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Abstract

We give a randomized algorithm in deterministic time O(N logM) for estimating the score
vector of matches between a text string of length N and a pattern string of length M , i.e., the
vector obtained when the pattern is slid along the text, and the number of matches is counted for
each position. A direct application is approximate string matching. The randomized algorithm
bases on convolution to find an estimator of the scores and can be viewed as a randomization
of an algorithm by Fischer and Paterson. The variance of our estimator is particularly small
for scores that are close to M , i.e., for approximate occurrences of the pattern in the text. No
assumption is made about the probabilistic characteristics of the input, or about the size of
the alphabet. The solution extends to string matching with classes, class complements, “never
match” and “always match” symbols, to the weighted case and to higher dimensions.

Keywords: convolution, FFT, approximate string matching, randomized algorithms.

1 Scores and Approximate String Matching

Problem Statement. For a text string T = t0t1 . . . tN−1 and a pattern string P = p0p1 . . . pM−1,
we address the problem of computing the score vector of matches between T and P . This is defined
as the vector C whose ith component ci is the number of matches between the text and the pattern
when the first letter of the pattern is positioned in front of the ith letter of the string (see Figure 1).

A related problem is approximate string matching, which consists in finding occurrences of small
variations of the pattern string P in the text string T . The strings found differ from the pattern by
a few insertions, deletions, or substitutions of letters. Computing the score vector solves a version
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Position i

Text . . . b c a a b c a a b b b a c . . .
Pattern a b a b b a

Matches ↑ ↑

Figure 1: The pattern is slid along the text and for each position we count the number of matches
between the pattern and the corresponding slice of the text; this gives the score C (here Ci = 2).

of the problem of approximate string matching where only substitutions are permitted: an exact
match corresponds to a score c = M ; a match with e errors to a score c = M − e. In this work
we also consider pattern matching with classes, where a position in the pattern is allowed to match
any letter from a finite class, but do not address the case of searching for regular expressions, which
would correspond to matching any pattern from a finite class, or any repetition of a given pattern.

Approximate string matching has many applications, including intrusion detection in a com-
puter system [11], image analysis, and data compression [2]. In the first application, alphabet
symbols correspond to events in a system, and since some events are more important than others
(from a security point of view), the scores require to be weighted by the relative importance of al-
phabet symbols. This leads to consider a weighted version of the problem which computes weighted
scores

ci =
M−1∑
j=0

w(pj)δti+j ,pj , 0 ≤ i ≤ N −M,

where N ≥ M , δx,y denotes the Kronecker symbol, and w is a complex-valued function defined over
the alphabet. The basic non-weighted case corresponds to a constant function w(p) = 1.

Method. Rather than focusing on computing the exact scores, we develop in this paper a ran-
domized algorithm of Monte-Carlo type to compute an unbiased estimate of the score vector. The
algorithm interprets the score vector by a convolution, which makes it possible to use the fast
Fourier transform in view of efficiency. Although randomized, its behaviour neither depends on
any a priori probabilistic assumption on the input, nor on the size of the alphabet. It proceeds
by computing and averaging k independent equally distributed estimates for the score vector. The
expected value of the averaged estimator is equal to the exact value. In other words, the expected
value of the ith component ĉi of our estimate Ĉ of the score vector equals ci. It turns out that the
standard deviation is bounded by (M − ci)/

√
k, and that the algorithm can be tuned to attain an

arbitrary level of accuracy. Moreover, the fewer the number M − ci of mismatches, the better the
approximation that the algorithm returns: even if the estimated score can differ somewhat from
the exact value when the pattern and the text have little match, an almost complete match will be
recognized by the algorithm. The latter thus locates interesting positions with good accuracy. In
principle, the algorithm can thus be used as a filter: after a few positions have been recognized as
good candidates for approximate matches, the exact scores can be computed for those few positions
only. Our method generalizes to the weighted case as well.

Complexity. As already mentioned, we obtain an asymptotically fast algorithm by using fast
Fourier transform to compute convolutions [9]. As a result our algorithm runs in deterministic
time O(kNγ(M)/M), where γ(M) is the time needed to perform the convolution of two vectors
of length M . Henceforth, we replace γ(M) by M logM which corresponds to the computational
model where an arithmetic operation takes constant time. We thus get an algorithm in deterministic
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time O(kN logM). Note the trade-off between time complexity and accuracy: by choosing larger
values of k, more accurate estimates are obtained. However, preliminary experiments suggest that
small values for k are sufficient in practice to achieve a reasonable accuracy. The following theorem
summarizes our main result in the non-weighted case.

Theorem 1. An estimate for the score C between a text string of length N and a pattern string
of length M can be computed by a Monte-Carlo algorithm in time O(kN logM), where k is the
number of iterations in the algorithm. The randomized result has mean C and each entry has a
variance bounded by (M − ci)

2/k.

Algorithmical Context. A continuous and intensive research effort since the 1970’s has led to
a great deal of approximate string matching algorithms. These algorithms typically have a time
complexity linear in the size N of the text, but with a dependency in the size M of the pattern
between linear and logarithmical. We proceed to list and sketch the main existing algorithms. All
the complexity evaluations below refer to arithmetic complexity and are based on a computational
model in which the convolution of two vectors of length M is performed in time O(M logM). The
list splits into three types of algorithms: algorithms based on fast multiplication for large integers,
practical algorithms based on hardware, and a more recent generation of randomized algorithms.

