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COMPUTING SOLUTIONS OF LINEAR MAHLER EQUATIONS

FRÉDÉRIC CHYZAK, THOMAS DREYFUS, PHILIPPE DUMAS,
AND MARC MEZZAROBBA

Abstract. Mahler equations relate evaluations of the same function f at it-
erated bth powers of the variable. They arise, in particular, in the study of
automatic sequences and in the complexity analysis of divide-and-conquer al-
gorithms. Recently, the problem of solving Mahler equations in closed form
has occurred in connection with number-theoretic questions. A difficulty in the
manipulation of Mahler equations is the exponential blow-up of degrees when
applying a Mahler operator to a polynomial. In this work, we present algo-
rithms for solving linear Mahler equations for series, polynomials, and rational
functions, and get polynomial-time complexity under a mild assumption. Inci-
dentally, we develop an algorithm for computing the gcrd of a family of linear
Mahler operators.

1. Introduction

1.1. Context. Our interest in the present work is in computing various classes of
solutions to linear Mahler equations of the form

(eqn) �r(x)y(x
br) + · · ·+ �1(x)y(x

b) + �0(x)y(x) = 0,

where �0, . . . , �r are given polynomials, r > 0 is the order of the equation, and b ≥ 2
is a fixed integer.

Mahler equations were first studied by Mahler himself in a nonlinear context [17].
His aim was to develop a general method to prove the transcendence of values of
certain functions. Roughly speaking, the algebraic relations over Q̄ between such
values come from algebraic relations over Q̄(x) between the functions themselves.
This direction was continued by several authors. We refer to Pellarin’s introduc-
tion [19] for a historical and tutorial presentation, and to the references therein; see
also Nishioka [18] for a textbook.

Mahler equations are closely linked with automata theory: the generating series
of any b-automatic sequence is a Mahler function, that is, a solution of a linear
Mahler equation; see [10,11]. Mahler functions also appear in many areas at the in-
terface of mathematics and computer science, including combinatorics of partitions,
enumeration of words, and the analysis of divide-and-conquer algorithms.

Very recently, functional relations between Mahler functions have been further
studied with a bias to effective tests and procedures [4–6, 12, 21]. Such studies
motivate the need for algorithms that solve Mahler equations in various classes of
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functions. For instance, testing transcendence of a Mahler series by the criterion
of Bell and Coons [6] requires one to compute truncations of Mahler series to
suitable orders. So does the algorithm by Adamczewski and Faverjon [4, 5] for the
explicit computation of all linear dependence relations over Q between evaluations
of Mahler functions at algebraic numbers. Besides, with Mahler functions being
either rational or transcendental, but never algebraic, solving Mahler equations for
their rational solutions is another natural approach to testing transcendence, and is
an alternative to Bell and Coons’ (see further comments on this in §3.6). Similarly,
the hypertranscendence criterion by Dreyfus, Hardouin, and Roques [12] relies on
determining if certain Mahler equations possess ramified rational solutions.

1.2. Related work. Mahler equations are a special case of difference equations, in
the sense of functional equations relating iterates of a ring endomorphism σ applied
to the unknown function.

Algorithms dealing with difference equations have been widely studied. In par-
ticular, the computation of rational solutions of linear difference equations with
polynomial coefficients in the independent variable x is an important basic brick
coming up repeatedly in other algorithms. Algorithms in the cases of the usual
shift σ(x) = x+ 1 and its q-analogue σ(x) = qx have been given by Abramov [2,3]
for equations with polynomial coefficients: in both cases, the strategy is to compute
a denominator bound before changing unknown functions and computing the nu-
merator as a polynomial solution of an auxiliary difference equation. Bronstein [8]
provides a similar study for difference equations over more general coefficient do-
mains; his denominator bound is however stated under a restriction (unimonomial
extensions) that does not allow for the Mahler operator σ(x) = xb.

Mahler equations can also be viewed as difference equations in terms of the usual
shift σ(t) = t+ 1 after performing the change of variables t = logb logb x. This re-
duction from Mahler to difference equation, however, does not preserve polynomial
coefficients, which means that neither Abramov’s nor Bronstein’s algorithm can be
used in this setting.

There has been comparatively little interest in algorithmic aspects specific to
Mahler equations. To the best of our knowledge, the only systematic study is by
Dumas in his PhD thesis [13]. In particular, he describes procedures for computing
various types of solutions of linear Mahler equations [13, Chapter 3]. However,
beside a few gaps of effectiveness, that work does not take computational com-
plexity issues into account. To a large extent, the results of the present work can
be viewed as refinements of it, with a focus on efficiency and complexity analysis.
More recently, Bell and Coons [6] give degree bounds that readily translate into al-
gorithms for polynomial and rational solutions based on undetermined coefficients.
With regard to series solutions, van der Hoeven [22, §4.5.3] suggests an algorithm
that applies, under hypotheses, to certain equations of the form (eqn) as well as to
certain nonlinear generalizations, and computes the first n terms of a power series
solution in Õ(n) arithmetic operations. At least in the linear case and in analogy
to the case of difference equations, this leaves the open question of an algorithm in
complexity O(n).

1.3. Setting. Our goal in this article is to present algorithms that compute
complete sets of polynomial solutions, rational function solutions, truncated



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

COMPUTING SOLUTIONS OF LINEAR MAHLER EQUATIONS 2979

Table 1. Complexity of the solving algorithms presented in the paper, assuming
�0 �= 0.

Kind of solutions Algorithm Complexity

K[[x]], to order �ν�+ 1 Alg. 4 O(rdv20 + r2 M(v0))
K[[x]], to order n, when r = O(d) Alg. 3 O(rd3 + nrd)

K[x] Alg. 6 Õ(b−rd2 +M(d))

K((x1/N )) Alg. 7 Õ(r2Nd(d+ n))

K((x1/∗)) Alg. 7 Õ(r2brd(d+ n))

K(x), when b = 2 Alg. 9 Õ(d3)

K(x), when b ≥ 3 Alg. 9 Õ(b−rd2)

power series solutions, and truncated Puiseux series solutions of (eqn). More pre-
cisely, let K be a (computable) subfield of C, and suppose �0, . . . , �r ∈ K[x]. Denote

by K((x1/∗)) the field
⋃+∞

n=1 K((x1/n)) of formal Puiseux series with coefficients
in K. Let M denote the Mahler operator of radix b, that is, the automorphism
of K((x1/∗)) that substitutes xb for x and reduces to the identity map on K. Writ-
ing x again for the operator of multiplication of a series by x, M , and x follow the
commutation rule Mx = xbM . Equation (eqn) then rewrites as Ly = 0, where

(opr) L = �rM
r + · · ·+ �0

in the algebra generated by M and x. We are interested in the algebraic complexity
of computing the kernel of L in each of K[x], K(x), K[[x]], and K((x1/∗)).

We always assume that �r is nonzero. Except where otherwise noted, we also
assume �0 �= 0. From a decidability viewpoint, the latter assumption is no loss of
generality thanks to the following result [13, Cor. 6, p. 36].

Proposition 1.1. Given a linear Mahler equation of the form (eqn), one can
compute an equation of the same form, with �0 �= 0, that has exactly the same
formal Laurent series solutions—and therefore, the same polynomial solutions and
the same rational-function solutions.

Note, however, that this result does not say anything about the cost of reducing
to the case �0 �= 0. We give a complexity bound for this step in §4. As it turns
out, this bound often dominates our complexity estimates for the actual solving
algorithms. Let us therefore stress that all other complexity results are stated
under the assumption that �0 is nonzero.

For 0 ≤ k ≤ r, we denote by vk ∈ N ∪ {+∞} and dk ∈ N ∪ {−∞} the valuation
and degree of the coefficient �k. Let d ≥ max0≤k≤r dk. Polynomials are implicitly
represented in dense form so that polynomials of degree d in K[x] have size d+1. All
complexity estimates are given in terms of arithmetical operations in K, which we
denote “ops”. The complexity of multiplying two polynomials of degree at most n
is denoted by M(n); we make the standard assumptions that M(n) = O(n2) and
that n 
→ M(n)/n is nondecreasing.

Given two integers or polynomials a and b, we denote their gcd by a∧b and their
lcm by a ∨ b; we use

∧
and

∨
for nary forms.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

2980 F. CHYZAK, TH. DREYFUS, PH. DUMAS, AND M. MEZZAROBBA

The following identities are used repeatedly in the text. We gather and repeat
them here for easier reference:

�r(x)y(x
br) + · · ·+ �1(x)y(x

b) + �0(x)y(x) = 0,(eqn)

L = �rM
r + · · ·+ �0,(opr)

ν = max
k≥1

v0 − vk
bk − 1

, μ = v0 + ν.(mu-nu)

1.4. General strategy and outline. The article is organized as follows. In §2,
we develop algorithms to compute truncated series solutions of equations of the
form (eqn). We start with an example that illustrates the structure of the solution
space and some of the main ideas behind our algorithms (§2.1). Then, we introduce
a notion of Newton polygons and use it to prove that the possible valuations (resp.,
degrees) of the solutions of (eqn) in K((x1/∗)) (resp., K[x]) belong to a finite set
that we make explicit (§2.2). We compute a suitable number of initial coefficients
by solving a linear system (§2.4), then prove that the following ones can be obtained
iteratively in linear time, and apply these results to give a procedure that computes
a complete set of truncated series solutions (§2.5). Finally, we extend the same ideas
to the case of solutions in K[x] (§2.6) and in K((x1/∗)) (§2.7).

The next section, §3, deals with solutions in K(x). The general idea is to first
obtain a denominator bound, that is, a polynomial q such that Lu = 0 with u ∈
K(x) implies qu ∈ K[x] (§3.1). Based on elementary properties of the action of M
on elements of K[x] (§3.2), we give several algorithms for computing such bounds
(§§3.3–3.4). This reduces the problem to computing a set of polynomial solutions
with certain degree constraints, which can be solved efficiently using the primitives
developed in §2, leading to an algorithm for solving linear Mahler equations in K(x)
(§3.5). We briefly comment on a comparison, in terms of complexity, of Bell and
Coons’ transcendence test and the approach by solving the Mahler equation for
rational functions (§3.6). The net result is that the new approach is faster.

Finally, in §4, we generalize our study to the situation where the coefficient �0
in (eqn) is zero. This makes us develop an unexpected algorithm for computing the
gcrd of a family of operators, which we analyze and compare to the more traditional
approach via Sylvester matrices and subresultants.

2. Polynomial and series solutions

2.1. A worked example. The aim of this section is to illustrate our solving strat-
egy in K[[x]] and K((x1/∗)) on an example that we treat straightforwardly.

In radix b = 3, consider the equation Ly = 0, where

(2.1) L = x3(1− x3 + x6)(1− x7 − x10)M2

− (1− x28 − x31 − x37 − x40)M + x6(1 + x)(1− x21 − x30).

Assume that y ∈ K((x1/∗)) is a solution whose valuation is a rational number v.
The valuations of �kM

ky, for k = 0, 1, 2, are, respectively, equal to 6+ v, 3v, 3+9v.
If one of these rational numbers was less than the other two, then the valuation

of the sum
∑2

k=0 �kM
ky would be this smaller number, and Ly could not be zero.

Consequently, at least two of the three rational numbers 6 + v, 3v, 3 + 9v have to
be equal to their minimum. After solving, we find v ∈ {−1/2, 3}.
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First consider the case v = 3, and write y =
∑

n≥3 ynx
n. For m from 10 to 15,

extracting the coefficients of xm from both sides of 0 = �0y + �1My + �2M
2y, we

find that y3, . . . , y9 satisfy

(2.2)

0 = y3 + y4,
0 = y4 + y5,
0 = − y4 + y5 + y6,
0 = y6 + y7,
0 = y7 + y8,
0 = − y5 + y8 + y9.

More generally, extracting the coefficient of xm yields the relation

(2.3)
(
ym−6 + ym−7 − ym−27 − ym−28 − ym−36 − ym−37

)
−

(
ym

3
− ym−28

3
− ym−31

3
− ym−37

3
− ym−40

3

)
+

(
ym−3

9
− ym−6

9
+ ym−9

9
− ym−10

9
− ym−19

9

)
= 0,

where ys is understood to be zero if the rational number s is not a nonnegative inte-
ger. This equation takes different forms, depending on the residue of m modulo 9:
for example, for m = 20 and m = 42, it reduces to, respectively,

y14 + y13 = 0, y36 + y35 − y15 − 2y14 − y6 − y5 − y4 = 0.

Despite these variations, for any m ≥ 10 the index n = m− 6 is the largest integer
index occurring in (2.3). It follows that for successive m ≥ 10, we can iteratively
obtain yn from (2.3) in terms of already known coefficients of the series. Conversely,
any sequence (yn)n≥3 that satisfies (2.3) gives a solution y =

∑
n≥3 ynx

n of (eqn).
As a consequence, the power series solution is entirely determined by the choice

of y3, and the space of solutions of (eqn) in K[[x]] has dimension one. A basis
consists of the single series

(2.4) x3 − x4 + x5 − 2x6 + 2x7 − 2x8 + 3x9 − 3x10 + 3x11 − 5x12 + · · · .

The other possible valuation, v = −1/2, is not a natural number. To revert to
the simpler situation of the previous case, we perform the change of variables x = t2

followed by the change of unknowns y(t) = ỹ(t)/t. The equation becomes L̃ỹ = 0
with

(2.5) L̃ = (1− t6 + t12)(1− t14 − t20)M2

− (1− t56 − t62 − t74 − t80)M + t14(1 + t2)(1− t42 − t60).

To understand this calculation, remember that M was defined on K((x1/∗)) so that
M(t) = M(x1/2) = x3/2 = t3.

We now expect L̃ to have solutions ỹ =
∑

n≥0 ỹnt
n of valuation 0 and 7 with

respect to t, and the solutions of L̃ with valuation 0 to correspond to the solutions
of L with valuation −1/2. Extracting the coefficients of xm for m from 0 to 24 from
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both sides of L̃ỹ = 0 and skipping tautologies, we find that ỹ0, . . . , ỹ10 satisfy

0 = − ỹ1,
0 = − ỹ0 − ỹ2,
0 = ỹ1 − ỹ3,
0 = ỹ0 − ỹ4,
0 = − ỹ5,
0 = ỹ0 + ỹ2,
0 = ỹ1 + ỹ3,
0 = 2ỹ2 + ỹ4 − ỹ6,
0 = ỹ3 + ỹ5,
0 = ỹ4 + ỹ6,
0 = ỹ1 + ỹ5,
0 = ỹ6 + ỹ8,
0 = − ỹ1 + ỹ7 + ỹ9,
0 = − ỹ2 + ỹ10.

Reasoning as above, we derive that, given ỹ0 while enforcing ỹ7 = 0, there is exactly
one power series solution to L̃. More specifically, when ỹ0 = 1 and ỹ7 = 0, we find
the series

1− t2 + t4 − t6 + t8 − t10 + t12 + · · · .
Hence, there is a 2-dimensional solution space in K((x1/∗)) for the original equa-

tion (eqn), with a basis consisting of the power series (2.4) and the additional
Puiseux series

x−1/2 − x1/2 + x3/2 − x5/2 + x7/2 − x9/2 + x11/2 + · · · .

2.2. Valuations and degrees. Let us assume that y ∈ K((x1/∗)) is a solution
of (eqn) whose valuation is a rational number v. The valuation of the term �kM

ky
is then vk + bkv. Among those expressions, at least two must be minimal to permit
the left-hand side of (eqn) to be 0: therefore, there exist distinct indices k1, k2
between 0 and r such that

(2.6) vk1
+ bk1v = vk2

+ bk2v = min
0≤k≤r

vk + bkv.

This necessary condition for Ly = 0 can be interpreted using a Newton polygon
analogous to that of algebraic equations [23, Sec. IV.3.2-3]: to each monomial
xjMk in L, we associate the point (bk, j) in the first quadrant of the Cartesian
plane endowed with coordinates U and V (see Figure 1). We call the collection of
these points the Newton diagram of L, and the lower (resp., upper) boundary of
its convex hull the lower (resp., upper) Newton polygon of L. That two integers
k1, k2 satisfy (2.6) exactly means that (bk1 , vk1

) and (bk2 , vk2
) belong to an edge E

of slope −v of the corresponding lower Newton polygon.
Given an edge E as above, an arithmetic necessary condition holds in addition to

the geometric one just mentioned: the coefficients of the monomials of L associated
to points of E must add up to zero. We call an edge with this property admissible.

