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What is a DAC recurrence?

Rank Abbr. Meaning
DAC Design Automation Conference
DAC Digital-to-Analog Converter
DAC Development Assistance Committee (OECD)
DAC Discretionary Access Control
DAC District Advisory Council
DAC Data Access Component
DAC Downhill Assist Control (automobiles)
DAC Department of Arts and Culture (South Africa)
DAC Divide and Conquer

5 / 151



What is a DAC recurrence?

Karatsuba’s polynomial multiplication

a = a0(x) + xka1(x), b = b0(x) + xkb1(x)

ab = a0×b0 +xk((a0 +a1)×(b0 +b1)−a0×b0−a1×b1)+x2ka1×b1
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What is a DAC recurrence?

Karatsuba’s polynomial multiplication

un = 2udn2 e + ubn2 c + 4(n− 1)

n ≥ 2, with u0 = 0, u1 = 1

floor and ceil type
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What is a DAC recurrence?
Gray code as usual binary code

n bin(n) gray(n) un
0 00 00 0
1 01 01 1
2 10 11 3
3 11 10 2
4 100 110 6
5 101 111 7
6 110 101 5
7 111 100 4
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What is a DAC recurrence?

Gray code as usual binary code

u4n = 2u2n,
u4n+1 = −4un + 3u2n + u2n+1,
u4n+2 = −4un + u2n + 3u2n+1,
u4n+3 = 2u2n+1,

with u0 = 0.

by case type

9 / 151



What is a DAC recurrence?

From floor and ceil type to by case type: obvious!

un = 2udn2 e+ubn2 c+4(n−1), n ≥ 2, with u0 = 0, u1 = 1,

u2n = 3un + 8n− 4, with u0 = 0

u2n+1 = 2un+1 + un + 8n, with u1 = 1
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What is a DAC recurrence?

But from by case type to floor and ceil type?

u4n = 2u2n,
u4n+1 = −4un + 3u2n + u2n+1,
u4n+2 = −4un + u2n + 3u2n+1,
u4n+3 = 2u2n+1,

with u0 = 0.
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Algebraic machinery
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Algebraic machinery: Linear operators

u(x) =
∑
n≥0

unx
n

u(x) formal series in K[[x]] (un) sequence in KN

Both are exactly the same object.
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Algebraic machinery: Linear operators

u(x) =
∑
n≥0

unx
n

radix b ≥ 2 Mahler operator Mu(x) = u(xb)

0 ≤ r < b section operator Tb,ru(x) =
∑
k≥0

ubk+rx
k

forward shift Su(x) =
∑
n≥0

un+1x
n

backward shift xu(x) =
∑
n≥0

un−1x
n
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Algebraic machinery: Linear operators
radix b = 2, by far the most usual case

Mahler operator

Mu(x) = u0 + u1x
2 + u2x

4 + · · ·

section operator

T2,0u(x) = u0 +u2x+ u4x
2 +u6x

3 + · · · even part

T2,1u(x) = u1 +u3x+ u5x
2 +u7x

3 + · · · odd part

forward shift

Su(x) = u1 +u2x+ u3x
2 +u4x

3 + · · ·

backward shift

xu(x) = u0x+ u1x
2 +u2x

3 + u3x
4 + · · ·
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Algebraic machinery: Basic functional properties

Tb,0M = 1, Tb,rM = 0 1 ≤ r < b obvious

Mx = xbM obvious

STb,r = Tb,rS
b the same, but. . .
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Algebraic machinery: Basic functional properties

STb,r = Tb,rS
b, the same, but. . .

Tb,ru(x) = ur +ub+rx+ u2b+rx
2 +u3b+rx

3 + · · ·

Sbu(x) = ub +ub+1x+ ub+2x
2 +ub+3x

3 + · · ·
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Algebraic machinery: Basic functional properties
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Algebraic machinery: Basic functional properties

STb,r = Tb,rS
b, the same, but. . .

Proposition
The sections of a rational function are rational functions.

Proof
f ∈ K(x), S∗f ∈ F with dimF <∞,
g = Tb,rf , Skg = Tb,rS

bkf ∈ Tb,rF with dimTb,rF <∞

motto : a subspace left stable by the operator(s)
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Algebraic machinery: Basic functional properties

Tb,r(fMg) = (Tb,rf)g∑
0≤r<b

xrMTb,r = 1
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Algebraic machinery: Basic functional properties

Tb,r(f(x)g(xb)) = (Tb,rf(x))g(x) useful for products∑
0≤r<b

xrTb,rf(xb) = f(x)
It is possible to rebuild a
function from its sections.

Example

T2,0
1 + 3x

x3 (1 + 2x)
=

1

x(1− 4x)
, T2,1

1 + 3x

x3 (1 + 2x)
=

1− 6x

x2(1− 4x)
,

1× 1

x2(1− 4x2)
+ x× 1− 6x2

x4(1− 4x2)
=

1 + 3x

x3 (1 + 2x)
b = 2

1× T2,0f(x2) + xT2,1f(x2) = f(x)

4
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Definition of DAC recurrences
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Definition of DAC recurrences

Definition
A (linear) Mahler equation is an equation

`0(x)u(x) + `1(x)u(xb) + · · ·+ `d(x)u(xb
d
) = v(x)

where `0(x), `1(x), . . . , `d(x) and v(x) are polynomials in K[x].

