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Introduction

The Putnam Competition is a yearly mathematical con-
test at the advanced undergraduate level. The problems
can generally be solved in an astute manner which does
not require heavy computation or advanced mathemat-
ical knowledge. Our approach here is completely dif-
ferent. We show that even without subtlety, brute-force
attacks can solve many of these problems, assisted by the
computing power provided by modern computer algebra
systems. Both approaches are complementary, since in
real life computer algebra is often used in the experi-
mentation stage before reaching general mathematical
results.

We have selected the 1993 Competition as an exam-
ple. We do not have any reason to think that this was
a particularly simple year. We now proceed to treat
each of these problems in turn. For some of them (A-3,
A-4, B-2, B-4, B-6), we did not find any way in which
computer algebra could help find the solution. In some
of these cases, we shall explain this failure. Among the
twelve problems of this contest, Maple can be used to
solve six and give a strong indication for a seventh one.

Problem A-1

The horizontal line y = ¢ intersects the curve y =
22 — 323 in the first quadrant as in the figure. Find ¢ so
that the areas of the two shaded regions are equal.

Denoting by @ and b the abscissa of the intersections
of y = ¢ with the curve y = 22 — 323, this problem is
easily translated into a system of equations:
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> {a*c-int (2*x-3%x"3,x=0..a)=
> int (2*%x-3*x"3,x=a..b)-(b-a)*c,
> 2%a-3%a”3=c,2%b-3*%b"3=c};

{2@—3({3 =¢2b-3b0 =g,
3 4

ac—a,2+'za, =
b2—2b4—clz+%a4—(b—a)c}

Now, we just solve this system:

> solve(",{a,b,c});

{ea=0,=0.c=0},{

a =RootOf(9_-2° +6 -7 — 2),

4 -2 —4 -2
c=—=—7r 0 =—,c=—,b=— >,
flr= T3 =T

a = RootOf(9_-2° — 6.7 — 2),

—4 —
=222
9" 3}

Only one of these solutions satisfies 0 < @ < b. This
gives the result ¢ = 4/9.

Problem A-2
Let (;’L’n)nzo be a sequence of nonzero real numbers such
that

2 .
Ty — Tp—1ng1 = 1, forn=1,2,3,...
Prove there exists a real number a such that x,.1 =
axy — Tp—1 for alln > 1.

This is reminiscent of an identity of Cassini:

F?—Fy 1Fopy = (-1)",
where F), denotes the nth Fibonacci number, of which
the problem is actually a simple generalization.

The sequence (,,) is completely determined by its
two first values xp and x;. Defining the sequence (y,)
by
Yo = Zo,

Yn+1 = AYn — Yn—1. Yy = I,
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we shall prove that y, = 2, for all n by showing that (y,,)
satisfies the same recurrence as (x,) for some particular
value of a.

We use the gfun package from the share library! [1].
This package provides procedures to compute linear re-
currences satisfied by sums or products of sequences
themselves defined by linear recurrences.

We first define the sequence (y,):

> r:=y(n+1)=a*y(n)-y(n-1):
> ini:=y(0)=x[0],y(1)=x[1]:

This recurrence is also satisfied by (y,—1) and (yn41),
with different initial conditions. A recurrence satisfied
by (y2) is given by

> ‘rec*rec‘ ({r,ini},{r,ini},y(n));

(1512 (s

While gfun insists on using the same name y(n) in
this recurrence as in the original one, there should be
no confusion that the above recurrence is actually satis-
fied by (y2). Similarly, we obtain a recurrence satisfied
by (yn+1yn—1) and a recurrence satisfied by the differ-
ence of these sequences.

> ‘recxrec‘ ({r,y(0)=x[1],y(1)=a*x[1]-x[0]},

> {r,y(D=x[0],y(2)=x[1]1},y(n)):

> ‘rectrec‘(‘rec*rec’(y(n)=-1,",y(@)),"",y(n));

{vy(7)=%1,y(5)=%1,y(6) = %1,
y(4) = %L¥(2) = ALy(0) = %1,
V(1) = %1,¥(3) = %L, (~1+a® ) y(n)
+(=a""+4a" —4a®)y(n+7)
+(a®=2a5 —a"+3a*>-1)y(n+8)+
(—a'" +7ad®—20a" +25a* — 124" + 2)

y(in+4)+

(2a'" —12a® +264° — 240" +84a”)
y(n+5)}

Y1 := —coacy + 12 + cp?

