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Abstract

Given a linear ODE with polynomial coe�cients, one easily �nds local information about its

solutions. To obtain global information of algebraic nature (operator factorization, explicit

�nite form, algebraic relations between solutions), one classically reduces the problem to

determining rational or exponential solutions of auxiliary linear ODE's. The latter are often

uneasy to compute in practice, and we show by a few examples how to advantageously

substitute di�erential systems that are simpler to construct, solve or study.

1. Solving Linear Di�erential Equations

The main question when studying a linear di�erential operator L is how to \solve" for its solu-

tions. \Solving", however, covers several meanings. Throughout this text, L denotes a di�erential

operator acting on a function y in the variable x by L(y) = a

n

y

(n)

+ � � �+ a

0

y for polynomials a

i

in x with coe�cients in a �eld C. This �eld is Q,

�

Q or C in practice.

The simplest way to solve is the determination of local information, like a basis of formal solutions

in the neighbourhood of 0. The general form of a formal solution is the formal series

y = x

�

(p

0

(ln x) + p

1

(ln x)x

1=r

+ � � �+ p

i

(ln x)x

i=r

+ � � �)

for polynomials p

i

with uniformly bounded degrees. Here, r is a positive integer, the rami�cation,

and p

0

is assumed to be non-zero so as to ensure that the highest possible power has been incor-

porated into the generalized exponent � 2 C[x

1=r

]. The power x

�

is nothing but exp

R

�=x dx, the

formal solution of y

0

= (�=x)y. This approach by generalized exponents is due to Van Hoeij [12]

and uni�es regular and irregular singular expansions. A similar treatment was developed in the

case of systems by Barkatou [1] and P�ugel [5].

Of course, the most generally understood acceptance of \solving" relates to resolution in closed

form. By simultaneously considering the bases of formal solutions in the neighbourhood of all

possible singularities of the operator L, namely, the zeroes of its leading coe�cient a

n

(x), several

algorithms are available to search for solutions in various classes of closed form, like polynomial

solutions y 2 C[x], rational solutions y 2 C(x), exponential solutions y for which y

0

=y 2 C(x), or

liouvillian solutions y for which y

0

=y is algebraic over C(x). See [4, 13] and the references there.

Note that each solution s in the above classes supplies a �rst-order right-hand factor of the

operator L, namely @ � s

0

=s where @ denotes the derivation operator with respect to x. A more

general problem is that of the factorization of operators from the ring C(x)[@] of linear di�erential

operators with rational function coe�cients, and the search for higher-order right-hand factors.

This relates to di�erential Galois theory. More speci�cally, polynomial, rational, and exponential

solutions correspond to factorization in this ring, whereas liouvillian solutions correspond to the
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more complex problem of absolute factorization [13], i.e., factorization of an operator L 2 C(x)[@]

with factors in K[@] for an algebraic closure K of C(x). In any case, factorization relates to solving

since any solution of any right-hand factor is a solution of the original operator. Furthermore,

specialized algorithms exist for linear di�erential equations of small orders.

Right-hand factors of an operator are a �rst type of auxiliary operators or lower order that

simplify solving. More generally, another form of \solving" the operator L is by looking for its so-

lutions that can be viewed as powers, products, or wronskians of an auxiliary operator, or system of

operators, of lower order. This is the main discussion of the next sections. Applications include the

classi�cation of solutions, connexion problems, number theory (by looking for di�erential equations

of minimal order), and the search for �rst integrals of non-linear di�erential equations.