L(x,M) = `0(x)+`1(x)M+· · ·+`d(x)Md, L(x,M)u(x) = v(x)

motto : a subspace left stable by the operator(s)
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Definition of DAC recurrences

Definition
A divide-and-conquer recurrence is the translation in terms of
sequence of a Mahler equation.
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Definition of DAC recurrences

Definition
uν = 0 if ν 6∈ N≥0

Example

(x+ 2x2)u(x)− (1 + x)u(x2) + u(x4) = 0, b = 2

um−1 + 2um−2 −um
2
− um−1

2
+um

4
= 0, m ≥ 0

u9 + 2u8 −u5 − u 9
2

+u 5
2

= 0, m = 10

u10 + 2u9 −u 11
2
− u5 +u 11

4
= 0, m = 11

u11 + 2u10 −u6 − u 11
2

+u3 = 0, m = 12

u12 + 2u11 −u 13
2
− u6 +u 13

4
= 0, m = 13

4
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Definition of DAC recurrences

Example

(x+ 2x2)u(x)− (1 + x)u(x2) + u(x4) = 0, b = 2

um−1 + 2um−2 −um
2
− um−1

2
+um

4
= 0, m ≥ 0

u9 + 2u8 −u5 = 0, m = 10

u10 + 2u9 − u5 = 0, m = 11

u11 + 2u10 −u6 +u3 = 0, m = 12

u12 + 2u11 − u6 = 0, m = 13

4

fractional type
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Comparison of types

Three types for the same thing, that’s a lot!
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Comparison of types: Generating functions

I reference type = fractional type

tm = um−s

bk
t(x) = xsu(xb

k
)
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Comparison of types: Generating functions

I floor and ceil type

tm = ubn+s
b c t(x) = x−s(1 + x+ · · ·+ xb−1)u(xb)

−x−s(1 + x+ · · ·+ xb−1)

q−1∑
n=0

unx
bn

−x−r
r−1∑
i=0

xiuq

s = bq + r, |r| < b, sgn(r) = sgn(s)

ceil ad libitum symmetrical Euclidean division⌈n
b

⌉
=

⌊
n+ b− 1

b

⌋
corrective term = 0 for −∞ < s ≤ 0
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Comparison of types: Generating functions

I by case type

tm = ubk+s t(x) = x−qTb,ru(x)−x−q
q−1∑
j=0

ubj+rx
j

s = bq + r, 0 ≤ r < b

natural Euclidean division

corrective term = 0 for −∞ < s < b
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Comparison of types: Generating functions

neglecting details:

tm = um−s

bk
t(x) = xsu(xb

k
)

tm = ubn+s
b c t(x) = x−s(1 + x+ · · ·+ xb−1)u(xb)

tm = ubk+s t(x) = x−qTb,ru(x)

I fractional type . . . . . . . . . . . . . . . . . . . . . . . . . . . .Mahler operator
I floor and ceil type . . . . . . . . . . . . . . . . . . . . . . . . Mahler operator
I by case type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . section operators
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Comparison of types: Some links

Mahler equation

system for sections

floor and ceil type recurrence

fractional type recurrence

by case type recurrence
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Comparison of types: Mahler and sections

Theorem
If u is a formal series which is a solution of a non trivial Mahler
equation, then, under the action of the section operators, it
generates a finite dimensional K(x)-space.
Conversely, if the iterated sections of a formal series u remain
in a finite dimensional K(x)-space, then u is a solution a non
trivial Mahler equation.

variation on
Gilles Christol, Teturo Kamae, Michel Mendès France, and Gérard
Rauzy.
Suites algébriques, automates et substitutions.
Bull. Soc. Math. France, 108(4):401–419, 1980.

motto : a subspace left stable by the operator(s)
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Comparison of types: All links

Mahler equation

system for sections

floor and ceil type recurrence

fractional type recurrence

by case type recurrence

strongly connected graph
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Comparison of types: Types equivalence

Theorem
For a sequence (un) with support in N≥0 and for its generating
function u(x), with a given integer b ≥ 2,

I a fractional type recurrence,
I a floor and ceil type recurrence,
I a by case type equation,
I a Mahler equation,
I a system about the sections,

all have the same expressiveness.
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Anatoli Karatsuba
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Anatoli Karatsuba

un = 2udn2 e + ubn2 c + 4(n− 1) n ≥ 2,

with u(0) = 0, u(1) = 1

xu(x)− (1 + x)(2 + x)u(x2) = −x2 + 4
x3

(1− x)2

um−1 − (2um
2

+ 3um−1
2

+ um−2
2

) = 4(m− 1)

u2k−1 = 2uk + uk−1 + 8k − 4, k ≥ 2,

u2k = 3uk + 8k, k ≥ 1
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Anatoli Karatsuba

u(x) =
(1 + x)(2 + x)

x
u(x2)− x+ 4

x2

(1− x)2

T2,0u(x) = 3u(x)+
4x+ 4x2

(1− x)2
T2,1u(x) =

2 + x

x
u(x)−1− 10x+ x2

(1− x)2
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Anatoli Karatsuba

xu(x)−(1+x)(2+x)u(x
2
) = −x

2
+4

x3

(1− x)2

T2,0u(x) = 3u(x) +
4x + 4x2

(1− x)2

T2,1u(x) =
2 + x

x
u(x)−

1− 10x + x2

(1− x)2

un = 2u⌈n
2

⌉+u⌊n
2

⌋+4(n−1)

um−1−(2um
2

+3um−1
2

+um−2
2

)

= 4(m− 1)

u2k−1 = 2uk + uk−1 + 8k − 4

u2k = 3uk + 8k
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Frank Gray
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Frank Gray

u4n = 2u2n, u0 = 0

u4n+1 = −4un + 3u2n + u2n+1

u4n+2 = −4un + u2n + 3u2n+1

u4n+3 = 2u2n+1

T2,0u(x) = 2T2,0u(x)

