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The Maple package Isolde is a package for studying and solving systems of linear di�erential

equations. More speci�cally, it deals with two main kinds of problems:

{ local problems: compute formal invariants at a point; compute formal solutions at a point;

{ global problems: compute closed form solutions in a certain class, like that of polynomial,

rational, or exponential functions.

The approach followed is a direct treatment of the system, avoiding any method akin to that of

cyclic vectors. Formal invariants of linear �rst-order di�erential systems are introduced in the next

section, where we also briey list the operations available in Isolde. Then, we focus in the last

two sections on an e�cient algorithm due to E. P�ugel to search for exponential solutions [4].

The package Isolde is developed by A. Barkatou and E. P�ugel and is available at

http://www-lmc.imag.fr/CF/logiciel.html.

1. Formal Invariants, Formal Solutions, Closed Form Solutions

For a sub�eld K of the �eld C of complex numbers with algebraic closure K , and a matrix A 2

M

n

(K(x)), consider the linear �rst-order di�erential system

Y

0

= AY:(1)

One either looks for vector solutions or for matrix solutions, i.e., whose columns are vector solutions.

A formal fundamental matrix at x

0

2 K [ f1g is a matrix solution of rank n of the form [6]

�(t) = H(t)t

�

e

Q(t)

where t

r

= x� x

0

for a positive integer r,(2)

for a matrix of formal power series H 2 M

n

(K)[[t]], a constant matrix � 2 M

n

(K) and a diagonal

matrix Q with Laurent polynomial entries in t

�1

K [t

�1

]. Note that

�(t) = H(t) exp

�

Z

W (t) dt

�

for W = �t

�1

+ Q

0

2 t

�1

M

n

(K)[t

�1

]:

The expression exp

�
R

W (t) dt

�

= t

�

e

Q(t)

is called the exponential part of �. A formal invariant

is any quantity appearing in or related to �, like Newton polygons, Newton polynomials, expo-

nential parts and formal solutions, i.e., linear combinations of columns of �. Formal solutions are

asymptotic expansions of functional solutions near x

0

. Their general expression is

y(t) = z(t)t

�

e

q(t)

= z(t) exp

�

Z

w(t) dt

�

(3)
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with z(t) = z

0

(t)+z

1

(t) ln t+ � � �+z

s

(t) ln

s

t for vectors z

i

2 K [[t]]

n

, a constant � 2 K and a Laurent

polynomial q 2 t

�1

K [t

�1

]. Here again w = �t

�1

+ q

0

. Isolde implements algorithms to compute

several formal invariants, in particular exponential parts and formal solutions.

Specialized algorithms have been developed to solve for solutions in several elementary classes

of closed form expressions. Their principle is that local data contains essential information on

potential closed form solutions. In particular, Isolde implements algorithms to solve for:

{ polynomial solutions, that are related to formal solutions at 1 with trivial exponential parts

and with no logarithmic component;

{ rational solutions, whose denominators are bounded by computing the indicial equation (i.e.,

the Newton polynomial of slope 0) at all �nite singularities;

{ exponential solutions, for which candidates can be computed from the exponential parts at all

singularities, as detailed in the next two sections.

2. Exponential Solutions

We now use the formal invariants previously introduced to compute exponential solutions of a

linear di�erential system. Throughout this section, we assume that we know the set of all possible

exponential parts of exponential solutions, whose determination is the topic of the next section.

An exponential solution is a vector solution y obtained when the vector z in the general expres-

sion (3) reduces to a polynomial vector:

y(x) = p(x) exp

�

Z

u(x) dx

�

for u 2 K(x) and p 2 K [x]

n

.

As an example, an exponential solution of the system described by the matrix

A =

2

6

4

�7

x

2

�x

2
x

2

1�x

6�2x+x

2

x

6

(1�x)

1

x

2

�4+9x

x(1�x)

2

8�8x+5x

2

x

6

1�x

x

2

�4+8x

x(1�x)

3

7

5

is exp

�

Z

u dx

�

2

4

0

1

1� x

3

5

, where u =

1

x

2

�

4

x

+

5

1� x

:(4)

Note the more explicit form exp

�R

u dx

�

= x

�4

(1� x)

�5

exp(�x

�1

).

Methods to determine exponential solutions of a system �rst evaluate or give constraints on the

exponential part before computing the polynomial part p. This bases on the local analysis of u. One

distinguishes between the singular and regular parts S

x

0

(u) and R

x

0

(u) of u at a point x

0

2 K[f1g,

de�ned by:

u = S

x

0

(u) +R

x

0

(u); with S

x

0

(u) 2 t

�1

K [t

�1

] and R

x

0

(u) 2 K [[t]].

For the example above, one gets

S

0

(u) =

1

t

2

�

4

t

and R

0

(u) = 5 + 5t+ 5t

2

+ � � �

Basic known algorithms allow us:

1. for each singularity x

0

of a given rational function u, to compute the singular parts S

x

0

(u)

and a �nite number of terms of the regular parts R

x

0

(u) in an e�cient way;

2. to reconstruct a rational function u from its singular parts at all its singularities.

Two di�erent methods based on these algorithms allow the calculation of exponential solutions:

1. Beke's method:

(a) compute candidates for u by combining the singular parts allowed at all singularities;

(b) set Y = Z exp

�R

u dx

�

and search for polynomial solutions Z.

