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Abstract

This presentation is in two parts. First, we recall the de�nition of two types of asymptotic

expansions known as nested form and nested expansions. This theory makes it possible to

adapt the asymptotic scale to the function under expansion and is based on the theory of

Hardy �elds [1]. Next, we suggest a reformulation of nested forms in terms of generalized

products called star products, and a prospective theory of multivariate Hardy �elds called

partial Hardy �elds.

PART I: ASYMPTOTIC NESTED EXPANSIONS

1. Hardy �elds

From the asymptotic viewpoint, C

1

real-valued functions do not behave as nicely as holomor-

phic functions. In particular, asymptotic comparisons of functions that involve the symbols O, o

and � cannot be termwise di�erentiated. A simple example is provided by f(x) = x+ cosx � x,

whereas f

0

(x) is not asymptotic to 1. In rough terms, this defect is due to allowing the functions

to oscillate. A remedy to this problem is the use of Hardy �elds instead of rings of functions. A

construction is as follows. In order to deal with �elds of functions, one �rst considers the ring G of

germs of C

1

real-valued functions at +1, where two functions are identi�ed when they agree on

a neighbourhood of +1. Then, a Hardy �eld H is a subring of G which is also a di�erential �eld.

An example is R(x) viewed as a ring of germs with the usual derivation.

Considering �elds of germs has nice consequences. A non-zero function f of a Hardy �eld H is

invertible with C

1

inverse, so that asymptotically it never vanishes, and is therefore of asymptoti-

cally constant sign. This de�nes a total order on H by f < g if and only if g�f has asymptotically

positive sign. The derivative f

0

is also of asymptotically constant sign, so that f is monotonic

and tends to a limit in R = R[ f�1;+1g when x goes to +1. Applying this property to the

ratio f=g of two functions in H, we obtain that either f = o(g) or f � cg for a non-zero real

constant c or g = o(f).

For f in a Hardy �eld H, an elementary result is that both di�erential ring extensions H(exp f)

and H(ln f) are again Hardy �elds. Let `

0

(x) = x and for n � 0, `

n+1

(x) = ln j`

n

(x)j. Similarly,

let e

0

(x) = x and for n � 0, e

n+1

(x) = exp e

n

(x). For n < 0, de�ne e

n

= `

�n

and `

n

= e

�n

. Then,

for a Hardy �eld H, there is a Hardy �eld extension containing each of the `

n

(f) and e

n

(f). Again

for a function f in a Hardy �eld H, it follows from a theorem by Rosenlicht that there exists a

smallest Hardy �eld containing R, f , and each g

d

for g > 0 and d 2 R. This �eld is denoted Rhhfii.

A computationally interesting fact is that f

�

= (ln jf j)

0

= f

0

=f 2 Rhhfii even when ln f 62 Rhhfii.

1
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2. Comparability classes

In view of various types of expansions, we need to extend asymptotic equivalence � to coarser

and coarser equivalences. In particular, beside asymptotic equivalence (x is equivalent to x + ln x

but not to 2x), we need to consider asymptotic equivalence up to a non-zero constant factor (x is

equivalent to 2x but not to x

2

), asymptotic equivalence up to powers (x is equivalent to x

2

but not

to exp x). For two functions f and g in a Hardy �eld H and with limiting values 0, �1 or +1,

we de�ne f �

n

g to mean that there exists a non-zero constant c 2 R such that `

n

(f) � c`

n

(g).

Furthermore, we agree that f �

n

g when both functions tend to �nite non-zero limits. For each n �

0, this de�nes an equivalence relation on H n f0g. Call 

n

(f) the class of f 6= 0 and �

n

(H) the set

of equivalence classes.

Beside this, we need to measure the accuracy of an expansion (a series in ln x is �ner than a

series in x). This is done by de�ning an order between equivalence classes. Set 

n

(f) < 

n

(g)

to mean `

n

(f) = o(`

n

(g)). For each n, this de�nes a total order on �

n

(H): `

n

(f)=`

n

(g) is in a

suitable Hardy �eld extension of H, so that it has a limit a in R (independent of the extension).

Either a = 0 and 

n

(f) < 

n

(g); or a = �1 and 

n

(g) < 

n

(f); or 

n

(f) = 

n

(g).

Here are a few examples:



0

(ln x) < 

0

�

exp

�

`

2

(x)

2

��

< 

0

(x) = 

0

(x+ ln x) < 

0

�

x

2

�

< 

0

�

exp

�

ln(x)

2

��

< 

0

(exp(x));



1

(ln x) < 

1

�

exp

�

`

2

(x)

2

��

< 

1

(x) = 

1

(x+ ln x) = 

1

�

x

2

�

< 

1

�

exp

�

ln(x)

2

��

< 

1

(exp(x));



2

(ln x) = 

2

�

exp

�

`

2

(x)

2

��

< 

2

(x) = 

2

(x+ ln x) = 

2

�

x

2

�

= 

1

�

exp

�

ln(x)

2

��

< 

2

(exp(x)):

The previous equivalence relations extend known cases: 

0

is the valuation map with the usual

ordering reversed; the elements of �

1

(H) are Rosenlicht's comparability classes.

