
Algorithms Seminar 1999{2000,

F. Chyzak (ed.), INRIA, (2000), pp. 43{46.

Available online at the URL

http://algo.inria.fr/seminars/.

EÆ
ient Algorithms on Numbers, Polynomials, and Series

Paul Zimmermann

Polka Proje
t, INRIA Lorraine, F{54600 Villers-l�es-Nan
y, Fran
e

January 24, 2000

Summary by Fr�ed�eri
 Chyzak

Abstra
t

For a 
omputer algebra system, it is 
ru
ial to optimize the arithmeti
al operations on basi


obje
ts|numbers, polynomials, series, . . . In fa
t, two 
lasses of obje
ts 
an be distin-

guished: integers and polynomials, whi
h require exa
t operations; 
oating-point numbers

and series, for whi
h only the most signi�
ant part of the exa
t result is needed. The best

algorithms 
urrently known for multipli
ation, division, and square root on integers and


oating-point numbers are mostly re
ent. We present and analyse them using 
omplexity

models based on three di�erent multipli
ation algorithms (naive, Karatsuba, and FFT).

The MPFR library developed by Guillaume Hanrot and Paul Zimmermann is a C library for

multipre
ision 
oating-point 
omputations with exa
t rounding [6℄. Its main purpose is to a
hieve

eÆ
ien
y with a well-de�ned semanti
s. Beside the elementary operations +, �, �, and /, it

provides routines for square root (with remainder in the integer 
ase, without remainder in the


oating-point 
ase), logarithm and exponential. The longer-term goal is to integrate routines for

the numeri
al evaluation of other elementary and spe
ial fun
tions as well.

Paul Zimmermann's algorithm for square roots [8℄ originates in this work. It is reported on here,

as well as other re
ent fast algorithms for multipli
ations, divisions, and square roots. They all base

Operation Naive Karatsuba FFT

Method exa
t trun
ated exa
t trun
ated exa
t trun
ated

Multipli
ation 1 1/2 1 1 1 1

Mulders 0.808

Division 1 1/2

Newton 7/2 5/2 5 4

Karp{Markstein 17/6 11/6 9/2 7/2

Jebelean, Burnikel{Ziegler 2 3/2

Mulders 1.397

Square root 1/2 1/4

Newton 7/2 5/2 5 4

Karp{Markstein 17/6 11/6 9=2

y

7=2

y

Jebelean, Burnikel{Ziegler 3=2

z

1

z

Mulders 0:966

z

Figure 1. Complexity of division and square root algorithms in terms of exa
t

multipli
ations for the three usual multipli
ation models. Algorithms marked `y',

resp. `z', were analysed, resp. designed and analysed, by Paul Zimmermann in [8℄.



44 EÆ
ient Algorithms on Numbers, Polynomials, and Series

on Newton's method, whi
h essentially redu
es division and square root to a few multipli
ations.

Conversely, division 
annot be performed faster than multipli
ation, for ab = a=(1=b). Thus, on
e

a model for multipli
ation is 
hosen, the best to hope is to lessen the 
onstant in the 
omputational


omplexity of inversion and square rooting. Several approa
hes to redu
e this 
onstant are des
ribed

and 
ombined in the following se
tions. To simplify the exposition, 
arries and their propagation

are not taken into a

ount, although they 
ould be a

omodated with no 
on
eptual diÆ
ulty and

no essential 
hange of the 
omplexities.

1. The Three Classi
al Multipli
ation Models

The naive multipli
ation algorithm 
omputes a produ
t by 
onvolution between 
oeÆ
ients. Its

arithmeti
al 
omplexity is N(n) = O

�

n

2

�

. Karatsuba's re
ursive algorithm bases on the formula

(1) uv = (u

1

b+ u

0

)(v

1

b+ v

0

) = u

1

v

1

b

2

+

�

(u

1

+ v

1

)(u

0

+ v

0

)� u

1

v

1

� u

0

v

0

�

b+ u

0

v

0

;

where only three multipli
ations are required instead of four by the naive method, yielding the

better 
omplexity K(n) = O

�

n

lg 3

�

= O

�

n

1:585:::

�

. A re�nement of this idea, splitting ea
h term

of the produ
t into more and more parts as n goes to in�nity, is the Toom{Cook approa
h [5℄.