The first algorithm one can think of in order to compute exact score vectors is the naive
(deterministic) algorithm with a time complexity of O((N −M +1)M). Several algorithms escape
this quadratic complexity by the use of efficient multiplication algorithms for large integers:

• Fischer and Paterson use convolution to solve the problem in time complexity O(N logM) [7].
This algorithm requires the alphabet to be fixed, finite, and known beforehand. Although
the size of the alphabet used for a text of length N can be as large as N , splitting the text
in chunks of length O(M) to be dealt with independently ensures to work with an alphabet
size σ = O(M), which extends the previous algorithms to the case when alphabets are not
known beforehand.

• Abrahamson and Kosaraju independently extended the algorithm by Fischer and Paterson

into a deterministic algorithm for computing the vector C in time complexity ofO
(
N
√
M logM

)
[1,

10], allowing for generalized alphabets with classes and not known beforehand (cf. Section 4).
Their clever approach makes judicious use of two different methods: convolution to compute
the contribution of alphabet symbols that occur the more frequently; a more direct (and
quite straightforward) method to compute the contribution of alphabet symbols that occur
more infrequently. Note that Abrahamson also gives a variant algorithm of time complex-
ity O(N logM) restricted to fixed finite alphabets known beforehand and allowing classes [1].

Of a different nature, several asymptotically slow algorithms make crucial use of the hardware in
order to lessen their practical complexity: in spite of a bad theoretical complexity in O(MN) they
beat the other algorithms in practice for small sizes. This is the case of the next two algorithms
which more generally deal with approximate string matching when insertion and deletion are also
allowed:

• the algorithm of Baeza-Yates and Gonnet solves the problem in time O(NM logM/ logN) [4],
which is better than O(N logM) for very small M , i.e., M = o(logN). Besides, for even
smaller values of M , say M = O(1), this algorithm has a very low practical complexity, linear
in N with a low constant factor, because all parameters of the algorithm can then be packed
on the same machine word and be processed using very few hardware operations;
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• the algorithm of Baeza-Yates and Perleberg solves the problem in timeO(NMfmax) where fmax

is the maximal occurrence frequency of symbols in the pattern [5]. The idea of the algorithm
is to rely on fast operations on linked lists. For patterns ruled by an equiprobable Bernoulli
model, the average time complexity is O(NM/σ), which is good for large alphabets when the
pattern size M is fixed. However, in view of a fair comparison to other algorithms when M
is large, note that maintaining the complexity of this algorithm small, say N × o(M), re-
quires fmax to tend to 0, and σ to grow unbounded with M .

The interest in the vector C is usually motivated in applications by the need to find all positions
in the text at which the pattern almost occurs, i.e., the offsets i such that ci is close toM . ¿From this
viewpoint, computing exact values for the scores is not needed. A recent trend is the introduction
of randomization in the computation of scores.

• An algorithm of deterministic time O(N logM) was given in [3], whose analysis depends on
some restrictive assumptions on the probabilistic characteristics of the input, namely the
Bernoulli model. Although this model is not realistic, the contribution of this paper is the
introduction of randomization in the problem of approximate string matching, together with
a hashing of the alphabet which allows to reduce to working with a fixed alphabet known
beforehand.

• As opposed to Fisher and Paterson, Karloff studied the case when the alphabet is not known
beforehand and gave a clever deterministic algorithm of time O(N log3M) for estimating all
the scores of mismatches [8]. He also provided a randomized variant of deterministic time
complexity O(N log2M). Karloff’s estimator is intentionally biased in order to guarantee
not to overestimate the number of mismatches by more than a constant multiplicative factor.
The method apparently cannot be modified to estimate the number of matches (rather than
of mismatches).

2 Description of the Algorithm

Assume that we have two strings of length M over a finite alphabet Σ of cardinality σ. The
algorithm is based on the following idea: if we renumber the letters by the application of a map Φ
from the alphabet to the integer interval

[0, σ) = {0, · · · , σ − 1},

we obtain two integer sequences n0 . . . nM−1 and m0 . . .mM−1. Now note that a match between
the two strings at position j induces a match nj = mj . This contributes 1 in the Hermitian inner
product

M−1∑
j=0

ωnjωmj =

M−1∑
j=0

ωnj−mj ,

where ω denotes any primitive σth root of unity. On the other hand a mismatch contributes a
perturbative term ωnj−mj .

¿From the nullity of the sum of all the σth roots of unity, one observes that the mean E
(
ωX

)
is

zero when X is a uniformly distributed random variable over [0, σ). Consequentially we introduce
the set Ξ of all possible mappings from Σ to [0, σ), and turn Φ into a uniformly distributed random
variable over Ξ so as to obtain the score between both strings as the mean of the Hermitian inner
product over all renumberings.
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INPUT: a text T = t0 . . . t(1+α)M−1 and a pattern P = p0 . . . pM−1 where the ti’s
and the pi’s are letters from Σ;
OUTPUT: an estimate for the score vector C.

1. For ℓ = 1, 2, · · · , k:

(a) randomly and uniformly select a Φ(ℓ) from Ξ = [0, σ)Σ;

(b) from the text T , obtain a complex sequence T (ℓ) of size (1 + α)M by

replacing every symbol t in T by ωΦ(ℓ)(t);

(c) from the pattern P , obtain a complex sequence P (ℓ) by

i. replacing every symbol p in P by ω−Φ(ℓ)(p);

ii. padding with αM (trailing) zeroes;

(d) compute the vector C(ℓ) as the convolution of T (ℓ) with the reverse of P (ℓ),
i.e.,

c
(ℓ)
i =

M−1∑
j=0

ωΦ(ℓ)(ti+j)ωΦ(ℓ)(pj) =

M−1∑
j=0

ωΦ(ℓ)(ti+j)−Φ(ℓ)(pj);

2. compute the vector Ĉ =
k∑

ℓ=1

C(ℓ)/k and output it as an estimate of C.