Example 2.1. The lower Newton polygon of the operator (2.1) appears in dashed
lines in Figure 1. It contains two admissible edges, corresponding to the valuations 3
and −1/2.

We get the following criterion, already stated in [13, p. 51] with a slightly different
proof.
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U
0 1 2 3 4 5 6 7 8 9

V

0

10

20

30

40

μ = 9

P0 = (1, v0)
Λ
: V

=
−
νU

+
μ

Figure 1. The Newton diagram of the equation treated in §2.1
for radix b = 3, with corresponding lower Newton polygon (dashed
line) and upper Newton polygon (dotted line)

Lemma 2.2. Let L be defined as in (opr). The valuation v of any formal Puiseux
series solution of (eqn) is the opposite of the slope of an admissible edge of the
lower Newton polygon of L. It satisfies

− vr
br−1(b− 1)

≤ v = −vk1
− vk2

bk1 − bk2
≤ v0

b− 1
,

where (bk1 , vk1
) and (bk2 , vk2

) are the endpoints of the implied edge.

Proof. The fact that v is the opposite of a slope together with its explicit form
follow from (2.6) and the discussion above. There remains to prove the upper and
lower bounds. The leftmost edge of the lower Newton polygon of L provides the
largest valuation, and its slope (vk−v0)/(b

k−1) for some k ≥ 1 is bounded below by
−v0/(b− 1). In the same way, the rightmost edge provides the smallest valuation,
and its slope, of the form (vr − vk)/(b

r − bk) for some k < r, is bounded above by
vr/(b

r − br−1). �

Proposition 2.3. The dimension of the space of solutions of the homogeneous
equation Ly = 0 in K((x1/∗)) is bounded by the order r of L.

Proof. The space of solutions admits a basis consisting of Puiseux series with pair-
wise distinct valuations. The number of possible valuations is bounded by the edge
count of the lower Newton polygon of L, which is at most r. �
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Δ = P ∗
0

Λ∗ = (ν, μ)

Figure 2. The infinite matrix R corresponding to the example
treated in §2.1: solid circles denote nonzero entries, hollow circles
denote recombinations to zero

Remark 2.4. As we will see, the dimension of the solutions in K((x1/∗)) can be
strictly less than r. It is natural to ask how to construct a “full” system of r linearly
independent formal solutions in some larger extension of K(x). We will not pursue
this question here and point to Roques’s work for an answer; see [21, Lemma 20
and Theorem 35] and [20, Theorem 1]. See also Remark 2.18 below.

In analogy with the previous discussion on valuations of solutions, if a Puiseux
series solution of (eqn) involves monomials with maximal exponent δ, then the
expression dk + bkδ must reach its maximum at least twice as k ranges from 0
to r. As we see by the same reasoning as above (or by changing x to 1/x, which
exchanges the lower and upper Newton polygons), −δ is then one of the slopes
of the upper Newton polygon of L. The largest possible value corresponds to the
rightmost edge.

Lemma 2.5. The maximum exponent δ of a monomial in a finite Puiseux series
solution, and in particular the degree of a polynomial solution, is the opposite of
the slope of an admissible edge of the upper Newton polygon. It satisfies

δ = −dk1
− dk2

bk1 − bk2
≤ d

br−1(b− 1)
,

for some k1 �= k2.
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The admissibility of an edge of the upper Newton polygon is defined in analogy
with admissibility in the lower Newton polygon.

2.3. The nonhomogeneous case. One of the proofs of results about Puiseux
series solutions in §2.7 makes use of extended Newton diagrams that take into
account the right-hand side of nonhomogeneous equations.

For L as in (opr) and a Puiseux series �−∞ of valuation v−∞ ∈ Q ∪ {+∞},
consider the nonhomogeneous equation

(2.7) �r(x)y(x
br) + · · ·+ �1(x)y(x

b) + �0(x)y(x) = �−∞(x).

Given a Puiseux series solution y ∈ K((x1/∗)) of this equation, with valuation v ∈ Q,
we define the Newton diagram of (L, �−∞) as the Newton diagram of L, augmented
with all points (0, α) for which xα appears with nonzero coefficient in �−∞. The
notion of a lower Newton polygon extends correspondingly.

As in §2.2, these definitions are motivated by analyzing the minimum of the
valuations vk + bkv of the terms of the left-hand side of (2.7): either this minimum
is equal to v−∞, or it is less than v−∞ and must be reached as least twice on the
left-hand side. In both cases, making the convention that b−∞ = 0, there exist
distinct indices k1, k2, now in {−∞, 0, 1, . . . , r}, such that the analogue

vk1
+ bk1v = vk2

+ bk2v = min
k∈{−∞,0,1,...,r}

vk + bkv

of (2.6) holds. Again, this means exactly that (bk1 , vk1
) and (bk2 , vk2

) belong to an
edge E of slope −v of the lower Newton polygon, now of (L, �−∞).

Depending on v−∞ and v̂ = min0≤k≤r(vk + bkv), the lower Newton polygon
of (L, �−∞) can: be equal to that of L, if �−∞ = 0; add an edge to its left,
if v−∞ > v̂; prolong its leftmost edge, if v−∞ = v̂; or replace some of its leftmost
edges, if v−∞ < v̂. We defined the admissibility of an edge E of the lower Newton
polygon of L in terms of the coefficients of those monomials xvkMk in L associated
to points on E. We extend the definition to edges of the lower Newton polygon
of (L, �−∞) by the convention that, if a point has to be considered for k = −∞,
the corresponding coefficient is the opposite of the coefficient of xv−∞ in �−∞.
Admissibility is again a necessary condition for v to be a possible valuation of a
solution of (2.7).

2.4. Approximate series solutions. We now concentrate on the search for the
power series solutions y(x) = y0 + y1x + · · · ∈ K[[x]] of (eqn). Extracting the
coefficient of xm from both sides of it yields a linear equation for the coefficients yn.
This linear equation can be viewed as a row, denoted Rm, of an infinite matrix R =
R(L).

The matrix R consists of overlapping strips with different slopes. We view its
row and column indices, starting at 0, as continuous variables Y and X with the
Y -axis oriented downwards. Each nonzero term �k(x)M

k then corresponds to ma-
trix entries in the strip bkX + vk ≤ Y ≤ bkX + dk. By definition of vk and dk,
the entries lying on the lines Y = bkX + dk and Y = bkX + vk that delimit the
strip are nonzero, except maybe at intersection points of such lines (obtained for
different k). Because of our assumption that �0 is nonzero, the smallest slope is 1,
obtained for k = 0.

For large Y , the line Y = X + v0 becomes the topmost one, and each row Rm

determines a new coefficient yn uniquely, for n = m − v0. Thus, the power series
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solutions are characterized by a finite subsystem of R. In order to state this fact
more precisely in Proposition 2.6 below, define

(mu-nu) ν = max
k≥1

v0 − vk
bk − 1

, μ = v0 + ν.

In terms of the Newton diagram, ν and μ are, respectively, the opposite of the slope
and the V -intercept of the leftmost edge of the lower Newton polygon. Note that,
as we can deduce from the proof of Lemma 2.2, there is no nonzero power series
solution when ν < 0, which happens if and only if v0 is a strict minimum of all
the vk over 0 ≤ k ≤ r.

Proposition 2.6. Assume that ν ≥ 0. A vector (y0, . . . , y�ν�) is a vector of initial
coefficients of a formal power series solution

(2.8) y = y0 + · · ·+ y�ν�x
�ν� + y�ν�+1x

�ν�+1 + · · ·
of (eqn) if and only if it satisfies the linear system given by the upper left (�μ�+1)×
(�ν�+ 1) submatrix of R. The power series solution (2.8) extending (y0, . . . , y�ν�)
is then unique.

Proof. A series y = y0 + y1x+ · · · is a solution if and only if its coefficients satisfy
the system (Rm)m≥0. Whenever

(2.9) v0 + n < v1 + b1n, . . . , v0 + n < vr + brn,

the row Rv0+n of R is the first one with a nonzero entry of index n. It then
determines yn in terms of y0, . . . , yn−1. Condition (2.9) is equivalent to n > ν,
hence, for any given (yn)0≤n≤ν , there is a unique choice of (yn)n>ν satisfying all
the equations Rm for m > v0+ν = μ. As, when (2.9) holds for a given n, the entries
of index n of Rm with m < v0 + n are zero, the remaining equations (Rm)0≤m≤μ

only involve the unknowns (yn)0≤n≤ν . �
We note in passing the following corollary, which is the essential argument in the

proof of [21, Theorem 22].

Corollary 2.7. In case the leftmost edge of the lower Newton polygon of L lies
on the axis of abscissas and is admissible, (eqn) admits a power series solution of
valuation 0.

Proof. We then have ν = μ = 0, so the only condition to check is that the first
entry of R0 is zero. This is equivalent to the edge being admissible. �

The geometric interpretation of the quantities μ and ν defined by (mu-nu) is a
special case of a general correspondence between the structure of the matrix R and
the Newton diagram of L via the point-line duality of plane projective geometry.
The correspondence stems from the fact that a monomial xjMk of L is associated
both to a point (bk, j) in the Newton diagram and, by considering its action on
powers of x, to the entries of R lying on the line Y = bkX + j. More generally,
under projective duality, each point (U, V ) in the plane of the Newton diagram
corresponds to a line Y = UX + V in the plane of the matrix R, while, conversely,
the dual of a point (X,Y ) is the line V = −XU + Y . A line through two points
(U1, V1) and (U2, V2) corresponds to the intersection of their duals.

In particular, the point P0 = (1, v0) corresponds to the right boundary Δ : Y =
X + v0 of the strip of entries of slope 1 in the matrix R (see Figures 1 and 2). In
the (U, V )-plane, the line containing the leftmost edge of the lower Newton polygon
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Algorithm 1. Matrix R

Input: The linear Mahler equation (eqn). A transformation φ of the
form (2.10). An integer w. A set E = {m0,m1, . . . } of row in-
dices, with m0 < m1 < . . . .

Output: The submatrix RE = (Rm,n)m∈E
0≤n<w

of the infinite matrix R(φ(L)).

(1) Initialize a row-sparse |E| × w matrix RE .
(2) For i = 0, 1, . . . , |E| − 1 and k = 0, 1, . . . , r:

(a) Set B = mi + γ − αbk.
(b) Compute j′0 = β−1B mod bk (with 0 ≤ j′0 < bk).
(c) For j′ = j′0, j

′
0 + bk, j′0 + 2bk, . . . while j′ ≤ dk and βj′ ≤ B:

(i) If βj′ > B − bkw, then add �k,j′ to the coefficient of
index (i, b−k(B − βj′)) of RE .

(3) Return RE .

passes through that point P0 = Δ∗. This line is Λ : V = −νU + μ and corresponds
to the bottommost intersection Λ∗ = (ν, μ) of Δ with the right boundary of another
strip. Below this intersection, the entries of R lying on Δ are the topmost nonzero
entries of their respective columns, and, at the same time, the rightmost nonzero
entries of their respective rows: as already observed, each row Rm then determines
a new yn.

Example 2.8. For the operator L of §2.1, the right boundaries of the strips associ-
ated to the three terms of L have equations Y = X +6, Y = 3X, and Y = 9X +3,
respectively (dotted lines in Figure 2). The first two of them meet at Λ∗ = (3, 9)
(Fig. 2, hollow circle at the bottom right corner of the gray rectangle), and the line
Δ : Y = X + 6 becomes the rightmost line for Y > 9. For m ≥ 10, the row Rm

reflects the relation (2.3). In particular, the existence of a power series solution is
entirely determined by the small linear system that uses the rows R0 to R9 and
the unknowns y0 to y3 (gray rectangle on Figure 2). Solving the system yields
y0 = y1 = y2 = 0 and y3 arbitrary. We then recover the results of §2.1: the space
of solutions of (eqn) in K[[x]] has dimension one, and a basis consists of the single
series (2.4). The V -intercept of the leftmost edge of the lower Newton polygon
is μ = 9, and the corresponding slope is −ν = −3. In this case, it is both the col-
umn dimension of the small system and the valuation of the solution. Observe how
the bottom right sector depicted in light gray corresponds to the system starting
with equations (2.2): as the top left rectangle imposes y0 = y1 = y2 = 0, the dots
on the left of the sector in light gray play no role in the equations.

As we will see, in the situation of Proposition 2.6, the coefficients y�ν�+1 to y�ν�+n

of y can be computed from y0, . . . , y�ν� in O(n) ops for fixed L. This motivates us

to call the truncation to order O(x�ν�+1) of a series solution an approximate series
solution of (eqn).
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2.5. Power series solutions. Our goal at this point is to describe an algorithm
that computes the formal power series solutions of (eqn), truncated to any spec-
ified order. We first explain how to compute the entries of the matrix R. It is
convenient, for expository reasons, to frame this computation as an individual step
that returns a sparse representation of a submatrix of R corresponding to a subset
of the rows. Indeed, in our complexity model dense matrices could not lead to good
bounds. We therefore define a matrix representation to be row-sparse if iterating
over the nonzero entries of any given row does not require any zero test in K. Then,
the algorithm essentially amounts to an explicit expression for the coefficients of
recurrences similar to (2.3), which can as well be computed on the fly.

In view of the computation of ramified solutions (§2.7), Algorithms 1 and 2
accept as input a K-linear transformation φ to be applied to the operator L. In
general, φ will take the form

(2.10) φ(xjMk) = xαbk+βj−γMk, α, γ ∈ Z, β ∈ N>0, β ∧ b = 1,

with α, β, γ chosen such that φ(L) has plain (as opposed to Laurent) polynomial
coefficients. The reader only interested in polynomial, rational, and power series
solutions of L may safely assume φ = id, i.e., α = γ = 0, β = 1.

Lemma 2.9. Algorithm 1 computes the submatrix RE obtained by taking the first w
entries of the rows of R(φ(L)) with index m ∈ E in O

(
(r + d)|E|

)
ops. Each row

of RE has at most r + 2d nonzero entries.

Proof. Write L̃ =
∑r

k=0 �̃k(x)M
k = φ(L). Recall that the row Rm is obtained by

extracting the coefficient of xm in the equality L̃y = 0, where y =
∑

n≥0 ynx
n.

More precisely, Rm,n is the coefficient of ynx
m in the series

L̃y =
r∑

k=0

d∑
j=0

�̃k,jx
j

∞∑
n=0

ynx
bkn =

∞∑
m=0

∞∑
n=0

( ∑
j+bkn=m

�̃k,j

)
ynx

m.

The definition of φ translates into �̃k,j = 0 when j �≡ αbk−γ (mod β), and otherwise

�̃k,j = �k,j′ for j = αbk + βj′ − γ. Therefore, Rm,n is equal to the sum of �k,j′ for
(k, j′) satisfying αbk + βj′ − γ = m − nbk. For fixed m and k, the coefficient �k,j′

only contributes when βj′ ≡ m + γ (mod bk). Its contribution is then to Rm,n

with n = b−k(B − βj′), where B = m + γ − αbk, and we are only interested in
0 ≤ n < w, i.e., B − bkw < βj′ ≤ B. Using the assumption that β is coprime
with b, the condition on βj′ (mod bk) rewrites as j′ ≡ j′0 (mod bk), where j′0 is the
integer computed in step (2)(b). Therefore, the loop (2)(c) correctly computes the

contribution of �̃k to the entries of index less than w of the row Rmi
, and hence the

algorithm works as stated.
The only operations in K performed by the algorithm are one addition and

possibly one comparison (to update the sparse structure) at each loop pass over
step (2)(c)(i). The total number of iterations of the innermost loop for a given i is
at most

r∑
k=0

⌈
dk
bk

⌉
≤ r +

b

b− 1
d ≤ r + 2d

and bounds the number of nonzero entries in the row of index mi. The complexity
in ops follows by summing over i. �
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Algorithm 2. Solutions over prescribed monomial support

Input: A linear Mahler operator L of order r. A transformation φ of the
form (2.10). Integers h,w ∈ N. A set E = {m0, . . . ,mw−1} with
m0 < · · · < mw−1 < h such that the submatrix (Rmi,j)0≤i,j<w

of R(φ(L)) is lower, resp., upper, triangular, with at most r zeros
on the diagonal.

