
Algorithms Seminar 1999{2000,

F. Chyzak (ed.), INRIA, (2000), pp. 43{46.

Available online at the URL

http://algo.inria.fr/seminars/.

EÆient Algorithms on Numbers, Polynomials, and Series

Paul Zimmermann

Polka Projet, INRIA Lorraine, F{54600 Villers-l�es-Nany, Frane

January 24, 2000

Summary by Fr�ed�eri Chyzak

Abstrat

For a omputer algebra system, it is ruial to optimize the arithmetial operations on basi

objets|numbers, polynomials, series, . . . In fat, two lasses of objets an be distin-

guished: integers and polynomials, whih require exat operations; oating-point numbers

and series, for whih only the most signi�ant part of the exat result is needed. The best

algorithms urrently known for multipliation, division, and square root on integers and

oating-point numbers are mostly reent. We present and analyse them using omplexity

models based on three di�erent multipliation algorithms (naive, Karatsuba, and FFT).

The MPFR library developed by Guillaume Hanrot and Paul Zimmermann is a C library for

multipreision oating-point omputations with exat rounding [6℄. Its main purpose is to ahieve

eÆieny with a well-de�ned semantis. Beside the elementary operations +, �, �, and /, it

provides routines for square root (with remainder in the integer ase, without remainder in the

oating-point ase), logarithm and exponential. The longer-term goal is to integrate routines for

the numerial evaluation of other elementary and speial funtions as well.

Paul Zimmermann's algorithm for square roots [8℄ originates in this work. It is reported on here,

as well as other reent fast algorithms for multipliations, divisions, and square roots. They all base

Operation Naive Karatsuba FFT

Method exat trunated exat trunated exat trunated

Multipliation 1 1/2 1 1 1 1

Mulders 0.808

Division 1 1/2

Newton 7/2 5/2 5 4

Karp{Markstein 17/6 11/6 9/2 7/2

Jebelean, Burnikel{Ziegler 2 3/2

Mulders 1.397

Square root 1/2 1/4

Newton 7/2 5/2 5 4

Karp{Markstein 17/6 11/6 9=2

y

7=2

y

Jebelean, Burnikel{Ziegler 3=2

z

1

z

Mulders 0:966

z

Figure 1. Complexity of division and square root algorithms in terms of exat

multipliations for the three usual multipliation models. Algorithms marked `y',

resp. `z', were analysed, resp. designed and analysed, by Paul Zimmermann in [8℄.



44 EÆient Algorithms on Numbers, Polynomials, and Series

on Newton's method, whih essentially redues division and square root to a few multipliations.

Conversely, division annot be performed faster than multipliation, for ab = a=(1=b). Thus, one

a model for multipliation is hosen, the best to hope is to lessen the onstant in the omputational

omplexity of inversion and square rooting. Several approahes to redue this onstant are desribed

and ombined in the following setions. To simplify the exposition, arries and their propagation

are not taken into aount, although they ould be aomodated with no oneptual diÆulty and

no essential hange of the omplexities.

1. The Three Classial Multipliation Models

The naive multipliation algorithm omputes a produt by onvolution between oeÆients. Its

arithmetial omplexity is N(n) = O

�

n

2

�

. Karatsuba's reursive algorithm bases on the formula

(1) uv = (u

1

b+ u

0

)(v

1

b+ v

0

) = u

1

v

1

b

2

+

�

(u

1

+ v

1

)(u

0

+ v

0

)� u

1

v

1

� u

0

v

0

�

b+ u

0

v

0

;

where only three multipliations are required instead of four by the naive method, yielding the

better omplexity K(n) = O

�

n

lg 3

�

= O

�

n

1:585:::

�

. A re�nement of this idea, splitting eah term

of the produt into more and more parts as n goes to in�nity, is the Toom{Cook approah [5℄.

The improved omplexity is O

�

n

1+

p

2=

p

lg n

lnn

�

. However this algorithm is only a theoretial

one. Finally, the fastest known multipliation algorithm relies on FFT (fast Fourier transform)

to ahieve the omplexity F (n) = O(n lnn ln lnn). FFT is a fast reursive method to ompute

the DFT (disrete Fourier transform) of a polynomial (i.e., its evaluation at eah of the nth roots

of unity, also alled its Fourier oeÆients). DFT exhanges produt of polynomials|onvolution

of the oeÆients|and point-wise produt of the Fourier oeÆients. A produt of polynomials

is thus essentially omputed by two diret DFT, mulpliation of the Fourier oeÆients, and one

reverse DFT. Note the following asymptoti relations between arithmetial omplexities:

(2) N(2n) � 4N(n); K(2n) � 3K(n); and F (2n) � 2F (n):

2. Newton's Sheme for Inverses and Square Roots

Newton's shemes respetively given by �(x) = x(2 � ax) and �(x) = x(3 � ax

2

)=2 onverge

to 1=a and 1=

p

a. This entails that inverses and square roots an be omputed by additions and

multipliations only, using b=a = b� (1=a) and

p

a = a� (1=

p

a ). Both methods have a quadrati

onvergene rate sine

�

�

1 + �

a

�

=

1� �

2

a

and �

�

1 + �

p

a

�

=

1� 3�

2

=2� �

3

=2

p

a

:

This means that the number of orret digits doubles at eah step of the iteration.