Figure 2: Algorithm MC

As to our problem of computing the score vector C, we could make use of the previous idea to
compute each of its N −M +1 entries successively. However, this would ineluctably lead to a time
complexity of O(NM). The turning point of our method is to interpret the score vector as the
mean over all letter renumberings of the convolution of two randomized finite sequences of complex
numbers. In this way, the simultaneous calculation of all the ci’s is made possible by the use of fast
Fourier transform. Additionally, we apply the standard technique [6] of partitioning the text into
overlapping chunks of size (1 + α)M each, and then processing each chunk separately. Processing
one chunk supplies αM components of C, so that we need no more than N/(αM) chunks. In
this discussion, the parameter α may depend on M . We choose it to be O(M) and larger than a
constant, so that each chunk requires a time O ((1 + α)M log((1 + α)M)). The time complexity
for one iteration step is therefore

N

αM
O ((1 + α)M log((1 + α)M)) =

(
1 + α

α
N log((1 + α)M)

)
= O(N logM).

The overall time complexity of our Monte-Carlo algorithm is then O(kM logM) where k is the
number of repetitions performed. The basic case N = (1 + α)M of the algorithm is sketched in
Figure 2. We name it MC after the Monte-Carlo approach used.

The end of the section is devoted to further comments and to variations of the algorithm.
A closer look at the dependency in α of the complexity permits us to minimize the implied

constant in the big oh. To this end, introduce the constant τ defined by the complexity γ(M) =
τM logM of the FFT. For the simple choice α = 1, the complexity reduces to 2τN log(2M).
The better choice α = logM lessens the constant 2 to 1 + (log logM)/ logM , up to terms of
order O(1/ logM). This suggests an optimal choice of α = Θ(logM).
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Roots of unity appear in two different ways in the algorithm. On the one hand σth roots of
unity ωi are used to encode the alphabet into complex numbers. On the other hand the FFT to
compute the convolution of two complex vectors of size (1 + α)M uses roots of unity ζi of order a
power of two which is not smaller than (1 + α)M . It should be clear that ω is not related to ζ, for
the alphabet size and the text size are independent from one another. In spite of the fixed precision
of the numerical computations, first experimental results (Section 5) show that the round-off error
causes no apparent loss of validity of the theoretical predictions. Yet, an unavoidable restriction is
that the precision of the numerical calculations be less than the inverse of the product 2(1+α)kMσ.

Note that one could encode the alphabet into a finite field instead of the complex, and use FFT
in this framework. This would avoid any round-off errors, but would require fields Fp2 for a large
prime p, and to compute with the same number of bits as in the complex case.

Although we found our algorithm independently from the result by Fischer and Paterson [7],
the ideas that have just been presented are very close to theirs. Indeed, Fischer and Paterson
reduce the computation of a score vector to the multiplication of two polynomials. Then, they
encode these polynomials into integers so as to use the fast mulplication algorithm by Schönhage
and Strassen, which can be viewed as an equivalent to FFT in our algorithm. Unfortunately, this
encoding requires to interleave the polynomial coefficients by zeroes to avoid carry propagation.
Just as naive mulplication without padding with zeroes would not yield correct scores in the Fischer-
Paterson algorithm, so too a single numbering step in our algorithm does not compute the exact
vector score.

3 Probabilistic Analysis of the Output Estimate

Let us now study the mean and the variance of the estimators ĉi. It turns out that the mean E (ĉi)
is ci, and that the standard deviation of ĉi is bounded by (M − ci)/

√
k. This result was already

summarized in Theorem 1.
All the random variables ĉi are defined in a similar way; hence we generically consider the

random variable

ŝ =
1

k

k∑
ℓ=1

M−1∑
j=0

ωΦ(ℓ)(tj)−Φ(ℓ)(pj),

where the tj ’s and the pj ’s are fixed and the mappings Φ(ℓ)’s are independent and uniformly
distributed random mappings from Σ to [0, σ). The number c of matches between t0 . . . tM−1

and p0 . . . pM−1 is

c =
M−1∑
j=0

δtj ,pj .

The random variable ŝ is the mean of k independent identically distributed random variables s(ℓ).
Hence it suffices to consider the random variable

s =

M−1∑
j=0

ωΦ(tj)−Φ(pj),

for the mean and variance of ŝ are then

E (ŝ) = E(s) and Var (ŝ) =
Var(s)

k
.

We start by evaluating the mean of ŝ with the following lemma.
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Lemma 1. The mean of ŝ is the number c of matches between t0 . . . tM−1 and p0 . . . pM−1.

Proof. The mean of ŝ is

E (ŝ) = E(s) =

M−1∑
j=0

E
(
ωΦ(tj)−Φ(pj)

)
.

Now, observe that the mean inside the sum is zero unless tj = pj , because ωΦ(tj)−Φ(pj) is equally
likely to be any of the σth roots of unity, whose sum is zero. More precisely, we have the equality

E
(
ωΦ(tj)−Φ(pj)

)
= δtj ,pj ,

from which the result follows.

Next, we consider the variance of ŝ. We mention the corresponding result now for the purpose
of exposition, but postpone its proof to the next section where is it proved in more generality.

