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Abstract

We present a uniform approach to the elimination of variables between polynomials and

the construction of matrices that express resultants. Building a matrix whose determinant

is a multiple of the resultant reduces the solving of a polynomial system to a generalized

eigenvalues/eigenvectors problem for a square matrix. Several such matrices are of interest,

in particular the Newton and B�ezout/Dixon matrices, which lead to e�cient calculations.

1. Classical resultants versus sparse resultants

Classically, the resultant is a single polynomial which characterizes the solvability of a system of

dense polynomials [7]. We introduce another concept of resultant which takes the structure of the

coe�cients into account.

Let f

1

(c; x); : : : ; f

n+1

(c; x) be n + 1 polynomials in the n indeterminates x

1

; : : : ; x

n

and with

coe�cients that are polynomial in c

1

; : : : ; c

N

over a �eld K. A sparse resultant R(c) with respect

to a sub�eld L of the algebraic closure K is an irreducible polynomial of K[c

1

; : : : ; c

N

] that vanishes

at a specialization  of the c

i

's if and only if the corresponding specializations of the f

i

's have a

common zero. In other words, the resultant satis�es

8 2 L

N

(R() = 0() 9� 2 L

n

8i = 1; : : : ; n f

i

(; �) = 0) :

For some applications, one requires that the coe�cients of the f

i

's be generic, i.e., that one c

i

be introduced for each coe�cient. Special cases are of particular interest. In the case of dense

homogenized polynomials

f

i
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0
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we recover the classical homogeneous resultant [7]. In the case of two (dense) univariate polyno-

mials, we recover Sylvester's classical notion of the univariate resultant [6], whose expression as

a determinant is recalled in the next section. In the case of (possibly sparse) polynomials with

generic coe�cients, i.e., when

f

i

(x

1

; : : : ; x

n

) =

r

i

X

j=1

c

i;j

x

a

i;j;1

1

: : :x

a

i;j;n

n

for non-zero undetermined coe�cients c

i;j

that are transcendental over the �eld K, the resul-

tant R(c) is called the sparse resultant of the f

i

's.

51



A major di�erence between the classical and the sparse resultants is that the former express

simultaneous solvability in a projective space P

n

�

K

�

whereas the latter express simultaneous solv-

ability in the torus

�

K

�

�

n

which is a proper subset of P

n

�

K

�

.

2. Expression of the resultant as a determinant

Two important examples of classical resultants are given as the determinant of a matrix. First, in

the case of dense linear polynomials f

i

= c

i;0

+ c

i;1

x

1

+ � � �+ c

i;n

x

n

, the corresponding homogeneous

resultant [7] is

R(c) = det

2

4

c
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: : : c

1;n

.

.

.

.

.

.

c
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: : : c

n+1;n

3

5

:

Second, in the case of dense univariate polynomials f(a; x) = a

n

x

n

+ � � �+ a

0

and g(b; x) = b

m

x

m

+

� � �+ b

0

, the univariate resultant [6] is the following determinant
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where the matrix has constant values on diagonals and each row corresponds to the product of

either polynomial times a power of x, written in the basis (x

max(n;m)

; : : : ; x; 1). Sparse resultants

can be expressed as the determinant of a matrix. More precisely, we proceed to give an expression of

a multiple of the resultant in the case of sparse polynomials with generic undetermined coe�cients.

To give this expression, de�ne the support of a polynomial f =

P

a

1

;:::;a

n

c

a

1

;:::;a

n

x

a

1

1

: : :x

a

n

n

as the

set Supp(f) � N

n

of those (a

1

; : : : ; a

n

) such that c

a

1

;:::;a

n

6= 0. Note that

Supp(fg) � Supp(f) + Supp(g) and Supp(f + g) � Supp(f) [ Supp(g):

With this de�nition, we now construct matrices that represent the specialization application

of polynomials f

i

(c; x) on a point � 2 K

n

. For i = 1; : : : ; n, let S

i

be a subset of N

n

. Next

de�ne S

0

to be

S

n

i=1

(S

i

+ Supp(f

i

)). For i = 0; : : : ; n, call P

i

the set of polynomials f 2 K[c; x]

such that Supp(f) � S

i

. Then, the applicationM from P

1

�� � ��P

n

to P

0

given byM(l

1

; : : : ; l

n

) =

P

n

i=1

l

i

f

i

is a well-de�ned linear application. For i = 0; : : : ; n, write S

i

= fs

i;1

; : : : ; s

i;N

i

g � N

n

.