The improved 
omplexity is O

�

n

1+

p

2=

p

lg n

lnn

�

. However this algorithm is only a theoreti
al

one. Finally, the fastest known multipli
ation algorithm relies on FFT (fast Fourier transform)

to a
hieve the 
omplexity F (n) = O(n lnn ln lnn). FFT is a fast re
ursive method to 
ompute

the DFT (dis
rete Fourier transform) of a polynomial (i.e., its evaluation at ea
h of the nth roots

of unity, also 
alled its Fourier 
oeÆ
ients). DFT ex
hanges produ
t of polynomials|
onvolution

of the 
oeÆ
ients|and point-wise produ
t of the Fourier 
oeÆ
ients. A produ
t of polynomials

is thus essentially 
omputed by two dire
t DFT, mulpli
ation of the Fourier 
oeÆ
ients, and one

reverse DFT. Note the following asymptoti
 relations between arithmeti
al 
omplexities:

(2) N(2n) � 4N(n); K(2n) � 3K(n); and F (2n) � 2F (n):

2. Newton's S
heme for Inverses and Square Roots

Newton's s
hemes respe
tively given by �(x) = x(2 � ax) and �(x) = x(3 � ax

2

)=2 
onverge

to 1=a and 1=

p

a. This entails that inverses and square roots 
an be 
omputed by additions and

multipli
ations only, using b=a = b� (1=a) and

p

a = a� (1=

p

a ). Both methods have a quadrati



onvergen
e rate sin
e

�

�

1 + �

a

�

=

1� �

2

a

and �

�

1 + �

p

a

�

=

1� 3�

2

=2� �

3

=2

p

a

:

This means that the number of 
orre
t digits doubles at ea
h step of the iteration.

For a of size n and x of size n=2, a naive 
al
ulation of �(x) would take 5M(n=2) arithmeti
al

operations, returning an output of size 2n. The method is optimized by writing �(x) = x+x(1�ax)

and noting that if the n=2 digits of x are 
orre
t, 1 � ax starts with n=2 zeroes and ends with

a 
orre
tion of size n, whose �rst n=2 digits only are useful. Thus, only the middle n=2 digits

of ax are 
omputed in 2M(n=2) arithmeti
al operations, then multiplied with x, then added to x

by merely appending them. The overall 
ost I(n) for inverting a of size n is therefore given by

the re
urren
e I(n) = 3M(n=2) + I(n=2). Unfolding it using (2) yields the asymptoti
s 2N(n)

(no improvement), 3K(n)=2, and 3F (n), depending on the multipli
ation model. Adding 1 for the

�nal multipli
ations, this gives the 
onstants for the trun
ated 
ase. In the 
ase of inversion with

remainder, the latter is 
omputed after the division as a 
orre
ting term, so that another 1 has to

be added to the 
onstant.



P. Zimmermann, summary by F. Chyzak 45

The same tri
k works to 
ompute square roots, after writing �(x) = x + x(1 � ax

2

)=2: x

2

is


omputed in M(n=2) arithmeti
al operations, then 1 � ax

2

in M(n) arithmeti
al operations; the

�rst n=2 digits are zero, and only the next n=2 ones are multiplied with x in M(n=2) arithmeti
al

operations. The overall 
ost S(n) to 
ompute 1=

p

a for a of size n is therefore given by the

re
urren
e S(n) =M(n)+2M(n=2)+S(n=2), whi
h on
e unfold yields the asymptoti
s 2N(n) (no

improvement), 5K(n)=2, and 4F (n), when
e the 
onstants for the trun
ated and exa
t 
ases.

3. Karp and Markstein's Modi�
ation of Newton's Method

Karp and Markstein's improvement is to in
orporate the �nal multipli
ations b � (1=a) and

a�(1=

p

a ), respe
tively, into the last step of Newton's method in the 
orresponding 
al
ulation [4℄.

In the 
ase of the inverse, this 
orresponds to repla
ing the last step of the iteration with the


omputation of y = bx, then of y + x(b � ay). Only the �rst n=2 digits of y are kept, and the


onvergen
e remains quadrati
. As to the 
omplexity, onlyM(n=2) has been added to the iteration

as a repla
ement for the arithmeti
al 
omplexity M(n) of a multipli
ation outside of it. The gain

is thus 2K(n)=3 or F (n)=2, depending on the multipli
ation model.