Lemma 2. The variance of ŝ is bounded as follows:

Var (ŝ) ≤ (M − c)2

k
.

Theorem 1 now follows from Lemmata 1 and 2.

4 Generalized String Matching

We extend the previous technique to several directions. The main contribution here is to show that
classical generalizations also apply to our algorithm and to perform the corresponding complexity
analyses. The first extension to be analysed is a weighted version of the problem. This allows
for more general functions than the characteristic function of matches, and is used by the other
extensions. Then, we show how our algorithm extends to pattern matching of arrays in place of
words, or more generally to higher dimensional arrays. Next, a different extension of our algorithm
allows us to accomodate classes of letters, class complements, “never match” and “always match”
symbols in the patterns and when possible in the texts. For the simplicity of the exposition,
we present each extension separately, but they could all be merged in the same algorithm and
implementation.

Weighted Case. The method and results we developed apply to weighted versions of the prob-
lem, i.e., to the problem of computing weighted scores defined by

ci =
M−1∑
j=0

w(pj)δti+j ,pj ,

where w is a complex-valued function defined over the alphabet. In fact, we consider scores of the
form

ci =

M−1∑
j=0

f(ti+j)g(pj)δti+j ,pj ,

where f and g are complex-valued functions defined over the alphabet. These two formulations may
seem equivalent. Nonetheless, we use the second formulation because it suggests a better intuition
of the algorithm and enables the further extensions of the next sections.
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In the algorithm, the encoding of the alphabet using roots of unity has to be changed ac-
cordingly: when creating T (ℓ) we now replace every symbol t in T by f(t)ωΦ(ℓ)(t), while when

creating P (ℓ) we replace every symbol p in P by g(p)ω−Φ(ℓ)(p).
As a matter of fact, we proceed to perform our analysis in the even more general case of weighted

scores of the form

ci =
M−1∑
j=0

h(ti+j , pj)δti+j ,pj ,

where h is a complex-valued function on pairs of letters in Σ2. We do this essentially for the purpose
of the mathematical analysis, although our convolution-based algorithm can only deal with the
special case of h(a, b) = f(a)g(b). The randomized vector Ĉ we obtain still has the property to
be C in the mean, and the variance of ĉi to be O((M − ci)/

√
k). However, the restriction to the

special case of weights is crucially needed from the computational point of view to represent, and
compute, the vector score by a convolution.

Once again, we generically consider the random variable

ŝ =
1

k

k∑
ℓ=1

M−1∑
j=0

h(tj , pj)ω
Φ(ℓ)(tj)−Φ(ℓ)(pj),

where the tj ’s and the pj ’s are fixed and the Φ(ℓ)’s are independent and uniformly distributed
random mappings from Σ to [0, σ). The weighted score between t0 . . . tM−1 and p0 . . . pM−1 is

c =

M−1∑
j=0

h(tj , pj)δtj ,pj .

The random variable ŝ is the mean of k independent identically distributed random variables s(ℓ).
Hence it suffices to consider the random variable

s =
M−1∑
j=0

h(tj , pj)ω
Φ(tj)−Φ(pj),

for a single random renumbering Φ. The mean and variance of ŝ are then

E (ŝ) = E(s) and Var (ŝ) =
Var(s)

k
.

The analysis differs from the unweighted case in that the role of δx,y in the unweighted case is
now played by h(x, y)δx,y. We start with the mean.

Lemma 3. The mean of ŝ is the weighted score

c =
M−1∑
j=0

h(tj , pj)δtj ,pj

between t0 . . . tM−1 and p0 . . . pM−1.

Proof. The mean of ŝ is

E (ŝ) = E(s) =
M−1∑
j=0

E
(
h(tj , pj)ω

Φ(tj)−Φ(pj)
)
=

M−1∑
j=0

h(tj , pj)E
(
ωΦ(tj)−Φ(pj)

)
= c,

since E
(
ωΦ(tj)−Φ(pj)

)
= δtj ,pj .

8



We now turn to the variance, proving Lemma 2 as a particular case.

Lemma 4. The variance of ŝ is bounded by

Var (ŝ) ≤ ||h||∞(M − c)2

k
,

where ||h||∞ denotes the maximum value of |h(x, y)| over Σ2.

Proof. To express Var(s) = E
(
|s|2

)
−|E(s)|2, we first derive an explicit form for the mean of |s|2 =

ss, starting with the equality

E (ss) =
∑

0≤i,j<M

h(ti, pi)h(tj , pj)E
(
ωΦ(ti)−Φ(pi)−Φ(tj)+Φ(pj)

)
.

When ωΦ(ti)−Φ(pi)−Φ(tj)+Φ(pj) = 1 independently from Φ, i.e., when ti = tj and pi = pj , or when ti =
pi and tj = pj , the inner mean E

(
ωΦ(ti)−Φ(pi)−Φ(tj)+Φ(pj)

)
is 1; otherwise, it is 0.

By a simple inclusion-exclusion argument, it follows that

E (ss) =
∑

0≤i,j<M

h(ti, pi)h(tj , pj)
(
δti,piδtj ,pj + δti,tjδpi,pj − δti,tjδpi,pjδti,piδtj ,pj

)
.

With the first product of Kronecker symbols, one recognizes the expansion of |E(s)|2, so that

Var(s) = E
(
|s|2

)
− |E(s)|2 =

∑
0≤i,j<M

h(ti, pi)h(tj , pj)δti,tjδpi,pj
(
1− δti,piδtj ,pj

)
.