Then M has a matrix representation, M = [m

(i;i

0

);j

(c)], where, for convenience, we number the

rows of M by (i; i

0

) and the columns by j. This matrix is given by

x

s

i;i

0

f

i

(c; x) =

N

0

X

j=1

m

(i;i

0

);j

(c)x

s

0;j

; for i = 1; : : : ; n and i

0

= 1; : : : ; N

i

.

Under this representation, the evaluation ofM at the tuple

�

P

N

1

j=1

l

1;j

(c)x

s

1;j

; : : : ;

P

N

n

j=1

l

n;j

(c)x

s

n;j

�

of P

1

� � � � � P

n

is given by the product:

[

l

(1;1)

(c) : : : l

(n;N

n

)

(c)

]

2

4

m

(1;1);1

(c) : : : m

(1;1);N

0

(c)

.

.

.

.

.

.

.

.

.

m

(n;N

n

);1

(c) : : : m

(n;N

n

);N

0

(c)

3

5

2

4

x

s

1;1

.

.

.

x

s

n;N

n

3

5

:
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On the other hand, the product of M by a column vector yields the simultaneous specialization of

multiples of the f

i

's at a point � 2 K

n

:

2

4

m

(1;1);1

(c) : : : m

(1;1);N

0

(c)

.

.

.

.

.

.

.

.

.

m

(n;N

n

);1

(c) : : : m

(n;N

n

);N

0

(c)

3

5

2

4

�

s

0;1

.

.

.

�

s

0;N

0

3

5

=

2

4

�

s

1;1

f

1

(c; �)

.

.

.

�

s

n;N

n

f

n

(c; �)

3

5

:

From this second fact, it follows that if � 2

�

K

�

�

n

is a common zero of the specializations of

the f

i

(c; x) at c = , there exists v



= [�

s

1;1

; : : : ; �

s

n;N

n

]

T

6= 0 such that M()v



= 0. Moreover,

when M is a square matrix, we have that detM() is zero. More is true: in the case when such

a v



exists, R(c) divides detM(c), and the matrix M is called a matrix of the resultant. One thus

computes a multiple of the resultant as the determinant of the matrix M above. It only remains

to determine suitable sets S

i

, for which possible constructions are alluded to in Section 4.

3. Numerically solving polynomial systems

In this section, we assume that f

1

; : : : ; f

n

2 K[x

1

; : : : ; x

n

] is a well-determined system of poly-

nomials with determined coe�cients, whose variety is zero-dimensional, i.e., the roots are isolated.

We assume further that the ideal (f

1

; : : : ; f

n

) is radical, i.e., that the roots are simple. Then, when

the matrix M above is a matrix of the resultant, it can be used to numerically solve the system.

To do so, we look at an over-determined system in place of the well-determined system, so as to

introduce genericness in the coe�cients. Two such over-determined systems are available:

(1) either we add f

n+1

= r

1

x

1

+ � � � + r

n

x

n

+ u for r

i

in K, and view the f

i

's as elements

of K[u][x

1

; : : : ; x

n

], and we look for their sparse resultant in K[u];

(2) or we conceal one variable, say x

n

, and view the f

i

's as elements of K[x

n

][x

1

; : : : ; x

n�1

], and

we look for their sparse resultant in K[x

n

].

If the second system is chosen, we change n into n� 1, then x

n+1

into u, so that in both cases, we

look for the sparse resultant R(u) 2 K[u] of polynomials f

i

(u; x) 2 K[u][x

1

; : : : ; x

n

]. In either case,

let us assume that the matrix M(u) is a matrix of the resultant.