2. Lower Order Equations and Symmetric Power Solutions

As an example, consider the third-order equation y

000

� 4ry

0

� 2r

0

y = 0 (r 2 C(x)). It admits a

basis of solutions of the form (z

1

= y

2

1

; z

2

= y

2

2

; z

3

= y

1

y

2

), where both y

1

and y

2

are solutions of the

same second-order equation y

00

= ry. To obtain such special solutions of a higher-order operator L,

the crucial relation to be used is z

1

z

2

= z

2

3

. Indeed, considering the formal solution ~z

i

= x

�

i

�

i

corresponding to the expansion of each actual function z

i

, we obtain that the formal expansion

of the product z

1

z

2

is the product of formal expansions ~z

1

~z

2

= x

�

1

+�

2

�

1

�

2

. Identifying those

generalized exponents for L that can be a sum of two terms therefore supplies a set of candidate

exponents for the auxiliary operator and the z

i

. Note that the original third-order equation has

been replaced by a \simpler system" consisting of a second-order equation and a quadratic relation.

3. Liouvillian Solutions

To solve an operator L for its liouvillian solutions, one looks for the possible irreducible polyno-

mials P of the form X

m

� b

m�1

X

m�1

� � � �� b

0

such that P (u) = 0 implies L(exp

R

u dx) = 0 [10].

Given the order n of the operator, di�erential Galois theory shows that only �nitely many degrees

are possible for the polynomial P . There exists an algorithm to compute the list of the possible

numbers m: for n = 2, the list is 1, 2, 4, 6, and 12; for n = 3, it is 1, 3, 6, 9, 21, and 36 [6, 7, 9];

for n = 4 and higher, a formula is known for the maximum number of the list.

By construction, the roots u

i

of P are logarithmic derivatives y

0

i

=y

i

of a solution of L, and b

m�1

=

P

i

u

i

=

P

i

y

0

i

=y

i

is the logarithmic derivative of the product

Q

i

y

i

. A necessary and su�cient

condition for the existence of a polynomial P of degree m above, which describes the liouvillian

solutions of L is that there exists a polynomial of degree m in solutions of L whose logarithmic

derivative is rational, and which is the product of linear factors. More speci�cally, for a solution

basis (z

1

; : : : ; z

m

) of L the product

Q

i

y

i

is searched for under the form

Q

i

(c

i;1

z

1

+ � � �+ c

i;m

z

m

).

The search for liouvillian solutions therefore reduces to the search for exponential solutions. To

this end, the present work allows to avoid computing the equation for the symmetric power, which

is too large, but prefers a more compact representation.

4. Factorization and Alternate Power Solutions

As another typical example, let us consider the search for a right-hand factor H = @

2

� b

1

@ � b

0

of order 2 of the operator L = @

4

� a

2

@

2

� a

1

@� a

0

of order 4. For any solution basis (y

1

; y

2

) of H ,

the operator H is given by the determinantal representation

H(y) =

�

�

�

�

y

1

y

2

y

0

1

y

0

2

�

�

�

�

�1

�

�

�

�

�

�

y y

1

y

2

y

0

y

0

1

y

0

2

y

00

y

00

1

y

00

2

�

�

�

�

�

�

= y

00

�

!

0;2

!

0;1

y

0

+

!

1;2

!

0;1

y where !

i;j

=

�

�

�

�

�

y

(i)

1

y

(i)

2

y

(j)

1

y

(j)

2

�

�

�

�

�

:
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To obtain a factor of order 2, we now search for an exponential solution and show that it can be

interpreted as a determinant !

0;1

. Let A be the companion matrix

A =

0

B

B

@

0 1 0 0

0 0 1 0

0 0 0 1

a

0

a

1

a

2

0

1

C

C

A

; and let Y =

0

B

B

@

y

y

0

y

00

y

000

1

C

C

A

; so that Y

0

= AY:

Let us introduce the vector Z = (!

0;1

; !

0;2

; !

0;3

; !

1;2

; !

1;3

; !

2;3

)

T

. In view of their de�nition, the !

i;j

satisfy di�erential relations like !

0

0;1

= !

0;2

, !

0

0;3

= !

1;3

+a

0

!

0;0

+a

1

!

0;1

+a

2

!