Output: A vector (f1, . . . , fσ) of polynomials of degree less than w.

(1) Construct the row-sparse submatrix SE = (Rmi,j)0≤i,j<w by Algo-
rithm 1.

(2) Compute a basis of kerSE as a matrix G = (Gi,j) ∈ Kw×ρ by
forward, resp., backward, substitution, using the row-sparse struc-
ture.

(3) For 1 ≤ j ≤ ρ, set gj = G0,j + G1,jx + · · · + Gw−1,jx
w−1 ∈ K[x]

and compute the coefficients of Lgj(x) mod xh =
∑

0≤i<h s
′
i,jx

i,

and then form the matrix S′ = (s′i,j) ∈ Kh×ρ.

(4) Compute a basis of kerS′ as a matrix K ∈ Kρ×σ by the algorithm
of Ibarra, Moran, and Hui [16].

(5) Compute F = (Fi,j) = GK ∈ Kw×σ.
(6) Return (f1, . . . , fσ) where fj = F0,j + · · ·+ Fw−1,jx

w−1.

According to Proposition 2.6, the number of linearly independent power series
solutions and their valuations are determined by a small upper left submatrix of R.
As a direct attempt at solving the corresponding linear system would have too high
a complexity (see Remark 2.11), our approach is to first find a set of candidate
solutions, spanning a low-dimensional vector space that contains the approximate
series solutions, and to refine the solving in a second step. Geometrically, the
idea to obtain a candidate solution g = g0 + g1x + · · · is to follow the “profile”
of R (more precisely, the right boundary of the overlapping strips described in the
previous section), using a single equation Rm to try and compute each coefficient gn
from g0, . . . , gn−1. (That is, for each n, we resolutely skip all but one equation
susceptible to determine gn.) By duality, this corresponds to keeping a varying line
of increasing integer slope in contact with the lower Newton polygon, and having
it “pivot” around it. In this process, the only case that potentially leaves a degree
of freedom in the choice of gn is when column n contains a “corner” of the profile,
corresponding to an edge of the Newton polygon. As a consequence, it is enough
to construct at most r independent candidate solutions. The second step then
consists of recombining the candidates in such a way that the equations Rm that
were skipped in the first phase be satisfied.

This strategy is made more precise in Algorithm 2, which will then be specialized
to power series solutions (and later to other types of solutions) by a suitable choice
of E, h, and w. By construction, Algorithm 2 outputs polynomials of degree less
than w that are solutions of a subsystem of the linear system induced by L. These
polynomials need not a priori prolong into actual solutions.
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Lemma 2.10. Algorithm 2 runs in O(rwd + r2w + r2M(h)) ops and returns a
basis of the kernel of the linear map induced by φ(L) from K[x]<w to K[x]/(xh).

Proof. When SE is lower, respectively, upper, triangular, it is possible in step (2)
to compute G by forward, respectively, backward, substitution, in such a way
that SEG = 0. By interpreting the h × w upper left submatrix S of R as the
matrix of a restriction of L to suitable monomial bases, it follows from the defini-
tion of S′ that S′ = SG. Step (4) computes K such that S′K = 0.

The columns of F , computed as GK in step (5), span the kernel of S: Indeed,
assume Sf = 0 so that by selecting rows SEf = 0, and f can be written as Gγ for
some γ. Then, S′γ = SGγ = Sf = 0. But this means that γ = Kη for some η so
that f = GKη = Fη. Conversely, we have SF = SGK = S′K = 0 so that any
vector of the form Fη belongs to kerS.

Additionally, since the columns of G, respectively, those of K, are linearly inde-
pendent, GKη = 0 implies Kη = 0, which implies η = 0. The columns of F = GK
hence form a basis of kerS.

By Lemma 2.9, step (1) takes O(w(r + d)) ops. The number of nonzero entries
in each row of SE is bounded by r + 2d by Lemma 2.9, hence the cost of comput-
ing ρ linearly independent solutions by substitution at step (2) is O(ρw(r + d)).
As no more than r of the diagonal entries of SE are zero, ρ is at most r. The
computation of each column of S′ in step (3) amounts to adding r + 1 products of
the �k by the MkSi, truncated to order h, for a total of O(r2M(h)) ops. As ρ ≤ r,
computing the kernel of S′ in step (4) via an LSP decomposition (a generalization
of the LUP decomposition) requires O(hrω−1) = o(r2M(h)) ops [16]. Finally, the
recombination in step (5) takes O(wrω−1) = o(r2w) ops as σ ≤ ρ ≤ r. �

Remark 2.11. Note that a direct attempt to solve S, when, say, φ = id and w =
O(d), would result in a complexity O(dω) (e.g., using the LSP decomposition), as
opposed to O(d2) when using Algorithm 2 and disregarding the dependency in r.

Let ṽk be the valuation of the coefficient �̃k of φ(L) =
∑

k �̃k(x)M
k. In analogy

with (mu-nu), define

(2.11) ν̃ = max
k≥1

ṽ0 − ṽk
bk − 1

, μ̃ = ṽ0 + ν̃.

We now specialize the generic solver to the computation of approximate series
solutions (in the sense of the previous subsection) of φ(L). The case φ = id is
formalized as Algorithm 4 on page 2992.

Proposition 2.12. Assume ν̃ ≥ 0. Algorithm 2, called with

h = �μ̃�+ 1, w = �ν̃�+ 1, E =
(
min
k

(ṽk + nbk)
)
0≤n<w

,

runs in O(rdṽ0 + r2 M(ṽ0)) ops and returns a basis of approximate series solutions
of the equation φ(L) y = 0.

Proof. First of all, when m = mi ∈ E, none of the terms �̃kM
k of φ(L) contributes

to the entries of S located above Sm,n. The matrix SE is thus lower triangular.
In addition, Rm,n is zero (if and) only if −n is an (admissible) slope of the lower
Newton polygon so that no more than r of the diagonal entries of SE are zero.
Both preconditions of Algorithm 2 are therefore satisfied. By Proposition 2.6 and
Lemma 2.10, it follows from the choice of h and w that the fj form a basis of
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Algorithm 3. Prolonging an approximate series solution to any order.

Input: A linear Mahler operator L of order r. A transformation φ of the
form (2.10). A polynomial ŷ = y0+· · ·+y�ν̃�x

�ν̃� such that φ(L) ŷ =

O(x�μ̃�+1), for ν̃ and μ̃ defined by (2.11). An integer n.
Output: A polynomial y0 + · · ·+ y�ν̃�+nx

�ν̃�+n.

(1) Use Algorithm 1 with E = {�μ̃�+1, . . . , �μ̃�+n}, h = �μ̃�+n+1,
and w = �ν̃�+ n+ 1 to construct a submatrix RE of R.

(2) Solve RE (y0, . . . , y�ν̃�+n)
T = 0 for y�ν̃�+1, . . . , y�ν̃�+n by forward

substitution, starting with the coefficients y0, . . . , y�ν̃� given on in-
put.

(3) Return y0 + · · ·+ y�ν̃�+nx
�ν̃�+n.

approximate series solutions. Using the inequalities h ≤ bv0/(b − 1) + 1 = O(ṽ0)
and w ≤ v0/(b−1)+1 = O(ṽ0) in the formula of Lemma 2.10, the total complexity
is as announced. �

Given an approximate series solution, the next terms of the corresponding series
solutions can be computed efficiently one by one using simple recurrence formulae.

Proposition 2.13. Given an approximate series solution ŷ = y0 + · · · + y�ν̃�x
�ν̃�

of (eqn), Algorithm 3 computes the truncation to the order O(x�ν̃�+n) of the unique
solution y of (eqn) of the form y = ŷ +O(x�ν̃�+1) in O((r + d)n) ops.

Proof. By Proposition 2.6, the system to be solved at step (2) is compatible. Ac-
cording to the description of R provided above, the submatrix (Rm,n)m>�μ̃�,n>�ν̃�
is lower triangular, with nonzero diagonal coefficients, so that the system can be
solved by forward substitution. As explained in §2.4, the output is a truncation of
a solution of φ(L). By Lemma 2.9, the cost in ops of step (1) is O((r + d)n), and
each row of S contains at most r + 2d nonzero entries. Therefore, step (2) costs
O((r + d)n) ops. �

2.6. Polynomial solutions. Our goal in this subsection is Algorithm 6, which
computes a basis of all polynomial solutions. Lemma 2.5 provides us with an upper
bound d/(br−br−1)+1 = O(d/br) for the degree of any polynomial solution. Before
we take this into account, we provide an algorithm to compute polynomial solutions
with degree bounded by w ≥ 0, which runs in a complexity that is sensitive to w.

In the same way as in Proposition 2.12, to obtain candidate polynomial solutions
f = f0 + · · · + fw−1x

w−1, we set fn = 0 for n ≥ w and then compute fn for
decreasing n by “following” the “left profile” of the matrix R (or, dually, the upper
Newton polygon). The corresponding specialization of Algorithm 2 is formalized
as Algorithm 5.

Proposition 2.14. Assume ν ≥ 0. Algorithm 2, called with φ = id and

(2.12) h = d+ (w − 1)br + 1, E =
(
max

k
(dk + nbk)

)
0≤n≤w

,
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Algorithm 4. Approximate series solutions

Input: A linear Mahler operator L of order r.
Output: A basis (f1, . . . , fσ) of approximate series solutions of L.

Let μ, ν be as defined by (mu-nu). If ν < 0, return (). Otherwise, call
Algorithm 2 with φ = id,

h = �μ�+ 1, w = �ν�+ 1, E =
(
min
k

(vk + nbk)
)
0≤n<w

,

and return the result.

Algorithm 5. Polynomial solutions of bounded degree

Input: A linear Mahler operator L of order r. An integer w ∈ N.
Output: A basis (f1, . . . , fσ) of the polynomial solutions of L of degree less

than w.

Let μ, ν be as defined by (mu-nu). If ν < 0, return (). Otherwise, call
Algorithm 2 with φ = id,

h = max
k

dk + (w − 1)br + 1, w, E =
(
max

k
(dk + nbk)

)
0≤n<w

,

and return the result.

Algorithm 6. Basis of polynomial solutions

Input: A linear Mahler operator L of order r.
Output: A basis (f1, . . . , fσ) of all polynomial solutions of L.

Call Algorithm 5 with w =
⌊

maxk dk

br−1(b−1)

⌋
+ 1 and return the result.

returns a basis of the space of polynomial solutions of (eqn) of degree less than w.

For w = O(d/br), the algorithm runs in Õ(wd+M(d)) ops.

Proof. The proof is similar to that of Proposition 2.12: the extracted submatrix
of R is now upper triangular; the zeros on its diagonal correspond to the admissible
nonpositive integer slopes of the upper Newton polygon; the number of such zeros
is not more than r. Both preconditions of Algorithm 2 are therefore satisfied and
Lemma 2.10 applies. Additionally, the choice of h in terms of w is such that
deg(Ly) < h whenever deg y < w for a polynomial y. So, the basis returned is that
of the kernel of the map induced by L from K[x]<w to K[x], as announced.

For the complexity result, the hypothesis on w implies h = O(d) and r =

O(logb d) so that the conclusion of Lemma 2.10 specializes to Õ(wd+M(d)) ops. �
Remark 2.15. The loose bound on w, namely w = O(d/br), permits, in particular,
one to obtain a result when d is not the maximal degree of the �k, but only bounds
them up to a multiplicative constant. In this case, the complexity announced by
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Proposition 2.14 specializes to the same complexity as in Corollary 2.16. This will
be used for the numerators of rational-function solutions in §3.5.

By Lemma 2.5, the degree of any polynomial solution is bounded above by
δ0 = d/(br − br−1) + 1. Specializing Proposition 2.14 to w = �δ0�, we obtain a
bound for the complexity of computing the whole space of polynomial solutions.

Corollary 2.16. Assuming ν ≥ 0, Algorithm 2, called with φ = id,

h = 3d+ 1, w =
⌊ d

br−1(b− 1)

⌋
+ 1, E =

(
max

k
(dk + nbk)

)
0≤n≤w

,

computes a basis of the polynomial solutions of (eqn) in Õ(d2/br +M(d)) ops.

Proof. Observe that the choice for w induces that h, as defined in Algorithm 6,
satisfies h ≤ 3d+ 1. The result follows from this fact and w = O(d/br). �

2.7. Puiseux series solutions. We now discuss the computation of solutions
of (eqn) in K((x1/∗)). Even though Proposition 1.1 does not apply, we still as-
sume that the coefficient �0 of L is nonzero. There is no loss of generality in doing
so: if L = L1M

w for some w ∈ N, then the Puiseux series solutions of L are exactly

the y(xb−w

) where y ranges over the Puiseux series solutions of L1. Additionally,
the order of L1 is bounded by that of L so that the complexity estimates depending
on it will still hold (and equations of order zero that result from the transformation
when r = w have no nontrivial solutions).

The computation of solutions y ∈ K((x1/N )) with a given ramification index N is
similar to that of power series solutions. In order to compute a full basis of solutions
in K((x1/∗)), however, we need a bound on the ramification index necessary to
express them all. Lemma 2.17, communicated to us by Dreyfus and Roques, and
Proposition 2.19 below provide constraints on the possible ramification indices.

Lemma 2.17. If y ∈ K((x1/∗)) is a Puiseux series such that Ly ∈ K((x1/q′)),
where q′ is coprime with b, then y ∈ K((x1/q)) for some q coprime with b.

Proof. Let q0 be the smallest positive integer such that y ∈ K((x1/q0)). Set g = q0∧b
and q′′ = q0/g so that My ∈ K((xb/q0)) ⊂ K((x1/q′′)). The expression

y = �−1
0

(
Ly − (�1 + · · ·+ �rM

r−1)My
)

shows that y ∈ K((x1/q1)), where q1 = q′q′′. By minimality of q0, we have q1 = kq0
for some k ∈ N, which simplifies to q′ = kg. Since q′ was assumed to be coprime
with b, this implies g = 1. �

Remark 2.18. Some non-Puiseux formal series solutions of Mahler equations with
�0 �= 0 do involve ramifications of order divisible by b: perhaps the simplest example,

akin to [9, p. 64] (see also [1]), is y = x1/b + x1/b2 + x1/b3 + · · · , which satisfies
(M − xb−1)(M − 1) y = 0.

The following proposition formalizes, as a consequence of Lemma 2.17 and the
properties of Newton polygons discussed in §2.2, that no ramification is needed
beyond those present in the candidate leading terms given by the Newton polygon.
Call N the lower Newton polygon of L, and let Q denote the set of denominators q
of slopes (written in lowest terms) of admissible edges of N such that q ∧ b = 1.
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Proposition 2.19. Any Puiseux-series solution y of Ly = 0 belongs to V =∑
q∈Q K((x1/q)). In particular, the space of solutions of L in K((x1/∗)) is con-

tained in K((x1/N )), where N ≤ br − 1 denotes the lcm of the elements of Q.

Proof. Let y ∈ K((x1/∗)) satisfy Ly = 0, and suppose by contradiction that y con-
tains a nonzero term of exponent p1/q1, where p1 ∧ q1 = 1 and q1 does not divide
any element of Q. Choose p1/q1 minimal with these properties. Write y = y0 + y1,
where y0 consists of the terms of y with exponent strictly less than p1/q1 so that
y0 ∈ V and y1 has valuation p1/q1. Then g = Ly0 belongs to V so that there exists

q′ ∈ N for which q′ ∧ b = 1 and g ∈ K((x1/q′)). Since Ly1 = −g, Lemma 2.17
implies that y1 ∈ K((x1/q)) for some q coprime with b. In particular, q1 is coprime
with b.