T4,1u(x) = −4u(x) + 3T2,0u(x) + T2,1u(x)

T4,2u(x) = −4u(x) + T2,0u(x) + 3T2,1u(x)

T4,3u(x) = 2T2,1u(x)

v1(x) = u(x), v2(x) = T2,0u(x), v3(x) = T2,1u(x)
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Frank Gray

T2,0u(x) = 2T2,0u(x)

T4,1u(x) = −4u(x) + 3T2,0u(x) + T2,1u(x)

T4,2u(x) = −4u(x) + T2,0u(x) + 3T2,1u(x)

T4,3u(x) = 2T2,1u(x)

v1(x) = u(x), v2(x) = T2,0u(x), v3(x) = T2,1u(x)

T2,0v1(x) = v2(x)

T2,0v2(x) = 2v2(x)

T2,0v3(x) = −4v1(x) + 3v2(x) + v3(x)

T2,1v1(x) = v3(x)

T2,1v2(x) = −4v1(x) + v2(x) + 3v3(x)

T2,1v3(x) = 2v3(x)
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Frank Gray

v1(x) = u(x), v2(x) = T2,0u(x), v3(x) = T2,1u(x)

T2,0v1(x) = v2(x)

T2,0v2(x) = 2v2(x)

T2,0v3(x) = −4v1(x) + 3v2(x) + v3(x)

T2,1v1(x) = v3(x)

T2,1v2(x) = −4v1(x) + v2(x) + 3v3(x)

T2,1v3(x) = 2v3(x)

A0 =


0 0 −4

1 2 3

0 0 1

 , A1 =


0 −4 0

0 1 0

1 3 2

 , C =


1

0

0

 .
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Frank Gray
v1(x) = u(x), v2(x) = T2,0u(x), v3(x) = T2,1u(x)

A0 =


0 0 −4

1 2 3

0 0 1

 , A1 =


0 −4 0

0 1 0

1 3 2

 , C =


1

0

0

 .
[
v1 (x) v2 (x) v3 (x)

]
v(x) = T2,0v(x2) + xT2,1v(x2)

=
[
v1
(
x2
)

v2
(
x2
)

v3
(
x2
) ] 

0 0 −4

1 2 3

0 0 1



+ x
[
v1
(
x2
)

v2
(
x2
)

v3
(
x2
) ] 

0 −4 0

0 1 0

1 3 2
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Frank Gray

[
v1 (x) v2 (x) v3 (x)

]
v(x) = T2,0v(x2) + xT2,1v(x2)

=
[
v1
(
x2
)

v2
(
x2
)

v3
(
x2
) ] 

0 0 −4

1 2 3

0 0 1



+ x
[
v1
(
x2
)

v2
(
x2
)

v3
(
x2
) ] 

0 −4 0

0 1 0

1 3 2



V (x) =
[
v1 (x) v2 (x) v3 (x)

]
, A(x) = A0 + xA1,

V (x) = V (x2)A(x), u(x) = V (x)C
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Frank Gray

V (x) = V (x2)A(x), u(x) = V (x)C

u(x) = V (x)C

u(x) = V (x2)A(x)C

u(x) = V (x4)A(x2)A(x)C

u(x) = V (x8)A(x4)A(x2)A(x)C

u(x8) = V (x8)C

u(x4) = V (x8)A(x4)C

u(x2) = V (x8)A(x4)A(x2)C

u(x) = V (x8)A(x4)A(x2)A(x)C
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Frank Gray

u(x8) = V (x8)C

u(x4) = V (x8)A(x4)C

u(x2) = V (x8)A(x4)A(x2)C

u(x) = V (x8)A(x4)A(x2)A(x)C

4 column vectors in dimension 3
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Frank Gray

A(x) =


0 −4x −4

1 2 + x 3

x 3x 1 + 2x



Γ(x) =


1 0 −4x2 − 4x4 −4x− 12x2 − 8x3 − 8x4 − 12x5 − 4x6

0 1 2 + 3x2 + x4 4 + 5x+ 7x2 + 6x3 + 2x4 + 3x5 + x6

0 x4 x2 + 3x4 + 2x6 x+ 3x2 + 2x3 + 6x4 + 7x5 + 5x6 + 4x7



K(x) =



0

2
(1 + x)(1 + x4)

x

−(1 + x)(1 + 2x+ 2x3 + x4)

x(1 + x2)

1
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Frank Gray

K(x) =



0

2
(1 + x)(1 + x4)

x

−(1 + x)(1 + 2x+ 2x3 + x4)

x(1 + x2)

1



x(1+x2)u(x)−(1+x)(1+2x+2x3+x4)u(x2)+2(1+x)(1+x2)(1+x4)u(x4) = 0
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Frank Gray

to summarize:
from

T2,0u(x) = 2T2,0u(x)

T4,1u(x) = −4u(x) + 3T2,0u(x) + T2,1u(x)

T4,2u(x) = −4u(x) + T2,0u(x) + 3T2,1u(x)

T4,3u(x) = 2T2,1u(x)

to

x(1 + x2)u(x)

− (1 + x)(1 + 2x+ 2x3 + x4)u(x2)

+ 2(1 + x)(1 + x2)(1 + x4)u(x4) = 0
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x(1 + x2)u(x)

− (1 + x)(1 + 2x+ 2x3 + x4)u(x2)

+ 2(1 + x)(1 + x2)(1 + x4)u(x4) = 0

un + un−2

−
(
ubn+1

2 c + 2ubn2 c + 2ubn−2
2 c + ubn−3

2 c
)

