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Abstrat

The Tutte polynomial of a graph G is a two-variable polynomial that reords muh informa-

tion on G. In partiular, di�erent evaluations at integers provide the number of spanning

trees, forests (ayli spanning subgraphs), and ayli orientations of G. We estimate these

values when G is an n� n square grid so as to dedue re�ned upper and lower bounds for

the numbers of forests and ayli orientations on suh grids.

1. Polynomial Invariants of Graphs

1.1. Chromati polynomials. A general graph G = (V;E) is a undireted graph with loops

and multiple edges allowed; it is desribed by its set V of verties and its set E of edges. The

hromati polynomial p(G;�), introdued by Birkho� in 1912 is a very important invariant of G:

it ounts the number of its �-olourings, i.e., the number of ways to assign olours to the verties

of G in suh a way that no two adjaent verties share the same olour, and that the number of

olours used is at most �. This polynomial reords many statistis of the graph: indeed, for a

graph on n verties, we have the expansion p(G;�) = �

n

� jEj�

n�1

+ a�

n�2

� � � � � �

�(G)

where

a = jEj

�

jEj � 1

�

=2 � t(G) relates to the number t(G) of triangles in G, and where �(G) is the

number of onneted omponents of G. Also, the oeÆients of p(G;�) alternate in signs. Table 1

provides other interesting graph statistis as evaluations of the hromati polynomial.

Unfortunately, the omputation of a hromati polynomial is hard: already the problem of om-

puting the hromati number of a graph G, i.e., the smallest integer � suh that there exists a

�-olouring, is NP-omplete; evaluating the hromati polynomial itself is #P-hard, as is even

omputing the hromati polynomial at any algebrai number di�erent from 0, 1, and 2. A sim-

ple exponential algorithm to ompute p(G;�) is based on ontration and deletion of edges: the

graph G=e resulting from the ontration of an edge e in a graph G is obtained by removing the

edge and identifying both inident verties; the mere deletion of an edge e in a graph G results

in the graph G n e with same vertex set V and new edge set E n feg. The algorithm onsists in

following the reurrene p(G;�) = p(G n e;�) � p(G=e;�) provided that G is onneted and that

e is neither a loop nor a bridge (also alled isthmus or o-loop, i.e., an edge whose deletion does

not disonnet the graph). Finally, the hromati polynomial of a (possibly disonneted) graph is

the produt of the hromati polynomials of its onneted omponents.

1.2. Tutte polynomials. A generalization of the hromati polynomial is the Tutte polynomial

T (G;x; y) of a graph G [5, 6℄, most easily de�ned as the variant T (G;x; y) = R(G;x � 1; y � 1) of

Whitney's rank generating funtion R(G;x; y) [9℄. The rank of a graph G is de�ned as the size of

any of its spanning forests, whih is jV j��(G). This notion stems from the matroid interpretation
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p(G; 0) 0

p(G; 1) 1 if G is empty

p(G; 1) 0 if G ontains an edge

p(G; 2) 2

�(G)

if G is bipartite

p(G; 2) 0 if G is not bipartite

�

�

p(G;�1)

�

�

# of ayli orientations [4℄

T (G; 1; 1) # of spanning trees

T (G; 2; 1) # of forests

T (G; 1; 2) # of onneted subgraphs

T (G; 2; 0) # of ayli orientations [4℄

T (G; 1; 0) # of a. or. with a single soure

T (G; 0; 2) # of totally yli orientations

Table 1. Speial evaluations of the hromati (left) and Tutte (right) polynomials.

of graphs [7, 8℄, whih, informally, views iruits (i.e., yles) in a graph as dependeny relations

and forests as sets of independent edges. Now, by de�nition

(1) R(G;x; y) =

X

A�E

x

r(E)�r(A)

y

jAj�r(A)

= x

r(E)

X

A�E

y

jAj

=(xy)

r(A)

;

where r(A) denotes the rank of the subgraph G

A

= (V;A) of the graph G = (V;E) obtained by

retaining the subset A � E of its edges only. Note that r(A) = r(E) means that G

A

has the same

number of onneted omponents as G, while r(A) = jAj means that G

A

is ayli. The hromati

polynomial is reovered through the relation p(G;�) = (�1)

r(G)

�

�(G)

T (G; 1 � �; 0); on the other

hand, the relation f(G;�) = (�1)

jGj

T (G; 0; 1 � �) de�nes the ow polynomial of G, whih ounts

the number of ows on G with edges weighted by elements of Z=�Z, one any orientation has

been hosen on G. (A ow is an assignment of weights to edges in suh a way that the weights

orresponding to all edges inident to the same vertex add up to zero.) Table 1 provides other

interesting graph statistis as evaluations of the Tutte polynomial.