Since p1/q1 is the valuation of a solution of the equation Lz = −g, its oppo-
site s = −p1/q1 is the slope of an admissible edge E of the lower Newton poly-
gon Ng of (L,−g) (see §2.3). On the other hand, because of the definition of Q
and the properties q1 ∧ b = 1 and q1 �∈ Q, the edge E cannot be an edge of N .
Therefore, by the description in §2.3, g must be nonzero and the edge E must be
the leftmost edge of Ng. The valuation of g ∈ V is thus a rational number p0/q0
(not necessarily in lowest terms) with q0 ∈ Q so that, in particular, q0 ∧ b = 1. As
s is the slope of E in Ng, it is of the form (q0vk−p0)/(q0b

k) for some k ∈ {0, . . . , r}.
Then, q1 divides q0b

k. As it is coprime with b, this implies that q1 divides q0 ∈ Q,
a contradiction. We have proved that y belongs to V .

Next, it is clear that V is contained in K((x1/N )). Finally, letting (bki , vi) denote
the vertices of N (sorted from left to right as i increases), the lcm N satisfies
N ≤

∏
i(b

ki+1−ki − 1) < br, as claimed. �

Remark 2.20. The bound N < br is tight, as shown by the example of Mr − x,
which admits the solution x1/(br−1).

In order to obtain an algorithm that computes a basis of the space of Puiseux
series solutions, there remains to generalize the results of §§2.4–2.5 to the case of
solutions lying in K((x1/N )) where N is given. Motivated by the structure of the
space V described in Proposition 2.19, here we do not require that N be equal to
the lcm of all elements of Q: setting it to the lcm of any subset of these elements
also makes sense. For the most part, the algorithms searching for power series
solutions apply mutatis mutandis when the indices m and n are allowed to take
negative and noninteger rational values. Nevertheless, some care is needed in the
complexity analysis, so we explicitly describe a way to reduce the computation of
ramified solutions of L to that of power series solutions of an operator L̃.

Denote x = tβ, and consider the change of unknown functions y(x) = tαz(t), for
α ∈ Z and β ∈ N>0 to be determined. Observe that Mt = tb. If y(x) is a solution
of Ly = 0, then z(t) is annihilated by

L̃ = t−γL tα = t−γ
r∑

k=0

tαb
k

�k(t
β)Mk =

r∑
k=0

�̃k(t)M
k,

where γ ∈ Z can be adjusted so that the �̃k belong to K[t]. We then have L̃ = φ(L),
where φ is the K-linear map, already introduced in §2.5, that sends xjMk to

(2.13) φ(xjMk) = t−γtβjMktα = t−γ+βj+αbkMk.
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Figure 3. The transformation in Example 2.22 puts the edge
with slope 1/2 of the lower Newton polygon of L (left) onto the

U -axis (Newton polygon of L̃, right).

Viewing monomials xjMk as points in the plane of the Newton diagram, the map φ
induces an affine shearing

(2.14) [φ] :

(
bk

j

)

→

(
1 0
α β

) (
bk

j

)
+

(
0
−γ

)
.

As in §2.5, denote by ṽk and d̃k the valuations and degrees of the coefficients of L̃,
and by μ̃ and ν̃ the quantities defined by (mu-nu) with vk replaced by ṽk.

Lemma 2.21. Fix an edge S0 of the lower Newton polygon of L, of slope −p/q
for (not necessarily coprime) p ∈ Z and q ∈ N. Let c be the V-intercept of the line
supporting S0. Set α = p, β = q, and γ = qc in (2.13). Then:

(a) the operator L̃ = φ(L) has polynomial coefficients;

(b) its Newton diagram is the image of that of L̃ by [φ], with the edge S0 being
mapped to a segment of the U-axis;

(c) in terms of those of L, the parameters associated to L̃ satisfy

d̃k = −qc+ pbk + qdk ≥ ṽk = −qc+ pbk + qvk ≥ 0,

ν̃ = qν − p ≥ 0, μ̃ = q(μ− c) ≥ 0.

Proof. Observe that qc is equal to the common value on S0 of pU + qV . Since the
endpoints of S0 have integer coordinates, this value is an integer, and hence the
coefficients of L̃ are Laurent polynomials. The transformation [φ] of the Newton
plane maps segments of slope s to segments of slope (α+ βs)/(1 + 0 · s) = p+ qs,
and in particular maps S0 to a horizontal segment. By the choice of c, that segment
lies on the U -axis. Since q > 0, images by [φ] of points above S0 lie above [φ](S0).
As monomials of L correspond to points lying on or above S0, their images by φ are
monomials of nonnegative degree. This proves assertion (a). It follows that L̃ has
a Newton diagram in the sense of our definition, and it is then clear this Newton
diagram is as stated by (b). The expressions of ṽk and d̃k in (c) are a consequence
of (2.13), again using the positivity of β. Those of ν̃ and μ̃ follow. We already
observed that ṽk ≥ 0. Finally, −ν̃ and μ̃ are, respectively, the slope and V-intercept
of the leftmost edge of the lower Newton polygon Ñ of L̃. Since Ñ has a horizontal
edge, ν̃ and μ̃ are nonnegative. �
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Algorithm 7. Solving a Mahler equation in K((x1/N ))

Input: A linear Mahler operator L as in (opr). A ramification index
N ∈ N>0. A truncation order n ∈ N.

Output: A vector (ŷ1, . . . , ŷσ) of truncated Puiseux series.

(1) Compute the slope s and V -intercept c of the rightmost admissible
edge of the lower Newton polygon of L with slope in N−1Z.

(2) Define φ and L̃ = φ(L) according to (2.13), with α = −Ns, β = N ,
and γ = Nc.

(3) Call Algorithm 2 on L and φ, with

h = �μ̃�+ 1, w = �ν̃�+ 1, E =
(
min
k

(ṽk + nbk)
)
0≤n<w

,

where μ̃, ν̃, and ṽk are given by Lemma 2.21(c), to compute a vector

(f1, . . . , fσ) of approximate power series solutions of L̃z = 0.
(4) For i = 1, . . . , σ, call Algorithm 3 to compute

ñ = max(0, N(s+ n)− �ν̃�)
additional terms of fi, thus extending it to a truncated power series
solution ẑi = z0 + · · ·+ zN(s+n)x

N(s+n) of L̃.

(5) Return (ŷ1, . . . , ŷσ), where ŷi = z0x
−s + z1x

−s+1/N + · · · +
zN(s+n)x

n.

Example 2.22. Consider again the Mahler operator L in (2.1) treated for b = 3
in §2.1. We already observed that the slopes of the Newton polygon of L are
−3 and 1/2 and that they are admissible, and, in §2.1, we performed the trans-
formation (2.13) for the parameters α = −1, β = 2, and γ = −3 to obtain the

operator L̃ in (2.5). The slopes of the Newton polygon of L̃ are −7 and 0 and are
both admissible.

Theorem 2.23. Algorithm 7 runs in

O(r2 M(Nd) + rN(d2 + (r + d)n)) = Õ(r2Nd (d+ n)) ops

(assuming a softly linear-time polynomial multiplication) and computes the trunca-
tion to order O(xn+1) of a basis of solutions of (eqn) in K((x1/N )).

Proof. The discussion at the beginning of this section shows that z(x) ∈ K((x1/∗))

is a solution of the operator L̃ computed in step (2) if and only if y(x) = x−sz(x1/N )
is a solution of L. By Lemma 2.2 and the choice of s, solutions of L in K((x1/N ))

have valuation at least −s, and hence correspond to solutions of L̃ lying in K[[x]].

Since the mapping z 
→ y is linear and invertible, a basis of solutions of L̃ in K[[x]]
provides a basis of solutions of L in K((x1/N )).

Let S0 be the edge of the Newton polygon of L considered in step (1) so that
the notation of the algorithm agrees with that of Lemma 2.21. Lemma 2.21(c) then

provides expressions of various parameters associated to L̃ in terms of s, c, and
quantities that can be read off L. Since ν̃ is nonnegative, Proposition 2.12 applies
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and shows that step (3) computes a basis (f1, . . . , fσ) of the space of approximate

solutions of L̃ in K[[x]] in O(rdṽ0 + r2 M(ṽ0)) ops. Denote by (z1, . . . , zσ) the basis

of power series solutions of L̃ such that each zi extends fi. Then, according to
Proposition 2.13, the series ẑi computed in step (4) satisfies zi = ẑi+O(xN(s+n)+1),
and their computation takes O(σ(r + d)ñ) ops. Finally, the truncated Puiseux
series returned by the algorithm satisfies ŷi = x−sẑi(x

1/N ), hence are truncations

of elements of a basis of solutions of L̃ in K((x1/N )).
Steps other than (3) and (4) do not perform any operation in K so that the

cost in ops of the algorithm is concentrated in those two steps. Let (bk1 , vk1
) and

(bk2 , vk2
) with k1 < k2 be the endpoints of S0 so that

(2.15) qc = pbk1 + qvk1
= pbk2 + qvk2

.

Lemma 2.21(c) gives ṽ0 = qv0 + p − qc. If p ≥ 0, then (2.15) implies qc ≥ p, and
hence ṽ0 ≤ qv0 ≤ Nd. If, now, p < 0, first observe that since bk2 ≥ 2bk1 , we have
−pbk1 ≤ −p(bk2 − bk1) = q(vk2

− vk1
). It follows that −qc = −pbk1 − qvk1

≤ qvk2
,

whence ṽ0 ≤ q(v0 + vk2
) ≤ 2Nd. In both cases, we have proved that ṽ0 = O(Nd).

The complexity estimate for step (3) thus rewrites as O(rNd2 + r2 M(Nd)) ops.
As s ≤ d (because all slopes of the Newton polygon are bounded by d in absolute
value) and σ ≤ r, that of step (4) becomes O(rN(r + d)(d + n)) ops. The total
running time is therefore O(r2M(Nd) + rN(d2 + (r + d)n)) ops. �

Recall that Q denotes the set of denominators q of slopes, written in lowest
terms, of admissible edges of N such that q ∧ b = 1.

Corollary 2.24. Algorithm 7 with N set to the lcm of elements in Q, returns
the truncation to order O(xn+1) of a basis of solutions of (eqn) in K((x1/∗)) in

Õ(r2brd(d+ n)) ops, assuming M(k) = Õ(k).

Proof. This follows by combining Proposition 2.19 with Theorem 2.23. �

Example 2.25. With b = 3, let us consider the order r = 11 Mahler operator

L = x568 − (x1218 + x1705)M + x3655M2 − (x162 − x10962)M3

+(1+x487−x4104−x4536 −x32887)M4− (x−x11826−x12313−x13122 −x13609)M5

− (1 + x35479 + x39367)M6 + (x+ x95634 − x106434 − x118098)M7

− (x286416 + x286903 − x319303 − x354295)M8 + x859249M9

+ x2577744M10 − x7733233M11.

Its associated parameters are w = 0, v0 = 568, and a Newton polygon made
from five segments, all admissible, with slopes −203/13, −3, 0, 1/1458, and 221/5.
Except for 1458 = 2 · 36, the denominators are coprime with b = 3 and their
lcm is N = 65. The rightmost slope is s = 221/5 and we perform the change of
variables of Algorithm 7 with α = −2873, β = 65, and hence γ = −6283186, and
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this provides us with the new operator

L̃ = t6317233 − (t6353737 + t6385392)M + t6494904M2 − (t6216145 − t6918145)M3

+ (t6050473 + t6082128 − t6317233 − t6345313 − t8188128)M4

− (t5585112 − t6353737 − t6385392 − t6437977 − t6469632)M5

− (t4188769 − t6494904 − t6747624)M6 + (1 + t6216145 − t6918145 − t7676305)M7

− (t6050473+ t6082128− t8188128− t10462608)M8+ t5585112M9+ t4188769M10−M11.

We want to find a basis of Puiseux solutions for L with a precision O(xn) where
n = 106. According to Algorithm 7, this leads us to compute a basis of formal
series solutions for L̃ with a precision O(xñ) where ñ = 65002873. We first apply
Algorithm 4 with ν̃ = 3888, μ̃ = 6321121. The computation shows that the space
of solutions has dimension 2. We extend the solutions to the requested precision
by Algorithm 3 and obtain a basis of formal series solutions

f̃1(t) = 1 + t28080 + t657072 + t2274480 + t2302560 + t17639856 + t53222832

+ t53250912 + t62068032 +O
(
t65002873

)
,

f̃2(t) = t3888 + t314928 + t343008 + t9160128 + t25509168 + t25537248

+ t27783648 + t27811728 +O
(
t65002873

)
.

Reversing the change of variable, we find the basis

f1(x) = x− 221
5 + x

1939
5 + x

50323
5 + x

174739
5 + x

176899
5 + x

1356691
5 + x

4093843
5

+ x
4096003

5 + x
4774243

5 +O
(
x1000000

)
,

f2(x) = x
203
13 + x

62411
13 + x

68027
13 + x

1831451
13 + x

5101259
13 + x

5106875
13

+ x
5556155

13 + x
5561771

13 +O
(
x1000000

)
.

These truncated series satisfy Lf1 = O(xe), Lf2 = O(xe) with e = v0+n = 1000568.

3. Rational solutions

We now turn to the computation of rational function solutions of Mahler equa-
tions of the form (eqn). Our algorithm follows a classical pattern: it first com-
putes a denominator bound, that is, a polynomial that the denominator of any
(irreducible) rational solution must divide. Then it makes a change of unknown
functions and computes the possible numerators using the algorithm of §2.6. As
is usual with other functional equations, the denominator bound is obtained by
analyzing the action of the operator L on zeros and poles of the functions to which
it is applied.

3.1. Denominator bounds: Setting. We will call a rational function p/(xv̄q) in
lowest terms if it satisfies the following conditions: v̄ ≥ 0; p, q ∈ K[x] are coprime
polynomials; q(0) �= 0; and p(0) can be zero only if v̄ = 0.

Consider a rational solution p/(xv̄q) of (eqn), written in lowest terms. We
already know from Lemma 2.2 that v̄ ≤ vr/(b

r − br−1), so we are left with the
problem of finding a multiple of q.
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Write Ta =
∨r−1

i=0 M ia. We will freely use the fact that T (ab) | (Ta) (Tb) for all
a and b. For any j between 0 and r, multiplying the equation

�r(x)M
ry + · · ·+ �1(x)My + �0(x)y = 0

by (Mrxv̄) (M jq)
∨

i 
=j M
iq and reducing modulo M jq yields

(3.1) M jq | x(br−bj)v̄�j (M
jp)

∨
i 
=j

M iq.

As q is coprime with p and q(0) �= 0, (3.1) with j = r implies

(3.2) Mrq | �r Tq.
This relation is our starting point for computing a polynomial q	, depending only
on �r, such that q | q	.

The algorithm for this task, presented in §3.3, operates with polynomials over K,
but it may be helpful in order to get an intuition to first consider the case K = C.
Assume for simplicity that q is squarefree. Equation (3.2) then says that if α is a
zero of q, each of its brth roots is either a bkth root with k < r of some zero of q or
a zero of �r. Thus, when α is not a root of unity, its brth roots are either zeros of �r
or roots of lower order of some other zero of q, whose brth roots then satisfy the
same property. (Compare Lemma 3.4 below.) As q has finitely many zeros, this
cannot continue indefinitely, so, in this case, we will eventually find a zero α whose
brth roots are zeros of �r. A difficulty arises when α is a root of unity, but then at
most one of its bth roots can be part of a cycle of the map ζ 
→ ζb (cf. Lemma 3.6),
and a closer examination shows that the b − 1 other roots behave essentially like
points that are not roots of unity.

3.2. Properties of the Mahler and Gräffe operators. Going back to the gen-
eral case, and before making the reasoning sketched above more precise, let us state
a few properties of the action of M on polynomials. Besides M , we consider the
Gräffe operator defined by

G : K[x] → K[x], p 
→ Resy(y
b − x, p(y)).

In other words, Gp is the product p(x1/b)p(ζx1/b) · · · p(ζb−1x1/b) for any primitive
bth root of unity ζ. While M maps a polynomial p to a polynomial whose complex
zeros are the bth roots of the zeros of p, the zeros of Gp are the bth powers of the
zeros of p.

