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Abstra
t

The Tutte polynomial of a graph G is a two-variable polynomial that re
ords mu
h informa-

tion on G. In parti
ular, di�erent evaluations at integers provide the number of spanning

trees, forests (a
y
li
 spanning subgraphs), and a
y
li
 orientations of G. We estimate these

values when G is an n� n square grid so as to dedu
e re�ned upper and lower bounds for

the numbers of forests and a
y
li
 orientations on su
h grids.

1. Polynomial Invariants of Graphs

1.1. Chromati
 polynomials. A general graph G = (V;E) is a undire
ted graph with loops

and multiple edges allowed; it is des
ribed by its set V of verti
es and its set E of edges. The


hromati
 polynomial p(G;�), introdu
ed by Birkho� in 1912 is a very important invariant of G:

it 
ounts the number of its �-
olourings, i.e., the number of ways to assign 
olours to the verti
es

of G in su
h a way that no two adja
ent verti
es share the same 
olour, and that the number of


olours used is at most �. This polynomial re
ords many statisti
s of the graph: indeed, for a

graph on n verti
es, we have the expansion p(G;�) = �

n

� jEj�

n�1

+ a�

n�2

� � � � � �

�(G)

where

a = jEj

�

jEj � 1

�

=2 � t(G) relates to the number t(G) of triangles in G, and where �(G) is the

number of 
onne
ted 
omponents of G. Also, the 
oeÆ
ients of p(G;�) alternate in signs. Table 1

provides other interesting graph statisti
s as evaluations of the 
hromati
 polynomial.

Unfortunately, the 
omputation of a 
hromati
 polynomial is hard: already the problem of 
om-

puting the 
hromati
 number of a graph G, i.e., the smallest integer � su
h that there exists a

�-
olouring, is NP-
omplete; evaluating the 
hromati
 polynomial itself is #P-hard, as is even


omputing the 
hromati
 polynomial at any algebrai
 number di�erent from 0, 1, and 2. A sim-

ple exponential algorithm to 
ompute p(G;�) is based on 
ontra
tion and deletion of edges: the

graph G=e resulting from the 
ontra
tion of an edge e in a graph G is obtained by removing the

edge and identifying both in
ident verti
es; the mere deletion of an edge e in a graph G results

in the graph G n e with same vertex set V and new edge set E n feg. The algorithm 
onsists in

following the re
urren
e p(G;�) = p(G n e;�) � p(G=e;�) provided that G is 
onne
ted and that

e is neither a loop nor a bridge (also 
alled isthmus or 
o-loop, i.e., an edge whose deletion does

not dis
onne
t the graph). Finally, the 
hromati
 polynomial of a (possibly dis
onne
ted) graph is

the produ
t of the 
hromati
 polynomials of its 
onne
ted 
omponents.

1.2. Tutte polynomials. A generalization of the 
hromati
 polynomial is the Tutte polynomial

T (G;x; y) of a graph G [5, 6℄, most easily de�ned as the variant T (G;x; y) = R(G;x � 1; y � 1) of

Whitney's rank generating fun
tion R(G;x; y) [9℄. The rank of a graph G is de�ned as the size of

any of its spanning forests, whi
h is jV j��(G). This notion stems from the matroid interpretation
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p(G; 0) 0

p(G; 1) 1 if G is empty

p(G; 1) 0 if G 
ontains an edge

p(G; 2) 2

�(G)

if G is bipartite

p(G; 2) 0 if G is not bipartite

�

�

p(G;�1)

�

�

# of a
y
li
 orientations [4℄

T (G; 1; 1) # of spanning trees

T (G; 2; 1) # of forests

T (G; 1; 2) # of 
onne
ted subgraphs

T (G; 2; 0) # of a
y
li
 orientations [4℄

T (G; 1; 0) # of a
. or. with a single sour
e

T (G; 0; 2) # of totally 
y
li
 orientations

Table 1. Spe
ial evaluations of the 
hromati
 (left) and Tutte (right) polynomials.

of graphs [7, 8℄, whi
h, informally, views 
ir
uits (i.e., 
y
les) in a graph as dependen
y relations

and forests as sets of independent edges. Now, by de�nition

(1) R(G;x; y) =

X

A�E

x

r(E)�r(A)

y

jAj�r(A)

= x

r(E)

X

A�E

y

jAj

=(xy)

r(A)

;

where r(A) denotes the rank of the subgraph G

A

= (V;A) of the graph G = (V;E) obtained by

retaining the subset A � E of its edges only. Note that r(A) = r(E) means that G

A

has the same

number of 
onne
ted 
omponents as G, while r(A) = jAj means that G

A

is a
y
li
. The 
hromati


polynomial is re
overed through the relation p(G;�) = (�1)

r(G)

�

�(G)

T (G; 1 � �; 0); on the other

hand, the relation f(G;�) = (�1)

jGj

T (G; 0; 1 � �) de�nes the 
ow polynomial of G, whi
h 
ounts

the number of 
ows on G with edges weighted by elements of Z=�Z, on
e any orientation has

been 
hosen on G. (A 
ow is an assignment of weights to edges in su
h a way that the weights


orresponding to all edges in
ident to the same vertex add up to zero.) Table 1 provides other

interesting graph statisti
s as evaluations of the Tutte polynomial.