Let us introduce the real symmetric matrix Γ = [γi,j ] of size σ × σ with (i, j)th entry given by

γi,j = δti,tjδpi,pj
(
1− δti,piδtj ,pj

)
,

and the vector H with ith entry h(ti, pi). We obtain Var(s) = H
T
ΓH, where T denotes the

transpose of matrices. Call ρ(Γ) the spectral radius of Γ, i.e., the largest modulus of its eigenvalues.
Since Γ is positive semidefinite (because it describes variances), its eigenvalues are non-negative
and ρ(Γ) is the largest eigenvalue. We have

Var(s) = H
T
ΓH ≤ ρ(Γ)H

T
H.

To improve on the previous upper bound and make it more explicit, we need to take the number c
of matches into account.

The number γi,j is 0 unless ti = tj ̸= pi = pj . It entails that in case of a match ti = pi, both
the ith line and the ith column of Γ are 0. After renumbering the lines and columns in Γ and H,
we part them as follows:

Γ =

[
0 0

0 Γ′

]
and H =

[
∗
H ′

]
,

where Γ′ =
[
γ′i,j

]
is a matrix of size (M − c)× (M − c) and H ′ is a vector of size (M − c). It follows

that
H

T
ΓH = H ′TΓ′H ′ ≤ ρ(Γ′)H ′TH ′.
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On the other hand, the spectral radius ρ(Γ′) of Γ′ is bounded by the Schur norm N (Γ′) which is
defined by:

N (Γ′)2 =
∑

1≤i,j≤M−c

|γ′i,j |2 ≤ (M − c)2.

Furthermore, setting
||h||∞ = max

(x,y)∈Σ2
|h(x, y)|,

we obtain
H ′TH ′ ≤ ||h||2∞(M − c).

Finally,

Var (ŝ) =
Var(s)

k
=

H
T
ΓH

k
=

H ′TΓ′H ′

k
≤ ||h||2∞(M − c)2

k
.

The two lemmata above together prove the following theorem.

Theorem 2. For the weighted version of the problem, an estimate Ĉ for the score C between a text
string of length N and a pattern string of length M can be computed by a Monte-Carlo algorithm
in deterministic time O(kN logM) with mean and variance

E
(
Ĉ
)
= C and Var(ĉi) ≤

||h||2∞(M − ci)
2

k
.

Most commonly when the weights are defined by a single function w as in the introduction of
this section,

||h||∞ = ||w||∞ = max
x∈Σ

|w(x)|.

Also note that the variance is once again particularly small when ci is close to M .

Higher Dimensional Arrays. We sketch the extension to two-dimensional arrays in the non-
weighted case; similar ideas would extend it to three and higher dimensions, and to mixed weighted
higher-dimensional versions as well.

For the sake of simplicity, we assume in the sequel that M and N are the squares of two integers,
M = m2 and N = n2, and that N ≥ M . The text T is now a matrix of size n× n, the pattern P
is a smaller matrix of size m×m, and the result we seek is an (n+1−m)× (n+1−m) matrix C
where

ci,j =

m−1∑
k=0

m−1∑
l=0

δTi+k,j+l,Pk,l
,

for 0 ≤ i, j ≤ n−m. The time to compute our estimate Ĉ of C is now O(kN logM), and we still

have E
(
Ĉ
)
= C and Var(ĉi,j) ≤ (M − ci,j)

2/k. We next briefly sketch how this is done.

We justify our focus to achieving a time complexity of O(kM logM) for the case n = 2m by
the following standard reduction [6] to this case from the general case n > 2m:

– cover T with N/M overlapping squares Ti,j of size 2m × 2m each, where Ti,j consists of the
square submatrix of T of size 2m× 2m that has its top-left corner at position (im, jm) in T .
Hence Ti,j and Ti+1,j+1 overlap over a region of T of size m×m, Ti,j and Ti,j+1 overlap over
a region of size 2m×m, Ti,j and Ti+1,j overlap over a region of size m× 2m;
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– the algorithm for the case n = 2m is then used on each of the N/M pairs (Ti,j , P ) of text
and pattern. It is easy to see that these N/M answers together contain a description of the
desired matrix C. The overall time complexity to compute them is O((N/M)kM logM) =
O(kN logM), as required.

Therefore, we henceforth assume that n = 2m.
The extension of the one-dimensional solution to two dimensions works by transforming the two-

dimensional problem into a one-dimensional one [6], and in the process introduces “never match”
symbols: that is, if Σ is the alphabet for the two-dimensional problem, then the corresponding
alphabet for the one-dimensional problem is Σ ∪ {#} where # is a “never match” symbol in the
sense that, if x or y (or both) equal # then δx,y = 0 as a convention.

More specifically, from the text matrix T of size 2m × 2m, we create the corresponding text
vector V by concatenating the rows of T . Thus V has length 4m2. From the pattern matrix P of
size m×m, we create a pattern vector W of length 2m2 by augmenting each of the rows of P by
appending to the end of each of them m symbols # and then concatenating the augmented rows.
Let K be the score vector with V as text and W as pattern, i.e.,

Ki =
2m2−1∑
j=0

δVi+j ,Wj

for 0 ≤ i ≤ 2m2 and with the understanding that δx,y is zero if either x or y equals the special
symbol #.

The connection between K and the score matrix C for text T and pattern P is now given by

ci,j = K2m(i−1)+j .