As a direct consequence of the definitions, M and G act on degrees by

degMp = b deg p, degGp = deg p.

Some other elementary properties that will be useful in the sequel are as follows.

Lemma 3.1. For any nonzero i ∈ N, the following relations between M and G
hold for all p, q ∈ K[x]:

(a) GiM ip = pb
i

,
(b) p | M iGip,
(c) p | q ⇐⇒ M ip | M iq.

Proof. The case i > 1 reduces to the case i = 1 by changing the radix, since M i

(resp., Gi) is nothing but the Mahler (resp., Gräffe) operator of radix bi; so we
set i = 1. The assertions (a) and (b) are direct consequences of the definition of G
as a resultant. The direct implication in (c) is clear. For the converse, write the
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Euclidean division q = up+ v. If Mq = sMp for some s ∈ K[x], then (Mu) (Mp)+
(Mv) = sMp, whence Mv = 0 since degMv < degMp. �

Lemma 3.2. If p ∈ K[x] is monic irreducible and i ∈ N, then Gip = qe for some
monic irreducible q ∈ K[x] and e ∈ N. Furthermore, Gip = p if and only if p
divides M ip. If this holds for i > 0, Gjp is monic irreducible for any j ∈ N.

Proof. To prove the first point, consider the factorization Gip = cqe11 · · · qess of Gip
for monic irreducible and pairwise coprime qj and a nonzero c ∈ K. Because of
Lemma 3.1(c), the polynomials M iqe11 , . . . ,M iqess are pairwise coprime. We have

M iGip = c (M iqe11 ) · · · (M iqess ),

and, by Lemma 3.1(b), p | M iq
ej
j for some j. It follows that Gip | GiM iq

ej
j = q

ejb
i

j

by Lemma 3.1(a), proving the first point.

Now if p | M ip, then Gip | pbi , and necessarily there is e ∈ N such that Gip = pe.
In fact, e = 1 and Gip = p as Gip and p have the same degree and p is irreducible.
Conversely, if Gip = p, then p divides M ip by Lemma 3.1(b).

Assume Gip = p for some i > 0. Let j ∈ N and m ∈ N such that mi ≥ j. Then
p = Gmip = Gmi−j(Gjp) is monic irreducible so that Gjp is monic irreducible,
too. �

Lemma 3.3. Let f ∈ K[x] be a nonconstant polynomial with f(0) �= 0. If f and
its derivative f ′ are coprime, so are Mf and (Mf)′.

Proof. Assume f ∧ f ′ = 1. Applying M to a Bézout relation shows that Mf ∧
M(f ′) = 1. Now, (Mf)′ = bxb−1M(f ′), so a common factor s of Mf and (Mf)′

must divide x. As x cannot divide Mf because x � f , the only possibility is that
s be a constant. �

The following lemma generalizes the fact that the iterated bth roots of a complex
number α �= 0 are all distinct, except in some cases where α is a root of unity.

Lemma 3.4. Let p ∈ K[x] be monic and irreducible. For general K, M ip and M jp
are coprime for all i > j ≥ 0 if none of the Gip for i ≥ 1 is equal to p. When
K = Q, the same conclusion holds if Gp is not equal to p.

Proof. We proceed by contraposition, assuming the negation of the common con-
clusion: for monic irreducible p, assume M ip ∧ M jp �= 1 for some i > j ≥ 0.
Set k = i − j ≥ 1. Lemma 3.1(c) implies that Mkp and p are not coprime. Then
p divides Mkp and Lemma 3.2 implies that Gkp = p. This proves the result for

general K. For K = Q, a further consequence is that the map α 
→ αbk is a per-
mutation of the roots of p in Q̄. Hence, all roots of p satisfy αB = α for some
power B = be of b, with e > 0. This means that p divides xB −x. If p = x, Gp = p;
otherwise, p is a cyclotomic polynomial Φa with a | be − 1, so a ∧ b = 1. Applying
the formula in [13, Prop. 4, p. 14] yields MΦa =

∏
b′|b Φab′ so that p divides Mp.

Lemma 3.2 now implies Gp = p again, completing the proof. �

Remark 3.5. Over a general subfield K ⊂ C, the cyclotomic polynomial Φa factors
as Φa = Ψ1 · · ·Ψs and G acts as a cyclic permutation of the Ψi. See also [13,
Chap. 1] for a detailed description of the case a ∧ b �= 1.
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Lemma 3.4 states a result for polynomials p that are not part of a cycle of the
map G. As a matter of fact, a related graph whose structure plays a crucial role in
what follows is that of the map

√
G that maps a monic irreducible p to the unique

monic irreducible q such that Gp is some power of q: we call this map the radical
of G, as it ignores the exponent generally introduced by G. An immediate degree
argument shows that the cycles of G are exactly the cycles of

√
G and consist of

monic irreducible polynomials only.
To find a kind of generalization of Lemma 3.4 that applies to polynomials on

cycles of
√
G, we can always reduce to its hypothesis Gip �= p for nonzero i, by

“stepping back one step” in the graph of
√
G, thus leaving the cycle.

Lemma 3.6. Let f ∈ K[x] be a nonconstant polynomial with f(0) �= 0. There exists
a monic irreducible factor q ∈ K[x] of Mf such that Gkq �= q for all nonzero k ∈ N.

Proof. Choose a monic irreducible factor p of f and write Mp = q1 · · · qs for monic
irreducible qi. By contradiction, assume that for each i, there is some nonzero ki for
whichGkiqi = qi. It follows that for k = k1 · · · ks and all i, Gkqi = qi. Lemma 3.1(a)
implies pb = (Gq1) · · · (Gqs), and because of Lemma 3.2, for all i, Gqi is irreducible.
Hence, there exist nonzero ei ∈ N such that Gqi = pei , with b = e1 + · · · + es.
Therefore, for each i, qi = Gk−1pei so that, as qi is irreducible, ei = 1, and thus
all qi are equal to some same monic irreducible q̃. It follows that Mp = q̃b. As p is
irreducible, Lemma 3.3 applies to show that Mp ∧ (Mp)′ = 1, which is impossible.
The result follows by setting q = qi for a suitable i. �

Example 3.7. To suggest the graph structures induced by the Mahler and Gräffe
operators, we depict in Figure 4 the graph of the radical

√
G. Applying M to

some vertex p in the graph results in the product of all antecedents under the map.
For example, M(x − 26) = (x − 2)(x + 2)(x2 − 2x + 4)(x2 + 2x + 4) and MΦa =
ΦaΦ2aΦ3aΦ6a. In the second example, Φa appears to the right as a consequence of
it being mapped to itself by G.

The depicted case, b = 6, is typical for Q[x]. In particular, all cycles have length 1
as a consequence of the second part of Lemma 3.4.

3.3. Denominator bounds: Algorithm. Armed with the previous lemmas, we
can now prove the key result that leads to our main denominator bound. Still, to
avoid repetition in the proof of Proposition 3.10 below, we first state two interme-
diate lemmas.

The following lemma can be expressed more intuitively as follows: for any f̃ that
is not on a cycle of

√
G, any g that appears on the tree rooted at f̃ of antecedents

under
√
G is also not on a cycle.

Lemma 3.8. Let f̃ ∈ K[x] be monic irreducible and satisfy Gif̃ �= f̃ for all i > 0.

Further, let g ∈ K[x] be monic irreducible and divide M j f̃ for some j ≥ 0. Then
Gig �= g for all i > 0.

Proof. Suppose Gig = g for some i ≥ 1. By Lemma 3.2, Gjg is monic irreducible,

and since Gjg | GjM j f̃ = f̃ bj , it must be f̃ . Thus, Gif̃ = Gi+jg = Gjg = f̃ , in

contradiction with the definition of f̃ . �
Lemma 3.9. Let s ≥ r−1 and m ≥ 1 be integers, let f ∈ K[x] be monic irreducible,
let q ∈ K[x] be nonconstant, and let � ∈ K[x] be nonzero such that x � q, Msfm |
Mrq | � Tq, and Ms−if ∧ q = 1 whenever 0 ≤ i < r. Then Msfm divides �.
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Figure 4. Graph of the radical
√
G of the Gräffe operator for b =

6 in Q[x]. Here, a is a positive integer, coprime to b. In general, the

graph of
√
G consists of a loop rooted at x (top left), bi-infinite

trees (bottom), and cycles between cyclotomic polynomials with
infinite trees rooted at them (top right).

Proof. Let hk | Msfm for a monic irreducible h ∈ K[x] and k > 0 so that hk |
� Tq. We prove by contradiction that h is coprime with Tq: suppose there exists
some i satisfying 0 ≤ i < r such that h divides M iq. Then, Gih divides both
GiM iq and GiMsf , which, upon applying Lemma 3.1(a), are equal to powers of
q and Ms−if , respectively. This contradicts the coprimality of q and Ms−if . We
conclude that hk | �, and the conclusion follows upon considering all hk | Msfm. �

The following proposition will be used implicitly as a termination test in Algo-
rithm 8: as long as there exists a nonpolynomial rational solution p/q, the noncon-
stant polynomial u proved to exist contains (potential) factors of q and can be used
to change unknowns in a way that lessens the degree of �r. An interpretation of
the structure of the proof is as follows:

• If some factor of q appears out of all cycles of
√
G, there exists such a

factor u with no other factor of q in the tree rooted at u, and this u satis-
fies Mru | �.

• Otherwise, each factor f of q is on a cycle and leads to some antecedent f̃
under

√
G that is on no cycle, for which f divides Gf̃ . Considering all pos-

sible f and taking multiplicities into account, we construct a polynomial u
such that Mr−1u | � and q | Gu.

Proposition 3.10. Let � ∈ K[x] be a nonzero polynomial, and let q ∈ K[x] be
a nonconstant polynomial such that x � q and Mrq | � Tq. Then there exists a
nonconstant u ∈ K[x] such that:
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• either Mru | �
• or Mr−1u | � and q | Gu.

Proof. We consider two cases, the first one being when there exists a monic irre-
ducible f dividing q such that Gif �= f for all i > 0. In this case, we first prove that
we can also assume without loss of generality that M jf ∧ q = 1 for all j > 0. As-
sume the contrary: that the gcd is nontrivial for at least one j > 0. By Lemma 3.4,
the M jf for j ∈ N are pairwise coprime, and since q has finitely many factors,
M jf ∧ q �= 1 for at most finitely many j. Set j to the maximal possible value and
g to a monic irreducible factor of M jf ∧ q. Lemma 3.8 applied to g and f̃ = f
implies that Gig �= g for all i > 0, and g can replace f with the added property on
the M jg. At this point, Lemma 3.9 applies with s = r and m = 1, proving that
Mrf divides �. The proposition is proved in this case by choosing u = f .

In the second case, let q = c
∏

k f
mk

k be the irreducible factorization of q, for
a nonzero constant c and two-by-two distinct monic irreducible fk, and with, for
each k, some ik > 0 satisfying Gikfk = fk. Fix any k. Lemma 3.6 provides a monic
irreducible factor f̃k ∈ K[x] ofMfk such thatGif̃k �= f̃k for all i > 0. IfM if̃k∧q was
nontrivial for some i ∈ N, this gcd would contain some monic irreducible factor g,
necessarily equal to some fk′ , and Lemma 3.8 would contradict the existence of ik′ .
So the polynomials M j f̃k are coprime with q for all j ∈ N. Upon setting s = r− 1,
m = mk, and g = f̃k, M

sgm = Mr−1f̃mk

k | Mrfmk

k | Mrq, and Ms−ig = Mr−1−if̃k
is coprime with q for all i satisfying 0 ≤ i < r so that Lemma 3.9 proves that
Mr−1f̃mk

k = Msgm divides �. Additionally, Gg = Gf̃k | GMfk = f b
k so that

Gg is a power of fk, hence fk | Gg = Gf̃k, and next fmk

k | Gf̃mk

k . Gathering

the results over all k, the f̃k are pairwise coprime because the fk are; it follows
that all Mr−1f̃mk

k divide � and are pairwise coprime so that, finally, the product

u =
∏

k f̃
mk

k satisfies Mr−1u | � and q | Gu. �
Remark 3.11. In the first case of the proof, which builds u satisfying Mru | �, it is of
interest to compare the construction with that in the case of usual recurrences [2].
The obtained u is extremal, in the sense that no other factor of q can be found
in the tree rooted at it, that is to say, by iterating

√
G backward from it; this

is used to compute u from the leading coefficient � of the Mahler operator. In
the case of usual recurrences, the shift operator S (with respect to the variable n)

and its inverse S−1 play roles similar to M and
√
G, respectively. In Abramov’s

algorithm for denominator bounds, poles are searched for by considering poles that
are extremal in a class α + Z: in particular, a pole β ∈ α + Z with minimal real
part corresponds to a monic irreducible factor u = n− β such that Sru divides the
leading coefficient � of the recurrence operator.

Corollary 3.12. When d < br−1, (eqn) has no nonconstant rational solution.

Proof. With the notation above, Lemma 2.2 implies v̄ = 0. If a nonconstant q
could satisfy (3.2), Proposition 3.10 would apply, inducing the contradiction br−1 ≤
deg �r ≤ d. So q is constant, and Lemma 2.5 applies and proves p is constant. �

Proposition 3.10 forms the basis of Algorithm 8, which repeatedly searches for
factors of the form Mru to “be removed” from �r (while “adding back” other
factors of strictly smaller degree) and accumulates the corresponding u into the
denominator bound. The update of � at step (1)(c) of each loop iteration can be
viewed as a change of unknown functions of the form y = ỹ/uk in (eqn). The search
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Algorithm 8. Obtain a denominator bound from �r

Input: A linear Mahler equation of the form (eqn).
Output: A polynomial q	 ∈ K[x].

(1) Set � := �r, then repeat for k = 1, 2, . . . :

(a) write � =
∑br−1

i=0 xiMrfi with fi ∈ K[x];

(b) set uk :=
∧br−1

i=0 fi;

(c) set � := (�/Mruk)
∨r−1

i=0 M iuk

until deg uk = 0, at which point set t = k − 1.

(2) Set ũ :=
∧br−1−1

i=0 fi where � =
∑br−1−1

i=0 xiMr−1fi.
(3) Return u1 · · ·ut (Gũ).

for factors of the form Mru, respectively, Mr−1ũ, uses the following property (for
radix br, resp., br−1).

Lemma 3.13. Let f0, . . . , fb−1, u ∈ K[x]. The polynomial � = Mf0+xMf1+ · · ·+
xb−1 Mfb−1 is divisible by Mu if and only if f0, . . . , fb−1 are all divisible by u.

Proof. The “if” part is clear. Conversely, fix i < b and assume that Mu | �. Let ω
be a primitive bth root of unity. Then, Mu = (Mu)(ωjx) | �(ωjx) for all j, hence
Mu divides

b−1∑
j=0

ω−ij�(ωjx) = b xiMfi.

As Mu ∈ K[xb] and i < b, this implies Mu | Mfi, and u | fi by Lemma 3.1(c). �

Example 3.14. In this example, we let b = 3 and use Algorithm 8 to analyze the
potential poles in rational-function solutions of an operator

L =
(
p1(x) · · · p6(x)

)
M2 + · · · ,

where the pi are polynomials to be found in Figure 5 and the coefficients of M1

and M0 will be disclosed below. In the figure and this example, polynomials of
large size are truncated to their first few monomials, and in most cases, we write
them in factored form, although polynomials are manipulated in expanded form in
the actual algorithm.