An algorithm similar to the one in the ase of the hromati polynomial above omputes the Tutte

polynomial, and is based on the relations: T (G;x; y) = 1 if G is empty; T (G;x; y) = T (G=e;x; y) if

e is a bridge; T (G;x; y) = T (G n e;x; y) if e is a loop; and T (G;x; y) = T (G=e;x; y)+T (G n e;x; y)

otherwise. Finally, the Tutte polynomial of a (possibly disonneted) graph is the produt of the

Tutte polynomials of its onneted omponents.

1.3. Tutte{Grothendiek invariants. A restatement of this is that the Tutte polynomial is an

example of Tutte{Grothendiek invariant [2℄, i.e., a funtion v from the set of graphs to a �xed

ommutative ring|Z[x; y℄ in the ase of the Tutte polynomial|with the relations:

1. v(G) = v(G=e) + v(G n e) provided G is onneted and e is neither a loop nor a bridge;

2. the invariant of a graph is the produt of the invariants of its onneted omponents;

3. the invariants of two isomorphi graphs are the same.

A result by Brylawski [2℄ is that any Tutte{Grothendiek invariant is uniquely determined by its

values on the loop and bridge graphs, onsisting of a single loop around a single vertex and of a

single edge between two verties, respetively, and the invariant v(G) is the evaluation of the Tutte

polynomial at x = v(loop graph) and y = v(bridge graph).

The Tutte polynomial satis�es the following more general universality theorem (f. [1, Chap. X℄).

Let v be any funtion from the set of graphs to the ommutative ring Z[x; y; �; �; � ℄ whih satis�es

onditions 2. and 3. in the desription of Tutte{Grothendiek invariants and the relations u(G) =

�

jGj

if G is empty; u(G) = xu(G=e) if e is a bridge; u(G) = yu(G n e) if e is a loop; u(G) =

�u(Gne)+�u(G=e) otherwise. Then v is given in terms of the Tutte polynomial of G by the relation

v(G) = �

�(G)

�

jGj

�

r(G)

T (G;�x=�; y=�). Speial ases are the hromati and Tutte polynomials,

respetively obtained when (x; y; �; �; �) is set to (1� x; 0; x; 1;�1) and (x; y; 1; 1; 1).
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1.4. Matroidal interpretation of graphs. Matroids [7, 8℄ are a general onept used to represent

the ombinatoris of dependeny between objets of many di�erent types, like linear dependeny,

aÆne dependeny, algebrai dependeny, the struture of yles (or iruits) in a graph, and so

on. Chromati and Tutte polynomials extend to this setting with the same type of properties.

Appliations inlude lattie theory, graph theory, knot theory, oding theory, geometry, networks,

perolation theory, and statistial mehanis.

2. Counting Problems on the n� n Grid

Although the following ombinatorial objets are well-de�ned on any graph, we onsider their

enumeration on the square n�n grid L

n

(with simple edges only) where we proeed to derive new

asymptoti estimates:

1. A mathing is a pairing of neighbouring verties by edges of the graph, possibly leaving some

of its verties unpaired. Enumerating mathings relates to the study of a lattie gas model

of statistial physis for a gas onsisting of monomers and dimers.

2. A perfet mathing is a mathing that leaves no vertex on its own. This orresponds to a

gas with dimers only.

3. A set of verties is independent if no two of them an be joined by an edge. This orresponds

to Fibonai arrays, i.e., arrays onsisting of 0's and 1's only, with no two onseutive 1's,

either vertially or horizontally.

4. A spanning tree is a tree made of edges of the graph and that exhausts its verties.

5. An ayli orientations is an orientation of the edges of the graph that indues no yle.

Upon substitution of eah vertex of L

n

by a square entred at this vertex, and after gluing squares

that orrespond to adjaent verties, a mathing beomes a tiling with dominoes and squares while

a perfet mathing beomes a domino tiling. Obviously, the above-mentioned transformation is a

one-to-one orrespondene. The following ombinatorial algorithm by Temperley provides another

bijetion, between spanning trees on L

n

and perfet mathings on L

2n+1

deprived of one vertex:

(i) spanning trees are rooted at some �xed vertex; (ii) dominoes are then plaed on the branhes

of trees, from leaves to the root, and the same proess is applied to the dual graph of the tree;