+ 2
(
ubn+1

4 c + ubn−3
4 c
)

= 0
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Frank Gray

to summarize:
from

u4n = 2u2n, u0 = 0

u4n+1 = −4un + 3u2n + u2n+1

u4n+2 = −4un + u2n + 3u2n+1

u4n+3 = 2u2n+1

to

un+un−2 u0 = 0, u1 = 1, u2 = 3

−
(
ubn+1

2 c + 2ubn2 c + 2ubn−2
2 c + ubn−3

2 c
)

+ 2
(
ubn+1

4 c + ubn−3
4 c
)

= 0
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x(1 + x
2
)u(x)

− (1 + x)(1+2x+2x
3
+x

4
)u(x

2
)

+2(1 + x)(1 + x
2
)(1+x

4
)u(x

4
) = 0

T2,0u(x) = 2T2,0u(x)

T4,1u(x) = −4u(x) + 3T2,0u(x) + T2,1u(x)

T4,2u(x) = −4u(x) + T2,0u(x) + 3T2,1u(x)

T4,3u(x) = 2T2,1u(x)

un + un−2

−
(
u⌊n+1

2

⌋ + 2u⌊n
2

⌋ + 2u⌊n−2
2

⌋ + u⌊n−3
2

⌋)

+2

(
u⌊n+1

4

⌋ + u⌊n−3
4

⌋) = 0

un−3 + un−1

−un−5
2

−3un−4
2

−2un−3
2

−2un−2
2

− 3un−1
2

− un
2

+2un−7
4

+2un−6
4

+2un−5
4

+2un−4
4

+2un−3
4

+2un−2
4

+2un−1
4

+2un
4

= 0

u4n = 2u2n

u4n+1 = −4un + 3u2n + u2n+1

u4n+2 = −4un + u2n + 3u2n+1

u4n+3 = 2u2n+1
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Rational sequence

Definition
A formal series (or a sequence) is rational wrt a numeration
system with radix b, or is b-rational, if under the action of the
section operators it generates a finite dimensionial K-vector
space.

Jean-Paul Allouche and Jeffrey Shallit.
The ring of k-regular sequences.
Theoret. Comput. Sci., 98(2):163–197, 1992.
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Rational sequence

Proposition
A b-rational series satisfies a non trivial Mahler equation for the
radix b.
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Rational sequence

Proposition
A formal series u(x) which satisfies a Mahler equation
(ω ∈ N≥0)

xωu(x) = c1(x)u(xb) + · · ·+ cd(x)u(xb
d
),

with polynomial coefficients, is b-rational.

Proposition
A sequence (un) which satisfies a fractional type recurrence

un =
d∑

k=1

s∑
`=−s

ck,`un−`

bk

is b-rational.

the true
DAC recurrences!
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Rational sequence

Proposition
A formal series u(x) which satisfies a Mahler equation
(ω ∈ N≥0)

xωu(x) = c1(x)u(xb) + · · ·+ cd(x)u(xb
d
),

with polynomial coefficients, is b-rational.

Proposition
A sequence (un) which satisfies a fractional type recurrence

un =

d∑
k=1

s∑
`=−s

ck,`un−`

bk

is b-rational.

the true
DAC recurrences!
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Linear representation

Theorem
The N th coefficient of a b-rational series u(x) is expressed as

uN = Tb,r` · · ·Tb,r0u(0)

if N = (r` . . . r0)b.

10 = (1010)2 u(x) = u0 + u1x+ u2x
2 + · · ·

T2,0u(x) = u0 + u2x+ u4x
2 + · · ·

T2,1T2,0u(x) = u2 + u6x+ u10x
2 + · · ·

T2,0T2,1T2,0u(x) = u2 + u10x+ u18x
2 + · · ·

T2,1T2,0T2,1T2,0u(x) = u10 + u26x+ u42x
2 + · · ·

T2,1T2,0T2,1T2,0u(0) = u10

73 / 151



Linear representation

Theorem
The N th coefficient of a b-rational series u(x) is expressed as

uN = Tb,r` · · ·Tb,r0u(0)
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Linear representation

Definition
A linear representation of a b-rational series u(x) or
sequence (un) is a triplet (L,A,C) made from

I a row vector L (initial values);
I a family of square matrices (Ar)0≤r<b (action);
I a column vector C (coordinates),

with the same size and coefficients in K, such that

uN = LAr` · · ·Ar0C

when
N = (r` . . . r0)b.
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Linear representation

uN = LAr` · · ·Ar0C

when
N = (r` . . . r0)b

for the Gray code:

L =
[

0 0 1
]
,

A0 =


0 0 −4

1 2 3

0 0 1

 , A1 =


0 −4 0

0 1 0

1 3 2

 , C =


1

0

0

 .
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Divide and conquer algorithms
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Divide and conquer algorithms

sorting

binary search
extrema
kth smallest element
mergesort
quicksort

algebraic computations

binary powering
Karatsuba algorithm
Toom-Cook algorithm
Schönhage-Strassen algorithm
multipoint evaluation

algorithmic geometry

convex hull
nearest pair
Voronoï diagram
maxima in dim ≥ 2

matrix computations

Strassen multiplication
triangular matrix inversion
fast Fourier transform
singular values decomposition
eigenvalues/vectors of symmetric

tridiagonal matrices
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Combinatorics on words

Fo
rm

al Lan
g

u
ag

es, A
u
to

m
ata an

d
 N

u
m

eratio
n

 S
ystem

s 1
M

ich
el R

ig
o

 

www.iste.co.uk Z(7ib8e8-CBGBFA(

The interplay between words, computability, algebra and arithmetic has
now proved its relevance and fruitfulness. Indeed, the cross-fertilization
between formal logic and finite automata (such as that initiated by J.R.
Büchi) or between combinatorics on words and number theory has
paved the way to recent dramatic developments, for example, the
transcendence results for the real numbers having a “simple” binary
expansion, by B. Adamczewski and Y. Bugeaud. 

