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Abstract

This survey presents a unified and essentially self-contained approach to the asymptotic
analysis of a large class of sums that arise in combinatorial mathematics, discrete probabilistic
models, and the average-case analysis of algorithms. It relies on the Mellin transform, a close
relative of the integral transforms of Laplace and Fourier. The method applies to harmonic
sums that are superpositions of rather arbitrary "harmonics" of a common base function. Its
principle is a precise correspondence between individual terms in the asymptotic expansion of
an original function and singularities of the transformed function. The main applications are in
the area of digital data structures, probabilistic algorithms, and communication theory.

Die Theorie der reziproken Funktionen und Integrale
1st em centrales Gebiet, welches manche anderen Gebiete

der Analysis miteinander verbindet.

Hjalmar Mellin

Introduction

Hjalmar Mellin (1854-1933, see [59] for a summary of his works) gave his name to
the MeIlin transform that associates to a function f (x) defined over the positive reals
the complex function f * (s) where

f * (s) = f0 f(s1 dx.

The change of variables x = e """ shows that the Mellin transform is closely related to
the Laplace transform and the Fourier transform. However, despite this connection,
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there are numerous applications where it proves convenient to operate directly with
the Mellin form (1) rather than the Laplace-Fourier version. This is often the case in
complex function theory (asymptotics of Gamma-related functions [64, 65]), in num-
ber theory (coefficients of Dirichlet series, after Riemann), in applied mathematics
(asymptotic estimation of integral forms), and in the analysis of algorithms (harmonic
sums introduced below). Thus, throughout this paper, we operate directly with the
Mellin transform.

The major use of the Mellin transform examined here is for the asymptotic analysis
of sums obeying the general pattern

G(x) = E g(pkx), (2)

either as x 0 or as x -+ co. Following a proposal of [31], sums of this type are called
harmonic sums as they represent a linear superposition of "harmonics" of a single base
function g(x).

Harmonic sums surface at many places in combinatorial mathematics as well as in
the analysis of algorithms and data structures. De Bruijn and Knuth are responsible in
an essential way for introducing the Mellin transform in this range of problems, as
attested by Knuth's account in [56, p. 131] and the classic paper [16] which have been
the basis of many later combinatorial applications. For instance, the analyses of the
radix-exchange sort algorithm [56] and of the expected height of plane (Catalan) trees
[16] involve the quantities

1
S„ = E [i - (i -

n
-,,2 )

k=0
and T„ =

n

=k
E

0
d(k)

2nk)

(3)
(n

2(nn)

where d(k) is the number of divisors of k and (g) is the binomial coefficient. These
discrete quantities have continuous analogues that are harmonic sums

G(x)	 E Li _2k] and H(x) = E d(k)e - k2x2, 	 (4)
k=0 	 k=0

and elementary arguments establish that asymptotically S„ G(n) and T„ H (n).
There are inherent difficulties in the asymptotic analysis of the discrete sums S„, 7'„

or their continuous analogues G(x), H (x). The divisor function in T„ and H (x)
fluctuates heavily in a rather irregular manner (for instance it equals 2 if and only if k is
prime). The quantities S„ and G(x) look more innocuous; however, a Mellin based
analysis to be shown later reveals that they involve subtle fluctuations of a tiny
amplitude, less than 10 -5 . Such behaviors preclude the use of elementary real
asymptotic techniques in most sums of this type.

Over the past 20 years, perhaps some 50 odd analyses of algorithms or related
evaluations of parameters of combinatorial structures have involved in a crucial way
a Mellin treatment of harmonic sums of sorts. We shall organize and detail in later
sections several of these examples that can be broadly categorized, in terms of their
range of applications, as follows.
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— Digital searching methods: radix-exchange sort, digital trees, digital search trees
[56] and their generalizations like "bucket" trees [32], Patricia trees [56, 80], suffix
trees [48].
Digital trees, variance and biased-bit models [54, 79].
Tree manipulation algorithms: height and stack depth [16], register allocation [50].
String searching and the occurrence of patterns in strings [68] (and references
therein), with applications to carry propagation in binary adders [57] and data
compression [48, 47].
Multidimensional searching problems [29] and Euclidean matching [74].
Extendible hashing and grid file methods [72, 73].
Parallel and distributed algorithms like the leader election technique of [70],
communication protocols based on the Capetanakis—Tsybakov scheme [20, 39,
46, 63], parallel sorting networks based on Batcher's odd—even scheme [75].
Divide-and-conquer algorithms: mergesort [25] and geometric maxima finding
[24].
Randomized data structures, like skip lists [52].
Probabilistic estimation algorithms: probabilistic counting [27], adaptive sampling
[23], or approximate counting [22, 71].

In many cases, notably digital search trees, harmonic sums are an alternative to the
method of "Rice integrals" that is discussed in detail elsewhere [34].

Some brief accounts of the method are given in the books by Hofri [44, p. 48ff],
Kemp [51, p. 141], Mahmoud [62], and in the handbook chapter [84]. We follow
here the architecture of the informal survey [31].

General properties of the Mellin transform are usually treated in detail in books on
integral transforms, like those of Doetsch [18], Widder [86], or Titchmarsh [82].
Asymptotic methods in connection with Mellin transforms are discussed within the
context of applied mathematics in treatises by Davies [13], Dingle [17], and Wong
[88]. In particular, our work is close in spirit to Wong's who discusses extensively an
analogue of harmonic sums in the form of "harmonic integrals"

G(x) = 	 ')3 .1(1c)g(i.1(k)x) 	 (5)
Jo

(In this continuous case, by a change of variables, one may always assume that
kt(K) K.) Some of the many uses in number theory are treated for instance in
[4, 7, 42].

Principles. A major use of Mellin transform in asymptotic analysis is for estimating
asymptotically harmonic sums (2). The .1. 1, are the "amplitudes", the /Lk are the
"frequencies", and g(x) is the "base function". Harmonic sums reduce to usual Fourier
series when the base function g(x) is taken to be a complex exponential, g(x) = e
and the frequencies are the integers, al, ---E k.

1. Mellin transforms and the "separation" property. The Mellin transform as defined
in (1) converges in a strip of the complex plane called the fundamental strip. By
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a direct change of variables, the Mellin transform of g (px) is p times the transform
g*(s) of g(x). Thus, by linearity, the Mellin transform of a general harmonic sum is
(conditionally)

G* (s) = A (s)• g* (s), 	 (6)

where

A(s)= E1kk5, 	 g* (s) 	 g (x)	 dx.
0

It therefore factors as the product of the transform of the base function and of
a generalized Dirichlet series: Mellin transforms applied to harmonic sums "separate"
the amplitude—frequency pair from the base function.

The inversion theorem for Mellin transforms is analogous to Fourier inversion,

1
f (x) = —2in c_ f * (s) x' ds . (7)

There, the integration line 9i (s) = c should be taken in the fundamental strip of the
Mellin transform.

Basic functional properties of the Mellin transform are recalled in Section 1
(Theorem 1) and the separation property is expressed by Lemma 2 of Section 3.

2. Poles of transforms and asymptotics of originals. There is a fundamental corres-
pondence between the asymptotic expansion of a function (either at 0 or co) and
singularities of the transformed function.

First and foremost, Mellin asymptotics crucially relies on analytic continuation of
transforms. Consider the problem of asymptotically expanding f(x) as x 0 when
f * (s) is known to be meromorphically continuable in C. The starting point is the
inversion formula (7). The line of integration is then shifted to the left while taking
residues into account. For instance when c > 0 and f * (s) has simple poles at the
nonpositive integers, each simple pole at s = — m contributes a term proportional to
et since

Res ( f * (s) x"), _„, = Res( f * (s)),„ _ ,„ • xm

(There Res(g(s)),--,„ denotes the residues of g(s) at s = so .) Thus, globally integrating
along an infinite rectangle with sides 9i (s) = c and 91(s) = — M — 1/2 (M an integer)
gives by the residue theorem

f (x) = E (Res f * (s)),, _ „, xin + 0 (x m + / 2). (8)
m=o

Some additional decay condition on f*(s) is evidently necessary in order to justify (8).
The computation outlined above reflects a general phenomenon: Poles of a Mellin

transform are in direct correspondence with terms in the asymptotic expansion of the
original function at either 0 or + cc.
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For the asymptotic evaluation of a harmonic sum G(x) this principle applies to
G* (s) provided the Dirichlet series A (s) and the transform g* (s) are each analytically
continuable and of controlled growth. This assumption is realistic for many naturally
occurring base functions and for amplitude and frequencies given by "laws" that are
regular enough.

The fundamental correspondence is explored in Section 2 (Theorems 3 and 4); its
application to harmonic sums is spelled out in Section 3.

Example. The mode of operation of Mellin asymptotics is well illustrated by the
harmonic sum

G (x) = E - 1)k (log k) e k2X

	
(9)

k = 1

In this case, the classical equations
00 1

F(s)	 e xs dx and C(s) 	 E
JO 	 k= 1 't

define the Gamma function of Euler and the Riemann zeta function [85]. Thus, F(s) is
the Mellin transform of the base function g(x) = e and a simple computation yields

A ( -s) 
= 11-1 (1 - 2 1 ')C(s).2 	 ds

In this way, the transform of G(x) is found to be
G*(s) = [2 1- 2s (logti 2) (2s) + (1 - 2 1 25 ) C' (2s)] • F (s).	 (10)

Analytically, the representation (10) is easily justified when 9i (s) > 1, a condition that
ensures simultaneously absolute convergence of the Dirichlet series and of the Mellin
integral.

It is known that the Gamma function and the zeta function are both continuable to
the complex plane: F (s) has simple poles at the nonpositive integers while C(s) has only
a simple pole at s = 1. Also, F (s) decreases fast along vertical lines while (s) is only of
moderate growth. Thus, globally, G* (s) gets small for s + ioo and the integration
contour can legitimately be shifted to the left. For instance, by sweeping the integra-
tion contour till the vertical line 91(s) = - 5/2, one gets from the poles at s = 0, - 1,
-2

G(x) = log - + c i x + c 2 x2 + 0(x 512 ),

with c 1 = 7'( - 2) and c 2 = - C# ( - 4). The first few terms are then determined in
a matter of seconds with the help of a computer algebra system like Maple that
"knows" the expansions of (s) and F (s) at points of interest, like C(0) = -
C(0) = - log \/27c.
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The computation is easily carried out to any order, and one finds

_
G(x) — log 	 (2,2k_ oc(-20xk.

k=1 k

Such an expansion might be obtained otherwise via a reduction to Euler—Maclaurin
summation but application of this formula would be hampered by the alternation of
sign and by the presence of the logarithmic factor. Mellin asymptotics is the approach
of choice here.

The method is susceptible to a large number of variations. It is applicable each time
the Dirichlet series of an amplitude—frequency pair is reducible to a standard function,
like for instance

CO 	 1	 1

kL=0 (2 kY = 1 — 2 - s '
d(k) 	2

(s).E 	 = c
k = 1 

In this way sums involving geometrically increasing frequencies or highly fluctuating
amplitudes of an arithmetic nature can be analyzed effortlessly, see Sections 4-7.
Another feature is that the correspondence between poles of transforms, and asymp-
totic terms of originals fares both ways; this fact allows for base functions that admit
of no explicit transform, like

g(x) = e -X2 1

as well as exotic Dirichlet series like

log k ( — 1)k

	

A() = E  
k=1 N/1 	 k 2 ks

This flexibility explains the power of the Mellin method in asymptotic analysis, which
would apply for instance to a harmonic sum like

G(x) = E (_ 1)k (log k)e -k2 x2
k=1

The general methodology for analyzing such "implicit" sums is discussed in
Section 8.

Plan of the paper: Part I is devoted to the general functional and asymptotic
properties of Mellin transforms. Our presentation assumes only rudiments of complex
analysis (contour integrals, residue theorem) as found for instance in [81, 85]. The
general framework is conveniently built on the Lebesgue integral [81, Ch. X] allowing
dominated convergence properties, rather than on the Riemann integral. This distinc-
tion is however somewhat immaterial as specific examples can be dealt with using
Riemann integrals only. A number of examples related to combinatorial analysis and
the analysis of algorithms are then presented in Part II. Finally, methods for dealing
with wider classes of sums form the subject of Part III.
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PART I. MELLIN TRANSFORMS AND ASYMPTOTICS

In this part, we lay down the basic framework of Mellin asymptotics. Section 1 gives
the basic functional properties of Mellin transforms and Section 2 discusses the
fundamental correspondence between asymptotic properties of an original function
and singularities of its transform. Section 3 develops the basic treatment of harmonic
sums that form the subject of this paper. Section 4 briefly examines consequences for
general summatory formulae.