Following Algorithm 8, we set � = p1 · · · p6. Step (1) is motivated by the first
case in Proposition 3.10: it strives to solve (3.2) by finding a factor u of q such
that M2u | �. For each i, the only monic irreducible candidate factor of u that can
“cover” pi upon application of M2 is the polynomial pi,2 in the figure. However,
M2pi,2 consists of all factors on the level of pi with same ancestor pi,2. So, for
example, M2p1,2 = p1 and p1,2 can be part of u, whereas M2p6,2 is a strict multiple
of p6 so that p6,2 cannot be made part of u. As a matter of fact, for k = 1 in the
loop, the algorithm finds u1 = p1,2p2,2p4,2p5,2 in step (1)(b), after rewriting � in
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.
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.
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.
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Figure 5. Portion of the graph of the radical
√
G of the Gräffe

operator used for the resolution in Example 3.14

the form

� = −M2
(
(2x− 1)(x2 − x+1)(x2 − x− 1)(x6 − x3 − 1)(9x5 − 133x4 + · · · )

)
+ · · ·

+ x8M2
(
2(2x− 1)(x2 − x+ 1)(x2 − x− 1)(x6 − x3 − 1)(5x4 − 74x3 + · · · )

)
in step (1)(a). Step (1)(c) resets � to a polynomial that factors into

p1,1 p1,2 p2,1 p2,2 p3 p4 p5,2 p4,2 p6.

Following the same approach for k = 2, a new phenomenon occurs because of the
loops in the graph: the candidate factor p2,3 that would “cover” p2,1 appears in its
own tree on the same level as p2,1, and thus has to be rejected. It follows that the
algorithm finds u2 = p3,2p4,2 in step (1)(b), after rewriting � in the form

� = −M2
(
(x2 − 4x− 1)(x2 − x− 1)(248x5 − 5615x4 + · · · )

)
+ · · ·

+ x8M2
(
(x2 − 4x− 1)(x2 − x− 1)(532x4 − 6211x3 + · · · )

)
in step (1)(a). Step (1)(c) resets � to a polynomial that factors into

p1,1 p1,2 p2,1 p2,2 p3,1 p5,2 p4,2 p3,2 p6.
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Following the same approach for k = 3 leads to u3 = 1: no further factor u of q
exists and helps to solve (3.2) by ensuring M2u | �.

This leads to step (2), which is motivated by the second case in Proposition 3.10:
(3.2) now implies M2q | q ∧ Mq, which is solved by finding ũ such that Mũ | �.
A difference to step (1) is that in step 2, candidates are looked for just 2 − 1 = 1
level above the factors to be “covered”. A similar calculation as used previously
explains that the algorithm finds ũ = p1,2p2,2p3,2p4,2, after rewriting � in the form

� = M2
(
(2x− 1)(x2 − x+ 1)(x2 − 4x− 1)(x2 − x− 1)(181x13 − 1198x12 + · · · )

)
− xM2

(
(2x− 1)(x2 − x+ 1)(x2 − 4x− 1)(x2 − x− 1)(44x13 − 623x12 + · · · )

)
+ x2M2

(
(2x− 1)(x2 − x+ 1)(x2 − 4x− 1)(x2 − x− 1)(4x13 − 382x12 + · · · )

)
.

From these factors, only p2,2 is cyclotomic. But as the algorithm does not factor
polynomials, the other factors cannot be discarded.

In step (3), the algorithm returns the bound

q	 = u1u2Gũ = p1,2
1+1p2,2

2p3,2
1+1p4,2

2+1p5,2,

where the “+1” indicate factors that could have been saved if a cyclotomic test
had been available. The operator L was indeed constructed so as to admit the two
explicit rational solutions

2x

(2x− 1)(x2 − x− 1)
and

x− 3

(x2 − x+ 1)(x2 − 4x− 1)(x6 − x3 − 1)
,

whose denominators are effectively “covered” by q∗.
We remark that, during the steps of the algorithm, the degree of � has dropped

from its initial value 145 down to 84, and then to 62.

Example 3.15. Let b = 3 and let us consider the Mahler equation

L = (2x4 − x3 − x+ 3)(2x9 − 1)(x18 − x9 − 1)M2

− (x2 + 1)(2x3 − 1)(x4 + 1)(x6 − x3 − 1)(2x10 − x9 − x+ 3)M

+ x2(2x− 1)(x2 + x+ 1)(x2 − x+ 1)(x2 − x− 1)(2x12 − x9 − x3 + 3).

Following Algorithm 8, we expand (2x4−x3−x+3)(2x9−1)(x18−x9−1) to get �,
which step (1)(a) rewrites as

� = M2(6x3 − 9x2 − 3x+ 3) + xM2(−2x3 + 3x2 + x− 1)

+ x3M2(−2x3 + 3x2 + x− 1) + x4M2(4x3 − 6x2 − 2x+ 2).

(That is, f2 = f5 = f6 = f7 = f8 = 0.) We get u1 = 2x3 − 3x2 − x + 1, which
factors into (2x− 1)(x2 − x− 1). Step (1)(c) resets � to a polynomial that factors
into (2x− 1)(x2 − x− 1)(2x3 − 1)(2x4 − x3 − x+ 3)(x6 − x3 − 1). Expanding � as
in step (1)(a), we now find

� = M2(3− 10x) + xM2(−4− 15x) + x2M2(−8− 19x)

+ x3M2(5 + 40x) + x4M2(5− 10x) + x5M2(2x+ 9)

+ x6M2(−25− 16x) + x7M2(15 + 8x) + x8M2(23),
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so that u2 = 1. We pass to step (2), which expands � in the form

� = M(−16x5 + 40x4 − 10x3 − 25x2 + 5x+ 3)

+ xM(8x5 − 10x4 − 15x3 + 15x2 + 5x− 4)

+ x2M(2x4 − 19x3 + 23x2 + 9x− 8),

and ũ = (2x−1)(x2−x−1). So, q	 = u1 Gũ = (2x−1)(x2−x−1)(8x−1)(x2−4x−1).
This means that if y = p/(xv̄q) is solution of Ly = 0, where v̄ ≥ 0 and p, q ∈ K[x]
satisfy x∧q = p∧q = p∧xv̄ = 1, then q divides q	. Using the results of §2.2, we find
that 0 could not be a pole of a solution in K(x), and therefore v̄ = 0. Consequently,
q	 is a denominator bound.

Proposition 3.16. Algorithm 8 runs in O((deg �r) M(d) log d) ops if b = 2, resp.,
in O(b−r (deg �r) M(d) log d) ops if b ≥ 3, and computes a polynomial q	 of degree
at most deg �r if b = 2, resp., at most (deg �r)/b

r−1 if b ≥ 3 such that any rational
function solution y of (eqn) can be written in the form y = p/(xv̄q	) for some
p ∈ K[x] and v̄ ∈ N.

Proof. For each k ≥ 1 reached by the loop (1), let �̃k denote the value of � considered

in step (1)(a) so that the value assigned in step (1)(c) is �̃k+1. (In particular,

�̃1 = �r.)
First, observe that, after step (1)(b) in each loop iteration, uk is by Lemma 3.13

a polynomial of maximal degree such that Mruk | �̃k. In particular, the next value,

�̃k+1, computed in step (1)(c), is a polynomial. Set ρ = br − br−1
b−1 , which is at

least 1. Step (1)(c) decreases the degree of � by

deg �̃k − deg �̃k+1 ≥ degMruk − deg Tuk ≥ ρ deg uk ≥ ρ.

In particular, the loop terminates after at most ρ−1(1+deg �r) iterations, and there-
fore the whole algorithm terminates as well. Second, after step (2), ũ is similarly

a polynomial of maximal degree such that Mr−1ũ | �̃t+1. Therefore, br−1 deg ũ is

bounded above by the degree of �̃t+1 so that( t∑
k=1

ρ deg uk

)
+ br−1 deg ũ ≤

( t∑
k=1

deg �̃k − deg �̃k+1

)
+ deg �̃t+1 ≤ deg �r,

where t denotes, as in Algorithm 8, the last value of k for which deg uk > 0.
The output from the algorithm is q	 = u1 · · ·ut (Gũ). If b = 2, then ρ = 1 and
deg q	 =

(∑
k deg uk

)
+ deg ũ is bounded by deg �r; if b ≥ 3, then

ρ = br−1

(
b− 2 +

b− 2

b− 1

)
+

1

b− 1
≥ br−1

and deg q	 is bounded by b−(r−1) deg �r.
Assume that p/(xv̄q) is a solution written in lowest terms. Set q̃0 = q and, for k

between 1 and t, define the polynomials q̃k = q̃k−1/(uk ∧ q̃k−1). Let us prove by

an induction on k that, for 1 ≤ k ≤ t + 1: (i) x � q̃k−1; (ii) Mr q̃k−1 | �̃k T q̃k−1;

and (iii) q | u1 · · ·uk−1q̃k−1. Initially when k = 1, we have q̃0 = q and �̃1 = �r,
so the three properties hold by our assumption on a solution and (3.2). Assume

now that x � q̃k−1, M
r q̃k−1 | �̃k T q̃k−1, and q | u1 · · ·uk−1q̃k−1. It follows from

q̃k−1 = (uk ∧ q̃k−1) q̃k | uk q̃k that x � q̃k and T q̃k−1 | (Tuk) (T q̃k). Furthermore,

(3.3) (Mr(uk ∧ q̃k−1)) (M
rq̃k) = Mr q̃k−1 | �̃k T q̃k−1 | �̃k (Tuk) (T q̃k).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

3008 F. CHYZAK, TH. DREYFUS, PH. DUMAS, AND M. MEZZAROBBA

Write Mruk = ak M
r(q̃k−1 ∧ uk) and �̃k = bk M

ruk for suitable polynomials ak
and bk. Upon division by Mr(uk ∧ q̃k−1), (3.3) becomes

(3.4) Mr q̃k | akbk (Tuk) (T q̃k).

By construction, ak and Mr q̃k are coprime, as they are the cofactors of
Mr(uk ∧ q̃k−1) in, respectively, M

ruk and Mr q̃k−1, so (3.4) finally becomes

Mr q̃k | �̃k
Mruk

(Tuk) (T q̃k) = �̃k+1 T q̃k.

By the divisibility assumption on q and the definition of q̃k,

q | u1 · · ·uk−1q̃k−1 = u1 · · ·uk−1 (uk ∧ q̃k−1) q̃k | u1 · · ·uk q̃k,

completing the proof by induction.
The loop terminates when � no longer has any nonconstant factor of the formMru,

with � = �̃t+1. At this point, Mr q̃t | �̃t+1 T q̃t and q | u1 · · ·utq̃t. If q̃t is constant,
then q | u1 · · ·ut | q	. On the other hand, if q̃t is not constant, Proposition 3.10

applies, as x � q̃t, which implies that �̃t+1 admits a factor of the form Mr−1u
such that q̃t | Gu. By Lemma 3.13, step (2) computes a polynomial ũ such that
Mr−1u | Mr−1ũ. It follows by Lemma 3.1(c) that u | ũ, and next that q̃t | Gũ so
that q divides q	 again.

Let us turn to the complexity analysis. Applying M to a polynomial requires
no arithmetic operation. Each execution of step (1)(b) amounts to br − 1 gcds of
polynomials of degree less than or equal to d/br, for a total cost of O(M(d) log d) ops.
The same argument applies to step (2). Similarly, the chain of lcms in step (1)(c)
requires

O

(r−1∑
i=0

M(bi deg uk) log(b
i deg uk)

)
= O(M(d) log d) ops,

as (
∑r−1

i=0 bi) deg uk = O(d). Since there are at most ρ−1(1 + deg �r) iterations of
steps (1)(b) and (1)(c), the cost of step (1) is O(ρ−1 (deg �r) M(d) log d). If b = 2,
then ρ = 1 and the cost of step (1) is O((deg �r) M(d) log d). If b ≥ 3, then ρ ≥ br−1

and the cost is O(b−r (deg �r) M(d) log d).
The computation of Gũ from ũ in step (3) can be performed in O(M(bd)) ops [7,

15], and the final product can be computed in O(M(d) log d) ops using a product
tree. �

Proposition 3.16 implicitly provides a bound on deg q that essentially (when
v̄ = 0 and ũ = 1, exactly) matches that of Bell and Coons [6, Proposition 2].
However, a tighter bound holds, especially for b = 2.

Proposition 3.17. With the notation above, q has degree at most 3 deg �r/b
r.

Proof. Let g = Mrq ∧ Tq. On the one hand, (3.2) implies Mrq | �rg so that
br deg q ≤ deg �r + deg g. On the other hand, Mg divides h = Mrq ∨ Tq by the
definition of T , and hence gMg divides gh = (Mrq) (Tq), whence

(b+ 1) deg g ≤ br+1 − 1

b− 1
deg q.

Comparing the two inequalities leads to

deg q ≤ (b2 − 1) deg �r
br+2 − br+1 − br + 1

≤ (b2 − 1) deg �r
br(b2 − b− 1)

≤ 3 deg �r
br

since (b2 − 1)/(b2 − b− 1) ≤ 3 for b ≥ 2. �
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Remark 3.18. The previous discussion to find q	 is entirely based on (3.1) in the
case j = r and on expressing the solution y with a minimal denominator xv̄q.
Noting that (3.1) actually holds also for j �= r and even if p ∧ q �= 1, we may
apply it with 0 ≤ j ≤ r − 1 to a potential solution written in the form p/(xv̄q	) to
get additional constraints involving �0, . . . , �r−1 that can be used to remove some
factors from q	.

3.4. An alternative bound. We now describe an alternative method for com-
puting denominator bounds. While it yields coarser bounds, our estimate for its
computational cost is better, so it may be a superior choice in some cases. The
results of this subsection are not used in the sequel.

Proposition 3.19. If xv̄q ∈ K[x] is the denominator of a rational solution of (eqn)
written in lowest terms, then it holds that

q | (Gr�r) (G
r+1�r) · · · (Gr+K�r), K = �logb(3 deg �r)� − r.

Proof. Suppose f is monic irreducible and m is positive such that fm | q, and
consider the condition

(3.5) Mr+jf |
r∨

i=0

M iq.

Clearly, (3.5) is satisfied for j = 0, while it requires

br+j deg f ≤ br+1 − 1

b− 1
deg q,

which in turn implies j ≤ logb deg q. Plugging in the bound from Proposition 3.17,
we obtain j ≤ logb(3 deg �r)− r.

Choose j maximal such that (3.5) holds. Then Mr+jf cannot divide Tq, and
by Lemma 3.3, Mr+jf is squarefree. Let h be a monic irreducible factor of Mr+jf
not dividing Tq. In the rest of the proof, we write sqrfree p for the squarefree
part of any polynomial p. For all k ≥ 0, set hk = sqrfree(Gkh), and denote
by mk the multiplicity of hk as a factor of Tq. Thus m0 is zero by definition
of h. Continuing with k ≥ 0, Lemma 3.1(b) implies Gkh | MGk+1h so that hk |
sqrfree(MGk+1h) | M sqrfree(Gk+1h) = Mhk+1. As hmk

k | Tq, we deduce that
h
mk+1

k | Mh
mk+1

k+1 | MTq | Tq ∧ Mrq, then, by using (3.2), h
mk+1

k | �r Tq. The

definition of mk then yields hδk
k | �r for δk = max(mk+1 −mk, 0).

Now, restrict k to the interval j < k ≤ r + j. Then, by Lemma 3.1(b),

(3.6) hk | Gkh | GkMr+jf = (Mr+j−kf)b
k

,

and as hk is squarefree, hk divides Mr+j−kf . Since fm | q and 0 ≤ r + j − k < r,
hm
k divides Tq, implying mk ≥ m.

By Lemma 3.1(b) and (3.6), Gr+j−khk is f br+j

so that f divides the former.
Then,

fδk | Gr+j−khδk
k | Gr+j−k�r.

Forming the product of these bounds for k ranging from 0 to j, we get fm |∏j
k=0 G

k�r, as m ≤ mj+1 and m0 = 0. The result follows by considering all
possible (f,m) such that fm | q. �

Proposition 3.20. One can compute a polynomial q∗ ∈ K[x] of degree at most
d (logb d− r + 2) and such that q | q∗ in O(M(d log d) log d) ops.
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Algorithm 9. Rational solutions

Input: A linear Mahler equation of the form (eqn).
Output: A basis of its space of rational function solutions.

(1) Set δ = maxdeg �k.
(2) If δ < br−1: return the basis (1) if L(1) = 0, and the empty basis ()

otherwise.
(3) Compute q	 using Algorithm 8. Set v̄ = �δ/(br − br−1)�.
(4) For 0 ≤ k ≤ r, set ek = �bδ/(b− 1)� − bkv̄ and

�̃k = xek�k
∏

0≤i≤r, i 
=k

M iq	.