An algorithm similar to the one in the 
ase of the 
hromati
 polynomial above 
omputes the Tutte

polynomial, and is based on the relations: T (G;x; y) = 1 if G is empty; T (G;x; y) = T (G=e;x; y) if

e is a bridge; T (G;x; y) = T (G n e;x; y) if e is a loop; and T (G;x; y) = T (G=e;x; y)+T (G n e;x; y)

otherwise. Finally, the Tutte polynomial of a (possibly dis
onne
ted) graph is the produ
t of the

Tutte polynomials of its 
onne
ted 
omponents.

1.3. Tutte{Grothendie
k invariants. A restatement of this is that the Tutte polynomial is an

example of Tutte{Grothendie
k invariant [2℄, i.e., a fun
tion v from the set of graphs to a �xed


ommutative ring|Z[x; y℄ in the 
ase of the Tutte polynomial|with the relations:

1. v(G) = v(G=e) + v(G n e) provided G is 
onne
ted and e is neither a loop nor a bridge;

2. the invariant of a graph is the produ
t of the invariants of its 
onne
ted 
omponents;

3. the invariants of two isomorphi
 graphs are the same.

A result by Brylawski [2℄ is that any Tutte{Grothendie
k invariant is uniquely determined by its

values on the loop and bridge graphs, 
onsisting of a single loop around a single vertex and of a

single edge between two verti
es, respe
tively, and the invariant v(G) is the evaluation of the Tutte

polynomial at x = v(loop graph) and y = v(bridge graph).

The Tutte polynomial satis�es the following more general universality theorem (
f. [1, Chap. X℄).

Let v be any fun
tion from the set of graphs to the 
ommutative ring Z[x; y; �; �; � ℄ whi
h satis�es


onditions 2. and 3. in the des
ription of Tutte{Grothendie
k invariants and the relations u(G) =

�

jGj

if G is empty; u(G) = xu(G=e) if e is a bridge; u(G) = yu(G n e) if e is a loop; u(G) =

�u(Gne)+�u(G=e) otherwise. Then v is given in terms of the Tutte polynomial of G by the relation

v(G) = �

�(G)

�

jGj

�

r(G)

T (G;�x=�; y=�). Spe
ial 
ases are the 
hromati
 and Tutte polynomials,

respe
tively obtained when (x; y; �; �; �) is set to (1� x; 0; x; 1;�1) and (x; y; 1; 1; 1).
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1.4. Matroidal interpretation of graphs. Matroids [7, 8℄ are a general 
on
ept used to represent

the 
ombinatori
s of dependen
y between obje
ts of many di�erent types, like linear dependen
y,

aÆne dependen
y, algebrai
 dependen
y, the stru
ture of 
y
les (or 
ir
uits) in a graph, and so

on. Chromati
 and Tutte polynomials extend to this setting with the same type of properties.

Appli
ations in
lude latti
e theory, graph theory, knot theory, 
oding theory, geometry, networks,

per
olation theory, and statisti
al me
hani
s.

2. Counting Problems on the n� n Grid

Although the following 
ombinatorial obje
ts are well-de�ned on any graph, we 
onsider their

enumeration on the square n�n grid L

n

(with simple edges only) where we pro
eed to derive new

asymptoti
 estimates:

1. A mat
hing is a pairing of neighbouring verti
es by edges of the graph, possibly leaving some

of its verti
es unpaired. Enumerating mat
hings relates to the study of a latti
e gas model

of statisti
al physi
s for a gas 
onsisting of monomers and dimers.

2. A perfe
t mat
hing is a mat
hing that leaves no vertex on its own. This 
orresponds to a

gas with dimers only.

3. A set of verti
es is independent if no two of them 
an be joined by an edge. This 
orresponds

to Fibona

i arrays, i.e., arrays 
onsisting of 0's and 1's only, with no two 
onse
utive 1's,

either verti
ally or horizontally.

4. A spanning tree is a tree made of edges of the graph and that exhausts its verti
es.

5. An a
y
li
 orientations is an orientation of the edges of the graph that indu
es no 
y
le.

Upon substitution of ea
h vertex of L

n

by a square 
entred at this vertex, and after gluing squares

that 
orrespond to adja
ent verti
es, a mat
hing be
omes a tiling with dominoes and squares while

a perfe
t mat
hing be
omes a domino tiling. Obviously, the above-mentioned transformation is a

one-to-one 
orresponden
e. The following 
ombinatorial algorithm by Temperley provides another

bije
tion, between spanning trees on L

n

and perfe
t mat
hings on L

2n+1

deprived of one vertex:

(i) spanning trees are rooted at some �xed vertex; (ii) dominoes are then pla
ed on the bran
hes

of trees, from leaves to the root, and the same pro
ess is applied to the dual graph of the tree;

(iii) domino tilings are 
hanged into perfe
t mat
hings. The 
ommon 
ounting number t(n) on

the grid L

n

is given as T (L

n

; 1; 1) (see Table 1) and is known to satisfy lim

n!1

t(n)

1=n

2

= t

where t = 3:2099125 : : :

Upper and lower bounds for forests and a
y
li
 orientations. The numbers of forests and

a
y
li
 orientations on the graph L

n

are expressable in terms of its Tutte polynomial, and are

T (L

n

; 2; 1) and T (L

n

; 2; 0), respe
tively (see Table 1). Sin
e a spanning tree is a forest and a forest

is merely an un
onstrained 
hoi
e of edges, the bounds t

n

< f

n

< 2

2n(n�1)

< 4

n

2

hold for the

number of forests. On the other hand, orienting all verti
al edges towards the top endows L

n

with

an a
y
li
 orientation, and a
y
li
 orientations are orientations. This yields the bounds 2

n(n�1)

<

a

n

< 2

2n(n�1)

< 4

n

2

. Again, the limits f = lim

n!1

f(n)

1=n

2

and a = lim

n!1

a(n)

1=n

2

exist; the

relations above yield the trivial bounds t = 3:2099125 : : : < f < 4 and 2 < a < 4. Merino, Noy,

and Welsh have obtained the improved bounds

t = 3:64497 � f � 3:74698 and 3:41358 � a � 3:56322:

The method used to derive the new, better upper bounds is to view the square grid L

n

as a


omposite of m=n re
tangular m�n grids L

m;n

, relying on the 
omputation of T (L

m;n

; 2; 1) as the


ardinal of a rational language. The idea is to extend a forest, respe
tively an a
y
li
 orientation,

on L

m;n

to one on L

m;n+1

. To this end, the m verti
es on the nth 
olumn of the original graph
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are tagged in order to keep tra
k of verti
es that are members of the same tree. The number of

su
h 
on�gurations is �nite (in parti
ular, the m verti
es 
an be in at most m di�erent trees).

Among the 2

2m�1


hoi
es of edges that may be used to extend the original graph, only part of

them do not produ
e a 
y
le. This provides a �nite-state automaton that re
ognizes the relevant


on�gurations on L

m;n

. The generating series that enumerates this 
on�gurations is thus rational,

and the 
ounting numbers grow as the exponential �

n

m

of an algebrai
 number �

m

. Gluing n=m


on�gurations on L

m;n

in any way yields the upper bounds f

n

� (�

n

m

)

n=m

2

n(n=m�1)

� (2�

m

=m)

n

2

(sin
e blind gluing may produ
e 
y
les), as well as similar bounds for a

n

(with a di�erent �

m

).

The 
ase of the new lower bounds is very similar. Again, the forests, resp. a
y
li
 orientations,

on L

n

are obtained by gluing relevant 
on�gurations on L

m;n

. However, an additional 
onstraint is

that the sele
ted 
on�gurations on L

m;n

indu
e forests, resp. a
y
li
 orientations, on the graph L

�

m;n

obtained by 
ontra
ting the mth row to a single vertex. This ensures that no 
y
le is 
reated while

gluing the re
tangular grids. Again, the 
on�gurations on L

�

m;n

are 
ounted by a rational language,

yielding lower bounds of the same form as the upper bounds above. The numeri
al values indi
ated

were obtained for m = 8. An arti
le is in preparation [3℄.

3. Computing the Tutte Polynomial of L

m;n

by a Re
urren
e in n

The interpretation in terms of rational languages also applies to the 
omputation of Tutte poly-

nomials for L

m;n

, based on the right-most representation (1) of Whitney's rank generating fun
tion.

This form makes expli
it the way to extend the rational automaton re
ognizing the forests of L

m;n

,

whi
h has been des
ribed in the previous se
tion. This extension only needs to keep tra
k of the

number of verti
es (+m at ea
h 
olumn), the number of 
onne
ted 
omponents (whose variation

is between �m and +m at ea
h 
olumn), and the number of edges (whi
h by di�eren
e yields the

rank). To ea
h state s 
orresponding to a stru
ture of 
onne
ted 
omponents on the nth 
olumn

of L

m;n

, we asso
iate a generating fun
tion F

(s)

(x; y; z) =

P

n

R

(s)

n

(x; y)z

n

where R

(s)

n

(x; y) is the


ontribution to the sum (1) restri
ted to 
on�gurations A of edges whose last 
olumn 
orresponds

to state s. This indu
es a linear system of re
urren
es between the F

(s)

(x; y; z), with Laurent

polynomial entries in x and y.

For �xed m, the rational generating fun
tion of the rank generating fun
tions of the family of

graphs L

m;n

is thus obtained as one of the F

(s)

(x; y; z) for a suitable state s. The rational generating

fun
tion of the Tutte polynomials is then obtained by shifting x and y.
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