This book is at the heart of this interplay through a unified exposition.
Objects are considered with a perspective that comes both from
theoretical computer science and mathematics. Theoretical computer
science offers here topics such as decision problems and recognizability
issues, whereas mathematics offers concepts such as discrete
dynamical systems.

The main goal is to give a quick access, for students and researchers in
mathematics or computer science, to actual research topics at the
intersection between automata and formal language theory, number
theory and combinatorics on words. 

The first of two volumes on this subject, this book focuses on words
(finite or infinite sequences of symbols, and morphic words). It can
serve as a one-semester introductory course in combinatorics on words.

Michel Rigo is Professor at the Department of Mathematics at the
University of Liège, Belgium.

Formal Languages,
Automata and

Numeration Systems 1

Introduction to
Combinatorics on Words

Michel Rigo  

NETWORKS AND TELECOMMUNICATIONS SERIES

W615-Rigo.qxp_Layout 1  13/08/2014  11:59  Page 1

The goal is that, after reading
this book (or at least parts of this
book), the reader should be able
to fruitfully attend a conference
or a seminar in the field.

Michel Rigo
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This book is at the heart of this interplay through a unified exposition.
Objects are considered with a perspective that comes both from
theoretical computer science and mathematics. Theoretical computer
science offers here topics such as decision problems and recognizability
issues, whereas mathematics offers concepts such as discrete
dynamical systems.

The main goal is to give a quick access, for students and researchers in
mathematics or computer science, to actual research topics at the
intersection between automata and formal language theory, number
theory and combinatorics on words. 

The first of two volumes on this subject, this book focuses on words
(finite or infinite sequences of symbols, and morphic words). It can
serve as a one-semester introductory course in combinatorics on words.

Michel Rigo is Professor at the Department of Mathematics at the
University of Liège, Belgium.

Formal Languages,
Automata and

Numeration Systems 1

Introduction to
Combinatorics on Words

Michel Rigo  

NETWORKS AND TELECOMMUNICATIONS SERIES

W615-Rigo.qxp_Layout 1  13/08/2014  11:59  Page 1

The goal is that, after reading
this book (or at least parts of this
book), the reader should be able
to fruitfully attend a conference
or a seminar in the field.

Michel Rigo
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Combinatorics on words

patterns counting

e1(n) number of 1’s in binary expansion of n
e11(n) Golay-Rudin-Shapiro sequence
(−1)e1(n) Thue-Morse sequence
(−1)e1(3n) Newman-Slater-Coquet
overlapping free words
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Combinatorics on words

substitutions
paperfolding sequence
Rauzy’s fractal (irrelevant)

w0 = ε
wk+1 = wk1w

R
k

a −→ ab

b −→ cb

c −→ ad

d −→ cd
a→ ab→ abcb→ abcbadcb→ . . .
a := 1, b := 1, c := 0, d := 0
w∞ = 0010011000110110 . . .

u4n = 0

u4n+2 = 1

u2n+1 = un

login

This site is supported by donations to The OEIS Foundation.  

 

 Search Hints

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

A014577 The regular paper-folding sequence (or dragon curve sequence). 29

1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0,
0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0,
1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1,
0, 0, 1, 0, 0, 0, 1, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET 0,1
COMMENTS a(n) is the complement of the bit to the left of the least significant "1"

in the binary expansion of n. E.g., n = 4 = 100, so a(4) = (complement of
bit to left of 1) = 1. - Robert L. Brown, Nov 28 2001

To construct the sequence: start from 1,(..),0,(..),1,(..),0,(..),1,(..),0,
(..),1,(..),0,... and fill undefined places with the sequence itself. -
Benoit Cloitre, Jul 08 2007

A014577 is a generator for A088748: begin A088748 with "1", then add 1 if
A014577: (1, 1, 0, 1, 1,...) = 1; subtract 1 otherwise, getting (1, 2, 3,
2,...). - Gary W. Adamson, Aug 30 2009

The characteristic function is A091072 - 1. Gary W. Adamson, Apr 11 2010
Turns (by 90 degrees) of the Heighway dragon which can be rendered as

follows: [Init] Set n=0 and direction=0. [Draw] Draw a unit line (in the
current direction). Turn left/right if a(n) is zero/nonzero respectively.
[Next] Set n=n+1 and goto (draw). See fxtbook link below. - Joerg Arndt,
Apr 15 2010

Sequence can be obtained by L-system with rules L->L1R, R->L0R, 1->1, 0->0,
starting with L, and dropping all L and R (see example). - Joerg Arndt,
Aug 28 2011

From Gary W. Adamson, Jun 20 2012: (Start)
One half of the infinite Farey Tree can be mapped one-to-one onto A014577

since both sequences can be derived directly from the binary. First few
terms are

1,...1,...0,...1,...1,...0,...0,...1,...1,...1,...
1/2.2/3..1/3..3/4..3/5..2/5..1/4..4/5..5/7..5/8,..
Infinite Farey Tree fractions can be derived from the binary by appending a

repeat of rightmost binary term to the right, then recording the number of
runs to obtain the continued fraction representation. Example: 9 = 1001
which becomes 10011 which becomes [1,2,2] = 5/7. (End)