1 An updated version of the gfun package that was used in this
paper is available in the electronic updates to the share library,
which are accessible via anonymous ftp. The latest version can be
obtained by anonymous ftp from
ftp.inria.fr:INRIA/Projects/algo/programs/gfun.

The conclusion is obtained by checking that the se-
quence ¥y, = 1 is a solution to this recurrence for some
value of a:

> eval(subs(y=1,"));
{0,1 = —zgpaxy + 1% + 20%)}

Another approach to this problem consists in us-
ing the theory of rational sequences. In this context,
the result is obtained via properties of Hankel determi-
nants (see [2, pp. 96-100]).

Problem A-3

Let P, be the set of subsets of {1,2,...,n}. Let c¢(n,m)
be the number of functions f: P, — {1,2,....,m} such
that f(AN B)=min{f(A), f(B)}. Prove that

This problem is not very difficult. These functions
are completely determined by their values on {1,2,...,n}\
{i}, fori=1,2,...,n.

Problem A-4

Let x1,x9,...,219 be positive integers each of which is
less than or equal to 93. Let y1,y2,...,Y93 be positive
wntegers each of which s less than or equal to 19. Prove
that there exists a (nonempty) sum of some x;’s equal
to a sum of some y;’s.

The question does not actually depend on the par-
ticular numbers 19 and 93. We can use the following
procedure to check the property for particular values. It
takes as input two positive integers m and n. For each
n-tuple of integers in {1,...,m} and for each m-tuple of
integers in {1,...,n} it checks whether the sets of par-
tial sums of both have a nonempty intersection. This
is done using the iterator cartprod from the combinat
package, which avoids generating the whole sets of possi-
bilities and thus makes the program run with very small
memory requirements.

> check:=proc(m,n)
> local X,x,Y,y,i,s;
>  X:=cartprod([seq([$1..m],i=1..n)]):
while not X[finished] do
x:=X[nextvaluel] ();
s:={op(map(convert,
powerset(x),‘+))};
Y:=cartprod([seq([$1..n],i=1..m)]);
while not Y[finished] do
y:=Y[nextvalue] O);
if s intersect
{op(map(convert,powerset (y), ‘+‘))}
minus {0}={} then

VVVVYVVVVYVYV
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> print(x,y);

> RETURN (false)
> fi;

> od;

> od;

> true

> end:

For instance, with 3 and 4 we get:
> check(3,4);

true

Unfortunately, the combinatorial explosion of the num-
ber of cases to consider makes it impossible to apply this
procedure to 19 and 93. A clever pigeon-hole argument
is given in [3].

Problem A-5

Show that
~—10 22— 2
—— | dx
.[100 (fg_?’f‘i'l) '
"I 22 _ g 2
- di
+/; (173—31?4—1) N
1 . 2
10 22—z
+/& (173—31?4—1) d

18 a rational number.

Definite integrals of rational functions are very well
understood and it comes as a surprise that Maple is not
able to compute the result without help. We therefore
start from the indefinite integral.

> fi=((x"2-x)/(x"3-3*%x+1))"2:

> g:=int (f,x);

2 8 5

— 4 _r—a? ~
99" 9 27
= - Rlnlz—-—_R
g | +(Z n(T 2 ))

_R=%1
%1 := RootOf( 19683 7% — 324 7 +8)

As follows from the general theory of integration of
rational functions, this is the sum of a rational function
and a logarithmic part. The sum of logarithms is in-
dexed by algebraic quantities that are the residues of
the rational function. The question then amounts to
showing that this sum vanishes for the special values of
the endpoints of the integrals. We start by isolating the
logarithms associated with each residue and evaluating
them at the endpoints.