Therefore, computing the matrix C reduces to computing the vector K. The computation is not
much more complicated by the presence of the new, special # symbol: we simply follow the rules of
Algorithm MC except that, at the place where the algorithm requires to create ωΦ(t) (resp. ω−Φ(p)),
we only do so if t (resp. p) is not the # symbol, and we create a 0 instead if t (resp. p) is the #

symbol. Hence we use the weighted model introduced in the previous section, with the weight
functions

f(a) = g(a) = 1

for any letter a ∈ Σ except from
f(#) = g(#) = 0.

Lemmata 1 and 2 simply lead to the following theorem.

Theorem 3. For the two-dimensional version of the problem, an estimate Ĉ for the score array C
between a text array of size n× n (for n2 = N) and a pattern array of size m×m (for m2 = M)
can be computed by a Monte-Carlo algorithm in deterministic time O(kN logM) with mean and
variance

E
(
Ĉ
)
= C and Var (ĉi,j) ≤

(M − ci,j)
2

k
.

String Matching with Classes. Let av be letters in an alphabet. By a class [a1 . . . ar] we mean
a new symbol that matches any of the letters av. In particular, letters can be viewed as classes: the
classes consisting in a single letter. Another special class is the full class, i.e., the class consisting
of the whole alphabet.
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We first restrict to allowing classes in either the text or the pattern. Without loss of gen-
erality, we focus on classes in patterns. Each symbol pj in a pattern P = p0 . . . pM−1 is now a
class [pj,1 . . . pj,rj ]. We modify our algorithm by replacing each class pj in the pattern by

rj∑
v=1

w(pj,v)ω
−Φ(ℓ)(pj,v)

while creating P (ℓ). The convolution vector C(ℓ) is thus

c
(ℓ)
i =

M−1∑
j=0

rj∑
v=1

w(pj,v)ω
Φ(ℓ)(ti+j)ω−Φ(ℓ)(pj,v),

so that the modified algorithm still has the same time and space complexities. For mean and
variance analyses, we once again generically consider the random variable

s =

M−1∑
j=0

rj∑
v=1

w(pj,v)ω
Φ(tj)ω−Φ(pj,v).

By the linearity of the mean, we have

E(s) =

M−1∑
j=0

rj∑
v=1

w(pj,v)δtj ,pj,v .

For the variance analysis, we mentally replicate rj times each tj in the text, while mentally replacing
each pj by pj,1 . . . pj,rj in the pattern. We are thus led to two strings of length M ′ =

∑
j rj , whole

convolution yields the same score as above. This yields the following theorem.

Theorem 4. When allowing classes in the pattern, an estimate Ĉ for the score C between a text
string of length N and a pattern string p = p0 . . . pM−1 of length M for classes pj = [pj,0 . . . pj,rj ]
can be computed by a Monte-Carlo algorithm in deterministic time O(kN logM) with mean and
variance

E
(
Ĉ
)
= C and Var(ĉi) ≤

||h||2∞(M ′ − ci)
2

k
for M ′ =

M∑
j=1

rj ≥ M.

So far, we have only weighted letters uniformly with respect to positions in the text and in
the pattern, by the weight function w. It is additionally possible to weight letters within a class,
allowing different weights for the same letter according to its position in the text or in the pattern:
let us denote by [

r∑
i=1

piai

]
the weighted class consisting of the letters ai’s weighted by the pi’s. This notion extends that of
classes, since we have [

r∑
i=1

ai

]
= [a1 . . . ar].
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INPUT: a text T = t0 . . . t2M−1 and a pattern P = p0 . . . pM−1 where the ti’s and
the pi’s are letters from Σ ∪ {*};
OUTPUT: an estimate for the score vector C.

1. Replace all * by # in both the text and the pattern, and apply Algorithm MC;
this matches letters in the text against letters in the pattern;

2. replace all * by u and all letters by # in the text, and all letters by u and all *
by # in the pattern, and apply Algorithm MC; this matches “always match”
symbols in the text against letters in the pattern;

3. replace all letters by u and all * by # in the text, and all * by u and all letters
by # in the pattern, and apply Algorithm MC; this matches letters in the text
against “always match” symbols in the pattern;

4. replace all * by u in both the text and the pattern and all letters by #, and
apply Algorithm MC; this matches “always match” symbols in the text against
“always match” symbols in the pattern;

5. add the four estimates previously obtained and return the sum as the result
of the algorithm.

Figure 3: Algorithm MC with “Always Match” Symbols

As another example, the pi’s can be viewed as probabilities when the pi’s add up to 1. It is then
possible to allow classes both in the pattern and in the text, and to get a consistent interpretation
for this: for a second weighted class [

s∑
i=1

qibi

]
,

we define the match between both classes to be

r∑
i=1

s∑
j=1

piqjδai,bj .

In this probabilistic interpretation, the score counts the matches according to the probability of
occurrence of each letter in each class. Algorithmically, computing this score by Algorithm MC is
achieved by using f to encode the pi’s and g to encode the qi’s.

“Never Match” and “Always Match” Symbols. To allow more flexible string matching on
a given alphabet Σ and achieve a better accuracy of the estimates, we adjoin two new special
symbols, a “never match” symbol # and an “always match” symbol *.

The “never match” symbol # was already introduced in the previous section. It corresponds to
a symbol that nevers matches any other letter; in other words, it satisfies δa,# = δ#,a = 0 for any
letter a ∈ Σ. It may simultaneously be used in the pattern and in the text and the weighted model
extends to this new symbol by simply assuming

f(#) = g(#) = 0.

