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Abstrat

The Galois theory for di�erential equations is now lassial. We onsider here a Galois

theory for di�erene equations whose development is more reent. In analogy with the

di�erential ase, a onept of Liouvillian solutions of a di�erene equation is introdued,

in relation to equations with solvable Galois group. In the �rst part of this talk, Bomboy

presents the Galois theory for linear �nite di�erene operators. Next he adapts the onept of

eigenring introdued in the di�erential ase by Singer [11℄ to suggest an algorithm searhing

for Liouvillian solutions of linear di�erene equations. This diret algorithm solves a sublass

of the di�erene equations without using Petkov�sek's algorithm [8℄.

Introdution

We review in Setion 1 the basi notions of Galois theory for di�erene equations, following the

presentation of [7℄. As in the di�erential ase, the Galois group is a linear algebrai group. In

Setion 2 we present the main properties of reduible and ompletely reduible systems, from the

point of view of the struture of their assoiated matries. In the di�erential ase, a Liouvillian

extension of a di�erential �eld is done by algebrai extensions and by the operations of exponenti-

ation and integration of a funtion of the �eld. In Setion 3 we de�ne Liouvillian solutions in the

di�erene ase; these solutions are essentially interlaings of hypergeometri sequenes. We desribe

the notion of eigenring in Setion 4 and summarize relevant properties. We �nish by presenting

Bomboy's algorithm for searhing Liouvillian solutions in Setion 5, and by onluding omments.

1. Di�erene Galois Theory

A di�erene ring (k; �) is a ring k with an automorphism �. (Note that all rings onsidered here

are rings with identity.) For example, let k be the ring C [z℄ of polynomials or the �eld C (z) of

frations, and � the automorphism that substitutes z + 1 for z. When �(x) = x for x 2 k, x is

alled a onstant of (k; �). The set C(k) of onstants is a subring of k.

From now on we assume that k is a �eld. A (salar) di�erene equation has the form

(1) L(y) = �

m

(y) + a

m�1

�

m�1

(y) + � � � + a

0

y = 0;

where the a

i

's are in k and L = �

m

+a

m�1

�

m�1

+� � �+a

0

is the di�erene operator assoiated to the

equation. The set of di�erene operators or skew polynomials in � with multipliation �a = �(a)�

is a non-ommutative ring P

k

(�). Equation (1) an be transformed into the system �(Y ) = A

L

Y ,
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where � is applied omponentwise to the vetor Y and
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L
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0

B

B

B

�
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1

: : : : : : (�a

m

� 1)

1

C

C

C

A

:

One sees that y is a solution of L(y) = 0 if and only if

�

y; �(y); : : : ; �

m�1

(y)

�

T

is a solution of

�(Y ) = A

L

Y .

More generally, we will onsider systems of di�erene equations of the form

(2) �(Y ) = AY

for an element A of GL

n

(k), the spae of invertible matries of dimension n over k. IfR is a di�erene

ring extension of k, a fundamental matrix for Equation (2) is an element U =

�

u

i;j

�

2 GL

n

(R)

suh that �(U) = AU where � maps omponentwise to matries. A di�erene ring extension R

of k is alled a Piard{Vessiot extension of k for Equation (2) if R is a simple di�erene ring (the

only �-invariants ideals are (0) and R) and R = k

�

u

1;1

; : : : ; u

n;n

; (detU)

�1

�

with U a fundamental

matrix. The following theorem desribes the struture of suh extensions.

Theorem 1 ([12℄). If the set of onstants C(k) is algebraially losed, Piard{Vessiot extensions

R of k exist and are unique up to isomorphism.

The Galois group Gal(R=k) of R over k is the set of linear maps that are the identity on k

and ommute with �. As in the di�erential ase, it an be proved to have a struture of a linear

algebrai group over C(k). The set V of solutions of Equation (2) in R

n

is an n-dimensional vetor

spae over C(k) that is invariant by Gal(R=k). This yields a representation of Gal(R=k) in C(k)

n

.

