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1. The Problem

Consider the linear ODE y

(n)

(x)+a

n�1

(x)y

(n�1)

(x)+� � �+a

0

(x)y(x) = 0; where the coe�cients a

i

are rational functions of k = C(x) for an algebraic closure C of the rational number �eld Q. Solving

this equation is an easier task when the corresponding linear di�erential operator in @ = d=dx,

L = @

n

+ a

n�1

(x)@

n�1

+ � � �+ a

0

(x);

admits a factorization L = L

2

L

1

where the product denotes composition. The Leibniz rule

@ � ay = (ay)

0

= a

0

y + ay

0

= (a@ + a

0

) � y (a 2 k)

de�nes a degree on the non-commutative ring A = k[@], which makes it left and right Euclidean.

Consider the operator

L = @

4

�

1

4

@

3

+

3

4x

2

@

2

� x:

It can be proved to be irreducible in A , i.e., it admits no factorization L

2

L

1

in A . However, L

factorizes over the extension ring k(

p

x)[@]:

L =

�

@

2

�

1

x

@ +

3

4x

2

�

p

x

�

�

@

2

�

p

x

�

=

�

@

2

�

1

x

@ +

3

4x

2

+

p

x

�

�

@

2

+

p

x

�

:

Note that since

p

x and �

p

x are algebraically and di�erentially indiscernable, the conjugates of

a right factor of L are other right factors of L. In the example above, L is the least common left

multiple of both conjugate right factors.

More generally, an operator L 2 A is called absolutely reducible when there exists an algebraic

extension k

ext

of k such that L is reducible in A

ext

= k

ext

[@] (for a suitable extension of the action

of @ on k

ext

). For an absolutely reducible operator L with a right factor L

1

2 A

ext

, let

~

L be the

least common left multiple of the algebraic conjugates of L

1

. As a simple result of di�erential

Galois theory,

~

L is stable under the action of the di�erential Galois group of the extension A

ext

over A (to be de�ned in the next section). This entails that

~

L 2 A . Since

~

L divides L, we have

that L is irreducible but absolutely reducible in A if and only if L is the least common left multiple

of the conjugates of a right factor L

1

2 A

ext

.

The example above motivates the following problems, sorted by increasing complexity:

1. �nd an algorithm to decide absolute reducibility;

2. �nd an algorithm to compute a factorization on an algebraic extension;

3. �nd an algorithm to compute a factorization on an algebraic extension with absolutely irre-

ducible factors.
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The algorithms to solve these problems, reduce to solving ODE's for solutions in special classes. A

solution y such that y 2 k is called a rational solution, while a solution y such that y

0

=y 2 k is called

an exponential solution

1

and a solution y such that y

0

=y is algebraic over k is called a Liouvillian

solution. An early study on this topic dates back to Liouville [6, 7]. The �rst algorithm to solve

for rational solutions was developed in [1]. It relies on the resolution for polynomial solutions,

for which an optimized algorithm is presented in [2]. Next, algorithms for factorization as well

as algorithms to solve for Liouvillian solutions rely on the resolution for rational or exponential

solutions. Algorithms for factorization are given in [3, 4, 9, 12]. The �rst algorithm to solve for

Liouvillian solutions of second-order ODE's is due to Kovacic [5] and was later elaborated in [11],

again in the second-order case. A prototypical algorithm for higher-order equations is to be found

in [8] and was highly improved on in [10] in the third order case.

In the remainder of this summary, we comment on an algorithm to solve the second problem.

2. Di�erential Galois Theory

In the suitable analytical framework, the solution space V of the equation L�y = 0 is the C-vector

space generated by n linearly independent solutions y

i

. However, these solutions satisfy algebraic

di�erential relations

P

i

�

y

1

; y

0

1

; : : : ; y

(n�1)

1

; : : : ; y

n

; y

0

n

; : : : ; y

(n�1)

n

�

= 0

for polynomials P

i

in n

2

variables and with coe�cients in k. As an example, any solution y

1

of the

equation y

00

+ y = 0 satis�es an algebraic equation y

2

1

+ y

0

1

2

= c 2 C. For a given L, we would like

to describe the ideal I generated by all algebraic di�erential relations. A description is obtained

by di�erential Galois theory.

For a di�erential �eld extension K of k, the group of automorphisms � of K that induce the

identity on k and such that �(f

0

) = �(f)

0

for f 2 K is called the di�erential Galois group of K

over k and is denoted Gal(K=k). Let K be k

�

y

1

; : : : ; y

(n�1)

1

; : : : ; y

n

; : : : ; y

(n�1)

n

�

, i.e., the smallest

di�erential �eld extension of k which contains the y

i

's and does not extend the �eld of constants C.

This �eld is called the Picard-Vessiot extension of L. The group Gal(K=k) is called the di�erential

Galois group of L and denoted Gal

k

(L). A computational representation of G is obtained as follows.

Assume y to satisfy L � y = 0, then for any automorphism � 2 G, L � �(y) = �(L � y) = 0. In other

words, each automorphism moves a solution of L to another solution. Consequently, �(y) is a

linear C-combination of the y

i

's with coe�cients that are independent from y. This yields a matrix

representation of G. Thus G is linear algebraic and the ideal I is stable under the action of G.

We now proceed to introduce a lemma which is crucial to the algorithm discussed in the next

section. Assume that L admits a right factor L

1

with solution space V

1

� V . For any v

1

2 V

1

and

any automorphism � 2 G, L

1

� �(v

1

) = �(L

1

� v

1

) = 0, so that V

1

is stable under G. We want to

prove a converse property.