3. From 

n

to 

n+1

In view of the examples above, one proves that the�

n

are coarser and coarser relations: if 

n

(f) =



n

(g), then 

n+1

(f) = 

n+1

(g). Thus for n � 0, the map 

n+1

factors through �

n

(H): 

n+1

= �

n

�

n

for a surjection �

n

from �

n

(H) to �

n+1

(H). Taking the direct limit, we get �

1

(H) and 

1

such

that for any k � 0 and any non-zero d 2 R,



1

(ln x) < 

1

(x) = 

1

�

x

d

�

= 

1

�

e

k

�

`

d

k

(x)

��

< 

1

(exp x):

On the contrary, inequalities are not always preserved by the �

n

's: when 

n

(f) < 

n

(g), i.e.,

`

n

(f) = o(`

n

(g)), it is not always true that 

n+1

(f) � 

n+1

(g). For instance,



0

�

x

�1

�

< 

0

(ln x) < 

0

(x) but 

1

(ln x) < 

1

(x) = 

1

�

x

�1

�

:

However, the property is valid when comparing functions that are in�nite at +1, as shown by the

examples of the previous section.

On the other hand, comparing 

2

(f) to 

2

(`

p�1

(x)) yields information on 

1

�

L

p

(x)f

�

(x)

�

where L

p

(x) = 1=`

0

p

(x) = x`

1

(x) � � �`

p�1

(x). The key idea is to restrict to functions f with in-

�nite or zero limit at +1 and to use L'Hôpital's rule: if f; g ! 0 or �1,

f(x)

g(x)

�

f

0

(x)

g

0

(x)

. Applying

this rule to `

2

(f) and `

p+1

(x), we obtain

`

2

(f)

`

p+1

(x)

�

f

�

ln jf j

`

p

`

0

p

; and hence L

p

(x)f

�

(x) �

1

`

p

(x)`

p+1

(x)

ln jf j

ln j ln jf jj

:

Taking logarithms whenever appropriate, we then get:

1. if 

2

(f) > 

2

(`

p�1

(x)) then 

1

�

L

p

f

�

�

= 

1

(ln f);
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2. if 

2

(f) < 

2

(`

p�1

(x)) then ln

�

L

p

f

�

�

� �`

p+1

(x);

3. if 

2

(f) = 

2

(`

p�1

(x)) and `

2

(f) 6� `

p+1

(x) then 

1

�

L

p

f

�

�

= 

1

(`

p

(x));

4. if `

2

(f) � `

p+1

(x) then 

1

�

L

p

f

�

�

< 

1

(`

p

(x)) = 

1

(ln f).

4. Nested forms

For an integer m � 0, reals d � 0 and � > 0 and a function � such that 

1

(�) < 

1

(`

m

(x)),

consider f = `

d

m

(x)�(x) and g = `

d+�

m

(x). Then ln(f=g) = ln�(x) � �`

m+1

(x) = ��`

m+1

(x) +

o(`

m+1

(x)) is negative in�nite at +1. Thus f = o(g). If similarly � < 0, g = o(f). In view of

the previous relations, we de�ne a partial nested form for a function f that is in�nite at +1 as an

expression of the form

f = e

s

�

`

d

m

(x)�

�

where s;m � 0, d 2 R

+

and 

1

(�) < 

1

(`

m

(x)).

Not every function f in a Hardy �eld admits a nested form. In fact, if f ! +1, then ei-

ther 

2

(f) > 

2

(e

s

(x)) for all s � 0; or for all m � 0, there exists f

m

2 Rhhfii such that f

m

� `

m

(x);

or else f admits a partial nested form f = e

s

�

`

d

m

(x)�

�

. The �rst two cases are strange situations

in which, for example, f cannot satisfy an algebraic di�erential equation over R. In the third case,

Rhhfii contains an element asymptotic to �. So the previous result applies to one of ��

�

and the

function � may in turn admit a partial nested form. Continuing in this way, we produce a sequence

of �

i

's which either stops on a �

i

for which the second case above holds, or is an in�nite sequence

with decreasing 

1

, or contains a �

i

asymptotic to a non-zero constant A.