Let �(Y ) = AY and �(Y ) = BY be two systems with A and B in GL

n

(k) and let V

A

and V

B

be the orresponding solution spaes in Piard{Vessiot extensions R

A

and R

B

. Both systems are

equivalent if there is a matrix T 2 GL

n

(k) suh that B = �(T )AT

�1

. Then, if U is a fundamental

matrix of �(Y ) = AY , it follows that TU is a fundamental matrix for �(Y ) = BY ; in this ase, one

an identify the rings R

A

and R

B

, and V

A

and V

B

are isomorphi as Gal(R=k)-modules (de�ned as

modules over the group algebra of Gal(R=k) with oeÆients in C(k)). For a large lass of di�erene

�elds, any system �(Y ) = AY is equivalent to the ompanion system of a salar equation [7℄.

We onlude this setion with an illustration on the ring S of germs of sequenes over C .

De�nition 1. Consider two elements (a

n

)

n2N

and (b

n

)

n2N

of C

N

(where C � C is a ring). We

de�ne the following equivalene relation: (x

n

) � (y

n

) if and only if (x

n

) and (y

n

) only di�er by

a �nite number of terms. We now onsider the quotient ring S =

�

C

N

= �

�

where addition and

multipliation are de�ned omponentwise; an element of this ring is alled a germ.

Note that this gives us a natural embedding � of the rational funtion ring C (z) into S, where

for F 2 C (z), �(F ) is given as the germ of any (s

n

)

n2N

suh that s

n

= F (n) for suÆiently large n.

De�nition 2. The shift � of S maps �

�

(x

0

; : : : ; x

n

; : : : )

�

to �

�

(x

1

; : : : ; x

n+1

; : : : )

�

.

From now on, the ring C is an algebraially losed sub�eld of C and k = �

�

C(z)

�

.

Property 1 ([12℄). Let C � C be an algebraially losed �eld. There exists a Piard{Vessiot

extension of the equation �(Y ) = AY over C(z) � S that also lies in S.

Example. Consider k = �

�

C (z)

�

and the equation �(x) = �x. The Piard{Vessiot extension R of k

is the ring generated by k and the sequene s = (1;�1; 1;�1; : : : ). Note that if t = s+(1; 1; : : : ) =

(2; 0; 2; : : : ) then t��(t) = 0. The Piard{Vessiot extension therefore has zero divisors and annot

be a �eld.
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2. Reduibility

The following theorem gives a riterion of reduibility for operators.

Theorem 2 ([3℄). Consider an operator L 2 P

k

(�) with Piard{Vessiot extension R. The following

statements are equivalent:

1. L is reduible (i.e., L = L

1

L

2

in P

k

(�));

2. the solution spae V has a strit subspae W that is stable under the ation of the Galois

group G = Gal(R=k);

3. the system �(X) = A

L

X is equivalent to a system with blok upper triangular ompanion

matrix.

We also onsider the lass of ompletely reduible operators.

De�nition 3. Let llm stand for least ommon left multiple. An operator L 2 P

k

(�) is ompletely

reduible if there exist L

1

, . . . , L

k

suh that L = llm(L

1

; : : : ; L

k

),

Beware that an irreduible operator L is ompletely reduible beause L = llm(L).

Property 2 ([3℄). The following statements are equivalent:

1. L is ompletely reduible;

2. the solution spae V is expressible as a diret sum V = V

1

� � � � � V

k

where V

i

is a stable

G-module for eah i, and the orresponding operators are irreduible;

3. the system �(X) = AX is equivalent to a system with blok diagonal ompanion matrix where

eah blok orresponds to an irreduible G-module.

3. Liouvillian Solutions

We begin this setion by de�ning Liouvillian solutions of an equation in terms of interlaings

of sequenes and hypergeometri sequenes. Next we give the expeted Galois-theoreti harater-

ization of Liouvillian solutions of a di�erene equation, before giving another haraterization in

terms of interlaings of hypergeometri solutions.

De�nition 4. The interlaing of sequenes x

1

, . . . , x

l

of C

N

is the sequene (x

1

0

; x

2

0

; : : : ; x

l

0

; x

1

1

; : : : ).

This de�nition extends to interlaing of germs in a natural way.

De�nition 5. Hypergeometri sequenes are germs x 2 S suh that �(x) = ax for some a 2 k.