1. Basic properties

We start by recalling the salient properties of the Mellin transform. The definition
domain of a Mellin transform turns out to be a strip. We thus introduce the notation
<1, fl> for the open strip of complex numbers s = a + it such that a < a < #.

Definition 1. Let f (x) be a locally Lebesgue integrable over (0, + co). The Mellin
transform of f (x) is defined by

+co
[f (x); .3] f * (s) = .1 f (x) x5- dx	 (11)

The largest open strip <a, 13) in which the integral converges is called the fundamental
strip.

From the decomposition 10' =101 + , we see that a is the infimum of all A such
that f(x)xA is integrable over (0, 1] and fl is the supremum of all B such that
f(x) x' is integrable over [1, + co). Most functions have an order at 0 and co so
that an existence strip for f*(s) can be guaranteed.

Lemma 1. The conditions

f(x) = 0(xu), 	 f (x) = 0(x').
x-o+ 	 x--• +

when u > v, guarantee that f* (s) exists in the strip < — u, —v>.

Thus, existence of a Mellin transform is granted for locally integrable functions'
whose exponent in the order at 0 is strictly larger than the exponent of the order at
infinity. The asymptotic form of f(x) at 0 constrains the leftmost boundary of the
fundamental strip of f*(s); the asymptotic form at + oo constrains the rightmost

In the sequel, all functions considered are tacitly assumed to be locally integrable.
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boundary. Monomials x`, including constants, thus do not have transforms under
Definition 1.

As the integral defining f *(s) depends analytically on the complex parameter s,
a Mellin transform is in addition analytic in its fundamental strip.

For instance, the function f (x) = (1 + x) -1 is 0(x ° ) at 0 and 0(x -1 ) at infinity,
hence a guaranteed existence strip for f * (s) that is <0, 1>, which here coincides with
the fundamental strip. In this case, the Mellin transform may be found from the
classical Beta integral [85, p. 254] to be

f (s) = sin its

which is analytic in <0, I>, as predicted.
The function g(x) = e satisfies

e x - 1,	 e -x = 0(x') for any b > 0
x-o*

so that its transform, known as the Gamma function [85, Ch. XII]

i
+0,,

F (s) =	 e'xs--1 dx,
J o

is a priori defined in <0, + co> and analytic there.
Let H(X) be the (Heaviside-like) step function defined by

H(x) = 1 if 0 x <1,	 H(x) = 0 if 1< x.	 (13)

Then,

H* (s) = 
1
-
s
, s E <0, + co>.

The complementary function 171(x) = 1 - H(x) satisfies H* (s) = - s 1 for
s e <- co, 0>, where the fundamental strips corresponding to H and ii are disjoint.

Functional properties. Simple changes of variables in the definition of Mellin transforms
yield a basic set of transformation rules summarized in Fig. 1 and Theorem 1 below.

Theorem 1 (Functional properties). Let f (x) be a function whose transform admits the
fundamental strip <a, P. Let p be a nonzero real number, and p, v be positive reals. Then
the following relations hold:

[f (Px);	 = tcss f*(s), s	 fl>.
EEk Akf(mkx); = (Ek„ Ak	 • f * (s), itc finite,

di [x' f (x); s] f * (s + v), s E <a, fi>.

Ef (x°); s] = —1 f*
P \P

(12)

> O.

S E <pcx, pfi>.
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f (x) f * (s) <a> ,3>

F2

xv f (x)

f (xP)

f * (s + v)
irk( s
p	 )

<a —v, 13 —v>

<Pa, pfl> p > 0

f (1 /x) — f * ( — s) < — 13, — a>
F3 f ( fix)

Ek Akf(tikX)

—
1
,f * (s)

lt-
(Ek ak 	 f *(s)

<a, )3> > 0

Theorems 1, 5,
Lemma 1

F4 f (x) log x —
ds

f * (S) <a, 13>

F5 0 f (x) — s f * (s) <a', 	 > e = x dx

—
dx

f (x) — (s — 1) f * (s — 1) <a' —1, /3' —1>

— —
1 
f * (s +.1; f (t) dt	 1)

Fig. 1. Basic functional properties of Mellin transforms. The table lists the original function, its Mellin
transform, and the validity strips.

The most important rule is the rescaling rule that gives the transform of f (/ux) as
s f *(s) via the change of variables x 1—* fix, provided that it > 0. By linearity of the

transform, one also has

AltJi[E	i(1,1kx); si=( E—) . .f* (s),
k

whenever k ranges over a finite set of indices. This formula can usually be extended to
infinite sums that define the harmonic sums already mentioned in the introduction,
see Lemma 1 and Theorem 5 below. For instance from

one finds

1	 1	 1
f * (s) = F (s)•	 +	 ± • ••) = F(s)C(s),

as long as 91(s) > 1, a condition that simultaneously entails absolute convergence of
the Mellin integral of f (x) and of the sum defining the zeta function.
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A particular case of the rule for powers is

[f (x-1 ); s = —f*(— s).

Since the function 1/x exchanges 0 and oo, this permits to limit consideration of
asymptotic properties of a function to one of the two places 0, + oo. A useful
application of the rule is for the transform of the Gaussian function,

[e - x 2 ; s] = 	 (-s
2	 2

which arises in estimates of sums involving binomial coefficients.
The formal rule

f * (s) = 	 f (x) (log x)	 dx
ds

is readily justified analytically by "differentiation under the integral sign". (As com-
plex-differentiable implies analytic, this also supports our earlier claim that Mellin
transforms are analytic in the fundamental strip.) Thus

[ f (x) (log x); s] = d—ds f * (s).

For instance, the transform of H (x) log x is - 1/s 2 , the transform of e log x is F' (s).
Conversely, the rule for transforming the derivative of an original function is best

enunciated in terms of the operator

0 = x 
d
—

x
.

Frequently the fundamental strips of f (x) and Of (x) have a nonempty intersection

<a', )3' >. This is ensured in the common case where f (x) = 0(x) as x 0 and
f (x) 0(x - °) as x -■ co whenever ef (x) satisfies the same estimates (i.e., the
asymptotic form of the derivative of f coincides with the derivative of the asymptotic
form of f). Under this sufficient condition, with f (x) continuous and piecewise
differentiable, integration by parts yields

J +00 	 +00

ef (x) dx = [f (x)xs];" - s f (x) x' dx, a < 91(s) < 13,
. 

and the term [ f (x)xs ED equals 0 for s e <a, 16> . Thus

[ef (x) ; = - sf * (s).

This permits to deduce Mellin transforms of primitive functions by identification.
For instance, from the transform of (1 + x) - 1 , we find

It
di [log (1 + x), s] = 

s sin its ' 
— 1 < 9(.1) < 0.
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e' 	 F (s) 	 <0, + co>
e' — 1 	 F (s)	 < — 1, 0>
e - x — 1 + x 	 F (s) 	 < —2, —1>
e - X2 	IF(1 s) 	 <0, + co>

1 	 TC <0,1>+ 	 sin its

log(1 + x) 	 < — 1, 0>it

s sin ICS

1
H (x) 10<x<1 	 <0, + co>

(-1)q!
x8(log H (x) 	 < —a, + co> Ice

(s +

Fig. 2. A microdictionary of Mellin transforms.

In the same vein,

[e - x — 1, s] = 
F (s + 1) 

— F (s), — 1 < 91(s) < 0,

and so on, see Fig. 2.
Note on transforms of analytic functions: Although we do not make use of it here,

there is a fruitful approach to the determination of transforms of analytic functions
that is based on a classical loop integral representation due to Hankel [83, 85].
A Hankel contour ,re is a simple loop that starts in the upper half-plane near + co,
circles around the origin counterclockwise and returns to + co in the lower half-
plane. If f (x) is analytic in some open set that contains [0, + co) and satisfies
reasonable growth conditions, then Hankers formula holds,

— 1
[f (x), s] = 

2i sin
	

its fo f (w)( _w)1 	0< a <	 (14)

The proof is based on shrinking the contour towards the real axis and using the fact
that in the infinitesimal limit the integrand is f (x) XS 1 multiplied by
(e -i" — e i") = —2i sin its. Hankers formula permits to determine all transforms of
rational functions as well as many transforms of meromorphic functions. See
[77, 83, 85].

Inversion. With again s = a + it and the change of variables x = e -Y, the Mellin
transform becomes a Fourier transform

f .f * (s) = 0 f (x)x 5 - 1 dx = — -'-'3 f (e - Y)e - "e -itY dy.
- .0
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This links the two transforms; hence it provides directly inversion theorems for Mellin
transforms. We cite here two main versions, one related to Lebesgue integration, the
other to Riemann integration.

i	
f * (s) x' ds = f (x)

2in e _ ;0,

holds almost everywhere. Moreover, if f (x) is continuous, then equality holds everywhere
on (0, + co).

(ii) Let f(x) be locally integrable with fundamental strip <a,13> and be of bounded
variation in a neighborhood of xo . Then, for any c in the interval (a, 13),

7.-.3 2iit c-iT
lim 	 f * (s) x - s ds = f(4- l+ fx(0- )1 r iT

2	
.

Proof. See [18, 82, 86]. C7

Fig. 2 presents a few classical original-transform pairs ( f, f *). More can be found in
standard tables of integral transforms [19, 66, 67] and in [61, 77].

2. The fundamental correspondence

There is a very precise correspondence between the asymptotic expansion of
a function at 0 (and co), and poles of its Mellin transform in a left (resp. right)
half-plane. Each individual term in such an asymptotic expansion of f(x) having the
form xe (log x)k is associated to a pole of f *(s) at s = — c with multiplicity k + 1. The
correspondence fares both ways. It is thus the basis of an asymptotic process: For
estimating asymptotically a function F(x) - typically a harmonic sum -, determine its
Mellin transform and translate back its singularities into asymptotic terms in the
expansion of F(x).

Let (s) be meromorphic at s = so : it admits near so a Laurent expansion

0(s) = E ck (.s — so )k. 	 (15)
k — r

The function Os) has a pole of order r if r > 0 and c _ r 0 0, it is analytic (regular,
holomorphic) at so if r = 0. A singular element of 0(s) at so is an initial sum of the
Laurent expansion (15) truncated at terms of order 0(1) or smaller.

Definition 2 (Singular expansion). Let 0(s) be meromorphic in Q with 9' including all
the poles of 0(s) in Q. A singular expansion of 0(s) in Q is a formal sum of singular
elements of 0(s) at all points of 99.

Theorem 2 (Inversion). (i) Let f(x) be integrable with fundamental strip <a, 13>. If c is
such that a < c < 13 and f* (c + it) is integrable, then the equality

1 	c-Hoo
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When E is a singular expansion of Cs), in Q, we write

E (s e 0).

For instance, one has

1
	 + 2 + 3(s + 1)1

s 2 (s + 1) Ls + 1	 s= -1

1	 1	 1
+	 — —1	 +	 (s e < — 2, + 2> ),

s	 s	 L s = 1
(16)

where the point of expansion may be indicated whenever needed as a subscript to the
corresponding singular element. The expansion (16) is a concise way of combining
information contained in the Laurent expansions of the function 0(s) s - 2 (s + 1)_ 1

at the three points of 99 = { — 1, 0, 1}:

=
s-■ -1

=

(S +	 ) 1 +

- 	 (S - 1)

2 + 3(s + 1)

± lt.+7 (S - 1)2

+ •-• ,

+ 	 • • • .

=	 s- 1 .1_ 1 +

s-.1

Example 1. The Gamma function. The Mellin transform of the function e - x defines the
Gamma function,

00

F(s) =	 e - x x 3-1 dx,

for 91(s) > 0. Integration by part permits to verify the well-known functional equation

F(s + 1) = sT(s),

which allow to extend F (s) to a meromorphic function in the whole of C. The function
(s) satisfies F(1) = 1, and from the functional equation one has

T (s) = 
T (s + m + 1)

s(s + 1)(s + 2) • • -(s + m) .