For an r-tuple (v

1

; : : : ; v

r

) 2 K

r

, the Wronskian Wr(v

1

; : : : ; v

r

) is classically de�ned as the ma-

trix

h

v

(j)

i

i

. The corresponding determinant induces an application from K

r

to K. This application

is an alternate r-linear form and satis�es

�(det(Wr(v

1

; : : : ; v

r

))) = det(Wr(�(v

1

); : : : ; �(v

r

)))

for any � 2 G. Below, we more intrinsically use r-exterior products, i.e., formal alternate r-linear

symbols v

1

^ � � � ^ v

r

that satisfy �(v

1

^ � � � ^ v

r

) = �(v

1

) ^ � � � ^ �(v

r

) for any � 2 G.

1

Such a solution is also frequently referred to as a hyperexponential solution.
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Let us assume V

1

to be a 2-dimensional C-vector subspace of V with basis (f

1

; f

2

) and stable

under the action of G. More speci�cally, for each � 2 G there exist c

(�)

i;j

2 C n f0g such that

�(f

i

) = c

(�)

i;1

f

1

+ c

(�)

i;2

f

2

:

Then in the exterior power �

2

(V

1

) where f

1

^ f

1

= f

2

^ f

2

= 0,

�(f

1

^ f

2

) = �(f

1

) ^ �(f

2

) = (c

1;1

c

2;2

� c

1;2

c

2;1

)(f

1

^ f

2

):

More generally, assume that V

1

is a C-subspace of V stable under G and with dimension dim V

1

=

r < n = dim V . Then, the exterior r-power

V

r

(V

1

) is a 1-dimensional vector space with basis ! =

f

1

^ � � � ^ f

r

. For each � 2 G, there exists a non-zero c

�

2 C such that �(!) = c

�

!. In fact,

c

�

= det� when � is viewed as a C-linear automorphism of V

1

. Now, for y 2 V , write

L

1

� y =

det(Wr(y; f

1

; : : : ; f

r

))

det(Wr(f

1

; : : : ; f

r

))

:

This makes L

1

a linear operator of order r. For any � 2 G,

�(L

1

� y) =

�(det(Wr(y; f

1

; : : : ; f

r

)))

�(det(Wr(f

1

; : : : ; f

r

)))

=

c

�

�(det(Wr(y; f

1

; : : : ; f

r

)))

c

�

�(det(Wr(f

1

; : : : ; f

r

)))

= L

1

� y:

The coe�cients of L

1

are therefore left �xed by all elements of G, and L

1

2 k[@].

Lemma 1. An operator L with solution space V admits a right factor L

1

such that the solution

space V

1

of L

1

is a subspace of V if and only if there exists a non-zero proper subspace of V which

is stable under G.

3. The Beke-Bronstein Algorithm

Wronskians relate the solutions of an ODE to its coe�cients. In particular, the Wronskian w =

det(Wr(y

1

; : : : ; y

n

)) = det

�

Y; Y

0

; : : : ; Y

(n�1)

�

where Y is the column vector of the y

i

's satis�es

w

0

=

n�1

X

i=1

det

h

Y; : : : ; Y

(i�1)

; Y

(i+1)

; Y

(i+1)

; : : : ; Y

(n�1)

i

+ det

h

Y; : : : ; Y

(n�2)

; Y

(n)

i

= �

n�1

X

i=0

a

i

(x) det

h

Y; : : : ; Y

(n�2)

; Y

(i)

i

= �a

n�1

(x) det

h

Y; Y

0

; : : : ; Y

(n�1)

i

= �a

n�1

(x)w:

In short w

0

+ a

n�1

(x)w = 0 (Liouville relation); the other coe�cients of L satisfy similar relations.

The algorithm developed and implemented by Bronstein after Beke's work and described in [4]

makes use of Wronskians in the following way. To obtain a right factor of the operator L:

1. solve L � y = 0 for exponential solutions; if solutions are found, they yield �rst-order right

factors of L;

2. similarly, �nd �rst-order left-hand factors by the method of adjoint operators [4]; if solutions

are found, they yield right factors of L of order n� 1;

3. if no solution was found, look for right factors of order r (2 � r � n � 2) as follows:

(a) build an equation whose solution space is spanned by all Wronskians of order r;

(b) solve for exponential solutions;

(c) test which solutions are Wronskians, i.e., pure exterior products, and obtain a right factor.

As a comparison, Singer's method, which was implemented by Van Hoeij, relies on solving for

rational solutions only.
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4. An Example

Again, consider the operator L = @

4

�

1

4

@

3

+

3

4x

2

@

2

� x. Both �rst steps of the algorithm above

fail, so that the only possible factorizations are of the form L = L

2

L

1

with factors of order 2.

Write w = y

1

y

0

2

�y

0

1

y

2

for any two solutions of L. By computing its �rst derivatives, reducing them

by L on the basis

�

y

(i)

1

y

(j)

2

�

i;j=0;:::;3

, and looking for linear dependencies by Gaussian elimination,

we obtain that w is annihilated by

P = @

5

�

5

2x

@

4

+

21

4x

2

@

3

�

69

8x

3

@

2

+

8x

5

+ 15

2x

4

@:

The only exponential solutions are the constants � 2 C. This entails that L

1

= @

2

� �@ + r(x) for

an algebraic function r. By identi�cation, one �nds

L

2

= @

2

+

�

��

1

x

�

@ +

�

�

2

�

�

x

+

3

4x

2

� r(x)

�

;

where r(x) =

1

4x

2

�

2�

2

x

2

� �x�

p

4�

4

x

4

� 8�

3

x

3

+ 13�

2

x

2

� 15�x+ 16x

5

�

. Realizing that � = 0,

we get r(x) = �

p

x and the factorizations of the �rst section.
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