2. Alternative approach based on Pad�e approximants:
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(a) bound numerator and denominator of u;

(b) determine the singular part S

x

0

(u) of u at a (single) singularity x

0

so as to be able to

compute a Pad�e approximant for R

x

0

(u) next.

The methods contrast to one another inasmuch as Beke's method requires splitting �elds for its

completeness but avoids the use of Gr�obner bases, while the alternative Pad�e-based approach does

not appeal to splitting �elds but generally requires Gr�obner bases. Besides, note the combinatorial

exponential complexity of step (a) in Beke's algorithm.

Solving the example (4) by Beke's method, one �rst obtains the following sets of exponential

parts at 0 and 1:

E

0

=

�

1

x

2

�

4

x

;

�

x

2

+

20�� 44

57x

�

; E

1

=

�

0;

5

1� x

�

; where �

2

+ 7�� 2 = 0.

With this simple example, this yields only two candidates:

u

1

=

1

x

2

�

4

x

+

5

1� x

and u

2

=

�

x

2

+

20�� 44

57x

5

1� x

:

With the �rst candidate, the system (1) reduces to Z

0

= (A�u

1

)Z. One then veri�es that it admits

the polynomial solution already mentioned in (4).

For a formal solution y = z exp

�R

wdt

�

such that z has valuation 0 at x

0

, w is called a generalized

exponent. Noticing that each S

x

0

(u) is a generalized exponent, the idea of the second method is to

compute R

x

0

(u) from a formal series solution, more speci�cally from the series z after setting w =

S

x

0

(u). More explicitly, for an exponential solution y = p exp

�
R

u dt

�

with logarithmic derivative U ,

we have S

x

0

(u) = S

x

0

(U), so that

R

x

0

(U) = R

x

0

(u) + (ln p)

0

= (ln z)

0

is a vector of rational functions, which can be computed from z as a Pad�e approximant. By inte-

gration, one obtains R

x

0

(u) as the rational part and p as the logarithmic part, next an exponential

solution if there exists any for this u.

Following up the example (4), choosing the singularity x

0

= 0 and the exponential part candi-

date w = S

0

(u) = x

�2

� 4x

�1

, one �rst computes the following formal solution (at 0):

y = exp

�

Z

S

0

(u) dx

�

2

4

0

1 + 5x+ 15x

2

+ � � �

1 + 4x+ 14x

2

+ � � �

3

5

:

Taking the logarithmic derivative and computing Pad�e approximations yields

R

0

(U) =

2

4

0

5 + 5x+ � � �

4 + 4x+ � � �

3

5

=

2

4

0

5

1�x

4

1�x

3

5

= �

2

4

0

ln(1� x)

5

ln(1� x)

4

3

5

0

;

from which one gets the exponential solution already mentioned in (4).

3. Exponential Parts

To complete the description of the previous algorithms, we �nally describe how to compute all

possible exponential parts of solutions of a linear �rst-order ordinary di�erential system.

As opposed to the case of a (single) scalar higher order ODE, exponential parts cannot be

obtained immediately in the case of the system (1). An obvious indirect method is to compute the

Newton polygon by transforming it into an nth order scalar equation, which becomes very costly

with the increase of n. This is why several other methods have been developed to transform the
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initial matrix A into a form from which exponential parts can be read o�. All such methods use

two special transformations:

1. the change of unknown Y = TZ, where T is a polynomial matrix with non-zero determinant

transforms the system (1) into the equivalent system Z

0

= (T

�1

AT � T

�1

T

0

)Z;

2. the change of exponential part Y = Z exp

�
R

a dt

�

leads to the new system Z

0

= (A� a)Z.

Using the above, algorithms have been proposed to put a di�erential system into:

1. companion form, as obtained by the method of cyclic vectors;

2. Turrittin's canonical form [5], however obtained by a not so constructive process;

3. Moser's irreducible form [3];

4. Hilali's and Wazner's super irreducible form, a re�ned version of Moser's form [2].

We now comment on applications of the last two forms. If a system

x

q+1

Y

0

= AY; for a series A = A

0

+A

1

x+ � � �(5)

admits a solution of the form

z exp

�

Z

a

x

q+1

dx

�

;(6)

then the matrix A

0

�a necessarily has a zero determinant. Elaborating on this fact, Moser [3] proved

that when A is an irreducible system, if A

0

is not nilpotent and a is a non-zero root of det(A

0

� �)

with multiplicity m, then there exist m solutions of A of the form (6). Based on this, Barkatou

used diagonalization by blocks to devise an algorithm to compute exponential parts [1].

Similarly, a necessary condition for a system like (5) to admit a solution of the form

z exp

�

Z

a

x

k+1

dx

�

; for 0 � k � q;

takes the form det(N

0

� aD

0

) = 0 for two matrices N

0

and D

0

computed from A

0

; : : : ; A

q�k

.

Consider the non-zero polynomial

�

k

(�) = x

s

det(x

�k

A+ �)j

x=0

obtained for the appropriate exponent s. Hilali and Wazner [2] proved that when A is a super

irreducible system, if a is a non-zero root of multiplicity m of the polynomial �

k

, then there exist

precisely m generalized exponents equal to �ax

�(q�k)

up to higher valuation terms. Using this

fact, P�ugel [4] obtained a recursive algorithm to compute all exponential parts of rami�cation 1,

i.e., for the case r = 1 in (2). The case of higher rami�cations r is work in progress.
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