Thus, F(s) has poles at the points s = — m with m E NI, near which

(-1'	 1
F (s) 	

m! s + m'

so that the Gamma function admits

( — 1)k 1 
F	 E    (s e C)	 (17)

k=0 k! s + k

as singular expansion in the whole of C.
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f*(s)

Order at 0: 0(xa)
Order at + co : 0(xb )

Expansion till 0(xv) at 0
Expansion till 0(x 5) at co

Term xa (log x)k at 0

Term X' (log x)k at co

Leftmost boundary of f.s. at 9i(s) = —a
Rightmost boundary of f.s. at at 9i(s) —b

Meromorphic continuation till 9i(s) 	 — y
Meromorphic continuation till 91(s)	 —(5

( —1)k k!
Pole with singular element (s + 0 +1

( —1)k k!
Pole with singular element

(s + a)k +1

Fig. 3. The fundamental correspondence: aspects of the direct mapping (Theorem 3).

Direct mapping. The function e - x has a Taylor expansion at x = 0:

x 	—	 k
	e - = E 	 x . 	 (18)

kt	k= 0	 •

There is a striking coincidence of coefficients in the Taylor expansion (18) of the
original function e -x and in the singular expansion (17) of the transform T (s)
expressed by the rule

1
X 1—> 

s + k •

This is in fact a completely general phenomenon.

Theorem 3 (Direct mapping; see Fig. 3). Let f (x) have a transform f * (s) with
nonempty fundamental strip <a, P.

(i) Assume that f(x) admits as x 0 + a finite asymptotic expansion of the form

f (x) = E c,, k x4(log x)k + 0 (x 7 )	 (19)
(4, k)e A

where the satisfy — y < — c 	 and the k are nonnegative. Then f*(s) is continu-
able to a meromorphic function in the strip < —y, fi> where it admits the singular
expansion

( — 1)k k!
f*(s)-= E

(4k)A 	
(s 	 ok+ 	1 (s

,e 

(ii) Similarly, assume that f(x) admits as x + co a finite asymptotic expansion of
the form (19) where now 13 — < — y. Then f*(s) is continuable to a meromorphic
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function in the strip <a, — y> where

f * (s) 	 — E ck ,
( —

_,_ 
1)k k!

)k+1
(4,k)e A	 kS

(s e <a, — y>).

Thus terms in the asymptotic expansion of f (x) at 0 induce poles of f* (s) in a strip
to the left of the fundamental strip; terms in the expansion at + co induce poles in
a strip to the right.

Proof (see [18]). Since II( f (1 / x), s) = —	 ( f (x), — s), it suffices to treat the case (i)
corresponding to x — 0. By assumption, the function g(x),

g(x) = f (x) — E C4 , k x 4 (log x)k ,
(4,k)eA

satisfies g(x) = O(x).
For s in the fundamental strip, a split of the definition domains yields

1
f * (s) =	 f (x) xs dx +

.1
	 (x)	 sdx

Jo 1
1

= f g (x) X 1  +	 E C 4 , k x(log x)x x' dx
o 	 (4,k)e A

J + co

	f (x) xs dx	 (20)

In the last line of (20), the first integral defines an analytic function of s in the strip
< —y, + oo > since g(x) = 0 (xv) as x 0; the third integral is analytic in < — co , fl>, so
that the sum of these two is analytic in < — y, /3>. Finally, straight integration expresses
the middle integral as

( — 1)k k !
(s

(4,k)e A

E cA, k )k+1 '

which is meromorphic in all C and provides the singular expansion of f * (s) in the
extended strip.

In the case where there exists a complete expansion of f (x) at 0 (or co), the
transform f * (s) becomes meromorphic in a complete left (or right) half-plane. This
situation always occurs for functions that are analytic at 0 (or + cc).

Example 2. The zeta function. We gave earlier the Mellin pair

e'
f (x) =

— e	
f * (s) = F (s) (s)

1 '
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with fundamental strip <1, co>. The function f(x) is exponentially small at infinity
and it admits a complete expansion near x = 0,

X kCO

ii e
	 = E Bk+ 1 (k + 1)!'k= —1

which defines the Bernoulli numbers Bk: B0== 1, B 1 =	 1, etc. Thus,

F (s)C(s) is meromorphic in the whole of C with singular expansion

e

f * (s) =

Bk+1 	 1 F (s) (s)	 E 	 (21)
k = _ (k + 1)! s +

Therefore, ((s) is meromorphic in the whole of C (this is often proved by means of its
functional equation). In addition comparison of the singular expansions of F(s) in (17)
and r(s)(s) in (21) yields

1 —

 CO) = 1	 C( ni) =	 mm + 1s — 1 — 1 

Example 3. The transform of (1 + x) -1 . The function f(x) (1 + x) -1- has <0, 1> as
its fundamental strip. The two expansions,

CO

_ E ( onxn (x,o+) and
+ x „, 0

= v
1+x 	 -1 	

+
nt 

1 1

translate into

—1 )" 	f	 E 	 (s < —co , I.>)	 and
n=0 s + n

( 1)"
f	 — E 	  (sE0, +co),

s — n

which is consistent with the known form,

—

f * (s) = 	  E 	  (se C).
sin its „z S n

The next example illustrates the fact the Mellin analysis may be applied to functions
without explicit transforms.

Example 4. A nonexplicit transform. The function f (x) = (cosh (x)) -1 / 2 is exponenti-
ally small at co and near 0 it satisfies

1
1

1	 7 139	 5473
+ + 0(x10),x8

cosh (x) 
=

4 
x2 + 

96 
x4

5760 
X6

645120
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so that its transform f *(s) is meromorphic in C and

f * 	 1 1 	 7 	1	 139 	1	 5473	 1 
	+ 

96 s + 4 5760 s + 6 
+ 

645120 s + 8 
+

s 4 s + 2 	
.

A general principle also derives from the proof of Theorem 3: subtracting from
a function a truncated form of its asymptotic expansion at either 0 or co does not alter
its Mellin transform and only shifts the fundamental strip. An instance is provided by
the equalities

s) = F (s), S E <0, + CO>, 	 (e-x —1, s) = F (s), s e < — 1, 0> , (22)

previously establishing using integration by parts and specific properties of the
exponential. The following proof of (22) demonstrates the general technique on this
particular example. Take the function

1
F* (s) = - + I (e — 1)xs -1 dx + I exsdx.

s Jo 	 Ji

Consideration of both integrals shows that the function is meromorphic in
< —1, + co>. Its restriction to <0, + co> is

F(s)=	 e -xxs dx,

and its restriction to < —1, 0> is

10 °

 

(e - x — 1)xs -1 dx.

This argument shows that the transforms of e' and of e x — 1 are elements of the
same meromorphic function in different strips.

Converse mapping. Under a set of mild conditions, a converse to the Direct Mapping
theorem also holds: The singularities of a Mellin transform which is small enough
towards + i co encode the asymptotic properties of the original function.

Theorem 4 (Converse mapping; see Fig. 4). Let f (x) be continuous in 10, + co[ with
Mellin transform f * (s) having a nonempty fundamental strip <a, fi>.

(i) Assume that f* (s) admits a meromorphic continuation to the strip <y, fl> for some
y < a with a finite number of poles there, and is analytic on 9l(s) = y. Assume also that
there exists a real number j e (cc, 13) such that

f * (s) = 0(Isr) with r > 1, 	 (23)

when Is' -4 co in y s 1(s) q. If f * (s) admits the singular expansion for s E <y, a>,

E C14,k
(4,k)e A 	 —

1 (24)
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f *(s)
	

f (x)

Term in asymptotic expansion x - 4

expansion at 0
expansion at + oo

Logarithmic factor
(
	  x 4 (log x)k at 0

k!
_
	 x 4 (log x)k at co

k!

Pole at
left of fund. strip
right of fund. strip

Multiple pole
1

left: (s 	)k+1
1

right: (s 	 ok +1

Pole with imaginary part: = o + it	 Fluctuations: x = x e1 log
Regularly spaced poles 	 Fourier series in log x

Fig. 4. The fundamental correspondence: aspects of the converse mapping (Theorem 4 and Corollary 1).

then an asymptotic expansion of f (x) at 0 is

f (x) = E d 	 (k—
)—

)!
1 x 4 

00g
k

) 0 (X — .
(4,k)e A

(ii) Similarly assume that f * (s) admits a meromorphic continuation to <a, y> for some
y > # and is analytic on 91(s) = y. Assume also that the growth condition (23) holds in
<17, y> for some n E (a, 13). If f * (s) admits the singular expansion (24) for s E y>, then
an asymptotic expansion of f (x) at co is

k-	 4

f (x) = —	 k ( \ik
o

 01 x (log x)k + 0 (x ).
(4,k).A

Proof. The proof makes use of the inversion theorem and of a residue computation
using large rectangular contours in the extended strip of f *(s), see Fig. 5. As before, it
suffices to consider case (i) corresponding to continuation to the left.

Let 9' be the set of poles in <y, fi>. Consider the integral

1 
J(T) = 

21
.	 f *(s)x - s ds,

7t

where Cf e(T) denotes the rectangular contour defined by the segments

[11 — iT, +	 [n + iT, y +	 [y + iT, y —	 [y — iT, —

Assume that T is larger than 13 (so )1 for all poles so E Y. By Cauchy's theorem, J (T) is
equal to the sum of residues, which is by a direct computation

-
R	 E d4,k Res 

(  x -s E d
(4,k)e A 	 s = 	 (4, k ) e A 4'k ( (k

( _ 

1)!

1 
x 4 (log x)k
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+ iT7 + iT

a7

— iT n — iT

Fig. 5. The contour Cf used in the proof of Theorem 4. Dots represent poles of f*(s).

Let now T tends to + co. The integral along the two horizontal segments is 0 (T r )
and thus tends to 0 as T cc. The integral along the vertical line 91(s) = n that lies
inside the fundamental strip tends to the inverse Mellin integral which converges
given the decrease assumption on f* and equals f (x) by the inversion theorem (since
f (x) is continuous). The integral along the vertical line 9i (s) = y is bounded by
a quantity of the form

1 ry+i. 	 x dt
f * 	 s I I dsl = 0(1) j. (1 + ty, = O(x v),27c i v _ i „

given the growth assumption on f * .
Thus, in the limit, J( cc) equals f (x) plus a remainder term that is 0(x Y) plus the

sum of residues that is of the stated form in x and log x. 0

In many cases, f* (s) is meromorphic in a complete left or right half-plane and
satisfies the conditions of Theorem 4; then a complete asymptotic expansion for f * (s)
results. Such an expansion may be either convergent or divergent. If divergent, the
expansion is by necessity only asymptotic. If convergent it may in some cases
represent the functions exactly, but this cannot be a general phenomenon decidable
from the series alone' as f (x) and f (x) + (x) have the same asymptotic expansions
at 0 and co whenever m(x) is a "flat" function like v3(x) = e (x + fx ) .

2 A proof of an exact representation requires that the remainder integrals along vertical lines tend to zero;
this needs a fast enough and uniform decrease of f*(s) along vertical lines.



f (x) = E  	 r(v)k=0

( — 1) 1` (v + k — 1) 
xk + 0(xm+1/2 ).
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Example 5. The transform of (1 + x)'. Take v > 0, and consider the function

(s) (v — s)
ck(s) =

(v)

that is analytic in the strip <0, v>. The singular expansion to the left of 91(s) = 0 is

( — 1)k F (v + k — 1) 1E 	
k=0 k!	 (v)	 (s + k) •

The problem here is the behavior of the original function

1vi2+ico

f (x) =	 )(s)x- ds
27E fv/2—ico

as x —■ 0. The decrease of 0(s) along vertical lines results from the decrease of the
Gamma function. Thus, the conditions of Theorem 5 are satisfied. In this way, one
finds, for any integer M,

The series on the right-hand side is a truncation of the Taylor series of (1 + x)', by
virtue of the binomial theorem. We have thus proved that f (x) = (1 + + vi (x) for
a function w(x) that decreases at 0 faster than any power of x.

Sharper estimates of inverse Mellin integrals show that the remainder integral tends
uniformly to 0 when 0 < x < 1, so that the representation is in fact exact. We have
thus found indirectly the Mellin pair

1(s) (v — s)
f (x) 

(1 + x)"	
f * (s) =

(v)

Example 6. A classical divergent series. The function

0(s) = 1(1	 s) .
sin its

is analytic in the strip <0, 1>. In 91(s) < 1, it admits the singular expansion

E (— n! 	 1
n=0	 s + n

which encodes for the original function the asymptotic expansion

CO

f (x)	 E (—on n! x".
n=0
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In fact 4)(s) is the Mellin transform of the "harmonic integral"

" e
f (x) = 

0 1 + xt 
dt

whose consideration goes back to Euler.