For a of size n and x of size n=2, a naive alulation of �(x) would take 5M(n=2) arithmetial

operations, returning an output of size 2n. The method is optimized by writing �(x) = x+x(1�ax)

and noting that if the n=2 digits of x are orret, 1 � ax starts with n=2 zeroes and ends with

a orretion of size n, whose �rst n=2 digits only are useful. Thus, only the middle n=2 digits

of ax are omputed in 2M(n=2) arithmetial operations, then multiplied with x, then added to x

by merely appending them. The overall ost I(n) for inverting a of size n is therefore given by

the reurrene I(n) = 3M(n=2) + I(n=2). Unfolding it using (2) yields the asymptotis 2N(n)

(no improvement), 3K(n)=2, and 3F (n), depending on the multipliation model. Adding 1 for the

�nal multipliations, this gives the onstants for the trunated ase. In the ase of inversion with

remainder, the latter is omputed after the division as a orreting term, so that another 1 has to

be added to the onstant.



P. Zimmermann, summary by F. Chyzak 45

The same trik works to ompute square roots, after writing �(x) = x + x(1 � ax

2

)=2: x

2

is

omputed in M(n=2) arithmetial operations, then 1 � ax

2

in M(n) arithmetial operations; the

�rst n=2 digits are zero, and only the next n=2 ones are multiplied with x in M(n=2) arithmetial

operations. The overall ost S(n) to ompute 1=

p

a for a of size n is therefore given by the

reurrene S(n) =M(n)+2M(n=2)+S(n=2), whih one unfold yields the asymptotis 2N(n) (no

improvement), 5K(n)=2, and 4F (n), whene the onstants for the trunated and exat ases.

3. Karp and Markstein's Modi�ation of Newton's Method

Karp and Markstein's improvement is to inorporate the �nal multipliations b � (1=a) and

a�(1=

p

a ), respetively, into the last step of Newton's method in the orresponding alulation [4℄.

In the ase of the inverse, this orresponds to replaing the last step of the iteration with the

omputation of y = bx, then of y + x(b � ay). Only the �rst n=2 digits of y are kept, and the

onvergene remains quadrati. As to the omplexity, onlyM(n=2) has been added to the iteration

as a replaement for the arithmetial omplexity M(n) of a multipliation outside of it. The gain

is thus 2K(n)=3 or F (n)=2, depending on the multipliation model.

In the ase of the square root, the last step of the iteration is replaed with the omputation

of y = ax, then of y + x(a � y

2

)=2. Only the last n=2 digits of y are kept, the method remains

quadrati, and the gains are the same as with inversion.

4. Burnikel and Ziegler's Division with Remainder

All the algorithms mentioned above base on Newton's method to redue manipulations of objets

of size 2n to manipulations of objets of size n. For a hange, Burnikel and Ziegler's improvement

of division [1, 3℄ onsists of two mutually reursive algorithms for dividing an objet of size 3n by

an objet of size 2n and for dividing an objet of size 4n by an objet of size 2n. The division

algorithm obtained in this way was then reused by Zimmermann for the omputation of square

roots [8℄.

Algorithm D

2=1

to divide u

3

b

3

+ u

2

b

2

+ u

1

b + u

0

by v

1

b + v

0

(where eah u

i

or v

i

is a blok of

size n and where b is a suitable basis) �rst omputes (q

1

; r

1

b + r

0

) = D

3=2

(u

3

b

2

+ u

2

b + u

1

; v

1

b +

v

0

), then (q

0

; s

1

b + s

0

) = D

3=2

(r

1

b

2

+ r

0

b + u

0

; v

1

b + v

0

), to return (q

1

b + q

0

; s

1

b + s

0

). The

arithmetial omplexity D

2=1

(n) to divide an objet of size n by an objet of size n=2 is thus twie

the arithmetial omplexity D

3=2

(n=2) to divide an objet of size 3n=2 by an objet of size n. For its

part, Algorithm D

3=2

to divide u

2

b

2

+u

1

b+u

0

by v

1

b+v

0

�rst omputes (q; ) = D

2=1

(u

2

b+u

1

; v

1

),

then r = r

1

b + r

0

= b + u

0

� qv

0

; next, it dereases q by 1 while adding v

1

b + v

0

to r until

r is nonnegative, before returning (q; r). This `while' loop is proved to ost little, so that the

omplexity D

3=2

(n) is just D

2=1

(n) +M(n).

Consequently, the omplexity D

2=1

(n) is ruled by the reurrene D

2=1

(n) = 2D

2=1

(n=2) +

2M(n=2). This makes no improvement in the ase of FFT (omplexity 2F (n) lnn), but provides

a Karatsuba-based exat division of arithmetial omplexity 2K(n), whih is redued to 3K(n)=2

for trunated division. Indeed, the trunated variant of Algorithm D

2=1

alls the exat variant

of Algorithm D

3=2

one, and its trunated variant one. Then, the exat D

3=2

only uses the

exat D

2=1

, while the trunated D

3=2

alls the trunated D

2=1

. This variant saves as muh as

M(n=2) +M(n=4) + � � � , that is to say K(n)=2 in the Karatsuba model.