0;2

, and so on. From

them, we �nd a matrix

�

2

(A) =

0

B

B

B

B

B

B

@

0 1 0 0 0 0

0 0 1 1 0 0

a

1

a

2

0 0 1 0

0 0 0 0 1 0

�a

0

0 a

2

0 0 1

0 �a

0

0 �a

1

0 0

1

C

C

C

C

C

C

A

such that Z

0

= �

2

(A)Z.

Again, we then only look for exponential solutions Z of the matrix �

2

(A), which is easy to construct

and contains more information than the usual single auxiliary equation used for factorization.

Finally, one has to check that the solution Z is a determinant. For this, a necessary and su�cient

condition is the Pl�ucker relation, which here simply reduces to !

0;1

!

2;3

� !

0;2

!

1;3

+ !

0;3

!

1;2

= 0.

To rephrase the method in a more formal way, introduce V , the solution space of L. The search

for Z is indeed a search for objects in the 2-exterior power �

2

(V ), i.e., the vector space of linear

combination of formal 2-exterior products v ^ w, (v; w) 2 V

2

, which satisfy the rule w ^ v =

�v ^w. Pure exterior product u^ v are interpreted as determinants. The search for Z is therefore

equivalent to the search for a pure exterior product !

0;1

2 �

2

(V ) such that the 1-dimensional vector

space C!

0;1

is stable under the action of the di�erential Galois group of L.

Here the search for a second-order right-hand factor of a fourth-order equation has been reduced

to solving a \simpler" system of six �rst-order equations.

5. Module and Dual Module Associated with an Operator

As an important tool for the study of a linear di�erential operator L, one classically associates a

canonical module in the following way. For L in the algebra k[@] of linear di�erential operators with

coe�cients in a �eld k, one considers the quotient M = k[@]=k[@]L of k[@] by its left ideal k[@]L.

The left module M can be viewed as the module k[@]y generated by a generic solution y of the

operator L. Linear constructs on and between solution spaces of operators, like (direct or usual)

sums, (symmetric or exterior or usual commutative) products, (inde�nite) integration, and so on,

correspond to constructs on and between the corresponding k[@]-modules.

A variant module is obtained by endowing the dual k-vector space M

�

with a k[@]-module

structure. Let r be the order of L, then M is of dimension r and its dual M

�

= Hom

k

(M; k) is

isomorphic to k

r

. Now let A be the companion matrix of L and (b

1

; : : : ; b

r

) be the canonical basis

of M

�

. The latter is turned into a k[@]-module by de�ning an operator r on M

�

by the action

(rb

1

; : : : ;rb

r

)

T

= �A

T

(b

1

; : : : ; b

r

)

T

and letting @ act by r. Thus, r(am) = arm + a

0

m when a 2 k and m 2 M . From this Leibniz

rule applied to the product y

1

b

1

+ � � �+ y

r

b

r

= (y

1

; : : : ; y

r

)(b

1

; : : : ; b

r

)

T

, we derive the equality

Y

0

= AY for Y = (y

1

; : : : ; y

r

)

T
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whenever r(y

1

b

1

+ � � �+ y

r

b

r

) = 0. Note that this k[@]-module structure on M

�

usually does not

make it the dual k[@]-module Hom

k[@]

(M; k), for the operator L usually has no solution in k.

The modules M

�

allow for a better description of the calculations suggested in the previous

sections through a link between the solution space V = Sol(L) and the k[@]-moduleM

�

. This link is

obtained by introducing the map � from V toM

�

de�ned by �(y) = yb

1

+� � �+y

(r�1)

b

r

. Calculations

with elements of the C-vector space Sol(L) have their counterparts in the k[@]-module M

�

. For

example, one recovers the determinants of the previous sections from the following identity for

exterior products in the module �

2

M

�

�(y

1

) ^ �(y

2

) =

X

1�i<j�r

!

i�1;j�1

b

i

^ b

j

with !

i;j

=

�

�

�

�

�

y

(i)

1

y

(i)

2

y

(j)

1

y

(j)

2

�

�

�

�

�

:

Again, constructs at the level of solution spaces translate into constructs at the level of the corre-

sponding k[@]-modules.