De�nition 6. The set L of Liouvillian sequenes is the smallest subring of S suh that:

1. onstants belong to L, where it is understood that  2 C(k) is identi�ed to the germ

(; ; : : : ) 2 S;

2. if x is hypergeometri, x belongs to L;

3. if x is solution of �(x) = x+ a with a 2 L, then x belongs to L;

4. if x belongs to L, the interlaings of x with zero germs (i.e., the interlaings of x

1

= � � � =

x

l�1

= 0 and x

l

= x) belongs to L.

Example. Elements of k are hypergeometri, thus belong to L; on the other hand, the germs (2

n

)

n2N

and (n!)

n2N

are two examples of hypergeometri, thus Liouvillian, sequenes that are not in k.

Example (Harmoni numbers). If k = C (z) and x =

�

P

n

j=1

1=j

�

n2N

we have

�

1=(n + 1)

�

n2N

=

�

�

1=(z + 1)

�

2 k and �(x) = x+

�

1=(n+ 1)

�

n2N

. The germ �(x) thus belongs to L.

Example. The sequene (0; 1; 0; 1; : : : ) is the interlaing of both onstant sequenes 0 and 1, and

therefore belongs to L.

The following theorem gives the expeted Galois-theoreti haraterization of Liouvillian se-

quenes.
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Theorem 3 ([7℄). A solution x 2 S of Equation (1) is Liouvillian if and only if the Galois group

of any Piard{Vessiot extension of this equation is solvable.

We ome to another haraterization of Liouvillian sequenes. Let Z be a fundamental system

of �(X) = AX. Then by iteratively applying � to �(Z) = AZ we see that Z is solution of

�

m

(Z) = �

m

�

Z where �

m

�

= �

m�1

(A) : : : A. Let � be the automorphism of C (z) substituting mz

for z. Then � Æ �

m

= � Æ � ; for i from 0 to m � 1, the ith m-setion � Æ �

i

(Z) of Z satis�es the

equation �(O) =

�

�

m

�;i

A

�

O in the unknown O, where �

m

�;i

A = � Æ�

i

�

�

m

�

A

�

. This gives the following

theorem and orollary.

Theorem 4 ([7℄). Let L be an operator of order n over k. The following statements are equivalent:

1. there is a Liouvillian solution for the equation L(y) = 0;

2. there exists an m less than or equal to n, suh that the equation L(y) = 0 has a solution that

is the interlaing of m hypergeometri series;

3. there exists an m suh that, for all i between 0 and m� 1, the equation �(y) = (�

m

�;i

A

L

)(y)

has an hypergeometri solution;

4. there exist m and i, with i � m, suh that the equation �(y) = (�

m

�;i

A

L

)(y) has an hyperge-

ometri solution.

Corollary 1 ([7℄). Let L be an operator with oeÆients in k. One an �nd operators H

1

, . . . , H

t

,

R with oeÆients in k suh that

1. L = RH

t

: : : H

1

;

2. the solution spae of eah H

i

is spanned by interlaings of hypergeometri sequenes;

3. any Liouvillian solution of L(y) = 0 is a solution of H

t

: : : H

1

(y) = 0.

4. Eigenrings and their Struture

We onsider the non-ommutative ring A = P

k

(�) and a di�erene operator L 2 A with Piard{

Vessiot extension R. Let V be the spae of solutions of L in R. We now desribe isomorphisms

between three lasses of objets:

1. eigenrings, that are rings that essentially ontain operators that follow some speial ommu-

tation relation with L;

2. endomorphisms of V that ommute with the Galois group G = Gal(R=k);

3. A-module homomorphisms of A=AL into A=AL.

Eigenring of L. Given an operator L, the elements U +AL 2 A=AL suh that there exists U

0

2 A

satisfying LU = U

0

L learly form a ring. We all it the eigenring E(L) of L. Note that E(L) is

never empty: C(k) is always part of E(L).

G-endomorphisms of the solution spae V . For P 2 A, onsider the mapping �

P

of R into R

de�ned by �

P

(v) = P � v for all v in R. This C(k)-linear mapping learly ommutes with G, sine

G ommutes with �. We are interested in the situation when the mapping �

P

indues a linear map

of End

G

V , the algebra of C(k)-linear mappings of V into V that ommute with G. Take v in V ;

we have L � v = 0. Consider L � �

P

(v) = LP � v. This is zero if and only if P +AL belongs to E(L),

for then there is P

0

suh that LP = P

0

L. In this latter ase, �

P

indues a G-endomorphism of V .