Periodicities. A pole of f* at a point = o- + it with a nonzero imaginary part
induces a term of the form

x -4 = x -a e -it logx

which contains an oscillating component that is periodic in log x with period 27c/t.
Mellin transforms are precisely useful for quantifying many nonelementary fluctu-
ation phenomena. In this context, there sometimes occurs a vertical line of regularly
spaced poles (see Section 6). A direct extension of Theorem 4 allows for the presence of
infinitely many poles in a finite strip.

Corollary 1. The conclusions of Theorem 4 remain valid assuming only a weaker form of
the growth condition (23) along a denumerable set of horizontal segments 13(s)I = T .;

where T— co.

Proof. Use the proof of Theorem 4 but restrict T to belong to the discrete set
T; which, by the growth condition imposed, must avoid the poles of f * (s).

In particular regularly spaced poles of f * (s) along a vertical line correspond to
a Fourier series in log x. For instance, simple poles of f* (s) at the xk = o- + 2ikn/log B
will arise from a component of the form (1 — /3 - s) -1 in f * (s). The corresponding
residues rk induce for f (x) the infinite sum

+ E rk x -4k = + x	 rk exp ( — 2iloc log B x),

	

k Ez	 kEz

where the sign is + for poles left of the fundamental strip (expansion at 0) and
— otherwise (expansion at cc).

3. Harmonic sums

This section builds upon the functional properties of the Mellin transform and the
fundamental correspondence to develop a framework adapted to the analysis of
harmonic sums.

Definition 3 (Harmonic sums). A sum of the form

G(x) = E .1k g (itk x)	 (25)
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is called a harmonic sum. The ilk are the amplitudes, the ilk are the frequencies, and g(x)
is called the base function.

The Dirichlet series of the harmonic sum is the sum

A (s) = E Akitk- s. 	 (26)

In this paper, the frequencies either decrease to zero or increase to co. By possibly
considering G(1/x) and changing the base function accordingly, we may always reduce
ourselves to the single case il k + co, which we assume in this section, unless
otherwise stated.

The Mellin transform of a harmonic sum factors, as already mentioned in the
introduction, into a product of the Dirichlet series A (s) and of the transform g* (s) of
the base function. This is true unconditionally for finite harmonic sums Elementary
arguments provide a first extension to infinite sums.

Lemma 2. Assume that g(x) is bounded over any interval [a, b] c (0, + co), and that it
satisfies g(x) = 0 (xv) when x 0 and g(x) = 0(x") when x + cc, with u > v. Assume
that the Dirichlet series A (s) has a half-plane of absolute convergence 92(s) > a. that has
a nonempty intersection z1 with the strip < —u, —v>.

Then the harmonic sum G(x) of (25) is defined for all x in (0, + co). The transform
G* (s) is well-defined in z1 where it factors as

G* (s) -= A (s) • g* (s).

We recall that the theory of generalized Dirichlet series [41] guarantees that
a Dirichlet series like A (s) has a half-plane of absolute convergence 91(s) > aa and
a half-plane of simple convergence 91(s) > er, where

Proof. First consider the special case where g(x) is 0(1) at 0, is 0(x -1 ) at co, and A (s)
convergence absolutely for 91(s) > — 6 for some 6 > 0.

Then over (0, +oo), we have both I g (x)I < C/x and lg (x) I <D, for some constants
C, D > 0. Thus, one has

I G(x) 1 < D • E I Ak I <09,

by the assumption that A(0) converges absolutely. Consequently, G (x) = 0 (1) every-
where and in particular at 0. By summation, G (x) is also 0(x -1 ) everywhere, and in
particular as x + cc. By the dominated convergence theorem, G* (s) therefore exists
in the strip <0, 1>.

The general case reduces to the special case by normalizing g(x) and considering

4'(x) = x-ut(v-u)g(x 10 - o).
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Our treatment throughout this paper relies on the assumption that g* (s) and A (s) in
Lemma 2 are continuable as meromorphic functions in regions of the complex plane
larger than what their definitions imply, and additionally satisfy controlled growth
conditions towards + i cc.

Definition 4. (i) A function 0(s) is said to be of fast decrease in the closed strip
a l ...C. 91(s) a 2 if for any r > 0,

Cs) = 0 (1s1' ),

as I s I —> co in the strip.
(ii) A function is said to be of slow increase in the closed strip a l -C. 91(s) a 2 if for

some r > 0,

0(s) = 0(1 s r ),

as I .51 —> co in the strip.

The property of fast decrease means that 0(s) decays faster than any negative power
of Is I. For instance, the function 7t/sin TES is of fast decrease in any finite closed strip
since the complex exponential representation yields

it
sin
	

its 
— 0(e	 s = o- + it,

which exhibits an exponential decrease along vertical lines. A similar exponential
decay holds for F (s) by the complex version of Stirling's formula [1, p. 257]:

na +	 27c ' t ry-1/2 e — itito 0_4 + coy	 (27)

The property of slow increase holds for many Dirichlet series and, for a < 1, one
has [83, p. 94]

+ it) = 0 (1t1 1 ).	 (28)

(Uniform versions of (27), (28) also exist, see the cited references.)
The property of slow increase is also called "finite order". It means that 4)(s) is of at

most polynomial growth in the strip. The function ((s) is bounded in any closed strip
of the form [1 + E, M] and thus is of slow increase there. Classical theorems [83] that
extend (28) near 91(s) = 1 show that it is of slow increase in any finite strip of the
complex plane.

The theorem below represents the basic paradigm for the analysis of harmonic
sums. It presupposes that the Mellin transform of the base function is of fast decrease
and the Dirichlet series of the harmonic sum is of moderate growth in an extended region
of the complex plane. In the statement, only the abscissa of simple convergence is
needed, a handy improvement for many applications.
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Theorem 5 (Harmonic sums) Consider the general harmonic sum G(x). Let the trans-
form of the base function g* (s) have a fundamental strip <a, P. Let the Dirichlet series
A (s) admit the half-plane of simple convergence 9I (s) > ac . Assume that
- the half-plane of convergence of A (s) intersects the fundamental strip of g*(s): a , < 13

and let a' = max (a, cc );
- the functions g* (s) and A (s) admit a meromorphic continuation in a strip <y, fl> and

are analytic on 91(s) = y, for some y < a;
- on the closed strip y 	 (s) (a' + )6)/2, the function g* (s) is of fast decrease and the

function A(s) is of slow increase.
Then the harmonic sum G(x) converges for all x > 0 on (0, + co). An asymptotic
expansion of G(x) as x 0 till an error term 0 (x is obtained by termwise translation
of the singular expansion of G* (s) = A (s)g* (s) according to the rule

A	 1_, A ( —1)k 
x - (log x)k(s _ )k +	 1 	 k!

Proof. First select an arbitrary integration abscissa a in (a', 13) and take some ao such
that a' < ao < a. The inversion theorem provides

1 f r+icc N

E Ang(tinx)=—,, : 	E -, g*(s)x - scls. 	 (29)
n=1	 zin	 —leo n=1 Pn

There is a well-known bound on the growth of a (generalized) Dirichlet series in any
fixed half-plane strictly interior to its simple convergence domain that reads

C(Isl + 1),

for some constant C, see [41, pp. 3-4]. From this, we have
N

E -, g*(s)x 	 C(Isj + 1)• Ig*(s)l-	 , 	 (30)
n=1 Pn

with permits to apply the dominated convergence theorem and establishes the
convergence of G(x) expressed as an inverse Mellin integral:

1 f+ico
G (x) = 	

_ c„, 
A (s)g* (s)	 ds	 (31)

In addition, the bound (30) shows that G(x) is 0 (x °) where a was chosen arbitrarily
in (a', )6). Thus, the strip <a', 13> is included in the fundamental strip of G(x).

The upper bound of 0 (x ') also holds for all the partial sums E N  An g ( ktn x) which
are therefore dominated by an integrable function over (0, + co). Thus, the dominated
convergence theorem applies once more and yields

	co N	 N A
G*(s) = lim	 E 2„ • g ( x) xs dx = lim E 2-) • g* (s),

	N-0.0 50 n=1 	 N-0 co ri, it„

that is to say the fundamental relation G*(s) = A(s)g*(s).



h* (s) =
It

sin its 
C(1 - s),
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The proof is now completed by a straight application of the Converse Mapping
Theorem (Theorem 4). El

A symmetric result holds near x co, assuming now the meromorphic extensions
to hold to the left of the fundamental strip; the sign is reversed due to the orientation
of the contour. This discussion is summarized by the following informal statement.

Mellin summation formula. Under the conditions of Theorem 5,

E Ao(iik x) 	 ± E Res (g*(s)A(s)x - s),
sell

- for an expansion near 0, the sum is over the set H of poles to the left of the
fundamental strip, and the sign is +;

- for an expansion near co, the sum is over poles to the right of the fundamental strip,
and the sign is - .

In addition, the relation (31) shows that G(x) is of C class since A(s) g* (s) is of fast
decrease so that derivation under the integral sign is permitted.

Example 7. Harmonic numbers. The function

.0 [ 	
+ x

1 	 1 	 ,v,'D 1 x I k 
h(x) 

k1 k k 	 i = k=1 k 1 + x/k=

satisfies h(n)= H. where H„ is the harmonic number. (It is closely related to
(d/dx) log T (x).) Its Mellin transform is

with fundamental strip < -1, 0> and singular expansion to the right of this funda-
mental strip

h*
1 	 y

	- 	 E
s 	 S	 k=1 	 S — k •

Thus (with a minus sign corresponding to the expansion at cc)

1 	 —11k 13 1, 1 	 1 	 1	 1
H„ — log n + y + — + L 	  - log n + y +

k 	 nk 	 2n 12n2 + 1200 +2n 	

Generalized harmonic numbers can be analyzed in the same way, see [37, p. 300] for
a table giving



log (x!) — log (xxe - x127cx) + E
n = 1 2n (2n — 1) x 2"

oo 	 B2 	 1
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Example 8. Stirling's formula. From the product decomposition of the Gamma
function, one has

	(x):= log F(x + 1) — yx = 	 [ 2-c — log (1 +1] (se <-2, +GO).
n=1

This example is similar in spirit to the previous one. The Mellin transform is

It

e* (s) =	 C( 	s sin Its

with fundamental strip < —2, —1>. There are double poles at s = —1, s = 0 and
simple poles at the positive integers,

e * (s) 	1
	 1 — y]

 + 
[ 1 	 log 27r 	 ( 

+ E
	(s + 1)2 + + 1) 	 2s2 	 S 	 n=1 	 n(s + n)

Hence Stirling's formula

Example 9. Polylogarithms. The function

" e - "x
L(x)= E 	

n =,

is related to polylogarithms that are defined for integer w by Li(z) = 	 z'1
 w E NI, one has L(x)= Li,,,(e - x). We assume first that w is a positive integer,

w = k.
The function Lk (x) is a typical harmonic sum with transform

(s) = C(s + k)r(s),

valid in 91(s) > 1 at least. The singular expansion obtains from the singular expan-
sions of C(s) (shifted) and r(s):

E ( l)fl ((k — n) 1
n!	 s + nn=0

n#k-1

( _1)k—, r- 	 1 Hk_i co
(k-1)!L(s+k-1)2+ s+k— 1 	 (S e < —oo, +>).

The double pole at s = k — 1 induces a logarithmic factor and
_

(x) 	
- 	

[ logx + Hk-i] +
(k — 1)!

E 	 1).  (k — n)

n=0 	 n!
n # k-1
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The right-hand side is a priori only an asymptotic representation valid as x 0, but
here the representation is exact as seen from uniform bounds deriving from growth
formulae for the Gamma and zeta functions ((27), (28)). We have obtained in this way
the Cohen-Zagier representation formula for polylogarithms [58, p. 387].

When w is not an integer, there is no confluence of singularities and, accordingly,
the logarithmic term disappears. For instance

L 112 (x)E_-- E 	
n=1

TC
+ E ( 1)„ 	- 

n!n=0
xn.