Working with the extended alphabet Σ∪{#} does not change the analysis of the previous sections.
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The “always match” symbol * corresponds to a symbol that matches any other letter; in other
words, it satisfies δa,* = δ*,a = 1 for any letter a ∈ Σ. It may simultaneously be used in the pattern
and in the text and the weighted model extends to this new symbol by simply assuming

f(*) = 1 and g(*) = w(*).

In this respect, it is very much like the full class (the class consisting of all the elements of the
alphabet). Still, it is of a different nature, differing in the way weights are dealt with. Only as an
exception, both notions share the same semantics in the simple case when no weights are used, i.e.,
when matches are counted by 1’s and mismatches by 0’s (w = 1). As a convention, the “always
match” symbol matches itself; whether “always match” and “never match” symbols match each
other is irrelevant in the sequel. In all the cases, we get an algorithm that is only four times slower
to yield sharper estimates. This algorithm is based on four applications of our algorithm in the
following way. Let u be a new symbol, which we adjoin to the alphabet and view as a letter (i.e.,
it only matches itself).

As an optimization, steps 2 and 3 of the algorithm could be avoided when “always match”
symbols are not used in the text (and when “never match” symbols do not match “always match”
symbols). In this case, one would simply count the number of “always match” symbols in the
pattern, and add the corresponding contribution to the result. The algorithm then only requires
twice as much time as the original algorithm MC.

Noting that steps 2, 3 and 4 yield exact estimates makes the analysis of the algorithm easy, and
we obtain the following theorem.

Theorem 5. When allowing “never match” and “always match” both in the text and in the pattern,
an estimate Ĉ for the score C between a text string of length N and a pattern string of length M
can be computed by a Monte-Carlo algorithm in deterministic time O(kN logM) with mean and
variance

E
(
Ĉ
)
= C and Var(ĉi) ≤

||h||2∞(M − ci)
2

k
.

To compare the analyses obtained when using the “always match” symbol * or the full class,
consider the extreme case of a pattern consisting of M symbols * (and disallow # in the text). The
variance obtained by Theorem 5 is then zero, since ci = M for all i. Now, consider a pattern made
of M copies of the full class. The variance obtained by Theorem 4 is now

||h||2∞(σ − 1)2M2

k

where σ is the cardinality of the alphabet. Consequently, the use of the full class introduces a
lot of noise for a not too small alphabet, due to the randomization of the algorithm. To achieve
reasonable variances anyway then requires a number k of iterations of the algorithm of the order
of σ2, thus to increase the time complexity. The same phenomenon arises in fact for all “large”
classes, i.e., classes with cardinality close to σ; this motivates the next section.

Class Complements. Allowing “large” classes in the pattern or in the text yields large variances,
as described by the formulae in Theorem 4. To avoid this, it can be advantageous in some cases to
describe each “large” class as the complement of a “small” class: for a class [a1 . . . ar], we introduce
a new symbol [a1 . . . ar] that matches any letters but the av’s. As we previously did for classes, we
allow class complements in the patterns only, in order to get a sensical interpretation. Moreover,
we deal with a non-weighted alphabet. In this case, the match of a letter b against the class
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INPUT: a text T = t0 . . . t2M−1 and a pattern P = p0 . . . pM−1 where the ti’s and
the pi’s are letters from Σ ∪ {*}, classes or class complements over Σ;
OUTPUT: an estimate for the score vector C.

1. Replace all * by # and each class complement [a1 . . . ar] by the weighted
class [

∑r
i=1−ai] in both the text and the pattern, and apply Algorithm MC;

2. replace all * and all class complement by u and all letters by # in the text,
and all letters by u and all * and all class complement by # in the pattern,
and apply Algorithm MC;

3. replace all letters by u and all * and all class complement by # in the text,
and all * and all class complement by u and all letters by # in the pattern,
and apply Algorithm MC;

4. replace all * and all class complement by u in both the text and the pattern
and all letters by #, and apply Algorithm MC;

5. add the four estimates previously obtained and return the sum as the result
of the algorithm.

Figure 4: Algorithm MC with Class Complements

complement [a1 . . . ar] is counted by the match of b against * minus the match of b against [a1 . . . ar].
This yields the following algorithm, where class complements are basically viewed as “always match”
symbol and a correcting contribution is removed at Step 1.

Theorem 4 still holds after replacing “classes” by “classes and class complements”.

5 Implementation and Experimentation

We have implemented and tested our algorithm, performing several experiments on several types of
data: randomly generated text, sequenced genes, domains in proteins, literature in several natural
languages, and MIDI encoding of classical music. What is observed is in excellent agreement of the
experiments with the phenomena predicted by the theory: the algorithm returns accurate results as
soon as the pattern is sufficiently large (typically, of size M larger than 32 or 64 bytes), even for a
small value of the parameter k that controls the number of repetitions in the algorithm. Typically,
a number of k = 3 repetitions suffices for small values of M , and k = 1 already yields reliable
results for patterns of size M = 256 or more if we disregard the scores that correspond to more
than 20 percent of estimated mismatch.

