Algorithms Seminar 1999-2000, Available online at the URL
F. Chyzak (ed.), INRIA, (2000), pp. 43-46. http://algo.inria.fr/seminars/.

Efficient Algorithms on Numbers, Polynomials, and Series

Paul Zimmermann
Polka Project, INRIA Lorraine, F-54600 Villers-les-Nancy, France

January 24, 2000

Summary by Frédéric Chyzak

Abstract

For a computer algebra system, it is crucial to optimize the arithmetical operations on basic
objects—numbers, polynomials, series, ... In fact, two classes of objects can be distin-
guished: integers and polynomials, which require exact operations; floating-point numbers
and series, for which only the most significant part of the exact result is needed. The best
algorithms currently known for multiplication, division, and square root on integers and
floating-point numbers are mostly recent. We present and analyse them using complexity
models based on three different multiplication algorithms (naive, Karatsuba, and FFT).

The MPFR library developed by Guillaume Hanrot and Paul Zimmermann is a C library for
multiprecision floating-point computations with exact rounding [6]. Its main purpose is to achieve
efficiency with a well-defined semantics. Beside the elementary operations +, —, x, and /, it
provides routines for square root (with remainder in the integer case, without remainder in the
floating-point case), logarithm and exponential. The longer-term goal is to integrate routines for
the numerical evaluation of other elementary and special functions as well.

Paul Zimmermann’s algorithm for square roots [8] originates in this work. It is reported on here,
as well as other recent fast algorithms for multiplications, divisions, and square roots. They all base

Operation Naive Karatsuba FFT
Method exact truncated | exact truncated | exact truncated

Multiplication 1 1/2 1 1 1 1
Mulders 0.808

Division 1 1/2
Newton 7/2 5/2 5 4
Karp—Markstein 17/6 11/6 9/2 7/2
Jebelean, Burnikel-Ziegler 2 3/2
Mulders 1.397

Square root 1/2 1/4
Newton 7/2 5/2 5 4
Karp—Markstein 17/6 11/6 9/2f 7/2f
Jebelean, Burnikel-Ziegler 3/2} 1
Mulders 0.966*

FiGurge 1. Complexity of division and square root algorithms in terms of exact
multiplications for the three usual multiplication models. Algorithms marked ‘{7,
resp. ‘I’, were analysed, resp. designed and analysed, by Paul Zimmermann in [8].

44 Efficient Algorithms on Numbers, Polynomials, and Series

on Newton’s method, which essentially reduces division and square root to a few multiplications.
Conversely, division cannot be performed faster than multiplication, for ab = a/(1/b). Thus, once
a model for multiplication is chosen, the best to hope is to lessen the constant in the computational
complexity of inversion and square rooting. Several approaches to reduce this constant are described
and combined in the following sections. To simplify the exposition, carries and their propagation
are not taken into account, although they could be accomodated with no conceptual difficulty and
no essential change of the complexities.

1. The Three Classical Multiplication Models

The naive multiplication algorithm computes a product by convolution between coefficients. Its
arithmetical complexity is N(n) = O(nZ). Karatsuba’s recursive algorithm bases on the formula

(1) uv = (uyb 4) (v1b + vy) = v b* + ((u1 + v1)(up + vo) — ugvy — uovo)b + ugup,

where only three multiplications are required instead of four by the naive method, yielding the
better complexity K(n) = O(nlg3) = O(n1'585"'). A refinement of this idea, splitting each term
of the product into more and more parts as n goes to infinity, is the Toom—Cook approach [5].

The improved complexity is O (n”‘ﬁ/ Vien |y n) However this algorithm is only a theoretical

one. Finally, the fastest known multiplication algorithm relies on FFT (fast Fourier transform)
to achieve the complexity F(n) = O(nlnn Inlnn). FFT is a fast recursive method to compute
the DFT (discrete Fourier transform) of a polynomial (i.e., its evaluation at each of the nth roots
of unity, also called its Fourier coefficients). DFT exchanges product of polynomials—convolution
of the coefficients—and point-wise product of the Fourier coefficients. A product of polynomials
is thus essentially computed by two direct DFT, mulplication of the Fourier coefficients, and one
reverse DFT. Note the following asymptotic relations between arithmetical complexities:

(2) N(2n) ~4N(n), K(2n)~3K(n), and F(2n)~ 2F(n).

2. Newton’s Scheme for Inverses and Square Roots

Newton’s schemes respectively given by «(z) = (2 — az) and p(z) = z(3 — az?)/2 converge
to 1/a and 1/4/a. This entails that inverses and square roots can be computed by additions and
multiplications only, using b/a = b x (1/a) and y/a = a x (1/4/a). Both methods have a quadratic
convergence rate since

<1+e> 1— € <1+e> 1—3e2/2 —€/2
L = and p = .
a a Va va

This means that the number of correct digits doubles at each step of the iteration.