Example 10. Modified theta functions. The sum

e - n 2 x2
0,,(x) = E 	

nwn=1

is related to theta functions. The general case can be treated like before but we restrict
attention to w = 0, 1. The case w = 1 arises in the analysis of bubble sort, see [56,
p. 129 and Ex. 5.2.2-5]. One has

ONs)=-1 F(-s )C(s+ 1).
2 	 2

There is a double pole at s = 0 and poles of r(s/2) are the even negative integers. This
gives the expansion as x 0:

ep(s)-,-[-
1	 1 	 1  1 	1	 1y	 +

s2+ 2s J .+ 12 s + 2 + 240 s + 4

	

y 	 1 	 1

e i (x)	 1°gx ± 2 + 12 x
2

 + 240 x
4

 + •

The situation for eo (x) is different since the poles of r(s/2) at the even integers are
cancelled by the values of the zeta function: C ( —2) = C ( —4) = • • • = 0. Thus

1j;11
01X1411 	 —*

for any M > 0. The degenerate asymptotic series can only be asymptotic.

This last example is related to the modular transformation of theta functions (see
also Poisson's summation formula in Section 4), and various related forms have been
investigated from the asymptotic standpoint by Ramanujan, Berndt, De Bruijn,
Knuth, and Gonnet, see [8; 15, p. 43; 36; 56, p. 129]. Ramanujan discusses some
criteria that entail the existence of finite expansions [8, Ch. XV] for similar functions.

In general, the absence of singularities in a left half-plane indicates a terminating
expansion with exponentially small error term. (In many practical situations estimates
of the error term result from applying the saddle point method to remainder integrals.)

e0 (x) = 
x 	 2
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The two examples that follow are motivated by the two types of harmonic sums
mentioned in the introduction. One involves strongly fluctuating amplitudes resulting
though in a smooth global behavior. The other has geometrically increasing frequen-
cies so that the Dirichlet series has a line of poles resulting, by Corollary 1, in an
oscillating asymptotic behavior expressed by a Fourier series.

Example 11. A divisor sum. The analysis of the height of trees (see the introduction)
suggests considering the sum

D(x) = E d(k) e - kx ,
k=1

with d(k) being the number of divisors of k. Given the equality

' d(k) 	 2=c (s),
k=1 it'

the Mellin transform of D(x) is

D* (s) = f (s) C 2 (s),

with fundamental strip <1, + cc >. There are singularities at s = 1, s = 0, then at all the
odd negative integers, so that

[	
1 	7 	1	 vx) (C( — 2k — 1)) 2 	1 

D* (s)--' (s — 1) 2 ± s — 11 + 4s s=0 kL'-0 	 (2k + 1)!	 s + 2k + 1 .

This translates into the asymptotic expansion of D(x) as x .— 0:

D(x) — 
x
-
1 

( — log x + y) + — — L 	(C( —2k — 1))2 x2k+1.

	4 k=0 	(2k + 1)!

Clearly sums of divisors can be treated in a similar way as their Dirichlet series are
expressible in terms of the Riemann zeta function. Ramanujan discovered a number of
related formulae later treated by Berndt and Evans using Mellin transforms [8].

From the proof of Theorem 5, what essentially matters is the balance between the
growth of A (s) and the decrease of g* (s). The asymptotic expansion remains valid as
long as G* (s) is globally 0(s') for some r > 1 in the extended strip (the C character
mentioned above may get lost, though). Also, in accordance with Corollary 1, it is
sufficient that the decrease of G* (s) hold along a discrete set of horizontal segments.
This permits to cope with situations involving infinitely many imaginary poles,
corresponding to an oscillatory behavior.

Example 12. A doubly exponential sum and periodicities. The prototype of harmonic
sums with a fluctuating behavior is the function

G(x) = E e-x2k,
k=0
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whose behavior is sought as x 0. The Mellin transform is

G* (s) = F (s) • (E	 (2 1̀ ) — s = 
 F (s)

_ .
1 — 2 sk 0

There are infinitely many poles of A (s) at the points

2ik7C
Xk = 	 •log 2

The Gamma function decreases fast as 3(s) 	 + co. The Dirichlet series
A(s) = (1 — 2 - s)_' stays bounded along horizontal segments that pass in between
poles at 13(s)1 = (2k + 1) in/log 2, for k an integer. Thus, Corollary 1 to Theorem 4
applies here.

The residue of A (s) is 1/(log 2) by virtue of periodicity. Thus,

1 	j	 1
— kI67L log 2 s — xk 	C)

(32)

Globally, the poles of G* (s) are thus a double pole at 0, single poles induced by A (s) at
the xk , and poles at the negative integers. Translating to G (x) yields

Y	 1 	 1 ( — xr
G (x) = — log2 (x)

log 2 
+ 

2 
+ Q (log2 x) + E 	

n=i — 2n n!

again an exact representation. There Q (log 2 x) condenses the contribution from the
non-zero imaginary poles that reflects (32):

1	 1
Q (log 2 x) = 	 E r(x0x - x , =,,,

ioe 20.-- k €1\{0} 	 a-g - k E z \ {0}
E rock)e -2iknlog,x

Thus, after the logarithmic term, G (x) contains a fluctuating term of order 0(1) that is
expressed as a Fourier series in log 2 x with explicit coefficients of a Gamma type.

An entirely similar method permits to extract fluctuations of sum like

K (x) = E (1 — e xl2k ),
k=0

when x + oc, see Proposition 2 below.

We observe that IF( + 2i n/log 2)1 0.54521 x 10 -6 , and due to the fast decrease of
F (s) along imaginary lines, the fluctuating function Q (log2 x) stays bounded by 10 -6 .
Such minute fluctuations constitute a common feature of many Mellin analyses.

A closely related example is analyzed by Hardy (his function 02(x) in [40, p. 37])
who notes that Ramanujan failed to obtain an elementary proof of the prime number
theorem because his argument neglected these tiny "wobbles" arising from imaginary
poles.
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4. Summatory formulae

What we call here an asymptotic summatory formula is a formula that gives the
asymptotic form of a class of harmonic sums when either the amplitude-frequency
pair stays fixed (and the base function is taken in a wide class of functions) or the base
function stays fixed (and the amplitude-frequency pair varies). The generality afforded
by Theorem 5 permits to deduce a large number of summatory formulae, a typical
case being generalizations of the Euler-Maclaurin formula.

Euler-Maclaurin summation. The classical Euler-Maclaurin formula provides a full
asymptotic expansion expressing the convergence of a Riemann sum to the corres-
ponding integral. The expansion assumes the base function to be C and then
involves the Bernoulli numbers. The formula has been extended by Barnes [6] and
later revisited by Gonnet [36] in the case of certain functions singular at the origin.

Proposition 1 (Generalized Euler-Maclaurin summation). Let g(x) be such that

g(x)	 E ck x..,
k, 0

for some increasing sequence {ock } with oc c, > - 1. Assume that g* (s) exists in <- o, 13>
for some 13 > 1 and is meromorphically continuable to a function of fast decrease in any
finite strip of < - co, 13>. Then

G(x) E--- E g(kx)	 -	 g (x) dx + E ckC( - cek )x/k.

k=1	 .- 0 xl 	k =0

Proof. The transform G* (s) is g* (s) c(s) with residue at s = 1 that equals g* (1), itself
the integral of g (x). By Theorem 3, there are also poles of g* (s) and G* (s) at each - ock .
The result then follows by Theorem 5 after taking into account the slow increase of

(s) in finite strips.

Example 13. A sum with half-integer exponents. The sum

1 
E 10 12 (n + k) 312k= 1

is an Euler-Maclaurin sum since

1	 1	 1
S„ = —

n2
 G (--n ) where G(x) E (kx),	 (x) x112(1 +	x )312

k= 1

The expansion of g(x) near x = 0 involves half-integer exponents:

CO

g(x)	 E ck xk - 112,
k= 0

ck = ( -1)k (k 02-2k ( 2k + 1\
k )*

sn =



Ph. Flajolet et al. Theoretical Computer Science 144 ( 1995) 3-58 	 33

In addition, g* (s) has fundamental strip <1/2, 5/2>, and an explicit transform (deriving
from the Eulerian Beta integral or from an earlier example)

(s - 1/2)1(2 - s)
g*(s)= B (s -1, 2 - s) = 	

T(3/2)

which guarantees its fast decrease. Thus, a simple computation yields

2
S„ -

n 
+ E ck c( -k + 	

1
1) nk+ 3/2 .

k=0

Related examples like

E 	
k=1 k(n - k)

motivated by the analysis of interpolation sequential search, are discussed in [36] and
tabulated in [37, p. 298]. (The analysis is however more delicate, with g*(s) only
decreasing like s -112 .)

Example 14. An exponential sum with square roots. The function

G(x)= E e •/;;x

n=1

admits the expansion
	2 	 1 	ce _

G(x) 	 - - + E 	 c(--2 )xk,
	.-o x	 2 k=i k!

since its Mellin transform is T(s)C(s/2).

Many similar summatory formulae can be given under the assumptions of Proposi-
tion 1, like

E —ok - i g (kx)— E cko — 2 1+ ")C( - c<k)x 2k ,
k=1	 k=0

E (log k) g (kx)-
1

log -
1	

g (x)dx + r g (x) (log x) dx
k=1 	 X 	 X 0 	 X j0

CO

+ E ckc( —cox".
k=0

For instance, Ramanujan gives [8]

E
1 

e - kx log IC 1 (log! - y + log ,/2.7( + 0(x).
k 	 X 	 X

n-1 1
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Several examples of Ramanujan have been treated systematically by Berndt and
Evans using Mellin transforms [9]. Functions with logarithmic singularities at 0 can
also be dealt with in this way; see the papers by Barnes [6] and Gonnet [36] for
alternative approaches.

Note on formal Mellin analyses: In this range of problems, it is of interest to observe
that asymptotic series follow formally from an exchange of summations in the
harmonic sum, with the Dirichlet series coming out as a purely divergent series (!).
This observation often constitutes a useful heuristic in the discovery of possible
summation formulae then rigorously established by Mellin transforms. An illustration
is provided by the formula

G(x) = E — g((2k + 1)x) — E ckri( —oc k )xik,

k=1 	 k=0

"

where

(1)k
n(s) = E

k,1 (2k + 1)s

is an entire "L-function" associated with a character modulo 4, see [12]. In effect, one
has formally

G(x) E —	 E c, x.k (2m + 1) 2k )

= E ck xcck 	 — ok(2m + l)k)
m=0

E Co ( - ak)x 2 k.

k=0

The Mellin transform justifies such formal manipulations while "explaining" the
occurrence of additional terms like the integral in the Euler—Maclaurin summation.

Dyadic sums. Sums involving powers of 2, of the type

Gw (x) = E 2 g
k o

are particularly frequent in the analysis of algorithms and we call them dyadic sums.
In applications x usually represents a large parameter.

Proposition 2 (Dyadic sums). Let g(x) be such that

00

g(x) 	 E dk x - flk ,

x -4 c° k=0
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for some increasing sequence {fik } with 130 > 0. Assume that g* (s) exists in <a, fib > for
some a < 0 and is meromorphically continuable to a function of fast decrease in any
finite strip of <a, + 00. Then

12ikrc	 _ 2iknlog2 x 	 dk 	 x-Ok.
GO (X) E g

k 0 	 k=0.0 log 2	 ( log	 2 ) e	kEEz 9*	 1 — 2flk

(s) =
1 — 2s

and it is readily subjected to Theorem 5 and Corollary 1.

Proposition 2 is characteristic of a large number of similar summation formulae.
Confluence of singularities will in general induce logarithmic factors.

Example 15. The standard dyadic sum. Consider the analysis of Go (x) when now
g(co) 0 0 and

g (x)	 E dk x - k.
x -"- c° k=0

(Thus do = g(co) 0 0.) There is now a double pole of Gt (s) at s 0 so that a two-term
expansion is required for g* (s) there. By the fundamental splitting, one has

0 ( 00 )	 f:1
g* (s) = 	 +	 g (x)	 dx +	 (g (x) — g(co))xs - 1 dx,

so that

goo dx	 (goo goo)) dxg* (s) = 
g (co) 

+ [g] + 0(s) where y [g] =
J o

The constant y[g] is called the Euler constant of g since y[e - x — 1] = — y. Thus,

G(x) g(oo) log 2 x + g () + 	 + P(log 2 x) + E 
 dk
— log 2	 k=1 1

for an explicitly determined periodic function P(•).

This example illustrates in passing the general technique for determining terms of
the series expansion of a Mellin transform outside of its convergence strip by adapting
the technique of subtracted singularities of Theorem 3.