In the 
ase of the square root, the last step of the iteration is repla
ed with the 
omputation

of y = ax, then of y + x(a � y

2

)=2. Only the last n=2 digits of y are kept, the method remains

quadrati
, and the gains are the same as with inversion.

4. Burnikel and Ziegler's Division with Remainder

All the algorithms mentioned above base on Newton's method to redu
e manipulations of obje
ts

of size 2n to manipulations of obje
ts of size n. For a 
hange, Burnikel and Ziegler's improvement

of division [1, 3℄ 
onsists of two mutually re
ursive algorithms for dividing an obje
t of size 3n by

an obje
t of size 2n and for dividing an obje
t of size 4n by an obje
t of size 2n. The division

algorithm obtained in this way was then reused by Zimmermann for the 
omputation of square

roots [8℄.

Algorithm D

2=1

to divide u

3

b

3

+ u

2

b

2

+ u

1

b + u

0

by v

1

b + v

0

(where ea
h u

i

or v

i

is a blo
k of

size n and where b is a suitable basis) �rst 
omputes (q

1

; r

1

b + r

0

) = D

3=2

(u

3

b

2

+ u

2

b + u

1

; v

1

b +

v

0

), then (q

0

; s

1

b + s

0

) = D

3=2

(r

1

b

2

+ r

0

b + u

0

; v

1

b + v

0

), to return (q

1

b + q

0

; s

1

b + s

0

). The

arithmeti
al 
omplexity D

2=1

(n) to divide an obje
t of size n by an obje
t of size n=2 is thus twi
e

the arithmeti
al 
omplexity D

3=2

(n=2) to divide an obje
t of size 3n=2 by an obje
t of size n. For its

part, Algorithm D

3=2

to divide u

2

b

2

+u

1

b+u

0

by v

1

b+v

0

�rst 
omputes (q; 
) = D

2=1

(u

2

b+u

1

; v

1

),

then r = r

1

b + r

0

= 
b + u

0

� qv

0

; next, it de
reases q by 1 while adding v

1

b + v

0

to r until

r is nonnegative, before returning (q; r). This `while' loop is proved to 
ost little, so that the


omplexity D

3=2

(n) is just D

2=1

(n) +M(n).

Consequently, the 
omplexity D

2=1

(n) is ruled by the re
urren
e D

2=1

(n) = 2D

2=1

(n=2) +

2M(n=2). This makes no improvement in the 
ase of FFT (
omplexity 2F (n) lnn), but provides

a Karatsuba-based exa
t division of arithmeti
al 
omplexity 2K(n), whi
h is redu
ed to 3K(n)=2

for trun
ated division. Indeed, the trun
ated variant of Algorithm D

2=1


alls the exa
t variant

of Algorithm D

3=2

on
e, and its trun
ated variant on
e. Then, the exa
t D

3=2

only uses the

exa
t D

2=1

, while the trun
ated D

3=2


alls the trun
ated D

2=1

. This variant saves as mu
h as

M(n=2) +M(n=4) + � � � , that is to say K(n)=2 in the Karatsuba model.

Zimmermann's algorithm R to 
ompute the square root of u

3

b

3

+ u

2

b

2

+ u

1

b + u

0

�rst 
om-

putes (s

0

; r

0

) = R(u

3

b + u

2

), then (q; u) = D

2=1

(r

0

b + u

1

; 2s

0

); it next lets s and r be s

0

b + q

and (ub + u

0

) � q

2

, respe
tively; if r is nonnegative, it returns (s; r), else (s; r + 2s � 1). The

arithmeti
al 
omplexity R(n) to 
ompute the square root of an obje
t of size n is then given by the



46 EÆ
ient Algorithms on Numbers, Polynomials, and Series

re
urren
e R(n) = R(n=2) + D

2=1

(n=2) +M(n=2). With multipli
ations by the Karatsuba algo-

rithm, this redu
es to 3K(n)=2 for the exa
t 
ase. In the trun
ated 
ase, the algorithm is modi�ed

by 
alling the trun
ated variant of D

2=1

and by not substra
ting q

2

to de�ne r. The re
urren
e

be
omes R(n) = R(n=2) +D(n=2), whi
h in the Karatsuba model delivers a 
omplexity K(n) for

square roots without remainder.