6. Tannakian De�nition of the Di�erential Galois Group

This section is based on my (Chyzak's) study and tentatively reects what was not presented

by the speaker for lack of time. It aims at de�ning di�erential Galois groups by the Tannakian

viewpoint, as an alternative to Kolchin's more traditional and elementary de�nition by di�erential

extension �elds. Interestingly, some properties are easier to derive by the Tannakian viewpoint, for

instance that it is a linear algebraic group (i.e., a subgroup of GL

n

(C) and an algebraic variety).

Another consequence is the possibility to rephrase algorithms in such a way that di�erential Galois

theory, in the sense of Kolchin, is only used as a classi�cation tool to prove the correction of the

algorithms, while calculations take place at the level of modules in a more e�cient way. This

presentation is based on a discussion with the speaker, on conference proceedings by Ramis and

Martinet [8, Part 2, Chapter 1], and on unpublished notes by Churchill [2, 3]. More direct refer-

ences may be works by Bertrand, Deligne, and Katz. The Tannakian construction has a natural

counterpart in di�erence Galois theory [11, Section 1.4].

For comparison sake, Kolchin's de�nition of the di�erential Galois group of a linear di�erential

operator L 2 k[@] is as follows. Let C be the sub�eld of constants of k, n be the order of L, and

consider the Picard-Vessiot extensions k

0

of k associated with L, i.e., the di�erential �eld extensions

of k that contain an n-dimensional C-vector space of solutions of L and do not enlarge the constant

�eld C. Then the di�erential Galois group of L is de�ned as the group G of di�erential �eld

automorphisms (i.e., �eld automorphisms that respect the di�erential structure) of any Picard-

Vessiot extension k

0

that additionally respect the action of k on k

0

. This mimics the classical

Galois theory for a polynomial P 2 k[X ], where one introduces the group of �eld automorphisms

of a suitable extension k

0

of k which contains all solutions of P and restrict to the identity on k.

While the (algebraic) Galois group of a polynomial is a subgroup of a permutation group S

n

, the

di�erential Galois group of an operator is a subgroup of the linear group GL

n

(C) for the common

�eld of constants C of k and k

0

.

For its part, instead of a single extension k

0

of k, the Tannakian presentation simultaneously

considers a whole collection of k[@]-modules, and introduces the di�erential Galois group as a group

of internal transformations on this collection. Crucially, each transformation has to transform all

the modules in a way compatible with the linear maps between the modules. Moreover, each

module M is associated with a solution set that can be viewed as the kernel of the derivation

on M , and the above-mentioned transformations have to be compatible with taking solutions.
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At the heart of the Tannakian construction are k-vector spaces V that are closed under the

action of an operator r which extends the action of the derivation on k by the Leibniz rule:

r(af) = ar(f) + a

0

f; when a 2 k and f 2 V .

This makes V a k[@]-module with @ acting by r.

From now on, we restrict to k[@]-modules that are �nite-dimensional k-vector spaces. Fundamen-

tal examples are the modules M = k[@]=k[@]L discussed in the previous section. We also restrict

to k = C (z). An element h 2 kerr is called a horizontal vector. As has been explained when

discussing dual modules M

�

, horizontal vectors in M

�

correspond to solutions y 2 k

r

of the equa-

tion �y = 0 where � = d=dz �A for (rb

1

; : : : ;rb

r

)

T

= �A

T

(b

1

; : : : ; b

r

)

T

once a basis (b

1

; : : : ; b

r

)

of M

�

has been chosen. Rather than enlarging the space M where we have a solution for L, as is

the case in the traditional di�erential Galois theory, we now enlarge the coe�cient �eld ofM

�

so as

to ensure the existence of a solution to � and thus of horizontal vectors for r. To this end, consider

a non-singular point a 2 C of the operator L, and introduce the �eld M

a

of germs of meromorphic

functions at a, which is isomorphic to the �eld of convergent Laurent series Cfz � ag[(z � a)

�1

].