Poisson's summation formula. There is a fruitful connection between the classical
Poisson summation formula [43, Vol. 2, p. 271]

+	 1 " (2n
—
x

)	
+

	E f (kx) = — E f	 ,	 I(u) =	 f (t)e 2intu du,	 (33)
x k=

Proof. The transform of G o (x) is

g* (s)
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the functional equation of the Riemann zeta function, and other formulae of analysis
like the modular transformation of theta functions (this was first observed by
Riemann in his original memoir) or the partial fraction expansion of the cotangent.
That connection can be based on the Mellin transform of well-chosen harmonic sums.
We only provide here brief indications and refer for details to [55] and works cited
therein.

The hyperbolic cotangent admits two equivalent expressions, one as a (harmonic)
sum of exponentials, the other as a (harmonic sum) partial fraction decomposition:

1+ e 2"coth (icx) = 	 — 1 + 2 E e 2'x1 _ e - 2 x
n 	 1

1= _ I 	
x	 =, X2 	 2+ n  •

The functional equation of the Riemann zeta function,

TES
C(S) = 2s rcs -1 sin —

2 
F(1 — s) (1 — s).

appears to be the "image" under the Mellin transform of the identity between the two
forms of (34), see [83, p. 24].

The proof of Poisson's summation formula then results from taking the Mellin
transform of both sides of (33) and inserting the functional equation of C(s). This
approach has the merit of establishing a general equivalence between summation
formulae of the Poisson type and functional equations of Dirichlet series [7, 42, 55].
Davies' book contains a direct illustration [13] with a proof of the modular trans-
formation of the Dedekind function.

Perron's formula. A collection of summatory formulae, usually referred to as Perron's
formula, express partial sums of coefficients of a Dirichlet series as complex integrals
of the inverse Mellin type applied to the Dirichlet series itself [41]. In our perspective,
Perron's formula results from taking the step function H (x) of (13) as the base
function. The transform of H (x) being H* (s) = 1/s, one has formally for a Dirichlet
series A (s) = 	 2k 4tLk s :

1d fe+ico 	s
	k E k H (uk x) =	 A (s) x —

s
.

tik x<	 2in

Perron's formula is essential in analytic number theory, for instance in the proof of
the prime number theorem. It has been recently employed for the analysis of cost
functions of "divide-and-conquer" algorithms. There it permits to capture periodic
fluctuations that are often of a fractal nature. For applications to mergesort and
maxima finding in computational geometry, see [24, 25]; for digital sums that occur in
the analysis of several algorithms (sorting networks, register allocation), we refer to
[26]. A related class of divide-and-conquer recurrences (with maximum) has been

(34)

(35)
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treated via Tauberian methods by Fredman and Knuth [35], and elementarily by
Pippenger [69]. Note that the use of Perron's formula is often delicate since the
transform H* (s) does not have good decay properties towards + i co.

PART II. COMBINATORIAL APPLICATIONS

In this part, we survey some of the major applications of Mellin asymptotics to
combinatorial problems. Sums related to Catalan numbers form the subject of Section
5, and Section 6 develops the important "Bernoulli splitting process' that leads to
dyadic sums. Additional combinatorial applications form the subject of Section 7.

5. Catalan sums

Catalan sums have the form

n 	 (.2no

	Sn = E i2n1 	 (36)
k=1 	 n /

where the Ak are of an arithmetical character. Such binomial sums occur in average
values of characteristic parameters of combinatorial objects enumerated by the
Catalan numbers,

( 2n
n + 1 n

(37)

like plane trees, binary trees, or ballot sequences [11, 38].
The historic paper of De Bruijn, Knuth, and Rice [16] provided the first analysis of

this type. It concerns the expected height n„ of rooted plane trees of n nodes under the
uniform distribution. The sequence Ak is then the divisor function d(k). We briefly
explain here the connection between this combinatorial problem and a Catalan sum
like (36). (See also [51, p. 135] for details.)

A plane tree decomposes recursively as a root node to which is attached a sequence
of trees. Let A n be the number of trees with n nodes; the ordinary generating function
of the sequence {A„} is defined by

CO

A (x) = E A„z"
n = I

Then, by the classical laws of combinatorial analysis (see, e.g., [33, 38, 78, 87]), the
decomposition translates into a functional equation that admits an explicit solution

A (z) = 	  and A (z) = 
1 — 1 — 4z

1 — A (z) 2

We have A 1 = C„ with C„ the Catalan number of (37).
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Similarly let Ah(Z) be the generating function of trees of height at most h. As height is
inherited from subtrees, one then has the basic recurrence

Ah + 1(z) — 	  with A 1 (z) = z.
1 — Ah (z)

Thus, the Ah (z) are rational fractions that are also approximants to an infinite
continued fraction representing A (z). Solving the implied recurrence yields the closed
form

(1 +	 — 4z)" — (1 —	 — 4z) h
Ah (z) = z 	

(1 + 	 — 42)h +1 — (1 —	 — 4z) h +1 •

It results that the Ah can be expressed in terms of A(z) alone; their Taylor expansion
then derives by the Lagrange—Biirmann inversion theorem for analytic functions:

An + 1,h — An+1,h— 1 = E co .11,(n),
	 (38)

where

( 2n	 (	 2n
Om(fl)L1 2 1

(n) = A 2 	

t 	
) 

—2
— m 	 \ n + 1 — m	

( 
2n

n — m) ( 2nn — 1 — m) •

Thus, the number of trees of height h appears as a "sampled" sum of the 2nth line of
Pascal's triangle (upon taking second-order differences).

By a well-known form of the expectations of discrete random variables, the mean
height H + satisfies

1
fin + 1 = 	 E E ih (n).

Ah+1 h j

Grouping terms according to the value of jh then reduces this expression to a simple
sum:

1
F	 = A 	 E d(k)wk(n).

'in+ k

We are therefore led to considering sums of a pattern similar to (36),

( s,(°) = E
	 n)I=1

since

1-.1	 _

n + 1 
H +1 = S;(, 1) — 2Sr ) + s" ) ,

(39)

(40)
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the treatment of the central sum being typical. Stirling's formula yields the Gaussian
approximation of binomial numbers: for k = w	 and with k = o(n 314 ), one has

e-w2 (1 w4 3w2 5W8	 - 45w4 - 60 +
6n 	 360n2

This leads to introducing the continuous harmonic sum

G (x) = d(k)e -k2 X 2

and an elementary argument (domination of the central terms) justifies the use of the
Gaussian approximation inside Sr ) :

1
= G (—,)+ o(1).

.\./n
(41)

The asymptotic analysis of G(x) for small x (now, x = n -1 / 2 ) is then similar to
Example 11 above. From

	G*(s) _ 1	 s 2(s),
	2	 2 )

one gets

( .2nk )

( 2:)

1
( - 2 log (2x) + 37) + -

4 
+ • • • . (42)

The other sums S n( ±1) are treated similarly. From (40), (41), (42) (and their analogues),
it is found that the expected height of a random plane rooted tree of n nodes is

./ttn - + o (1).

Full asymptotic expansions could also be determined by this technique.
The basic method here consists in approximating Catalan sums (36) by Gaussian

sums of the form

CO

G(x)=	 ilke—k2x2,
k=1

and treating the latter by Mellin transforms. Related Catalan sums surface in the
analysis of Batcher's odd-even merge sorting network [75] and in register allocation
[30, 50], where the arithmetic function ilk involved in (36) is either a function of the
Gray code representation of k or the function v 2 (k) representing the exponent of 2 in
the prime number decomposition of k.
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6. The Bernoulli splitting process and dyadic sums

The Bernoulli splitting process is a general model of the random allocation of
resource either in the time domain (such as stations sharing a common communica-
tion channel) or in the space domain (such as keys sharing some primary or secondary
storage) whose analysis usually leads to a variety of dyadic sums. The process takes
a set G of individuals and splits them recursively as follows:
- If card (G) 1 then the process stops and no splitting occurs.
- Otherwise card(G) 2, and each g E G flips a coin. Let G o and G 1 be the two

subsets of G corresponding to the groups of individuals having flipped heads (0) and
tails (1). Then the process is recursively applied to the two subsets G o and G 1 .

A realization of the process may be described by a tree (G) whose internal binary
nodes correspond to splittings of more than 1 element; the external nodes either
contain a single individual or the empty set.

If one views the elements of G as having predetermined an infinite sequence of bits,
the tree t (G) is nothing but the digital trie associated to G viewed as a set of "keys"; see
[37, 56, 62, 76]. Retrieval of an element g in T(G) is achieved by following an access
path dictated by g. A sequential execution of the splitting process also constitutes
a way to regulate access to a common shared channel (groups consisting of single
individuals may deliver their message without interference); this is the tree communica-
tion protocol of Capetanakis-Tsybakov; see [60, 63].

Given that the cardinality of the original group G is n, there are two basic random
variables: the number I, of nontrivial separation stages corresponding to the number
of internal nodes in (G); the total number L„ of coin flippings corresponding to an
internal path length in r (G). The expectations i„ = E {I„} and en = E {L„} satisfy
recurrences that reflect the nature of the splitting process; for n 2, one has

in = 1 + E nn,x(ik + in- k), en=n+ E nn,k((k + en-k),
k= 0 	 k = 0 nn'k = (nk)

(43)

with initial conditions io = i 1 = eo = e i = 0. The splitting probabilities tt„, k are speci-
fic of the Bernoulli splitting process and they represent the probability of turning
k heads out of n coin flips.

The basic technique to solve (43) consists in introducing the exponential generating
functions

	. zn	 zn
1(z) = E	 L(z) = E en

	n = 0 n • 	 n 0 	 n •
(44)

with which (43) transforms into

1(z) = 2e" 1 (;) + (ez — 1 — z),	 L(z) = 2e212 L (-
z

) + z(er — 1). 	 (45)2
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A functional equation of the form

(z) = 2ez/ 2 4) 	 + a(z),	 (46)

with a(z) a known function and 4)(z) the unknown, is solved by iteration:

4)(z) = a(z)+ 2ezl 2

= a(z)+ 2ezI 2 a (1 ) + 4e 3 z 14 4) ( 4-
z
)

=

x
= E 2kez(i - 2 - k)a(—z ).	 (47)

k = 0	 2k

This principle applies to /(z) and L(z) with a(z)= ez — 1 — z and a(z)= z(ez — 1),
respectively. Upon expanding the exponentials, one finds the explicit forms

oo— 1

n = E 2k [i yri1,)n — yn (1 — )
k = 0

1 n — 1

In = n E [1— (1— y) 1.
k = 0

From there, the most direct route is the exponential approximation

(1 — a) = e n log(1— a) = e - na + 0 (na 2) e -na

It is legitimate to use it in (48) (see [56, p. 131] for a justification based on splitting the
sum). With

F(x)= E 2k[1-	+—x)e -x/2k 	G(x) = x E [1— e - x/ 2k ],
2kk = 0 	 k 0

one finds elementarily i„ = F (n) + 0(ji) and en = G(n) + 0(j/). The functions
F(x) and G(x) are dyadic sums of a type already considered. Hence

F(x)=	 2 + 	 (log2 x) + 0 ( \./7x),

Y 1G(x)= x log2 x + (
log 2 

+ 
2
) x + xQ (log2 x) + (),

where P(u) and Q(u) are absolutely convergent Fourier series.
Returning to tries and neglecting the periodic fluctuations that are of amplitude less

than 10 we find that the number of binary nodes is on average about 1.44n, a 44%
waste in storage, while the average depth en/n of a random external node is about
log2 n which, in the information-theoretic sense, corresponds to an asymptotically
optimal search cost.

(48)
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The variances of these parameters have been extensively studied by Kirschenhofer,
Prodinger, and Szpankowski [53, 54]. These authors note that it is not a trivial
problem to obtain the exact order of the dominant terms as there are non-trivial
cancellations equivalent to modular type identities discovered by Ramanujan.

Jacquet and Regnier [45] have established that path length and node size are both
asymptotically normally distributed. The analysis involves the study of nonlinear
bivariate difference equations of which the following is typical:

T(u, z) = uT 2 (u
' 

—
2
) + (1 — u)(1 + z)e z.

Information for large complex z with u taken as a parameter can be gathered by
a quasi-linearization process based on considering log T(u, z) which is amenable to
Mellin transform technique. Once this is done, the coefficient [e]T(u, z) can be
recovered asymptotically, and since it is directly related to a characteristic function of
the number of nodes, the Gaussian result is then established. Mahmoud's book [62]
contains a detailed description of this interesting application of Mellin transforms to
nonlinear bivariate problems. A recent extension has been made to suffix trees and the
Lempel—Ziv data compression scheme [47].