5. Mulders' \Short Produ
ts"

Mulder's idea is a modi�
ation of Karatsuba's algorithm dedi
ated to the trun
ated 
ase [7℄.

Ea
h of the terms u

1

v

1

, (u

1

+v

1

)(u

0

+v

0

)�u

1

v

1

�u

0

v

0

, and u

0

v

0

in Equation (1) has size 2n if the

input u and v are of size 2n. In view of a trun
ated produ
t|or \short produ
t"|, the same relation

suggests to 
ompute u

1

v

1

exa
tly, only the most signi�
ant half of (u

1

+ v

1

)(u

0

+ v

0

)�u

1

v

1

�u

0

v

0

,

and to save the 
al
ulation of u

0

v

0

. In fa
t, the simpler form u

1

v

0

+ u

0

v

1

is used: the produ
t uv

is thus redu
ed to an exa
t multipli
ation, u

0

v

0

, and two trun
ated multipli
ations, u

1

v

0

and u

0

v

1

.

Unfortunately, unfolding the re
urren
e M(n) = K(n=2) + 2M(n=2) yields no optimization at all.

The idea is then to vary the sizes of the blo
ks in u and v: for blo
ks u

1

and v

1

of size �n, the

re
urren
e be
omes M(n) = K(�n) + 2M

�

(1 � �)n

�

, indu
ing M(n) = 
K(n) for 
 = �

�

=

�

1 �

2(1� �)

�

�

, where � = lg 3 = 1:585 : : : The optimum is obtained for � ' 0:694 and 
 ' 0:808.

The same idea applies to division, with an optimum for � ' 0:542 and 
 ' 1:397. Moreover,

Zimmermann's algorithm redu
es the 
omputation of a trun
ated square root of an obje
t of size n

to an exa
t square root and a trun
ated division on obje
ts of size n=2; this yields the arithmeti
al


omplexity ' (3=2 + 1:397)K(n=2) ' 0:966K(n) for trun
ated square root.

6. Other Improvements

Other improvements for the Karatsuba model were announ
ed in the talk: Hanrot and Zimmer-

mann have obtained a better 
onstant for inversion and division (' 1:212), whi
h was then used

by Quer
ia to lessen the 
onstant for division without remainder to roughly 1. These works have

been further developed sin
e then, with appli
ations to square roots as well [2℄.

Bibliography

[1℄ Burnikel (Christoph) and Ziegler (Joa
him). { Fast re
ursive division. { Resear
h Report n

�

MPI-I-98-1-022, Max-

Plan
k-Institut f�ur Informatik, Saarbr�u
ken, Germany, O
tober 1998.

[2℄ Hanrot (Guillaume), Quer
ia (Mi
hel), and Zimmermann (Paul). { Speeding up the division and square root of

power series. { Resear
h Report n

�

3973, Institut National de Re
her
he en Informatique et en Automatique, July

2000. Available from http://www.inria.fr/RRRT/RR-3973.html.

[3℄ Jebelean (Tudor). { Pra
ti
al integer division with Karatsuba 
omplexity. In K�u
hlin (Wolfgang W.) (editor),

ISSAC'97 (July 21{23, 1997. Maui, Hawaii, USA). pp. 339{341. { ACM Press, New York, 1997. Conferen
e

pro
eedings.

[4℄ Karp (Alan H.) and Markstein (Peter). { High-pre
ision division and square root. ACM Transa
tions on Mathe-

mati
al Software, vol. 23, n

�

4, 1997, pp. 561{589.

[5℄ Knuth (Donald E.). { The art of 
omputer programming. Vol. 2. { Addison-Wesley Publishing Co., Reading,

Mass., 1981, se
ond edition, xiii+688p. Seminumeri
al algorithms, Addison-Wesley Series in Computer S
ien
e

and Information Pro
essing.

[6℄ The MPFR library. { Available from http://www.loria.fr/projets/mpfr/.

[7℄ Mulders (Thom). { On short multipli
ations and divisions. Appli
able Algebra in Engineering, Communi
ation

and Computing, vol. 11, 2000, pp. 69{88.

[8℄ Zimmermann (Paul). { Karatsuba square root. { Resear
h Report n

�

3805, Institut National de Re
her
he en

Informatique et en Automatique, November 1999. 8 pages.