Inpart:=op(2,g):

L:=op(1,lnpart):

h:=subs(x=-10,L)-subs(x=-100,L)
+subs(x=1/11,L) -subs(x=1/101,L)
+subs(x=11/10,L)-subs(x=101/100,L);

vV V.V VYV

27 27
h:=_Rln (—10— > _R) —_Rln (—100 - ?_R)
1 27
Rln|—=—-—_
+_R n(ll 5 R)

1 o7
~ Rln— 2L
Rn<101 > R)

> h:=combine(factor(h),ln);

27 1 27
h = _R hl <<—10 - 7 _R) (ﬁ - 7 _R)
11 27 27
(E‘?-R)/((‘”O‘?-R)
1 27 101 27
(W‘TR) (W‘E-R)))

The result follows from noticing that this logarithm
is actually independent of the particular residue and
the fact that the sum of residues is 0. We first replace
_R by its value inside the logarithm and normalize us-
ing evala.

> evala(subs(op(2,lnpart) ,op(2,h)));

326230
In | ———m0
3665563

We then sum over all the residues.

> sum(_R*",op(2,1lnpart));
0

Note that it is not easy to generate such an example
of a rational sum of three integrals of a rational func-
tion with an irreducible denominator of degree 3. As
F. Morain pointed out to us, the reason why this exam-
ple works is that the splitting field of f(x) = 2® =32 +1
is a cyclic cubic field. Thus, there exists an homogra-
phy o (in this example ¢t — 1 — 1/¢) which represents a
generator of the Galois group of the polynomial over Q.
As a result, for any root a of f(x), the product

(t — a)(o(t) — a)(o?(t) — o)

factors as f(t)g(«)/d(t), with d € Q[t] and g € QJa].
This is why the logarithm above is independent of the
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particular residue. Ultimately, this property is equiv-
alent to the discriminant of the cubic polynomial f(z)
being a perfect square (here 81) [4, p. 330].

Problem A-6

The infinite sequence of 2’s and 8’s

has the property that, if one forms a second sequence
that records the number of 8’s between successive 2’s,
the result is identical to the given sequence. Show that
there exists a real number r such that, for any n, the nth
term of the sequence is 2 if and only if n = 1+ [rm]
for some nonnegative integer m. (Note: || denotes the
largest integer less than or equal to x.)

When read backwards, the property defining the se-
quence gives a powerful way of generating the sequence:

1[0]:=[2]:
for i to 10 do
1[i] :=subs([2=(2,3,3),3=(2,3,3,3)],
1[i-11)

vV V.V VYV

od:

\

1[3];

[27 37 37 27 37 37 37 27 37 37 37 27 37 37 27
3,2,3,3,3,2,3,3,3,2,3,3,3|

If a real number r satisfying the conditions of the
question exists, then the proportion of 2’s in the se-
quence must tend to 1/r. We shall use this remark to
find a good candidate for r.

> select(type,1[10],identical(2)):
> r:=nops(1[10])/nops(");
413403
" T

The partial fraction expansion of this number turns

out to be very simple:

> convert (r,confrac);

[37 17 27 17 27 17 27 17 27 17 27 17 27 17 27 17 2]

The periodicity indicates that the number is likely to
be the root of a quadratic polynomial. This polynomial
in turn can be guessed by Maple’s function minpoly.

> readlib(lattice): minpoly(r,2);
1-4.X 4+ _X?

> solve(",_X);

243, 2-V3

y
15
10
5
[0) 5 10 15 X
Figure 1: The line y = (\/§ — 1)a encodes the se-

We now check that the number r satisfies the desired
property up the the 1000th term of the sequence.

evalb([seq(L[i],i=1..1000)]
=[seq(12[il,i=1..1000)1);

> r:=2+sqrt(3):

> n:=0:

> for m from O while n<1000 do
> s:=1+trunc(r#*m) ;

> for n from n+l to s-1 do
> 12[n]:=3

> od;

> 12[s]:=2;

> od:

> L:=1[6]:

>

>

true

Once r has been guessed (as above), to complete
the proof requires computing inequalities to prove an
induction about the location of the indices of the 2’s
(see [3]).

This problem is related to morphisms in the theory
of formal languages and admits a geometrical interpre-
tation. Letting {r} denote the fractional part of r, the
sequence 2,3,3.2, 3,--- can be obtained by drawing in
the plane the line y = {r}x and writing a letter 3 at po-
sition n if the line crosses a horizontalliney = k (k € N)
between = n and © = n + 1 and a letter 2 otherwise
(see Fig. 1 and [5, 6]). We thank J. Berstel for clarifying
this connection for us.