This gives a recursive de�nition of a nested form: a function f has a nested form if there exists

a �nite sequence of �

i

's, i = 0; : : : ; n, with �

0

= f , such that each �

i+1

is the function � which

appears in a partial nested form of �

i

and �

n

= A + o(1) for a non-zero real A. (A few other

technical constraints are added to ensure the uniqueness of the nested form of a function, in the

case of existence.) For example, the following are two nested forms:

e

1

�

`

2

2

(x)e

2

�

`

1=3

5

(x)(2 + o(1))

��

; and � e

�1

1

�

x

�

`

1

(x)e

2

�

`

p

2

5

(x)(13 + o(1))

��

:

As a consequence to the previous results, if f belongs to a Hardy �eld and �

1

(Rhhfii) is well

ordered, then f has a nested form. In particular, when f satis�es an algebraic di�erential equation

over R and belongs to a Hardy �eld, then �

1

(Rhhfii) is �nite, with cardinality bounded by the

order of the di�erential equation. It follows that only �nitely many nested forms are possible for

such solutions, and that those possible forms can be listed.

5. Further expansions

Nested forms only give a certain amount of asymptotic information. In particular, nothing is

known about the o(1). In certain cases, a possibility is to give a nested form representation for

this o(1), and continue recursively. We then get nested expansions, which extend asymptotic expan-

sions, with no presumption of convergence. Nested expansions are guaranteed to exist for solutions

of algebraic di�erential equations in a Hardy �eld and yield a unique representation. In particular,

nested expansions can be calculated for exp-ln functions (modulo an oracle for constants); and for

Liouvillian functions, although there is di�culty specifying which integral or algebraic function is

under consideration. There are also known algorithms to add and multiply nested expansions, but

this may be awkward. On the other hand the functional inverse of a nested expansion can be easily

computed by an algorithm due to Salvy and Shackell.
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PART II: PROSPECTIVE RESULTS

6. Star products

In view of the identities ab = exp(ln a+ln b) and ab = ln

�

e

a

e

b

�

, we de�ne the star products �

k

by

a �

k

b = e

k

(`

k

(a) + `

k

(b)) = e

k�1

(`

k�1

(a)`

k�1

(b)); for k 2Z.

We have a �

0

b = a + b, a �

1

b = ab. For r 2 R, we also de�ne a

�

r

k

= e

k

(r`

k

(a)). These de�nitions

yield properties which give star products their name: each �

k

is commutative and associative; �

k+1

is left and right distributive over �

k

; �

k+1

admits e

k+1

(0) as a neutral element and e

k

(0) as a zero.

Sample expressions that involve star products are:

x �

2

`

1

(x) = exp(`

1

(x)`

2

(x)); (exp x)

�

2

2

= exp

�

x

2

�

; e

x

�

�1

x = ln (e

2

(x) + e

x

) ;

x

�

2

�1

= ln (2e

x

) = x+ ln 2; (exp x)

�

2

3

�

2

`

1

(x) = e

2

�

`

3

1

(x)

�

�

2

`

1

(x) = e

1

�

e

1

�

`

3

1

(x)

�

`(2(x)

�

:

Of course, any exp-ln function can be written as an expression in the real constants and the

functions e

n

for n 2Zusing star products �

k

for k 2Zonly.

The advantage of star products is their nice behaviour with the 

k

's: if a and b have in�nite limit

at +1, then 

k�1

(a�

k

b) > maxf

k�1

(a); 

k�1

(b)g and 

k

(a�

k

b) = maxf

k

(a); 

k

(b)g. Furthermore,

taking �

k

powers does not a�ect asymptotic relations between e

s

(x)'s. In view of these results, we

expect to �nd a better presentation of nested expansions in terms of star products and hope for

simpler algorithms to deal with nested expansions.

7. Partial Hardy �elds

We say that a ring H of functions of two variables x and y is a partial Hardy �eld if

1. for su�ciently large y

0

, ff(x; y

0

) j f 2 Hg is a Hardy �eld;

2. for su�ciently large x

0

, ff(x

0

; y) j f 2 Hg is a Hardy �eld;

3. for f 2 H, lim

y!+1

f(x; y) is either identically �1 or else an element of a Hardy �eld;

4. for f 2 H, lim

x!+1

f(x; y) is either identically �1 or else an element of a Hardy �eld.

The point of this de�nition is to allow for multivariate nested expansions.

Let f(x; y) be a function in a partial Hardy �eld. Provided Rhhfii is a partial Hardy �eld, the

sequence of �

i

(x) obtained by taking the nested expansion of f(x; y

0

) for �xed y = y

0

becomes

independent of y

0

for su�ciently large y

0

. Thus with an assumption of well-orderedness, we obtain

a �rst nested expansion,

f(x; y) �

x!+1

e

s

0

�

`

d

0

m

0

(x)e

�1

s

1

�

� � �e

�1

s

n

�

`

d

n

m

n

(x)(�(y) + o(1))

�

� � �

��

;

where by point (4) of the de�nition, � belongs to a Hardy �eld. Now, with reasonable assumptions,

� admits a nested form.

Once again, if f satis�es an algebraic partial di�erential equation, there is a limitation on the

nested forms allowed to occur. However, a complication is that solutions of PDE's contain arbitrary

functions, which can be set by specifying the limiting behaviour of f in one direction.
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