7. Other combinatorial examples

Combinatorial sums may necessitate a certain amount of "preprocessing" before
being reducibile to harmonic sums, as already exemplified by Catalan sums or sums
related to tries. This section describes indirect applications of the asymptotic analysis
of harmonic sums to two new types of combinatorial problems.

Reduction to standard harmonic sums. Longest runs in random binary strings are
treated by Knuth [57] in a paper that deals with the equivalent problem of carry
propagation in parallel binary adders. There the problem requires an analysis of
dominant poles of a family of rational functions eventually leading to dyadic sums.

Examples 16. Longest runs in strings. Consider strings over a binary alphabet
Jai = {0, 1}. The problem is to estimate the expected length L„ of the longest run of l's
in a random string of length n, where all the 2" possible strings are taken equally likely.
The distribution was studied by Feller [21] and Knuth [57].

The probability that a random string of length n has no run of k consecutive l's is

1 	 1 — Zk

qn k = Ezn] 1 — 2z + zk +1 • 
(49)

The set of such strings is described by the regular expression 1 k • (01 k )*, where
1' denotes a sequence of less than k l's and ( )* denotes arbitrary repetition of
a pattern; the general principles of combinatorial analysis permit to write the ordinary
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generating function of the set of strings under consideration as
1_ zk 	 1
1 — z 1 — z(1 — zk)/(1 — z)'

which justifies (49).
Let Pk be the smallest positive root of the denominator of (49) that lies between

and 1. An application of the principle of the argument shows such a root to exist with
all other roots that are of a larger modulus. By dominant pole analysis, the qn , k satisfy

q ,k Ck(2pk) n with Ck =
Pk (2 — (k + 1)p)'

for large n but fixed k.
The denominator of the fraction in (49) behaves near z = 1/2 like a "perturbation"

of 1 — 2z so that one expects Pk to be approximated by as k —0 co. An elementary
argument detailed in [57] shows that in fact

Pk = 1( 1 ± 2 —k— 1 + 0(k2 -2k )). 	 (51)

Accordingly ck = 1 + 0 (k2').
By means of contour integration, Knuth justifies the use of (51) inside (50) for a wide

range of values of k and n, which results in the approximate formula
qn,k	_ - k —

Let ti, k denote the approximation e " 2 	to g„, k • Following [57], one finds

L„ E [1- gn , k ] = E -4„,d+o
k 0 	 k= 0	

(1  )

= E [1- e--.2-k-I+ o
(  1 

k = 0 	 j1-1

This is a typical case of a dyadic sum studied repeatedly in previous sections and

7 	) 
e

_ 2log2 	 1L„= log2 n + 	
2ik7c1 	 1

log 2 2 
+ 

log 2 k e 
E
z\ {0} 

F
 (log 2 	

x + 0 	 .
n

Thus, the expected length of the longest run L„ fluctuates around log 2 n + 0.33274
with a minute amplitude.

An entirely similar analysis provides the expected size of the largest summand in
a random composition of an integer n.

Nonstandard Dirichlet series. The algorithm of Probabilistic Counting introduced in
[27] permits to estimate within a few percent the number of distinct elements of
a large file using only a very small amount of auxiliary memory and is of interest in the
context of query optimization in data bases. The analysis appeals to the nonstandard

1-
(50)

CC 	 CO
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Dirichlet series
co _ ov(i)

N(s) E 	
j =1

where v(j) is the sum of the digits in the binary representation of j.

Example 17. Probabilistic counting. The very design of the algorithm of [27] necessi-
tates the analysis of a parameter of .4" where gi = {0, 1}' is the set of all infinitely
long binary strings. Let u = (u 1 ,..., u) be an element of ."; the parameter R = R„ is
defined to take the value k if the sequences 1, 01, 0 2 1, ... 0 1 all occur as initial
segments of some of the tif's but no u; starts with the pattern 0'1. A plausible reasoning
suggests that the expectation k„ of R over .V" taken with uniform measure should be
close to log 2 n, but higher-order asymptotic information is required here.

First, an inclusion—exclusion argument of [27] shows that
2k

Pr {R„ k} 	 E (-1)(1)(i _
)n .

j-= 0	 2k

It is proved in [27] that, in a central region near log 2 n, one can use the exponential
approximation (1 — a)" e "a while simultaneously extending the range of values of
j to infinity. This justifies the approximation

co	 co

qn,k 4n,k where 4n , k = E (-0vo)e-in,k= n (1- e — 2j (n/2").
j=0 	 j=0

Define the function

()(x)= E ( _ 1)v(i) e -i. = 	_ e -.21 ).
J.0

Eq. (53) means that the cumulative distribution g„,,, is well approximated by 0(n/2").
In fact, an elementary argument of [27] establishes that

°° 	 x
R„ E g„, k = (n) + o(1) where 0(x) = E (y) ,

k1 	 k=1=

and the asymptotic form of 0(x) for large x is required.
The functions 0(x) and 0(x) are both harmonic sums From (54) and (55), one finds

2s 0* (s)	 2s
0* (s) = N(s)• r(s),	 0* (s) — 	 = 	 N (s) F (s).

1 _ 2s 1 — 25
(56)

In particular, a more detailed investigation of N (s) is needed.
Grouping terms by r in the definition of N(s) and using the binomial theorem (see

also Proposition 6 below) shows that N(s) is an entire function and is of moderate
growth in any right half-plane, owing to cancellations afforded by the sign alternation
properties of the sequence ( — 1)" ( j). This permits to justify (55) and hence by a residue

(52)

(53)

(54)

(55)
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computation it gives the asymptotic form of 0(x):

y	 N' (0)
(x) = log 2 x + 

log 2 
+ 

log 2 2 
+ P (log 2 x) + o(1), 	 (57)

for some oscillating function P(u) once more found to be of small amplitude.
The grouping technique yields N(0) = - 1 (used in (57)) and it permits expressing

N'(0) as an alternating sum of logarithms. Thus, from (55), (57), one gets

R„ log2 (9n) + P(log 2 n) + o(1),

where

c° (2m + 1 )(-1))
2 - 112 ev	 0.77351.

m,, 	 2m )

There results an algorithm based on the idea that (1/q) 2'" can be turned into an
unbiased statistical estimator of the a priori unknown number n of distinct binary
strings considered.

The sequence e(j) = ( 1)v  is the classical Thue-Morse sequence. Dirichlet series
related to N(s) have been considered in [2]. Similar techniques are used in other
probabilistic estimation algorithms like Approximate Counting [22] and the collision
resolution methods of [39].

PART III. GENERAL MELLIN ASYMPTOTICS

The last sections have shown that Mellin asymptotics is applicable to harmonic
sums provided the Dirichlet series is of moderate growth while the transform of the
base function is of fast decrease. The applications encountered so far have made an
essential use of properties specific to the Riemann zeta function, to the Gamma
function, or to the sine function.

This part shows that, thanks to general theorems presented in Section 8, Mellin
asymptotics may also be applied to "implicit" harmonic sums, where it is no longer
required to have closed forms for either the Dirichlet series or the transform of the
base function.

8. General conditions for Mellin asymptotics

In this section, we provide general conditions under which Mellin transforms are
small towards + i co and describe a general class of Dirichlet series that are of
moderate growth. These results extend the range of applicability of Mellin asymp-
totics to a much larger class of harmonic sums.
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Smallness of Mellin transforms. The smallness of a Mellin transform is directly related
to the degree of "smoothness" (differentiability, analyticity) of the original function.

Proposition 3 (Smallness in the fundamental strip). (i) Let f(x) be locally integrable
with fundamental strip <a, P. Then, uniformly with respect to a in any closed subinter-
val of (a, fl), one has

f * (a + it) = o (1) as t-+ + co .

(ii) If in addition f(x) is of class T . and the fundamental strip of er f contains
<a, 13>, then

f * (a + it) = o(Itl - r) as t	 + co.

Proof (sketch). (i) From the form

f *(r + it) =	 f (x) e - trx e it log x dx,

the function f* (s) is an integrable function hashed by a complex exponential. By the
Riemann-Lebesgue lemma [43, 81], f * (s) tends to 0 as t + oo

(ii) The second form results from the formula if [er f (x); s] = ( - 1)1. sr f * (s). D

The next proposition shows that smallness extends beyond the fundamental strip
for smooth functions with smooth derivatives.

Proposition 4 (Smallness beyond the fundamental strip). Let f(x) be of class W' with
fundamental strip <a, 13>. Assume that f(x) admits an asymptotic expansion as x 0 +

(resp. x + co) of the form

f (x) = E C4 , k x 4 (log x)k + 0 (x 7) ,	 (58)
(,k)eA

where the satisfy -a	 < y (resp. y <	 - 13). Assume also that each derivative
(dj/dxj) f(x) for j = 1, ...,r satisfies an asymptotic expansion obtained by termwise
differentiation of (58). Then the continuation of f*(s) satisfies

f * (a + it) = 0(Itl —r) as It] -> co	 (59)

uniformly for a in any closed subinterval of ( -y, 13) (resp. of (a, - y)).

Proof. It suffices to consider extension to the left of f * (s). Choose some positive
number p > y and define

a(x)=( E C4 , kX (log x)k exp ( - xP).
(4,k)eA
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The function g(x) = f(x) — a(x) satisfies the assumptions of Proposition 3 and its
transform g* (s) is thus o (I s I - r) in its fundamental strip < —y, ft>. The transform a* (s)
is itself exponentially small given growth properties of the Gamma function and its
derivatives. Thus f * (s) = a* (s) + g* (s) satisfies the stated bounds. 0

Analyticity is the strongest possible form of smoothness for a function f(x); in that
case the transform f* (s) decays exponentially in a quantifiable way.

Proposition 5 (Exponential smallness in the analytic case). Let f (x) be analytic in
So where So is the sector

So = {z e CIO < ItI < + (x) and I arg(z)I 0} with 0 < 0 < it.

Assume that f(x) = 0(x - ') as x —> 0 in So , and f (x) 0(x - 13 ) as x oo in So . Then

f*(c + it) = 0(e -°1 ` 1 )

uniformly for c in every closed subinterval of (a, fl).

Proof (sketch). The integral defining Mellin transforms in this case applied to an
analytic function. By Cauchy's theorem, the integration contour may be taken as the
half-line of slope 0:

e'' co

f* (s) =I	 f We - dt
Jo

The change of variable t = pe' gives

f* (s) = e ies 	 f(pe io) ps-idp.

The result follows as the integral converges. 0

Smallness extends outside of the fundamental strip by an argument similar to that
of Proposition 4 and based on subtracting suitable combinations of exponentials.

Example 18. A sum with an implicit transform. The harmonic sum

d(n) 
G (x) --= E

n=1 .\/ cosh nx

with d (n) the divisor function, admits the transform C 2 (s) • g* (s) where g* (s) is the
transform of g(x) = (cosh X) 1/2 . The function g*(s) is not simply expressible in terms
of standard functions (it is "implicitly" defined as the transform of g(x)). However,
the fundamental correspondence provides its complete singular expansion (see
Example 4) while Propositions 4 and 5 show that g* (s) is of fast decrease in any right
half-plane. Thus, Mellin analysis applies and the asymptotics of G (x) as x 0 obtains
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from the singular expansions of g* (s) and 4 2 (s). One gets

G (x)	 - g* (1) 
log x 

+ 
(g*)'(1) + 2yg*(1)

 + 
1 

+ 0(xm ),

	

.-o 	 4

for any M > 0. There g* (1) =	 g (x)dx and (g*)' (1) is an "Euler constant" of g (x)
which is expressible as an integral as discussed in Example 15.

Example 19. A lattice sum. The goal here is to discuss certain (2-dimensional) "lattice
sums" of the form

00
F (x) = E E pow n2)x2). 	 (60)

m =1 n=1

(See also [10] for related developments.) Such a sum may be rewritten as
Ek r (x) f (kx 2 ), where r(k) is the number of representations of k as a sum of two
squares. The corresponding Dirichlet series' is then

" r (k)	 1 
P(s) = E is = 	 (m2 ± n 2)s

k = 1 is '

and everything rests on its behavior at + i co and its special values.