The sequence can be considered as a binomial transform operator for a target
sequence S(n). Replace the first 1 in A014577 with the first term in S(n),
then for successive "1" term in A014577, map the next higher term in S(n).
If "0" in A014577, map the next lower term in S(n).  Using the sequence
S(n) = (1, 3, 5, 7,...), we obtain (1), (3, 1), (3, 5, 3, 1), (3, 5, 7, 5,
3, 5, 3, 1),.... Then parse the terms into subsequences of 2^k terms,
adding the terms in each string.  We obtain (1, 4, 12, 32, 80,...), the
binomial transform of (1, 3, 5, 7,...). The 8 bit string has one 1, three
5's, three 7's and one 1) as expected, or (1, 3, 3, 1) dot (1, 3, 5, 7). -
Gary W. Adamson, Jun 24 2012

From Gary W. Adamson, May 29 2013: (Start)
The sequence can be generated directly from the lengths of continued

fraction representations of fractions in one half of the Stern-Brocot tree
(fractions between 0 and 1):

1/2
1/3 2/3
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3, 5, 3, 1),.... Then parse the terms into subsequences of 2^k terms,
adding the terms in each string.  We obtain (1, 4, 12, 32, 80,...), the
binomial transform of (1, 3, 5, 7,...). The 8 bit string has one 1, three
5's, three 7's and one 1) as expected, or (1, 3, 3, 1) dot (1, 3, 5, 7). -
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1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1,
0, 0, 1, 0, 0, 0, 1, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET 0,1
COMMENTS a(n) is the complement of the bit to the left of the least significant "1"

in the binary expansion of n. E.g., n = 4 = 100, so a(4) = (complement of
bit to left of 1) = 1. - Robert L. Brown, Nov 28 2001

To construct the sequence: start from 1,(..),0,(..),1,(..),0,(..),1,(..),0,
(..),1,(..),0,... and fill undefined places with the sequence itself. -
Benoit Cloitre, Jul 08 2007

A014577 is a generator for A088748: begin A088748 with "1", then add 1 if
A014577: (1, 1, 0, 1, 1,...) = 1; subtract 1 otherwise, getting (1, 2, 3,
2,...). - Gary W. Adamson, Aug 30 2009

The characteristic function is A091072 - 1. Gary W. Adamson, Apr 11 2010
Turns (by 90 degrees) of the Heighway dragon which can be rendered as

follows: [Init] Set n=0 and direction=0. [Draw] Draw a unit line (in the
current direction). Turn left/right if a(n) is zero/nonzero respectively.
[Next] Set n=n+1 and goto (draw). See fxtbook link below. - Joerg Arndt,
Apr 15 2010

Sequence can be obtained by L-system with rules L->L1R, R->L0R, 1->1, 0->0,
starting with L, and dropping all L and R (see example). - Joerg Arndt,
Aug 28 2011

From Gary W. Adamson, Jun 20 2012: (Start)
One half of the infinite Farey Tree can be mapped one-to-one onto A014577

since both sequences can be derived directly from the binary. First few
terms are

1,...1,...0,...1,...1,...0,...0,...1,...1,...1,...
1/2.2/3..1/3..3/4..3/5..2/5..1/4..4/5..5/7..5/8,..
Infinite Farey Tree fractions can be derived from the binary by appending a

repeat of rightmost binary term to the right, then recording the number of
runs to obtain the continued fraction representation. Example: 9 = 1001
which becomes 10011 which becomes [1,2,2] = 5/7. (End)

The sequence can be considered as a binomial transform operator for a target
sequence S(n). Replace the first 1 in A014577 with the first term in S(n),
then for successive "1" term in A014577, map the next higher term in S(n).
If "0" in A014577, map the next lower term in S(n).  Using the sequence
S(n) = (1, 3, 5, 7,...), we obtain (1), (3, 1), (3, 5, 3, 1), (3, 5, 7, 5,
3, 5, 3, 1),.... Then parse the terms into subsequences of 2^k terms,
adding the terms in each string.  We obtain (1, 4, 12, 32, 80,...), the
binomial transform of (1, 3, 5, 7,...). The 8 bit string has one 1, three
5's, three 7's and one 1) as expected, or (1, 3, 3, 1) dot (1, 3, 5, 7). -
Gary W. Adamson, Jun 24 2012

From Gary W. Adamson, May 29 2013: (Start)
The sequence can be generated directly from the lengths of continued

fraction representations of fractions in one half of the Stern-Brocot tree
(fractions between 0 and 1):

1/2
1/3 2/3
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Number theory

elementary number theory

odd binomial coefficients
Josephus problem
sums of three squares
binary partitions
rational approximation (Stern-Brocot)

sophisticated number theory

algebraic series modulo p
discrepancy
transcendency
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Moritz Stern, Achille Brocot
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Moritz Stern, Achille Brocot

u0 = 0, u1 = 1, u2n = un, u2n+1 = un + un+1

n ∈ N>0 7−→ rn =
un+2

un+1
∈ Q>0 one-t-one
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Part II

Analysis
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Overview of Part II
Slaves bound
Goal
Integers and words
Extraction of classical rational sequences
A mere idea
Joint spectral radius
Dilation equations
Theorem
A worked example

Linear representation
Joint spectral radius
Jordan reduction
Dilation equation
Cascade algorithm
!