For a of size n and = of size n/2, a naive calculation of «(z) would take 50 (n/2) arithmetical
operations, returning an output of size 2n. The method is optimized by writing ¢(z) = z+z(1 — az)
and noting that if the n/2 digits of = are correct, 1 — ax starts with n/2 zeroes and ends with
a correction of size n, whose first n/2 digits only are useful. Thus, only the middle n/2 digits
of az are computed in 2M (n/2) arithmetical operations, then multiplied with z, then added to z
by merely appending them. The overall cost I(n) for inverting a of size n is therefore given by
the recurrence I(n) = 3M(n/2) + I(n/2). Unfolding it using (2) yields the asymptotics 2N (n)
(no improvement), 3K (n)/2, and 3F (n), depending on the multiplication model. Adding 1 for the
final multiplications, this gives the constants for the truncated case. In the case of inversion with
remainder, the latter is computed after the division as a correcting term, so that another 1 has to
be added to the constant.

P. Zimmermann, summary by F. Chyzak 45

The same trick works to compute square roots, after writing p(z) = x + z(1 — ax?)/2: 22 is
computed in M (n/2) arithmetical operations, then 1 — az? in M (n) arithmetical operations; the
first n/2 digits are zero, and only the next n/2 ones are multiplied with z in M (n/2) arithmetical
operations. The overall cost S(n) to compute 1/y/a for a of size n is therefore given by the
recurrence S(n) = M(n)+2M(n/2)+ S(n/2), which once unfold yields the asymptotics 2N (n) (no
improvement), 5K (n)/2, and 4F(n), whence the constants for the truncated and exact cases.

3. Karp and Markstein’s Modification of Newton’s Method

Karp and Markstein’s improvement is to incorporate the final multiplications b x (1/a) and
ax (1/+/a), respectively, into the last step of Newton’s method in the corresponding calculation [4].

In the case of the inverse, this corresponds to replacing the last step of the iteration with the
computation of y = bz, then of y + x(b — ay). Only the first n/2 digits of y are kept, and the
convergence remains quadratic. As to the complexity, only M (n/2) has been added to the iteration
as a replacement for the arithmetical complexity M (n) of a multiplication outside of it. The gain
is thus 2K (n)/3 or F(n)/2, depending on the multiplication model.

In the case of the square root, the last step of the iteration is replaced with the computation
of y = ax, then of y + z(a — y?)/2. Only the last n/2 digits of y are kept, the method remains
quadratic, and the gains are the same as with inversion.

4. Burnikel and Ziegler’s Division with Remainder

All the algorithms mentioned above base on Newton’s method to reduce manipulations of objects
of size 2n to manipulations of objects of size n. For a change, Burnikel and Ziegler’s improvement
of division [1, 3] consists of two mutually recursive algorithms for dividing an object of size 3n by
an object of size 2n and for dividing an object of size 4n by an object of size 2n. The division
algorithm obtained in this way was then reused by Zimmermann for the computation of square
roots [8].

Algorithm Dy/; to divide u3b® + ugb® + u1b + vy by v1b + vy (where each u; or v; is a block of
size n and where b is a suitable basis) first computes (q1,71b 4+ 79) = D3/2(U3b2 + ugb + uy,v1b +
vp), then (qo,s1b + sp) = D3/2(r1b2 + rob + up,v1b + vg), to return (q1b + qo,s1b + sp). The
arithmetical complexity Dy/;(n) to divide an object of size n by an object of size n/2 is thus twice
the arithmetical complexity D3/,(n/2) to divide an object of size 3n/2 by an object of size n. For its
part, Algorithm Dj/; to divide u2b? +u1b+ug by v1b+wyg first computes (g, c) = Dy 1 (ugb+wuq,v1),
then 7 = rb+ rg = ¢b + up — quo; next, it decreases ¢ by 1 while adding v1b + vy to r until
r is nonnegative, before returning (g,r). This ‘while’ loop is proved to cost little, so that the
complexity Ds/s(n) is just Dyjq(n) + M(n).

Consequently, the complexity D,/ (n) is ruled by the recurrence Dy/i(n) = 2Dy (n/2) +
2M (n/2). This makes no improvement in the case of FFT (complexity 2F (n)Inn), but provides
a Karatsuba-based exact division of arithmetical complexity 2K (n), which is reduced to 3K (n)/2
for truncated division. Indeed, the truncated variant of Algorithm D,/ calls the exact variant
of Algorithm Dy, once, and its truncated variant once. Then, the exact Dj/, only uses the
exact Dy/y, while the truncated Dj/y calls the truncated D,;;. This variant saves as much as
M(n/2) + M(n/4) 4 -- -, that is to say K(n)/2 in the Karatsuba model.