Set L̃ = �̃rM
r + · · ·+ �̃0.

(5) Call Algorithm 5 on the equation L̃p = 0, with w = deg q	+2v̄+1,
to compute a basis (p1, . . . , pσ) of its polynomial solutions of degree
less than w.

(6) Return (pk/(x
v̄q	))1≤k≤σ.

Proof. If deg �r < br−1, return 1. This is a valid bound by Corollary 3.12. Oth-
erwise, return the bound from Proposition 3.19. As with the previous bound, the
Gk�r up to k = r + K = O(log d) can be computed for a total of O(M(bd) log d)
ops [7, 15]. The product then takes O(M(d log d) log d) ops. �
3.5. Computing numerators. In order to obtain a basis of rational solutions y
of (eqn), it suffices to obtain a bound xv̄q	 on denominators as in §3.3 to con-
struct an auxiliary equation corresponding to the change of unknown functions y =
ỹ/(xv̄q	) and to search for its polynomial solutions ỹ. We first note the following
consequence of Lemma 2.5, already proved by Bell and Coons [6, Prop. 2].

Proposition 3.21. If p, q ∈ K[x], not necessarily coprime, satisfy L(p/q) = 0,
then deg p is at most deg q + �d/(br − br−1)�.

The procedure to obtain rational solutions is summarized in Algorithm 9.

Proposition 3.22. Algorithm 9 computes a basis of rational solutions of its input
equation. Assuming d ≥ br−1, it runs in Õ(dM(d)+2rd2+M(2rd)) ops when b = 2

and Õ(b−rdM(d)) ops when b ≥ 3. Assuming further M(n) = Õ(n), it runs in

Õ(2rd2) = Õ(d3) ops when b = 2 and in Õ(b−rd2) ops when b ≥ 3.

Proof. Define δ as in step (1) so that δ ≤ d. If δ < br−1, the algorithm will stop after
step (2). In this case, Corollary 3.12 states that there are no nonconstant rational
solutions. Therefore, the vector space of rational solutions is K when L(1) = 0 and
{0} otherwise.

Otherwise, the algorithm continues with d ≥ br−1. Assume that y ∈ K(x) is a ra-
tional solution of Ly = 0, and let p = xv̄q	y for q	 and v̄ computed as in step (3). By
Proposition 3.16 combined with Lemma 2.2, p is a polynomial. By Proposition 3.21
combined with Lemma 2.5, it has degree at most deg(xv̄q	) + v̄ = deg q	 + 2v̄.
Plugging y = p/(xv̄q	) into Ly = 0 and multiplying the resulting equation by the
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polynomial x�bδ/(b−1)� ∏r
i=0 M

iq	, we see that p satisfies L̃p = 0, where L̃ is defined

as in step (4). As bkv̄ ≤ bδ/(b − 1) for k ≤ r, the ek are nonnegative and the �̃k
are polynomials. Thus Algorithm 5 applies and, by Proposition 2.14, p belongs to
the span of the pk computed in step (5) of Algorithm 9. Conversely, for all k, the
fraction pk/(x

v̄p	) is a solution of Ly = 0.

After step (2), we have br = O(d), that is, r = Õ(1). By Proposition 3.16, the

cost of step (3) is Õ(dM(d)) ops when b = 2 and Õ(b−rdM(d)) ops when b ≥ 3.
Define

(3.7) d̃ =
2b− 1

b− 1
d+

br+1 − 1

b− 1
deg q	 =

{
O(2rd), b = 2,

O(d), b ≥ 3,

where the asymptotic bounds follow from Proposition 3.16. Each polynomial �̃k
defined in step (4) then satisfies

deg �̃k ≤ ek + δ +
br+1 − 1

b− 1
deg q	 ≤ d̃,

so its computation as a product of r + 1 factors can be done in O(rM(d̃)) ops.

This makes a total of O(r2M(d̃)) = Õ(M(d̃)) ops to compute the �k’s. Observe as

well that 1 ≤ w = O(d̃/br). According to Proposition 2.14, step (5) thus requires

Õ(b−rd̃2+M(d̃)) ops, which dominates the cost of step (4). Taking the bounds (3.7)
into account, we get that step (5) is dominated by step (3) when b ≥ 3 so that the

total cost is Õ(dM(d) + 2rd2 + M(2rd)) ops when b = 2 and Õ(b−rdM(d)) ops

when b ≥ 3. With fast multiplication, M(n) = Õ(n), this simplifies to the an-
nounced complexity estimates. �

Example 3.23. We continue Example 3.15. We have seen that the denominator
bound is q	 = (2x − 1)(x2 − x − 1)(8x − 1)(x2 − 4x − 1). We set ỹ = q	y so that

Ly = 0 if and only if L̃ỹ = 0, where L̃ = �̃2M
2 + �̃1M

1 + �̃0 for

�̃2 = (2x− 1)(8x− 1)(x2 − x− 1)(x2 − 4x− 1)

× (4x2 + 2x+ 1)(2x4 − x3 − x+ 3)(x4 + x3 + 2x2 − x+ 1),

�̃1 = −(8x− 1)(x2 + 1)(x2 − 4x− 1)(2x3 − 1)(x4 + 1)

× (x6 − x3 − 1)(4x6 + 2x3 + 1)(2x10 − x9 − x+ 3)(x12 + x9 + 2x6 − x3 + 1),

�̃0 = x2(2x− 1)(x2 + x+ 1)(x2 − x+ 1)(x2 − x− 1)

× (4x2 + 2x+ 1)(2x3 − 1)(x4 + x3 + 2x2 − x+ 1)

× (x6 − x3 − 1)(4x6 + 2x3 + 1)(x12 + x9 + 2x6 − x3 + 1)(2x12 − x9 − x3 + 3).

We have to compute the complete set of polynomial solutions of L̃ỹ = 0. The
degrees of �̃2, �̃1, �̃0 are, respectively, 16, 46, 54. Using Lemma 2.5, we find that the
degree of a nonzero polynomial solution is necessarily 4 or 5. Following Algorithm 6,
we equate the coefficients on both sides of L̃ỹ = 0 up to degree 54, and we obtain
that ỹ = ỹ0 + · · ·+x5ỹ5 is a solution of L̃ỹ = 0 if and only if the vector (ỹ0, . . . , ỹ5)
is a solution of a system of h = 163 equations. A basis of solutions turns out to
consist of (2x − 1)(8x − 1)(x2 − 4x − 1) and (x2 − x − 1)(8x − 1)(x2 − 4x − 1).
Consequently, a basis of rational-function solutions of Ly = 0 consists of

1

2x− 1
and

1

x2 − x− 1
.
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Remark 3.24. When Mahler equations are considered in difference Galois the-
ory [12, 21], the interest tends to be in base fields on which M acts as an auto-

morphism, such as K((x1/∗)) and K(x1/∗) =
⋃+∞

n=1 K(x1/n). By combining the
strategy of Algorithm 9 with Proposition 2.19 about possible ramifications, we ob-
tain an algorithm that computes a basis of solutions of (eqn) in K(x1/∗). Assuming

M(n) = Õ(n), it runs in Õ(23rd3) ops when b = 2 and in Õ(brd2) ops when b ≥ 3.
Note that, as in §2.7, these complexity bounds hold even if �0 is zero.

3.6. Testing transcendence. As was announced in the introduction, solving
Mahler equations relates to testing the transcendence of Mahler functions. In par-
ticular, when computing the rational solutions of a Mahler equation (eqn) shows
that there are no nonzero rational solutions, this constitutes a proof that all solu-
tions to (eqn) are transcendental. In this section we compare the complexity of
the transcendence test by Bell and Coons [6] with that of a test by our rational
solving.

To this end, we briefly sketch Bell and Coons’ “universal” transcendence test [6]
and do a complexity analysis of their approach, using our notation and the same
level of sophistication with regard to algorithms for subtasks. Define

κ1 =

⌊
(b− 1) d

br+1 − 2br + 1

⌋
, κ2 =

⌊
d/(b− 1)

br−1

⌋
, κ = κ1 + κ2 + 1, B = d+ κ

br+1 − 1

b− 1
.

Bell and Coons [6, Proposition 2 and Lemma 1] show that any rational solution p/q
to (eqn) without pole at 0 satisfies deg q ≤ κ1, deg p ≤ κ1 + κ2, and that if a
series y ∈ K[[x]] solves (eqn), then either y − p/q �= O(xB+1) or y = p/q as
series. Then, given y = y0 + y1x + · · · , Bell and Coons consider the matrix M =
(yi+j)0≤i≤κ, 0≤j≤B, whose ith row represents the truncation up to O(xB+1) of the
nonsingular part of y/xi. To any nonzero q̃ in the left kernel of M , they associate
the polynomial q = q̃κ + · · · + q̃0x

κ and find a polynomial p of degree at most κ
such that y − p/q = O(xB+1), therefore such that y = p/q. This leads to the
equivalence that M is full rank if and only if y is transcendental. Bell and Coons’
test therefore consists of computing the truncation of y up to O(xB+κ+1), forming
the matrix M , and determining if M is of full rank, κ + 1. Only considering the
linear-algebra task, which will dominate the complexity, Bell and Coons’ approach
takes O(Bκω−1) ops, by the algorithm of Ibarra, Moran, and Hui [16]. When
b = 2, we get κ = O(d), B = O(2rd), and a complexity O(2rdω); for b ≥ 3, we
get κ = O(d/br), B = O(d), and a complexity O(dω/b(ω−1)r). In either case, the

dependency in d is in O(dω), being not as good as the Õ(d2) that can be obtained
by Algorithm 9, as Proposition 3.22 justifies.

In situations where (eqn) has nonzero rational solutions, a given series solution

y ∈ K[[x]] can easily be tested to be one of them, in O(rωd) + Õ(rd) ops, because
only �ν� + 1 = O(d) initial coefficients of solutions identify them (see §2.4). So in
all cases our Algorithm 9 induces a transcendence test in better complexity with
respect to d than with the approach of [6].

4. The case �0 = 0 and an algorithm for computing gcrd’s

In this section, we drop the assumption �0 �= 0. More precisely, we consider a lin-
ear Mahler equation of the form (eqn), with �0 = · · · = �w−1 = 0 and �r�w �= 0. We
call the integer w the M -valuation of (eqn) and d = maxk=w,...,r deg �k its degree.
We define the M -valuation and the degree of the corresponding operator (opr)
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Algorithm 10. Split of (opr)

Input: A linear Mahler operator L with coefficients in K[x].
Output: A set of linear Mahler operators with coefficients in K[x] and M -

valuation zero.

(1) If L = 0, return ∅.
(2) If L has M -valuation 0, return {L}.
(3) Return the union of the results of calling the algorithm recursively

on each section Si(L) for 0 ≤ i < b.

similarly. The goal of this section is to compute a linear Mahler equation with
M -valuation equal to 0 such that the new equation and (eqn) have the same set
of series solutions in K((x)).

The algorithm proposed here, Algorithm 11, can be seen as an improvement
over an algorithm given by Dumas in his thesis [13, §3.2.1]. In particular, Al-
gorithm 10, borrowed from [13], performs the subtask of splitting an operator of
positive M -valuation into a system of operators of zero M -valuation while pre-
serving the solution set in K((x)). Dumas’s algorithm next makes use of the right
Euclidean structure of the algebra M(K) of linear Mahler operators with coeffi-
cients in K(x), and transforms the system into a single, equivalent equation by
computing a gcrd (greatest common right divisor) via Euclidean divisions. The
problem of this approach is that the degree of the obtained equation explodes in
the process. To avoid this, we change the second step of the algorithm in [13] so as
to reuse Algorithm 10 and cancellations of trailing instead of leading coefficients.

The splitting process of Algorithm 10 is explained in terms of section maps Si,
each of which maps a polynomial in x and M to a polynomial in x and M , and
whose collection plays the role of a partial inverse for M : for 0 ≤ i < b, let Si be
the K-linear map that sends xjMk+1 to x(j−i)/bMk if (j − i)/b is an integer and
to 0 otherwise.

Lemma 4.1. Let L be a linear Mahler operator L of the form (opr) and have
degree d and positive M -valuation. Then, whenever 0 ≤ i < b, the section Si(L)
has degree at most d/b. Additionally, L can be reconstructed from its sections by

(4.1) L =

b−1∑
i=0

xiM Si(L).

Proof. The degree bound and relation (4.1) are shown by immediate calculations.
�

Lemma 4.2. Let L be a linear Mahler operator of the form (opr), with order r,
M -valuation w, and degree d. Then, Algorithm 10 returns a set of nonzero linear
Mahler operators of order at most r−w, M -valuation 0, and degree at most db−w.

Proof. This is shown by a straightforward induction on w. �
Instead of considering usual Euclidean divisions according to decreasing powers,

which would compute a gcrd as in [13], we use in Algorithm 11 linear combinations
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Algorithm 11. Normalization to �0 �= 0

Input: A nonzero linear Mahler operator L of the form (opr), order r,
M -valuation w, and degree d.

Output: A linear Mahler operator L̃ of order r̃ ≤ r−w, M -valuation 0, and
degree d̃ ≤ db−w.

(1) Let L be the result of applying Algorithm 10 to L.
(2) While L has at least two elements:

(a) choose L1 with highest order in L, then L2 from L \ {L1};
(b) compute the result L′ of applying Algorithm 10 to the interre-

duction R(L1, L2);
(c) replace L by (L \ {L1}) ∪ L′.

(3) Return the element L̃ of the singleton L.

that kill constant terms: given two nonzero Mahler operators L1 and L2 with
coefficients in K[x], M -valuation zero, and coefficient of M0, respectively, c1 and c2,
we write R(L1, L2) for the operator c2L1 − c1L2, whose coefficient of M0 is zero.
We call this operator the interreduction of L1 and L2 and a step of the algorithm
that replaces an operator L1 by an interreduction R(L1, L2) a reduction step.

Lemma 4.3. Let L be a system of Mahler operators. Replacing an element L
of L by its sections S0(L), . . . , Sb−1(L) does not change the set of solutions of L
in K((x)). Nor does replacing L1 by the interreduction R(L1, L2) where L1, L2 are
distinct elements of L.

Proof. The second claim is obvious. Regarding the first one (already in [13, §3.2.1]),
the decomposition (4.1) shows that any common solution of the Si(L) is a solution
of L. If, conversely, y is an unramified solution of L, then the xiMSi(L) y, 0 ≤ i < b,
have disjoint support, hence Si(L) y = 0 for all i. �

Here, the degree of R(L1, L2) may well be the sum of the degrees of L1 and L2,
but having generated a multiple of M makes it possible to apply splitting and
keep degrees under control. This leads to Algorithm 11, whose correctness and
complexity are given in the following proposition.

It is worth mentioning that, in general, the equation L̃(y) = 0 returned by
Algorithm 11 does not have the same set of solutions in K((x1/∗)) as the equation

L(y) = 0. As an example, let b = 2 and consider L = M2 − xM . We have L̃ = 1,

and the solution space in K((x1/∗)) of L̃(y) = 0 is {0}. On the other hand, the
solution space in K((x1/∗)) of L(y) = 0 is the K-vector space spanned by x1/2.

Proposition 4.4. The operator L has the same set of solutions in K((x)) as

the operator L̃ returned by Algorithm 11. This operator has order r̃ ≤ r − w,
M -valuation 0, and degree d̃ ≤ db−w. Furthermore, Algorithm 11 runs in
O(rbr M(d/bw)) ops.

Proof. Because L �= 0 and by construction of Algorithm 10, the initial set L is
nonempty. Next, by construction of Algorithm 11, at any time of a run, L is
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nonempty and contains only elements of outputs from Algorithm 10 so that, by
Lemma 4.2, if Algorithm 11 terminates, its output must be nonzero and of M -
valuation zero. Lemma 4.3 implies that the original operator L, the system L at
any time of the run, and therefore the final operator L̃, all share the same set of
solutions in K((x)).