Randomly Generated Text. In order to demonstrate the accuracy of the approximations of our
algorithm, a first experiment was performed with randomly generated text and pattern according
to a Bernoulli model. Specifically, a text of 8192 bytes was drawn at random according to the
uniform distribution over the ASCII alphabet. The first 4096 bytes were picked, and a pattern
was obtained by modifying them at random, so as to keep 4042 matches. For this case, the
parameters are N = 2M = 8192, σ = 256, and we performed the algorithm for k = 1, 2, and 3.
We obtained and compared the estimated scores with the corresponding exact scores. Apart from
the almost complete match with exact score 4042, all other positions have an exact score less
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than or equal to 59. The almost complete match is detected by an estimated score with an error
of less than 0.2 percent. Additionally the program behaves well on all other shifts, with scores
that were not overestimated by more than a factor of 5: all other estimated scores are not more
than 5× 60 = 300, which is much less than 4096.

Classical Music. The next experiment shows that that the accuracy of the algorithm is preserved
in the case of small patterns in a real-life application: we considered the search for approximate
occurrences of a clarinet theme in Beethoven’s Fifth Symphony. The experiment consists in selecting
a theme from the symphony and searching for slices in the whole musical piece that are similar to
this theme. The datas are MIDI code, and the length of the selected theme is M = 128, so that we
set N = 2M = 256, σ = 128, and we ran the algorithm for k = 1, 2, and 3. A threshold of λ = 0.5
was used in order to filter out approximate matches (i.e., the program outputs only those matches
with c ≥ λM). Here are selected parts of the output for k = 3, sorted by decreasing scores:

estd = 1.000000; exact= 128/128 = 1.000000; ratio=1.000000

********************************************************************************************************************************

estd = 0.753018; exact= 88/128 = 0.687500; ratio=1.095299

-****-***-****-***-****-****-****-***-****-***-****-***-****-****--***--**--***--**--***--**--***--***--***--***--***--***-****-

estd = 0.550580; exact= 70/128 = 0.546875; ratio=1.006775

------------------*----*-*--*-****-***-****-***-****-***-****-*--*-****-***--***-***--***-***--***-*-**--***-****--***-*--**---*

estd = 0.507331; exact= 69/128 = 0.539062; ratio=0.941137

*-****-***-****-***-*--*-*--*-****-***-****-***-****-***-*--*-*--*--***-***--***-***--***-***--***-*--*----*-*------------------

estd = 0.568381; exact= 65/128 = 0.507812; ratio=1.119273

-****-***-****-***-****-****-****-***-****-***-****-***-****-**----***--**---**--**---**--**----*--*---------*------------------

estd = 0.526136; exact= 61/128 = 0.476562; ratio=1.104024

*******************-*--*-*-----------*******************-*--*-*-----------*--***-***--***-****---***----------------------------

Each block corresponds to a slice of the text which approximately matches the theme. For each
block, the field estd gives the estimated score ĉi/M , the field exact gives the exact score ci/M ,
and the field ratio gives the ratio ĉi/ci. Note the accuracy of the algorithm on this execution: the
ratio ĉi/ci varies little around 1. Each approximate match is illustrated by a string which locates
the matches between musical notes: the symbols * and - represent a match and a mismatch,
respectively. Beside the exact occurrence of the theme (first block), we catch several occurrences
where the pattern and the text almost match during long sequences (next four blocks), as well as
an occurrence where intermediate-sized sequences of exact match are interlaced with sequences of
full mismatch (last block).

Sequenced Proteins. Algorithm MC has a low asymptotical complexity but is not meant to be a
fast practical one. In a last experiment, we propose to evaluate thresholds with respect to the sizeM
of the patterns for which it becomes faster than the other ones. To this end, we have performed the
search of prefixes of a sequenced protein in a protein database using implementations for the naive
algorithm, the “shift-add” algorithm by Baeza-Yates and Gonnet [4], the “counting” algorithm by
Baeza-Yates and Perleberg [5], and our Monte-Carlo algorithm. Although the proteins are encoded
over an alphabet with a few dozens of symbols only, the database also contains various information
and comments, so that we kept the alphabet consisting of all ASCII codes (with σ = 128). Beside
this, we allowed “never match” symbols both in the patterns and in the text, since the protein
database we used contains such “never match” symbols. The patterns used are of size M = 2p for p
from 7 to 12 (from M = 256 to M = 4096).

For each of the algorithms, the observed time complexity closely agrees with the theory. From
numerical regression formulae we obtain that our Monte-Carlo algorithm becomes faster than the
“shift-add” approach for patterns larger than a few hundreds, and faster than the naive algorithm
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beyond roughly twice as large a threshold. This fact that the “shift-add” method is roughly twice
slower than the naive algorithm comes from the large values of M that we used, and does not
contradict the observation in [4] that the “shift-add” method gets three times faster than the naive
algorithm for M < 9. Indeed, this phenomenon stems from the fact that several parameters of
the algorithm can only be packed in the same machine word and processed simultaneously for very
small M .

As far as the “counting” algorithm is concerned, the threshold heavily depends on the parame-
ter fmax. In the experiment, the value observed for fmax was 1/2; indeed, the symbols in the patterns
appear with frequency less than 5% except for one special padding symbol of frequency 1/2. The
threshold obtained in this situation is roughly 2 kB. A simple extrapolation yields the thresholds 12,
150, and 410 kB for values fmax = 1/10, 1/100, and 1/256, respectively. As already mentioned, we
used a soft implementation of FFT which suffers from large constant factors in its time complexity.
Although our algorithm should work better with the FFT step performed by dedicated chips, even
a speed-up of a factor 1000 in our implementation would not yield a threshold lower than 3 kB
for fmax = 1/100.

Acknowledgement. The authors warmly thank Roberto Sierra (bert@netcom.com) who se-
quenced the whole symphony in MIDI code, together with other musical pieces, and made them
freely available on the WEB.
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