What I did not speak about
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Slaves bound
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Slaves bound

source
Jon Louis Bentley, Dorothea Haken, and James B. Saxe.
A general method for solving divide-and-conquer recurrences.
SIGACT News, 12(3):36–44, September 1980.

a good version:

Alin Bostan, Frédéric Chyzak, Marc Giusti, Romain Lebreton,
Grégoire Lecerf, Bruno Salvy, and Éric Schost.
Algorithmes Efficaces en Calcul Formel.
Version provisoire disponible à l’url
http://specfun.inria.fr/chyzak/mpri/poly.pdf, 2016.
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Slaves bound

Theorem
Let (cn) be s.t. 0 ≤ cn ≤

{
acdn

b
e + tn, if n ≥ n0 ≥ b,

κ otherwise,
with

I b ≥ 2 is an integer;
I a > 0 is a real number;
I κ ≥ is a real number;
I t a toll function

I non decreasing,
I such that a′tn ≤ tbn ≤ a′′tn for some constants a′′ ≥ a′ > 1,

then

cn =
n→∞


O(tn) a′ > a,
O(tn log n) if a′ = a,
O(nα−α

′
tn) if a′ < a

with α = logb a, α′ = logb a
′
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Slaves bound

Karatsuba

un= 2udn2 e + ubn2 c + 4(n− 1)

vn≤ 3vdn2 e + 4n

wn= 9 · 3dlog2 ne

b = 2, a = 3, a′ = 2, α = log2 3, α′ = log2 2 = 1, vn = O(nlog2 3)

We want to catch the oscillations!
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Goal

u(x) =
∑
n≥0

unx
n =

∏
k≥0

1

1− ρx2k

ρ > 1 un = u(1/ρ2)ρn +O(ρn/2)

ρ = 1 log u2n = log u2n+1 =
1

2 log 2
log2

n

log n

+

(
1

2
+

1

log 2
+

log log 2

log 2

)
log n

+O(log log n)

ρ < 1

N∑
n=1

un = ϕ(log2 n)Nα +O(Nα−1/2+ε)

α = log2
1

1− ρ

un = ρun−1 + un
2
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Goal

We want to study the asymptotic behavior of true divide and
conquer sequences, that is b-rational sequences.
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Some tools
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Integers and words
b ≥ 2, Z = {0, 1, . . . , b− 1}

generating formal
series series

u(x) =
∑
n≥0

unx
n s =

∑
w∈Z∗

sw w

Tb,ru(x) =
∑
k≥0

ubk+rx
k sr−1 =

∑
w=w′r

sw w
′

n = (w)b ∈ N w ∈ Z∗ sw = un

maps composition
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Integers and words

We do not use the words which begins with some zeroes.

Definition
A linear representation (L,A,C) is insensitive to the leftmost
zeroes, or zero-insensitive, if it satisfies LA0 = L.

Concretely, we always use zero-insensitive linear representations.
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Extraction of classical rational sequences

sequence integers whose b-ary expansions have a regular
expression e.g. 2k = (10k)2, 2k − 1 = (1k)2

Stern-Brocot sequence

L =
[

0 1
]
, A0 =

[
1 1

0 1

]
, A1 =

[
0 −1

1 2

]
, C =

[
1

0

]

u2k−1 = LAk1C =
[

1 2
] [ 1− k −k

k 1 + k

][
1

0

]
= k + 1

1
1 2
1 3 2 3
1 4 3 5 2 5 3 4
1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5
1 6 5 9 4 11 7 10 3 11 8 13 5 12 7 9 2 9 . . .
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Extraction of classical rational sequences

Stern-Brocot sequence

L =
[

0 1
]
, A0 =

[
1 1

0 1

]
, A1 =

[
0 −1

1 2

]
, C =

[
1

0

]

2k+1−1∑
n=2k

un = LA1(A0+A1)
kC =

[
1 2

] [ 1 0

(3k − 1)/2 3k

][
1

0

]
= 3k

1
1 2
1 3 2 3
1 4 3 5 2 5 3 4
1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5
1 6 5 9 4 11 7 10 3 11 8 13 5 12 7 9 2 9 . . .
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A mere idea

u(x) b-rational series

δ(x) = (1− x)u(x) b-rational

(L,A,C)
linear representation for δ(x), insensitive to the leftmost zeroes

uN =

N∑
n=0

δn =
∑
n≤N

LAwC, (w)b = n

SK(x) =
∑
|w|=K

(0.w)b≤x

AwC 0 ≤ x ≤ 1
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A mere idea

uN =

N∑
n=0

δn =
∑
n≤N

LAwC, (w)b = n

SK(x) =
∑
|w|=K

(0.w)b≤x

AwC 0 ≤ x ≤ 1

δ0 = LA0C

δ1 = LA1C

δ2 = LA1A0C

δ3 = LA1A1C

δ4 = LA1A0A0C

δ5 = LA1A0A1C

δ0 = LA0A0A0C

δ1 = LA0A0A1C

δ2 = LA0A1A0C

δ3 = LA0A1A1C

δ4 = LA1A0A0C

δ5 = LA1A0A1C
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A mere idea

uN =
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u5 = LA0A0A0C

+ LA0A0A1C

+ LA0A1A0C

+ LA0A1A1C

+ LA1A0A0C

+ LA1A0A1C

LS3(5/8) = LA0A0A0C

+ LA0A0A1C

+ LA0A1A0C

+ LA0A1A1C

+ LA1A0A0C

+ LA1A0A1C
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A mere idea

uN =

N∑
n=0

δn =
∑
n≤N

LAwC, (w)b = n

SK(x) =
∑
|w|=K

(0.w)b≤x

AwC 0 ≤ x ≤ 1

Proposition
Let (L,A,C) be a insensitive to the leftmost zeroes linear
representation for the sequence (δn) of backward differences of a
b-rational sequence (un). Then