By Cauchy's theorem, the C-vector space ker�, where � is now viewed as acting on (M

a

)

r

, is of

dimension r and supplies with horizontal vectors of r in M

a




C(z)

M . Note that ker� and kerr

usually have no more structure than that of C-vector spaces.

As an example, let us consider the C (z)[@]-module generated by the Bessel function of the �rst

kind J

0

(z). It is a two-dimensional C (z)-vector space with basis (J

0

(z); J

1

(z)), and J

0

0

= �J

1

. With

the above notation,

�

rJ

0

rJ

1

�

=

�

J

0

0

�J

00

0

�

=

�

0 �1

1 �1=z

��

J

0

J

1

�

; so that A =

�

0 �1

1 1=z

�

:

As a result of a simple computation, h = f

1

J

0

+ f

2

J

1

is a horizontal vector of r if and only if

�

f

1

f

2

�

2 ker� = C z

�

�J

1

(z)

J

0

(z)

�

� C z

�

�Y

1

(z)

Y

0

(z)

�

;

where Y

�

(z) are the Bessel functions of the second kind, and where J

�

and Y

�

now denote germs

of the corresponding functions (their local expansions at a 6= 0). This simpli�es to h 2 Cz(Y

0

J

1

�

J

0

Y

1

), whence h is a constant by the Wronskian relation Y

0

J

1

� J

0

Y

1

= 2=�z.

To the module M above and any non-singular point a 2 C , we have just associated the C -vector

space of horizontal vectors ofr in the form of local expansions at a. Denote �

a

(M) this vector space.

We now proceed to associate horizontal vectors to more involved module constructions. Denote fMg

the smallest class of k[@]-modules containing M and closed under �nite direct sums and products,

�nite symmetric and exterior products, dualization, and taking the module of homomorphisms

between two modules, and submodules. One can extend r fromM to any V 2 fMg in a canonical

way; in particular:

rj

V�W

=

�

rj

V

0

0 rj

W

�

; rj

V
W

= rj

V


 1j

W

+ 1j

V


rj

W

:

This class becomes a category for the usual k[@]-module morphisms. The map �

a

extends to fMg

by �

a

(V ) = ker(rj

M

a




C(z)

V

). In particular, �

a

(V � W ) = �

a

(V ) � �

a

(W ) and �

a

(V 
 W ) =

�

a

(V )
 �

a

(W ). The crucial fact is that �

a

is compatible with the maps that are natural between

modules on the one hand and horizontal vector spaces on the other hand. Speci�cally, any k[@]-

module homomorphism h between two modules V and W induces a C-linear homomorphism �

a

(h)
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between �

a

(V ) and �

a

(W ). This makes �

a

a functor, in the sense that the diagram

V

h

���! W

?

?

y

�

a

?

?

y

�

a

�

a

(V )

�

a

(h)

���! �

a

(W )

is commutative for any two modules V and W .

To relate horizontal vectors at two non-singular points a and b, consider the maps � that associate

with any k[@]-module V a C -linear map �(V ) : �

a

(V )! �

b

(V ), subject to the constraint that

�

a

(V )

�

a

(h)

���! �

a

(W )

?

?

y

�(V )

?

?

y

�(W )

�

b

(V )

�

b

(h)

���! �

b

(W )

is a commutative diagram for any homomorphism h : V ! W .

Such a map � (from fMg to the linear morphisms in the category of C-vector space) is called a

morphism from (the functor) �

a

to (the functor) �

b

. The collection of such morphisms when a and b

vary is a semigroup for composition. The corresponding notion of isomorphisms (of functors) is

obtained when each of the linear maps �(V ) is invertible. Two cases are of interest: when a 6= b, one

of those isomorphisms is provided by analytic continuation along a path from a to b; when a = b,

the isomorphisms from �

a

into itself form a group (the group of automorphisms of the functor �

a

).

This group is the di�erential Galois group of L, following the Deligne-Katz de�nition.
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