Zimmermann’s algorithm R to compute the square root of ugb® + usb? + u1b + g first com-
putes (s',7') = R(uzb + uz), then (g,u) = Dy/i(r'b + u1,2s"); it next lets s and r be s'b + ¢
and (ub + ug) — ¢2, respectively; if r is nonnegative, it returns (s,r), else (s,r + 2s — 1). The
arithmetical complexity R(n) to compute the square root of an object of size n is then given by the

46 Efficient Algorithms on Numbers, Polynomials, and Series

recurrence R(n) = R(n/2) + Dy1(n/2) + M(n/2). With multiplications by the Karatsuba algo-
rithm, this reduces to 3K (n)/2 for the exact case. In the truncated case, the algorithm is modified
by calling the truncated variant of Dy/; and by not substracting ¢> to define r. The recurrence
becomes R(n) = R(n/2) + D(n/2), which in the Karatsuba model delivers a complexity K (n) for
square roots without remainder.

5. Mulders’ “Short Products”

Mulder’s idea is a modification of Karatsuba’s algorithm dedicated to the truncated case [7].

Each of the terms ujv1, (u1+v1)(ug+vo) —u1v1 —ugvg, and ugvg in Equation (1) has size 2n if the
input u and v are of size 2n. In view of a truncated product—or “short product”—, the same relation
suggests to compute ujv; exactly, only the most significant half of (u1 4+ v1)(ug + vg) — u1v1 — oo,
and to save the calculation of ugvg. In fact, the simpler form ujvg + ugvy is used: the product uv
is thus reduced to an exact multiplication, ugvg, and two truncated multiplications, ujvy and ugvy.
Unfortunately, unfolding the recurrence M(n) = K(n/2) + 2M (n/2) yields no optimization at all.

The idea is then to vary the sizes of the blocks in 4 and v: for blocks u; and v; of size fn, the
recurrence becomes M(n) = K(Bn) + 2M ((1 — B)n), inducing M(n) = cK(n) for ¢ = /(1 —
2(1 - B)O‘), where o = Ig3 = 1.585... The optimum is obtained for 5 ~ 0.694 and ¢ ~ 0.808.

The same idea applies to division, with an optimum for § ~ 0.542 and ¢ ~ 1.397. Moreover,
Zimmermann’s algorithm reduces the computation of a truncated square root of an object of size n
to an exact square root and a truncated division on objects of size n/2; this yields the arithmetical
complexity ~ (3/2 4+ 1.397) K (n/2) ~ 0.966K (n) for truncated square root.

6. Other Improvements

Other improvements for the Karatsuba model were announced in the talk: Hanrot and Zimmer-
mann have obtained a better constant for inversion and division (~ 1.212), which was then used
by Quercia to lessen the constant for division without remainder to roughly 1. These works have
been further developed since then, with applications to square roots as well [2].

Bibliography

[1] Burnikel (Christoph) and Ziegler (Joachim). — Fast recursive division. — Research Report n° MPI-1-98-1-022, Max-
Planck-Institut fir Informatik, Saarbriicken, Germany, October 1998.

[2] Hanrot (Guillaume), Quercia (Michel), and Zimmermann (Paul). — Speeding up the division and square root of
power series. — Research Report n° 3973, Institut National de Recherche en Informatique et en Automatique, July
2000. Available from http://www.inria.fr/RRRT/RR-3973.html.

[3] Jebelean (Tudor). — Practical integer division with Karatsuba complexity. In Kiichlin (Wolfgang W.) (editor),
ISSAC’97 (July 21-23, 1997. Maui, Hawaii, USA). pp. 339-341. — ACM Press, New York, 1997. Conference
proceedings.

[4] Karp (Alan H.) and Markstein (Peter). — High-precision division and square root. ACM Transactions on Mathe-
matical Software, vol. 23, n° 4, 1997, pp. 561-589.

[6] Knuth (Donald E.). — The art of computer programming. Vol. 2. — Addison-Wesley Publishing Co., Reading,
Mass., 1981, second edition, xiii+688p. Seminumerical algorithms, Addison-Wesley Series in Computer Science
and Information Processing.

[6] The MPFR library. — Available from http://www.loria.fr/projets/mpfr/.

[7] Mulders (Thom). — On short multiplications and divisions. Applicable Algebra in Engineering, Communication
and Computing, vol. 11, 2000, pp. 69-88.

[8] Zimmermann (Paul). — Karatsuba square root. — Research Report n° 3805, Institut National de Recherche en
Informatique et en Automatique, November 1999. 8 pages.