Problem B-1

Find the smallest positive integer n such that for every
wnteger m, with 0 < m < 1993, there exists an integer k

for whach
m k m+1

1993 < n 1994
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Here pure brute force is sufficient:

> for n do

> for m to 1992 do

> if irem((m+1)#*n,1994,°k’)=0

> then k:=k-1 fi;

> if m*n>=1993%k then break fi

> od;

> if m=1993 then print(n); break fi
> od;

3987

The result turns out to be 1993 + 1994 which could
have been obtained directly by considerations similar to
those used in the study of Farey series (see [7]).

Problem B-2

Consider the following game played with a deck of 2n
cards numbered from 1 to 2n. The deck is randomly
shuffled and n cards are dealt to each of two players, A
and B. Beginning with A, the players take turns dis-
carding one of their remaining cards and announcing its
number. The game ends as soon as the sum of the num-
bers on the discarded cards 1s divisible by 2n + 1. The
last person to discard wins the game. Assuming optimal
strategy by both A and B, what is the probability that A
wins?

It requires some thought to realize that B can play
in such a way as to win every game. Computer algebra
does not help.

Problem B-3

Two real numbers x and y are chosen at random in the
interval (0,1) with respect to the uniform distribution.
What is the probability that the closest integer to x/y is
even? Express the answer in the form r + sm, where r
and s are rational numbers.

The question is easily seen to be equivalent to the
computation of the area of the shaded region in the fol-
lowing figure.

This is readily translated into

> res:=int(y/2,y=0..1)+

sum(int (2*%x/ (4*p-1)-2*x/ (4%p+1) ,x=0..1),
> p=1..infinity);

1 1 1
rc.s:=§——\11 § + (=
4 4 4 4 4

and the final result is obtained by the simplification

\

> combine(res,Psi);

| ot
|

Problem B-4

The function K (x,y) is positive and continuous for 0 <
z <1, 0<y<1, and the functions f(x) and g(x) are
positive and continuous for 0 < x < 1. Suppose that for
allx, 0 <z <1,

A Hy)E(z,y)dy = g(x)

and .
[ swEpay = ).

Show that f(x) = g(x) for 0 <z < 1.

We could not find any solution to this problem using
computer algebra.

Problem B-5

Show there do not exist four points in the Euclidean
plane such that the parrwise distances between the points
are all odd integers.

The distances between n + 2 points in a Euclidean
space of dimension n are not completely independent.
In particular the following determinant — the Cayley-
Menger determinant  must be zero [9]:

0 1 1 1

1 0 d%,z d%,w—z
1 43, 0 :

: ' . di+11n+2
1 d31+2,1 dfz+2,n+1 0

Here d; ; denotes the Euclidean distance between points
number ¢ and j. To solve the problem, we first compute
this determinant for n = 2.
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nb:=4:
CM:=array(1..nb+1,1..nb+1,
sparse, symmetric):

for j from 2 to nb+l do CM[1,j]l:=1 od:
for i from 2 to nb+1 do

for j from i+1 to nb+1 do

CM[i,jl:=ali-1,j-1]1"2

od od:

print (CM) ;

VVVYVYVYVYVVYV

0,1,1,1,1
1,0,dy 2% d1 3% dy 4*
17(11,2270742,32742,42

2 2 2
1,di3”,da3”,0,ds.

1,d, ,42 ,(12,42 -,d:s,42 ,0
> DCM:=linalg[det] (CM) :
We then make the substitution d; ; = 2k; ; +1 and
reduce modulo 8:
DCMk : =subs ({seq(seq(
dli,jl=2*k[i,jl+1,j=i+1..nb),

i=1..nb)},DCM):
Expand (DCMk) mod 8;

vV V VYV

4

This result shows that the determinant cannot be 0
when the distances are odd integers, which proves the
desired result.

Problem B-6

Let S be a set of three, not necessarily distinct, posi-
tive integers. Show that one can transform S into a set
containang 0 by a finite number of applications of the fol-
lowing rule: Select two of the three integers, say x and y,
where x < y, and replace them with 2x and y — x.

Here again, we were unable to come up with a solu-
tion using Maple.

Conclusion

These examples are typical of the everyday use of Maple.
For some problems, computer algebra is useless; for other
problems, it provides a complete solution in one line; for
most problems however, interaction with the system is
necessary to develop intuition and to arrive at a more
or less complete solution.
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