A-linear endomorphisms of A=AL. Consider the C(k)-algebra End

A

(A=AL) of A-linear endomor-

phisms of A=AL, and � an element of this algebra. Reall that the module A=AL an be viewed

as the A-module generated by any \generi solution" of L; the linear map � is thus ompletely
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desribed by the image of the generator 1+AL of A=AL. The map � is well-de�ned as an A-linear

map if and only if the image �(1 +AL) = U +AL abides by the relation

L(U +AL) = L�(1 +AL) = �

�

L(1 +AL)

�

= �(0) = 0;

whih implies that there exists U

0

suh that LU = U

0

L; in other words, U +AL is in the eigenring.

The onverse property is proved similarly.

With a loser look on the bijetions above, one gets the following result.

Proposition 1. The three rings E(L), End

G

V , and End

A

(A=AL) are isomorphi.

The lassial representation theory for semi-simple modules [6℄ applies to the study of the stru-

ture of eigenrings, yielding the following proposition and orollary.

Proposition 2 ([4℄). For an operator L with Galois group G and spae of solutions V , there are

ring isomorphisms between:

1. the eigenring E(L);

2. the endomorphism algebra End

G

V ;

3. the set of matries P 2M

n

(k) satisfying A

L

P = �(P )A

L

.

Proposition 3 ([4℄). Let L be a ompletely reduible operator with solution spae V . Then V is

isomorphi to a diret sum V

n

1

1

� � � � � V

n

l

l

where no V

i

and V

j

are isomorphi for i 6= j; the

eigenring E(L) is isomorphi to the diret sum

L

l

i=1

M

n

i

�

C(k)

�

.

Corollary 2 ([4℄). Let L be a di�erene operator with eigenring E(L). Then:

1. L is irreduible implies that E(L) is isomorphi to C(k);

2. L is ompletely reduible and E(L) is isomorphi to C(k) imply that L is irreduible.

5. Algorithms

Eigenring. An algorithm to ompute the eigenring of a di�erential operator was given by Singer

[11℄. A similar algorithm omputes the eigenring in the di�erene ase. The method proeeds by

undetermined oeÆients: an element of the eigenring of an operator L of order n is viewed as a

residue U modulo L; it is thus represented by n undetermined rational funtion oeÆients. One

then performs the multipliation by L on the left, then the Eulidean division by L on the right.

This yields a �rst-order linear di�erene system in the n unknowns. This system is then solved for

rational funtion solutions by algorithms based on Abramov's algorithm [1℄.

1

Linear Di�erene Equations of Order 2. We onsider the searh for Liouvillian solutions

of linear di�erene operators in the ase of order 2. As follows from the analysis in Setion 3,

the searh for Liouvillian solutions redues to searhing for hypergeometri solutions of assoiated

equations. Petkov�sek gave an algorithm for this purpose [8℄, but with exponential omplexity.

Bomboy's algorithm proeeds by determining hypergeometri solutions from the omputation of

suessive eigenrings, so as to derive the shape of the Galois group G little by little, while avoiding

Petkov�sek's algorithm as muh as possible.

In order to help to solve for hypergeometri solutions, note that eah non-trivial element U +AL

of E(L) yields a right fator of L. Indeed, viewed as an element of End

G

V , it neessarily has an

eigenvalue � and a orresponding eigenvetor v. The right gd G of U � � and L an be expressed

by a B�ezout relation and satis�es G � v = 0. It is therefore a non-onstant right-hand fator of L.

1

Note that the same idea was used in the ontext of symboli summation/integration in Chyzak's work [5℄.
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Let x be a hypergeometri solution: there exists a 2 C (z) suh that �(x) = a �x. For all g in the

Galois group G we have

�

�

g(x)

�

= g

�

�(x)

�

= g(a � x) = a � g(x):

Therefore the subspae C x is globally invariant under the ation of G. This entails that the spae

of hypergeometri solutions is a G-module, as is the total solution spae of L. From this and

Proposition 3, it follows that the eigenring is either not a semi-simple G-module, or has dimension

1, 2, or 4.