Again, let L be an algebraic �eld extension of K in K and (�; �) 2 L

n

� L be a solution in (x; u)

of the over-determined system. Then detM(�) = 0 and M(�)v

�

= 0. If case (1) above was chosen,

we only need to determine �. If case (2) above was chosen, we need to determine both � and �.

In both cases, we look for (�; �), or equivalently for (v

�

; �). This reduces the initial problem of

solving a polynomial system to a generalized eigenvalues/eigenvectors problem, for which optimized

numerical algorithms are available. More speci�cally, this problem takes several possible forms,

amongst which both following extreme cases:

{ if the matrix M(u) is linear in u, M(u) = M

1

u +M

0

, with M

1

invertible, the problem is a

(simple) eigenvalues/eigenvectors problem:

M(�)v

�

= 0()

�

�M

�1

1

M

0

� �Id

�

v

�

= 0;

{ if the matrix M(u) is non-linear in u, M(u) = M

d

u

d

+ � � �+M

0

, with M

d

non-invertible,

the problem is a generalized eigenvalues/eigenvectors problem:

M(�)v

�

= 0()

0

B

@

2

6

4

0 1 0

.

.

.

.

.

.

0 0 1

�M

0

�M

1

: : : M

d�1

3

7

5

� �

2

6

4

1 0 0

.

.

.

.

.

.

0 1 0

0 : : : 0 M

d

3

7

5

1

C

A

2

6

4

v

�

�v

�

.

.

.

�

d�1

v

�

3

7

5

= 0:
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To reduce the size of the matrices and achieve more e�ciency, we perform operations on rows

and permutations on columns of M beforehand, rewriting M and v

�

in the form

~

M(u) =

�

~

M

1;1

~

M

1;2

(u)

~

M

2;1

(u)

~

M

2;2

(u)

�

and ~v

�

=

h

w

�

w

0

�

i

; respectively.

It follows that

M(�)v

�

= 0()

~

M(�)~v

�

= 0()

�

~

M

1;1

~

M

1;2

(u)

0

~

M

2;2

(x)�

~

M

2;1

(u)

~

M

�1

1;1

~

M

1;2

(u)

�

h

w

�

w

0

�

i

=

h

0

0

i

;

whence M

0

(x) =

~

M

2;2

(x)�

~

M

2;1

(u)

~

M

�1

1;1

~

M

1;2

(u) satis�es M

0

(x)w

0

�

= 0. Solving this smaller problem

yields possible roots of the initial problem.

4. Mixed volume and various matrices of resultants

The mixed volume of convex polyhedra Q

1

; : : : ; Q

n

� R

n

is classically de�ned by the sin-

gle mapping VM to R which is multilinear with respect to the addition of polyhedra and such

that VM(Q; : : : ; Q) = n! Vol(Q), where Vol is the Euclidean volume. We next de�ne the Newton

polytope of a polynomial f as the convex hull of its support. A famous theorem by Bernstein [1]

states the number of isolated roots of a polynomial system counted with multiplicity is bounded

by the mixed volume of the Newton polytopes of the polynomials, a bound which is much better

in case of sparse polynomials than the older B�ezout's bound for dense polynomials. An e�cient

algorithm is given in [2, 5], where the construction of the Newton matrix of a resultant is derived.

Another matrix of a resultant is of interest, the B�ezout-Dixon matrix [3], which is de�ned by

introducing new indeterminates a

i

as

2

6

4

f

1

(x) : : :

f

1

(a

1

;:::;a

i

;x
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;:::;x

n

)�f

1

(a

1
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i
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n

)

a

i
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i
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f

1

(a)�f

1

(a

1
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n

)

a

n
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n

.

.

.

.

.

.

.

.

.

f

n+1

(x) : : :

f

n+1

(a

1

;:::;a

i

;x

i+1

;:::;x

n

)�f

n+1

(a

1

;:::;a
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;x

i

;:::;x

n

)

a

i

�x

i

: : :
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(a

1
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n

)

a

n
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3

7
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