(iii) domino tilings are hanged into perfet mathings. The ommon ounting number t(n) on

the grid L

n

is given as T (L

n

; 1; 1) (see Table 1) and is known to satisfy lim

n!1

t(n)

1=n

2

= t

where t = 3:2099125 : : :

Upper and lower bounds for forests and ayli orientations. The numbers of forests and

ayli orientations on the graph L

n

are expressable in terms of its Tutte polynomial, and are

T (L

n

; 2; 1) and T (L

n

; 2; 0), respetively (see Table 1). Sine a spanning tree is a forest and a forest

is merely an unonstrained hoie of edges, the bounds t

n

< f

n

< 2

2n(n�1)

< 4

n

2

hold for the

number of forests. On the other hand, orienting all vertial edges towards the top endows L

n

with

an ayli orientation, and ayli orientations are orientations. This yields the bounds 2

n(n�1)

<

a

n

< 2

2n(n�1)

< 4

n

2

. Again, the limits f = lim

n!1

f(n)

1=n

2

and a = lim

n!1

a(n)

1=n

2

exist; the

relations above yield the trivial bounds t = 3:2099125 : : : < f < 4 and 2 < a < 4. Merino, Noy,

and Welsh have obtained the improved bounds

t = 3:64497 � f � 3:74698 and 3:41358 � a � 3:56322:

The method used to derive the new, better upper bounds is to view the square grid L

n

as a

omposite of m=n retangular m�n grids L

m;n

, relying on the omputation of T (L

m;n

; 2; 1) as the

ardinal of a rational language. The idea is to extend a forest, respetively an ayli orientation,

on L

m;n

to one on L

m;n+1

. To this end, the m verties on the nth olumn of the original graph
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are tagged in order to keep trak of verties that are members of the same tree. The number of

suh on�gurations is �nite (in partiular, the m verties an be in at most m di�erent trees).

Among the 2

2m�1

hoies of edges that may be used to extend the original graph, only part of

them do not produe a yle. This provides a �nite-state automaton that reognizes the relevant

on�gurations on L

m;n

. The generating series that enumerates this on�gurations is thus rational,

and the ounting numbers grow as the exponential �

n

m

of an algebrai number �

m

. Gluing n=m

on�gurations on L

m;n

in any way yields the upper bounds f

n

� (�

n

m

)

n=m

2

n(n=m�1)

� (2�

m

=m)

n

2

(sine blind gluing may produe yles), as well as similar bounds for a

n

(with a di�erent �

m

).

The ase of the new lower bounds is very similar. Again, the forests, resp. ayli orientations,

on L

n

are obtained by gluing relevant on�gurations on L

m;n

. However, an additional onstraint is

that the seleted on�gurations on L

m;n

indue forests, resp. ayli orientations, on the graph L

�

m;n

obtained by ontrating the mth row to a single vertex. This ensures that no yle is reated while

gluing the retangular grids. Again, the on�gurations on L

�

m;n

are ounted by a rational language,

yielding lower bounds of the same form as the upper bounds above. The numerial values indiated

were obtained for m = 8. An artile is in preparation [3℄.

3. Computing the Tutte Polynomial of L

m;n

by a Reurrene in n

The interpretation in terms of rational languages also applies to the omputation of Tutte poly-

nomials for L

m;n

, based on the right-most representation (1) of Whitney's rank generating funtion.

This form makes expliit the way to extend the rational automaton reognizing the forests of L

m;n

,

whih has been desribed in the previous setion. This extension only needs to keep trak of the

number of verties (+m at eah olumn), the number of onneted omponents (whose variation

is between �m and +m at eah olumn), and the number of edges (whih by di�erene yields the

rank). To eah state s orresponding to a struture of onneted omponents on the nth olumn

of L

m;n

, we assoiate a generating funtion F

(s)

(x; y; z) =

P

n

R

(s)

n

(x; y)z

n

where R

(s)

n

(x; y) is the

ontribution to the sum (1) restrited to on�gurations A of edges whose last olumn orresponds

to state s. This indues a linear system of reurrenes between the F

(s)

(x; y; z), with Laurent

polynomial entries in x and y.

For �xed m, the rational generating funtion of the rank generating funtions of the family of

graphs L

m;n

is thus obtained as one of the F

(s)

(x; y; z) for a suitable state s. The rational generating

funtion of the Tutte polynomials is then obtained by shifting x and y.
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