Zimmermann's algorithm R to ompute the square root of u

3

b

3

+ u

2

b

2

+ u

1

b + u

0

�rst om-

putes (s

0

; r

0

) = R(u

3

b + u

2

), then (q; u) = D

2=1

(r

0

b + u

1

; 2s

0

); it next lets s and r be s

0

b + q

and (ub + u

0

) � q

2

, respetively; if r is nonnegative, it returns (s; r), else (s; r + 2s � 1). The

arithmetial omplexity R(n) to ompute the square root of an objet of size n is then given by the



46 EÆient Algorithms on Numbers, Polynomials, and Series

reurrene R(n) = R(n=2) + D

2=1

(n=2) +M(n=2). With multipliations by the Karatsuba algo-

rithm, this redues to 3K(n)=2 for the exat ase. In the trunated ase, the algorithm is modi�ed

by alling the trunated variant of D

2=1

and by not substrating q

2

to de�ne r. The reurrene

beomes R(n) = R(n=2) +D(n=2), whih in the Karatsuba model delivers a omplexity K(n) for

square roots without remainder.

5. Mulders' \Short Produts"

Mulder's idea is a modi�ation of Karatsuba's algorithm dediated to the trunated ase [7℄.

Eah of the terms u

1

v

1

, (u

1

+v

1

)(u

0

+v

0

)�u

1

v

1

�u

0

v

0

, and u

0

v

0

in Equation (1) has size 2n if the

input u and v are of size 2n. In view of a trunated produt|or \short produt"|, the same relation

suggests to ompute u

1

v

1

exatly, only the most signi�ant half of (u

1

+ v

1

)(u

0

+ v

0

)�u

1

v

1

�u

0

v

0

,

and to save the alulation of u

0

v

0

. In fat, the simpler form u

1

v

0

+ u

0

v

1

is used: the produt uv

is thus redued to an exat multipliation, u

0

v

0

, and two trunated multipliations, u

1

v

0

and u

0

v

1

.

Unfortunately, unfolding the reurrene M(n) = K(n=2) + 2M(n=2) yields no optimization at all.

The idea is then to vary the sizes of the bloks in u and v: for bloks u

1

and v

1

of size �n, the

reurrene beomes M(n) = K(�n) + 2M

�

(1 � �)n

�

, induing M(n) = K(n) for  = �

�

=

�

1 �

2(1� �)

�

�

, where � = lg 3 = 1:585 : : : The optimum is obtained for � ' 0:694 and  ' 0:808.

The same idea applies to division, with an optimum for � ' 0:542 and  ' 1:397. Moreover,

Zimmermann's algorithm redues the omputation of a trunated square root of an objet of size n

to an exat square root and a trunated division on objets of size n=2; this yields the arithmetial

omplexity ' (3=2 + 1:397)K(n=2) ' 0:966K(n) for trunated square root.

6. Other Improvements

Other improvements for the Karatsuba model were announed in the talk: Hanrot and Zimmer-

mann have obtained a better onstant for inversion and division (' 1:212), whih was then used

by Queria to lessen the onstant for division without remainder to roughly 1. These works have

been further developed sine then, with appliations to square roots as well [2℄.

Bibliography

[1℄ Burnikel (Christoph) and Ziegler (Joahim). { Fast reursive division. { Researh Report n

�

MPI-I-98-1-022, Max-

Plank-Institut f�ur Informatik, Saarbr�uken, Germany, Otober 1998.

[2℄ Hanrot (Guillaume), Queria (Mihel), and Zimmermann (Paul). { Speeding up the division and square root of

power series. { Researh Report n

�

3973, Institut National de Reherhe en Informatique et en Automatique, July

2000. Available from http://www.inria.fr/RRRT/RR-3973.html.

[3℄ Jebelean (Tudor). { Pratial integer division with Karatsuba omplexity. In K�uhlin (Wolfgang W.) (editor),

ISSAC'97 (July 21{23, 1997. Maui, Hawaii, USA). pp. 339{341. { ACM Press, New York, 1997. Conferene

proeedings.

[4℄ Karp (Alan H.) and Markstein (Peter). { High-preision division and square root. ACM Transations on Mathe-

matial Software, vol. 23, n

�

4, 1997, pp. 561{589.

[5℄ Knuth (Donald E.). { The art of omputer programming. Vol. 2. { Addison-Wesley Publishing Co., Reading,

Mass., 1981, seond edition, xiii+688p. Seminumerial algorithms, Addison-Wesley Series in Computer Siene

and Information Proessing.

[6℄ The MPFR library. { Available from http://www.loria.fr/projets/mpfr/.

[7℄ Mulders (Thom). { On short multipliations and divisions. Appliable Algebra in Engineering, Communiation

and Computing, vol. 11, 2000, pp. 69{88.

[8℄ Zimmermann (Paul). { Karatsuba square root. { Researh Report n

�

3805, Institut National de Reherhe en

Informatique et en Automatique, November 1999. 8 pages.