If the spae of hypergeometri solutions is 2-dimensional, G is isomorphi to the group of di-

agonal matries with two independent non-zero entries, and E(L) has dimension 2 or 4. If there

is only a 1-dimensional spae of hypergeometri solutions, a lassi�ation of the algebrai sub-

groups of GL

2

(C ) then shows that G is isomorphi to the group of upper triangular matries

�

a b

0 a

�

;

moreover, either the solution spae V is semi-simple as G-module and the eigenring E(L) has di-

mension 2, or it is not semi-simple, and in view of E(L) ' End

G

(V ), E(L) onsists of matries

that ommute with all the upper triangular matries above, and has dimension 1 or 2. If there are

no hypergeometri solutions, the same lassi�ation shows that the Galois group G ontains the

speial linear group SL

2

(C ) of matries of determinant 1, and E(L) has dimension 1.

If L has a Liouvillian solution, it also has a one that is either hypergeometri or the interlaing of

two hypergeometri sequenes. Bomboy's algorithm to deide the existene of Liouvillian solutions

and ompute a basis of their vetor spae therefore �rst omputes the eigenring E(L). If it is

not trivial (i.e., does not redue to homotheties), it provides all hypergeometri solutions, then all

Liouvillian solutions; otherwise, the eigenring orresponding to the system �

2

�

A

L

is omputed and:

1. if it is not trivial, we obtain an hypergeometri solution of this system, whih gives a solution

of L by interlaing of hypergeometri sequenes;

2. otherwise, the lassi�ation of algebrai groups shows that either L has a unique hypergeo-

metri solution, and it is neessary to searh this solution by Petkov�sek's algorithm, or L has

no hypergeometri solutions, and therefore L provedly has no Liouvillian solution.

6. Conlusion

Finally, the authors of this summary wish to do full justie to Petkov�sek, and want to empha-

size that the searh for Liouvillian solutions an be entirely performed by means of (variants of)

algorithms by Petkov�sek, and with no need of Galois theory.

2

Indeed, Petkov�sek showed in an unpublished work [9℄

3

how to use his algorithm for �nding

hypergeometri solutions [8℄ in a reursive fashion and in ombination with redution of order so

as to produe all Alembertian solutions of an operator. (The lass of Alembertian sequenes is

obtained by the same losure operations as the Liouvillian ase, exept for interlaings.) This

algorithm orresponds to fatorizations into �rst-order operators H

i

in Corollary 1.

In fat, Petkov�sek's hypergeometri algorithm extends in a simple way to an algorithm for �nding

the solutions of a reurrene

a

0

(n)u

n

+ � � �+ a

m�1

u

n+m�1

+ u

n+m

= 0

that are interlaings of hypergeometri sequenes:

1. derive a reurrene on u

n

in whih the index is shifted by multiples of m: sine we know that

the C (n)-vetor spae generated by u

n

is �nite-dimensional with basis (u

n

; u

n+1

; : : : ; u

n+m�1

),

2

This setion is the result of stimulating disussions with Bruno Salvy.

3

seemingly subsumed by [2℄,
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the partiular shifts u

n

, u

n+m

, u

n+2m

, . . . rewrite onto this basis, and a linear dependeny

an be found by Gaussian elimination;

2. for eah i between 0 and m� 1, derive a reurrene on v

(i)

p

= u

mp+i

by substituting mp+ i

for n in the obtained reurrene, and solve it for hypergeometri solutions;

3. return the interlaing of the sequenes v

(0)

p

, v

(1)

p

, . . . , v

(m�1)

p

.

A variant algorithm (orresponding to Steps 1. and 2. above) is derived in [10℄ by a di�erent

approah.

Corollary 1, or equivalently a diret analysis mimiking that in [9℄, an now be used to derive

an algorithm for �nding all Liouvillian solutions of a reurrene. This algorithm is essentially

Petkov�sek's algorithm for Alembertian solutions where searhes for hypergeometri solutions|

and �rst-order right-hand fators|is replaed with searhes for interlaings of hypergeometri

solutions|and higher-order right-hand fators. The main di�erene is that redution of order is

simultaneously performed by as many independent partiular solutions as the order of the interla-

ings, instead of by just 1.

One an thus view Bomboy's ontribution as providing a variant algorithm in terms of eigenrings.

A omplexity of both approahes still has to be performed so as to ompare them onlusively.
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