	

Let 0 (x) = 	 e-M2X2. The Mellin transform of 62(x) is

dew 2 (X), = p(s) • -
1 r-s ).
2 	 2

An already discussed Mellin analysis of e(x) yields its asymptotic expansion near
x = 0:

C
6(x012) = 	 + R(x),	 (61)

Ni
7 1

 —2x

the remainder term R(x) being exponentially small (this alternatively results from
Poisson's formula). Thus, 62(x) admits an explicit three-term asymptotic expansion,

it lit 	 1
e2(x112)= 

2
—
x 
- 

2
—
x 

+ -
4 

+ R2 (X),

with again R2 (x) exponentially small.
Consequently, p(s) is meromorphic in the whole of C with poles at s = 2, 1 only and

singular expansion

7C 	 1 	 1
p (s)  	

+

2(s - 2) s-1 L4s s=o + [0] s - 2 + [0], = _4 + • •

3 In order to allow for extensions to higher dimensions or higher powers, we do not make use here of special
properties of p (s). See [40, Ch. IX] for a vivid account of these aspects.



Ph. Flajolet et al. I Theoretical Computer Science 144 ( 1995) 3-58 	 49

In addition, Proposition 5 quantifies the growth of the transform of e2 (x) in the form
e (n14 — °I t '. Thus, p (s) is itself of growth at most els' for any e > 0 in any finite strip of
the complex plane.

This knowledge permits to analyze lattice sums of the form (60). For instance,

L(p) = E (m2 + n2 + p 2)3

satisfies L(p)= p 6F(1/p) provided one takes f(x)= (1 + x) -3 . One has in <0, 3>

f*(s) = 	
(s — 1)(s — 2)

sin its 	 2

There results an asymptotic form of F(x) that induces a corresponding estimate of
L(p):

It 	 37c 	 5 — IC
L(p)— 	

8p4 16p 5 	4p6

the error term being exponentially small since p(s) vanishes at the even negative
integers. The method clearly extends to higher dimensional sums.

Growth of Dirichlet series. Dirichlet series whose components Ak, uk admit descend-
ing asymptotic expansions in powers of k have the property of being meromorphically
continuable with well individuated poles.

Proposition 6 (Growth of special Dirichlet series). Let Ak and ilk admit asymptotic
expansions in descending powers of k as k co:

" a
Al( 	 E

r = 0 Or'

b
— k w (1 + E — ).

r 	
,.

=

Then the Dirichlet series Ek Ak pk- S can be continued to a meromorphic function A(s) in
the whole of the complex plane. The function A(s) is of moderate growth in any right
half-plane of the complex plane.

Proof (sketch). The particular case a,. = P r = r gives the essential idea. The binomial
theorem yields

A, 	 1s ( 	 ±	b1 	s(s + 1)/b 1 	...bl 	)2	 ... 1
— = — [a o + + • • • [1
p„ 	 1! n 	 2! 	 n

= a0 	E Pk(s) (62)nws k 	nws +k

for a family of polynomials Pk. By summation, one finds that A(s) has, in any finite
strip, the same singularities as a partial sum of

(ws) + E Pk(S)(WS k).
k1

1
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(This is easily justified rigorously by terminating forms of the binomial theorem.) Also,
A (s) is of moderate growth since each component zeta function shares this
characteristic.

In the general case, one finds similarly (with a slight abuse of notations)

A (s) C(ws + oc o)+ E P(s)Nws + ,	 (63)
e

where	 ranges over the set S of all linear combinations of the form

7ro 	 Sri + ••• +

For instance, from the expansion

1 ( 2n 	ri 	i +  1
4" n ) \1/4tn L 	 8n 128n 2

one finds by summation that

A (s) =
n = i 'VA n )ns

112n 1	 1  [c (s ± 1) 1	 + 3) + 1
L 	 2) 8	 2	 128	 2

	

C(s +	 + R(s)1,

(64)

where R(s) converges in the same half-plane as C(s + -I), namely in (	 + oo).
In a similar vein, if Q(u) is a polynomial that does not vanish at the positive integers,

and P (u) is an arbitrary polynomial, then

P (n) 
A (s) = E

n= (Q (Os

has poles only at a discrete set of rational numbers that is bounded from the right.
Amplitudes involving the harmonic numbers lin = 1 ± 1/2 + • • • + 1/n can be

treated in this way by considering fin = Hn — log n. From

1	 1	 1
= log n + y + 2n 12 n2 + 1200 

+ 0 (n -6 ),

one deduces

A (s) =
n =i

'(s) + yC(s)+
n

(s + 1) — (s + 2) + C(s + 4)

(s e ( — 5, co>)

1 y 1 1
(s — 1) 2 s — 1 i s =	 ± 2s 12(s + 1) ± 120(s + 3) .

For instance, A (s) has a simple pole with residue 1/120 at s = — 3. More information
on this function may be found in [5].
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Example 20. A sum with binomial amplitudes. The function

( 1 	1 	( 1 . 3	 1 	 ( 1 . 3 . 5 	 1
G (x) =

2 ) 1 + x 	 )1 + 2x 	 4.6 ) 1 + 3x

has the transform A (s) it/sin its where A (s) = E„x_4 ( ) n - s. The singularities of
A(s) are given by Eq. (64), hence

G(x) x:
1 	

- + A(0) + -
8 
vinx + 0(x),

where A(0) is obtained by the analytic continuation technique of Proposition 6:

" 	 1 	 1 	 1  _ (1 ).
A(0) = nE1 [( 2n )Tv; n 	 _En + \Fr 2

A full asymptotic expansion in powers of )0 12 can be determined in this way.

Example 21. Stirling's formula for modified Gamma functions. Consider the problem
of evaluating asymptotically as x + oo

H(x) =	 (1 + 	
n=i	 n(n + 1)) .

One estimates instead the harmonic sum G(x) = log H (x) that is a harmonic sum with
transform valid in < - 1, -1> ;

1
G* (s) = A( -s) • ( .7C ) where A (s) = 

n1 (n 2 + n)
	E 	s sin ITS	 s •

From Proposition 6, A(s) has a singular expansion induced by the expansion of
(1 + n -1 ) - s. One has

A(s)= (2s) - 	 (2s + 1) + R(s)

where R(s) converges like (2s + 2) in 91(s) > -
The Mellin transform G* (s) thus has a simple pole at s = -1- and a triple pole at 0.

This provides "Stirling's formula" for H (x):

H (x)	 -C,
x-ec 	 x

where "Stirling's constant" C is here C = 1/11.
In this particular case, H (x) is explicitly expressible in terms of trigonometric

functions (by the infinite product formula for cos (x)); the example is only meant to
demonstrate the general approach to the analysis of such modified Gamma functions.
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A similar technique works for Dirichlet series A (s) whose elements Ilk, Pk admit
expansions in powers of 2 k• Assume that

	1+ E a 2 - ki	 Pk — 2k ( 1 E 1) 2 ').
i= 1	 i= 1

A technique entirely similar to that of Proposition 6 applies. From

	2 -ks,( 1 	 (a1 _ hi s)2 -k

+ (a 2 +(b — 2a 1 b 1 — 2b 2 )s + ibls2)2- 2k ...),

one gets by summation

2 - s	 2-5-1
A (s) = 	

	

1 — 2 - s + (a1 	 bis' 1 — 2 - s -1 ± ••••

Thus, A (s) admits a pole at all points of a half-lattice

(m)	 2ikic
Xk = — m + log 2

and is in addition of controlled growth away from poles in any finite strip of C.
An immediate case of application is to modified dyadic sums involving frequencies

of the form 21( + 1. This technique also applies to sums related to the Bernoulli
splitting model of Section 6; for instance, the Mellin transform of

F (x) =	 [1— (1
k= 1

oo	 x

is

F * (s) = A (s) • F (s) where A (s) = E (log (1 — 2 ') - 1 ) - s.
k=1

By the technique above one finds

25 	s 2s -1
A   (S E < — 	 2>).

1 — 2s 2 1 — 2s -1

This permits to compute complete asymptotic expansions without a recourse to the
exponential approximation. The half-lattice of poles implies the presence of fluctuat-
ing functions at each level of the asymptotic expansion of F (x).

The transfer technique. Our final example illustrates the general approach seen so far
in conjunction with an important transfer technique that consists in going back and
forth between various harmonic sums involving related amplitude and frequencies but
different base functions. This "zigzag" method appeals to the common occurrence of
a Dirichlet series in two harmonic sums

E ak f (kx) and Eakg (kx) ,

for m 0, k ey,
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with g (x) = e " playing a special role because of the relation it establishes with
ordinary generating functions.

The transfer technique has already been used implicitly: for instance the study of the
harmonic sum e ' (1 — 1 yields properties of (s) (Example 2) that can in turn be
used to analyze the theta function E k e -k2X2 (Example 10) and eventually lattice sums
(Example 19).

The principle is as follows. Assume that the behavior of
00

F (x) = E ak f (kx)
k = 1

is sought. This requires knowledge of the Dirichlet series

ak
a (s) = E

k = 1

If the ordinary generating function
00

A (x) = E ak xk ,
k= 1

is known and in addition A (x) is analytic at x = 1 (this often happens for alternating
series with elementary coefficients), then

A(e - x)= E b „,xm ,
o

which corresponds to a singular expansion

di (A (e 	
b,„

s) = a (s) (s)	 E 	  (s E C).
m=om+s

Comparison with the singular expansion of the product a (s) F (s), namely

a(s)::‹
	

( 1)m
a( —m) 1

m0 	 m! s-Fm'=

shows by identification that

a( —m) = ( —1)mm! bm = ( — 1)'" m! [e] A (e') 	 (65)

In this way, coefficients in many expansions can be determined explicitly. In general,
the formulae obtained are nontrivial' since the original series defining a (s) stops being
convergent at negative integers.

The transfer process often provides a rigorous counterpart of formal computations with purely divergent
series. See the remarks relative to Euler—Maclaurin summations in Section 4 and the theory of "regularized"
sums and products in [49].
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Example 22. An alternating sum with harmonic numbers. Define
00

G (x) = E - Hk e -k2 x 2 ,
k=1

that arises as an approximation to the combinatorial sum

( 2nE 0. Hk
k= 1 

_	
n - k )

The Mellin transform of G(x) is

G* (s) = h(s)- -21 F (-S2 ) where h (s) = E - -Hk:.
k=1

Thus, G* (s) has poles at x = 0, -2, -4, ... and determining the residues of G* (s)
requires the values of h(s) at the negative even integers.

The Dirichlet series h(s) is an entire function. This results from a simple extension of
Proposition 6 to alternating series, as alternating zeta functions are entire. The special
values of h(s) are then obtained from the expansion

E -1)k Ilk e -kx = 
1 +1-	

1 
k=1 	 e' 

log 1 + e —x

log 2 (I log 2 )1
2 

+ 
4	 4 

x + —
16 

x 2

1 	 log 2 )1
+ - —

32 
+ —

48 
X3 —

8 
x4 + ,

so that

h(0) =	 log 2, h( -2) =*, h( -4) = - 16 , •••

Thus finally

G(x) 	 log 2- x 2 — 	 X4 	 ••• •

9. Conclusions

This paper has demonstrated the basic technology of Mellin asymptotics of har-
monic sums. There, a crucial role is played by the separation property and the
fundamental correspondence. The method is likely to be applicable as soon as the
expressions involved are of an analytic character (in the old sense of the term)
affording analytic continuation which is the most important requirement of the
method. Combinatorial expressions are thus very natural candidates for Mellin
asymptotics. Related techniques in connection with finite differences are explored in
[34].
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As mentioned in Section 4, Perron's formula belongs to the galaxy of Mellin-related
techniques. We have not developed this classical aspect here as it is extensively
discussed elsewhere. In [25] it is shown how divide-and-conquer recurrences lead to
fluctuations of a fractal nature that can be quantified via a Mellin analysis; digital
sequences are studied along similar lines in [26].

An interesting offspring of Mellin asymptotic of harmonic sums is the class of
two-stage methods. In many cases, a generating function can be analyzed asymp-
totically as a harmonic sum in the complex realm, near a singularity or a critical point.
It then becomes possible to estimate the coefficients of the generating function by
either singularity analysis or the saddle-point method. For a conjunction of Mellin
and saddle-point methods, the standard example is De Bruijn's pioneering work on
the enumeration of binary partitions [14] which was follows by the general approach
of Meinardus in the theory of integer partitions [3]. Singularity analysis used in
conjunction with Mellin asymptotics may be used as a basis for the analysis of
Catalan sums [28] as well as many other combinatorial sums. We hope to return to
these questions in a future paper.
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