{K} , and view the f_i 's as elements of $\mathbb{K}[u][x_1, \ldots, x_n]$, and we look for their sparse resultant in $\mathbb{K}[u]$;
- (2) or we conceal one variable, say x_n , and view the f_i 's as elements of $\mathbb{K}[x_n][x_1, \ldots, x_{n-1}]$, and we look for their sparse resultant in $\mathbb{K}[x_n]$.

If the second system is chosen, we change n into n-1, then x_{n+1} into u, so that in both cases, we look for the sparse resultant $R(u) \in \mathbb{K}[u]$ of polynomials $f_i(u, x) \in \mathbb{K}[u][x_1, \ldots, x_n]$. In either case, let us assume that the matrix M(u) is a matrix of the resultant.

Again, let \mathbb{L} be an algebraic field extension of \mathbb{K} in $\overline{\mathbb{K}}$ and $(\xi, \eta) \in \mathbb{L}^n \times \mathbb{L}$ be a solution in (x, u) of the over-determined system. Then det $M(\eta) = 0$ and $M(\eta)v_{\xi} = 0$. If case (1) above was chosen, we only need to determine ξ . If case (2) above was chosen, we need to determine both ξ and η . In both cases, we look for (ξ, η) , or equivalently for (v_{ξ}, η) . This reduces the initial problem of solving a polynomial system to a generalized eigenvalues/eigenvectors problem, for which optimized numerical algorithms are available. More specifically, this problem takes several possible forms, amongst which both following extreme cases:

- if the matrix M(u) is linear in u, $M(u) = M_1u + M_0$, with M_1 invertible, the problem is a (simple) eigenvalues/eigenvectors problem:

$$M(\eta)v_{\xi} = 0 \iff \left(-M_1^{-1}M_0 - \eta \operatorname{Id}\right)v_{\xi} = 0;$$

- if the matrix M(u) is non-linear in u, $M(u) = M_d u^d + \cdots + M_0$, with M_d non-invertible, the problem is a generalized eigenvalues/eigenvectors problem:

$$M(\eta)v_{\xi} = 0 \iff \left(\begin{bmatrix} 0 & 1 & 0 \\ \vdots & \ddots & \\ 0 & 0 & 1 \\ -M_0 & -M_1 & \dots & M_{d-1} \end{bmatrix} - \eta \begin{bmatrix} 1 & 0 & 0 \\ \ddots & \vdots \\ 0 & 1 & 0 \\ 0 & \dots & 0 & M_d \end{bmatrix} \right) \begin{bmatrix} v_{\xi} \\ \eta v_{\xi} \\ \vdots \\ \eta^{d-1}v_{\xi} \end{bmatrix} = 0.$$

To reduce the size of the matrices and achieve more efficiency, we perform operations on rows and permutations on columns of M beforehand, rewriting M and v_{ξ} in the form

$$\tilde{M}(u) = \begin{bmatrix} \tilde{M}_{1,1} & \tilde{M}_{1,2}(u) \\ \tilde{M}_{2,1}(u) & \tilde{M}_{2,2}(u) \end{bmatrix} \quad \text{and} \quad \tilde{v}_{\xi} = \begin{bmatrix} w_{\xi} \\ w'_{\xi} \end{bmatrix}, \quad \text{respectively.}$$

It follows that

$$M(\eta)v_{\xi} = 0 \iff \tilde{M}(\eta)\tilde{v}_{\xi} = 0 \iff \begin{bmatrix} \tilde{M}_{1,1} & \tilde{M}_{1,2}(u) \\ 0 & \tilde{M}_{2,2}(x) - \tilde{M}_{2,1}(u)\tilde{M}_{1,1}^{-1}\tilde{M}_{1,2}(u) \end{bmatrix} \begin{bmatrix} w_{\xi} \\ w_{\xi}' \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

whence $M'(x) = \tilde{M}_{2,2}(x) - \tilde{M}_{2,1}(u)\tilde{M}_{1,1}^{-1}\tilde{M}_{1,2}(u)$ satisfies $M'(x)w'_{\xi} = 0$. Solving this smaller problem yields possible roots of the initial problem.

4. Mixed volume and various matrices of resultants

The mixed volume of convex polyhedra $Q_1, \ldots, Q_n \subset \mathbb{R}^n$ is classically defined by the single mapping VM to \mathbb{R} which is multilinear with respect to the addition of polyhedra and such that $VM(Q, \ldots, Q) = n! Vol(Q)$, where Vol is the Euclidean volume. We next define the Newton polytope of a polynomial f as the convex hull of its support. A famous theorem by Bernstein [1] states the number of isolated roots of a polynomial system counted with multiplicity is bounded by the mixed volume of the Newton polytopes of the polynomials, a bound which is much better in case of sparse polynomials than the older Bézout's bound for dense polynomials. An efficient algorithm is given in [2, 5], where the construction of the Newton matrix of a resultant is derived.

Another matrix of a resultant is of interest, the Bézout-Dixon matrix [3], which is defined by introducing new indeterminates a_i as

$$\begin{bmatrix} f_1(x) & \dots & \frac{f_1(a_1,\dots,a_i,x_{i+1},\dots,x_n) - f_1(a_1,\dots,a_{i-1},x_i,\dots,x_n)}{a_i - x_i} & \dots & \frac{f_1(a) - f_1(a_1,\dots,a_{n-1},x_n)}{a_n - x_n} \\ \vdots & \vdots & \vdots & \vdots \\ f_{n+1}(x) & \dots & \frac{f_{n+1}(a_1,\dots,a_i,x_{i+1},\dots,x_n) - f_{n+1}(a_1,\dots,a_{i-1},x_i,\dots,x_n)}{a_i - x_i} & \dots & \frac{f_{n+1}(a) - f_{n+1}(a_1,\dots,a_{n-1},x_n)}{a_n - x_n} \end{bmatrix}.$$

Bibliography

- Bernstein (D. N.). The number of roots of a system of equations. Functional Analysis and Applications, vol. 9, n° 2, 1975, pp. 183-185.
- [2] Canny (J.) and Emiris (I.). An efficient algorithm for the sparse mixed resultant. In Cohen (G.), Mora (T.), and Moreno (O.) (editors), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. Lecture Notes in Computer Science, pp. 89-104. Springer Verlag, 1993. Proceedings AAECC'93, May, Puerto Rico.
- [3] Dixon (A. L.). The eliminant of three quantics in two independent variables. Proceedings of the London Mathematical Society, vol. 6, 1908, pp. 49-69 and 209-236.
- [4] Emiris (I. Z.). Sparse Elimination and Applications in Kinematics. PhD thesis, Computer Science Division, Dept. of Electrical Engineering and Computer Science, University of California, Berkeley, December 1994.
- [5] Emiris (I. Z.) and Canny (J.F.). Efficient incremental algorithms for the sparse resultant and the mixed volume. *Journal of Symbolic Computation*, vol. 20, n° 2, August 1995, pp. 117-149.
- [6] Sylvester (J. J.). On a theory of syzygetic relations of two rational integral functions, comprising an application to the theory of Sturm's functions, and that of the greatest algebraic common measure. *Philosophical Transactions*, vol. 143, 1853, pp. 407-548.
- [7] van der Waerden (B. L.). Modern Algebra. Frederick Ungar Publishing Co., New-York, 1950, third edition.