Let us prove the bound on the order and the degree of L̃. By Lemma 4.2,
the set L computed in step (1) consists of Mahler operators with orders bounded
by r − w and degrees bounded by db−w. These bounds keep on holding after each
run of the loop body in step (2): As the operators L1 and L2 chosen in step (2)(a)
satisfy the property, their combination R(L1, L2) (including the case it is zero) has
order bounded by r − w, degree bounded by 2db−w, and positive valuation. By
Lemma 4.2, the set L′ computed in step (2)(b) consists of Mahler operators with
orders bounded by r − w − 1 and degrees bounded by 2db−(w+1). As 2/b ≤ 1,
the set L retains the property after the update at step (2)(c). Therefore, if the
algorithm terminates, it returns an element of L with the announced order and
degree bounds.

We finally prove termination and complexity by a joint argument. To this end, we
represent the process of Algorithm 11 by an oriented tree labeled by operators Ln

w,
for integers n and words w on the alphabet {0, . . . , b − 1}. These operators Ln

w

will be the operators considered during the execution of the algorithm. This tree
is rooted at the node labeled L0

ε = L and evolves by following the execution of
Algorithm 11. Each time a section of an operator Ln

w is computed by the subtask
of Algorithm 10, whether it be in step (1) or in step (2)(b), the tree is augmented
by new edges from Ln

w to its subsection Ln
wj = Sj(L

n
w). For each choice of L1 = Ln

w

and L2 = Ln′

w′ in step (2)(a), the tree is augmented by a new edge labeled Ln′

w′ ,
from Ln

w to Lm+1
ε , if m is the larger upper index in the tree before reduction.

Thus, one obtains that at each stage of the execution, the set L is equal to the
collection of nonzero leaves of the current tree. Now, by construction of the tree
and by design of the algorithm, a reduction step results either in a zero operator or
in an operator with positive M -valuation that is immediately split to its sections.
Therefore, following a path from the root to a leaf, two reduction edges can only
appear if separated by at least one section edge. As section edges reduce orders by
at least 1, while reduction edges do not increase orders, the tree has to be finite and
the algorithm terminates. The only arithmetic operations of the algorithm are the
polynomial products involved in the computation of the R(L1, L2) in step (2)(b).
It was proved above that any operator of L has degree bounded by d/bw. Because
operators all have order at most r and as the size of the tree bounds the number
of reductions, the algorithm has total complexity O(rbr M(d/bw)). �

Remark 4.5. A slightly better complexity can be obtained by a variant of Algo-
rithm 11, in which the L1 in step (2)(a) is not chosen as having maximal order, but
according to a notion of depth in the tree introduced for the proof of Proposition 4.4.
Doing so guarantees a better behavior of degrees, with a geometric decrease with
depth, as opposed to the uniform bound d/bw used in the proof above.

Define the depth β of a node Ln
w in the tree as the number of section edges from

the root L0
ε to Ln

w, and change the strategy in step (2)(a) to choose L1 among
the elements of L of lowest depth. By another induction, Ln

w has order not more
than r − β, as in the proof above, but its degree is not more than d/bw if β ≤ w,
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L0
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ε
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L0
21
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0
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ε = 0
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ε = 0

L1
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L1
0
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Figure 6. Execution of Algorithm 11 on the operator of Exam-
ple 4.6. Each nonzero operator is given with a corresponding pair
(order, degree). Operators are generated in the following order:
L0
ε = L, L0

0, L
0
1, L

0
2, L

0
20, L

0
21, L

0
22, L

1
ε , L

1
0, L

1
1, L

1
2, L

2
ε , L

3
ε , L

4
ε ,

L5
ε , L

6
ε . Blue and red arrows, respectively, represent section and

reduction steps. Labels on (red) arrows provide the auxiliary oper-
ators used for reduction. The process starts with L0

ε = L and ends
with L1

1. Observe the strict decrease of orders along blue edges
and large decrease along red edges. Also observe that degrees are
divided by at least 3 on blue edges and, for the only nontrivial red
edge of this example, how the reduction of L0

0 by L0
21 induces an

increase of the degree from 49 to 58, which is not more than 49+12.

and not more than (2/b)β−w(d/bw) if β > w. A bound on the complexity becomes

r∑
β=w

(r + 1)bβ M

(
2β−wd

bβ

)
≤ O(rM(2rd/bw)) .

This bound is better than the original complexity O(rbr M(d/bw)) when b ≥ 3.
For b = 2, the new bound is not tight and the variant algorithm has the same
complexity bound as Algorithm 11.

Example 4.6. We apply Algorithm 11 with b = 3 and the operator

L = �1M + �2M
2 + �3M

3 + �4M
4

with

�1 = x9(1− x15 + x51 + x54 − x87 + x108)(1− x12 + x24),

�2 = −x3
(
1 + x6 − x20 − x21 + x30 + x32 + x33 + x36 − x44 − x45 + x54 + x56

+ x57 + x60 − x68 − x69 + x80 + x81 + x84 + x90 − x92 − x93 + x104

+ x105 + x108 + x114 − x116 − x117 + x138 + x144
)
,

�3 =
(
1 + x3 − x5 + x17 + x18 + x21 − x23 − x29 + x35 + x36 + x39 − x47 + x54

+ x57 + x72 + x75 + x90 + x93 − x95 + x107 + x108 + x111 − x113 − x119
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+ x125 + x126 + x129 − x137 + x144 + x147
)
,

�4 = −(1 + x27 + x54)(1− x27 + x54)(1− x5 + x17 + x18 − x29 + x36).

Starting from L0
ε = L, we compute its sections (see Figure 6, blue edges): first,

L0
0 = S0(L

0
ε), which has M -valuation 0 so that the process of splitting stops for it;

next, L0
1 = S1(L

0
ε), which is zero and is dropped; last, L0

2 = S2(L
0
ε), which has

M -valuation 1. Splitting continues for the latter and provides L0
20 = S0(L

0
0), L

0
21 =

S1(L
0
2), L

0
22 = S2(L

0
0), all with M -valuation 0. Note that during this splitting, the

operators L0
ε , L

0
1 = 0, and L0

2 disappear. A reduction is made (see Figure 6, red
edges) where R(L0

0, L
0
21) = L6

ε replaces L0
0. The process continues and, at the end,

there only remains

L1
1 = x5(1 + x+ x2)(1− x+ x2)(1− x4 + x8)

− x3(1 + x+ x2)(1− x+ x2)(1− x2 + x4 − x6 + x8)(1 + 2x2 + x4)M

+ x3(1 + x+ x2)(1− x+ x2)(1 + x3 + x6)(1− x3 + x6)M2.

It is worth noting that L1
1 has a content c = x3(1 + x+ x2)(1− x+ x2) so that we

can write L1
1 = cL̄1

1, where L̄1
1 is a primitive polynomial (with respect to M). The

computation shows that L is in the left ideal generated by L̄1
1 in the algebra M(Q).

This and exhibiting the M -valuation w = 1 of L provides factorizations L = L′M =
L′′ML̄1

1. We can say that Mw has been pushed as much as possible to the left.
Using Algorithm 9, we find that a basis of solutions of L1

1 in K(x) is given by 1 and
x

x2−1 . Since L1
1 has order two, this also forms a basis of solutions of L1

1 in K((x)),
as a consequence of Proposition 2.3, and by Proposition 4.4, a basis of solutions
of L in K((x)).

We now proceed to prove that Algorithm 11 indeed computes a gcrd with con-
trolled degree. This is proved in Theorem 4.9 below, using the following lemmas.

Lemma 4.7. For any operators P1, P2, and any integer i such that 0 ≤ i < b,
Si(P1MP2) = Si(P1M)P2.

Proof. By linearity, it is sufficient to consider P1 = xj1Mk1 and P2 = xj2Mk2 .

Then, P1MP2 = xj1+bk1+1j2Mk1+k2+1. Either b divides j1 − i and

Si(P1MP2) = x(j1−i)/b+bk1 j2Mk1+k2 = x(j1−i)/bMk1xj2Mk2 = Si(P1M)P2,

or b does not divide j1 − i and both extreme terms are zero, thus equal again. �
Lemma 4.8. For any operators P1, P2, and P , each of them of M -valuation 0, let
c be the coefficient of M0 in P . Then, R(P1P, P2P ) = cR(P1, P2)P .

Proof. The property holds, as obviously the coefficient of M0 in a product is the
product of the coefficients of M0 in the factors. �
Theorem 4.9. Steps (2) and (3) of Algorithm 11 compute a gcrd of the elements
of the split L of L obtained in step (1). The degree of this particular gcrd is bounded
by the maximal degree of the elements of L.
Proof. Let I denote the left ideal M(K)L generated by L at any time in the run
of the algorithm. Call G the monic gcrd of the elements of the set L as obtained
from L at the end of step (1). By (4.1), G is a right factor of L. By the definition
of R(·, ·) and because of (4.1) again, the ideal I can only increase during the run
of the algorithm so that during step (2), M(K)L ⊂ M(K)G ⊂ I.
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We show by induction that G is a right factor of all elements of L at any time
in step (2), in other words, that I ⊂ M(K)G. This is true by the definition of G
when entering the loop. The set L contains only elements with M -valuation 0, and
it cannot be empty when entering the loop, so G has M -valuation 0 as well. At any
step (2)(b), divisibility on the right by G is preserved for R(L1, L2), by Lemma 4.8.
As R(L1, L2) has positive M -valuation, one can choose P2 = G and find P1 so as to
write R(L1, L2) = P1MP2. By Lemma 4.7, it follows that divisibility on the right
by G is also preserved for each element of L′, and then for each element of the next
value of L.

As a consequence, during step (2), I constantly equals M(K)G. In particular,

the final operator L̃ is proportional to G.
The degree bound was proved as part of Proposition 4.4. �

Remark 4.10. Note that the origin of the initial L as a split of L, in step (1)
of Algorithm 11, plays no role in the proof of Theorem 4.9. Thus, Algorithm 11
implicitly contains an algorithm for computing the gcrd of any family L of operators
of M -valuation zero.

Remark 4.11. We developed Algorithm 11 without targeting a gcrd and realized
Theorem 4.9 only a posteriori. As Algorithm 11 indeed works by computing a
gcrd as the original algorithm in [13], it is now instructive to compare the result
of Proposition 4.4 with bounds on the size of gcrds of Mahler operators given by
existing methods. Such a bound can be computed using a variant of the subresultant
argument given by Grigor′ev [14, §5] in the differential case.

Let L1, . . . , Ln be operators of respective order r1 ≥ r2 ≥ · · · ≥ rn ≥ 1 and degree
d1, . . . , dn ≤ δ. Let G = U1L1+ · · ·+UnLn be their greatest common right divisor.
We can assume that the order of each term UiLi is less than t = r1+rn. Indeed, for
all i, j the linear equation Vi,jLi = Vj,iLj with Vi,j , resp., Vj,i, constrained to have
degree at most rj , resp., at most ri, has nontrivial solutions. Via Euclidean divisions
Ui = QiVi,n + Ri, we obtain G =

∑
i(QiVi,n + Ri)Li =

∑
i QiVn,iLn +

∑
i RiLi =∑

i ŨiLi, where the Ũi for i ≤ n − 1 have order less than rn. The n − 1 first

terms ŨiLi as well as G itself have order less than r1 + rn, hence the same must be
true of ŨnLn.

Consider a Sylvester-like matrix S ∈ K[x]s×t with rows

R(L1),R(ML1), . . . ,R(M t−r1−1L1), . . . ,R(Ln),R(MLn), . . . ,R(M t−rn−1Ln),

where, for any operator L =
∑

k �kM
k, we denote R(L) = (�t−1, . . . , �0). Call

C0, C1, . . . , Ct−1 the columns of S, listed from right to left (so that Cj contains
the coefficients of M j in MkLi), and Cj,0, Cj,1, . . . , Cj,s−1 the entries of Cj . Let
m denote the order of G, and choose J ⊆ {m + 1, . . . , t − 1} of cardinality |J | =
rkS − 1 in such a way that the columns Cj with j ∈ J form a basis of the span
of Cm+1, . . . , Ct−1, while the Cj for j ∈ {m} ∪ J form a basis of the full column
space of S. To see that such a J exists, consider a row echelon form of S: since
R(G) belongs to the left image of S and G has minimal order among the nonzero
elements of the ideal

∑
i M(K)Li, the rightmost pivot lies on column m. Further,

let I ⊆ {0, . . . , s − 1} be such that the submatrix (Cj,i), i ∈ I, j ∈ J ∪ {m}, of S
is nonsingular. Call Dm the corresponding minor, and more generally define Dk as
the determinant of the submatrix (Cj,i), i ∈ I, j ∈ J , extended on the right by a

copy of Ck. Expanding Dk along the last column yields Dk =
∑s−1

i=0 uiCk,i, where
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Algorithm 12. Computation of a gcrd of an arbitrary family

Input: A finite family {Li}si=1 of linear Mahler operators with polynomial
coefficients, orders at most r, minimal M -valuation w, and degrees
at most d.

Output: A linear Mahler operator L̃ of order r̃ ≤ r, M -valuation w, and
degree d̃ ≤ d.

(1) Write each Li in the form L′
iM

w, for a polynomial L′
i in x and M .

(2) Let L be the union of the results of applying Algorithm 10 to
the L′

i’s.
(3) While L has at least two elements:

(a) choose L1 with highest order in L, then L2 from L \ {L1};
(b) compute the result L′ of applying Algorithm 10 to the interre-

duction R(L1, L2);
(c) replace L by (L \ {L1}) ∪ L′.

(4) Write L̃ for the single element of the singleton L and return L̃Mw.

the ui do not depend on k. For each k > m, the determinant Dk is zero, as Ck is
in the span of the Cj for j ∈ J . It follows that the vector (0, . . . , 0, Dm, . . . , D0)
belongs to the left image of S. Thus, there is a gcrd of L1, . . . , Ln with polynomial
coefficients whose coefficients are minors of S.

The entries of S have degree bounded by δ′ = maxni=1(b
t−ri−1di). Therefore,

the degree of G is as most tδ′ ≤ 2r1b
r1−1δ ≤ r1b

r1δ. Using fast polynomial linear
algebra, it is plausible that one could actually compute G based on this approach
with a complexity of the type Õ(δ′tω) = Õ(br1δ). Now, the gcrd in the algorithm
of [13] is that of a family of iterated sections of the input operator L. In terms of
the order r and degree d of L, this family can involve elements simultaneously of
order r−1 and degree d/2. Thus, Grigor′ev’s approach (at least in a straightforward
way) would lead to a complexity bound similar to that of Proposition 4.4, but an
exponentially worse bound on the degree of the output for large r.

This result leaves open the question of devising algorithms for computing solu-
tions of linear Mahler equations that run in polynomial time in r and d, for all
possible combinations of these parameters, even when the trailing coefficient �0 of
the equation is zero. In particular, it would be interesting to see if the bounds on
the size of an operator equivalent to L implied by Algorithm 10 would be enough to
extend the algorithms of §§2–3 to the case where �0 is zero, without going through
the explicit computation of such an operator.

We end the section by providing an extension of Algorithm 11, which computes
a gcrd for a family of operators of arbitrary M -valuations.

Theorem 4.12. Algorithm 12 computes a gcrd of the input operators L1, . . . , Ls.

Proof. Observe that the minimal M -valuation of operators in a family is the mini-
mal M -valuation of elements of the left ideal generated by the family, in particular,
the M -valuation of any gcrd of the family. This justifies the general design of the
algorithm, with the factorization of Mw on the right in step (1).
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By construction, the L′
i’s thus obtained have orders at most r − w and degrees

at most d, and at least one, say L′
1, has M -valuation zero. Let G′ denote the monic

gcrd of the L′
i, which, as L′

1, has M -valuation zero. By Lemma 4.7, G′ is a right-
hand factor of all elements of the set L computed in step (2). By a proof similar to

the one for Theorem 4.9, it remains so for all subsequent values of L, so for the L̃
of step (4) as well.

As L̃ is also obviously a right-hand factor of all previously computed operators,
including the L′

i’s, L̃ is a gcrd of the latter. This concludes the proof. �
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