uN = LSK+1(b
{logbN}−1),

with K = blogbNc and {t} = t− btc.
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A mere idea

uN =

N∑
n=0

δn =
∑
n≤N

LAwC, (w)b = n

SK(x) =
∑
|w|=K

(0.w)b≤x

AwC 0 ≤ x ≤ 1

Proposition
The sequence SK(x) satisfies

SK+1(x) =
∑
r1<x1

Ar1Q
KC +Ax1SK(bx− x1),

for x = (0.x1x2 . . .)b in [0, 1[.
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Joint spectral radius

uN = LAr` · · ·Ar0C for N = (r` . . . r0)b

|uN | ≤ ‖L‖‖Ar`‖ · · · ‖Ar0‖‖C‖
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Joint spectral radius

uN = LAr` · · ·Ar0C for N = (r` . . . r0)b

|uN | ≤ ‖L‖‖Ar`‖ · · · ‖Ar0‖‖C‖
≤ ‖L‖‖C‖a`+1 = ‖L‖‖C‖ablogbNc ≤ KN logb a

123 / 151



Joint spectral radius

uN = LAr` · · ·Ar0C for N = (r` . . . r0)b

|uN | ≤ ‖L‖‖Ar`‖ · · · ‖Ar0‖‖C‖
≤ ‖L‖‖C‖a`+1 = ‖L‖‖C‖ablogbNc ≤ KN logb a

Proposition
A b-rational sequence has a growth order at most polynomial.
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Joint spectral radius

Proposition
Let A = (Az)z∈Z be a finite family of square matrices. The
sequence

ρ̂`(A) = max
w∈Z`

‖Aw‖1/`,

converges towards

ρ̂(A) = lim
`→+∞

ρ̂`(A) = inf
`
ρ̂`(A).

Moreover the limit is independent of the used multiplicative
norm. It is the joint spectral radius of A.
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Joint spectral radius

Proposition
If (L,A,C) is a linear representation for a b-rational
sequence (un), then for all ε > 0

uN =
N→+∞

O(N logb ρ̂(A)+ε)
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Joint spectral radius
Karatsuba

A0 =



3 1 0 0 0

0 2 0 0 0

0 −1 1 0 0

4 10 1 2 1

4 −1 0 0 1


, A1 =



1 0 0 0 0

2 3 0 0 0

−1 4 2 1 0

10 4 0 1 2

−1 0 0 0 0



‖M‖1 = max
j

∑
i

|Mi,j |, ‖M‖∞ = max
i

∑
j

|Mi,j |,

‖M‖F =

∑
i,j

|Mi,j |2
1/2
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Joint spectral radius

ρ̂10(A) ' 3.76 ≥ ρ̂(A)

‖M‖1 = max
j

∑
i

|Mi,j |, ‖M‖∞ = max
i

∑
j

|Mi,j |,

‖M‖F =

∑
i,j

|Mi,j |2
1/2
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Joint spectral radius

Proposition
If the matrices of A = (Az)z∈Z can be simultaneously
block-triangulated,

P−1AzP =

(
Bz Cz
0 Dz

)
, z ∈ Z,

then the joint spectral radius of A is

ρ̂(A) = max(ρ̂(B), ρ̂(D)).
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Joint spectral radius

A0 =



3 1 0 0 0

0 2 0 0 0

0 −1 1 0 0

4 10 1 2 1

4 −1 0 0 1


=

[
B0 0
C0 D0

]
, A1 =



1 0 0 0 0

2 3 0 0 0

−1 4 2 1 0

10 4 0 1 2

−1 0 0 0 0


=

[
B1 0
C1 D1

]

B0 =

[
3 1
0 2

]
, B1 =

[
1 0
2 3

]
,

P =

 2/3 1/3

−2/3 2/3

 , P
−1

B0P =

 2 1

0 3

 , P
−1

B1P =

 1 −1

0 3

 .

ρ̂(B) = 3, ρ̂(D) = 2 ρ̂(A) = max(3, 2) = 3
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Joint spectral radius
Consequence:

SK(x) =
∑
|w|=K

(0.w)b≤x

AwC 0 ≤ x ≤ 1

SK+1(x) =
∑
r1<x1

Ar1Q
KC +Ax1SK(bx− x1),

Proposition
Let V be an eigenvector of Q = A0 + · · ·+Ab−1 for an
eigenvalue ρω with |ω| = 1 and ρ ≤ ρ̂(A). Then

SK(x) =
∑
|w|=K

(0.w)b≤x

AwV

is O(rK) uniformly wrt x for r > ρ̂(A) ≥ ρ.
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Dilation equations
coin tossing
(Tn)n≥1 i.i.d. with P(T = 0) = p0, P(T = 1) = p1
p0 + p1 = 1, 0 < p0, p1 < 1

X =
∑
n≥1

Tn
2n

distribution function F (x)

0 ≤ x < 1/2

F (x) = P(X ≤ x) = P(T1 = 0,
∑
n≥2

Tn
2n−1

≤ 2x) = p0F (2x)

1/2 ≤ x ≤ 1

F (x) = P(X ≤ x) = P(T1 = 0)+P(T1 = 1,
∑
n≥2

Tn
2n−1

≤ 2x−1)

= p0 + p1F (2x− 1),
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Dilation equations

0 ≤ x < 1/2 F (x) = p0F (2x)

1/2 ≤ x ≤ 1 F (x) = p0 + p1F (2x− 1)

F (x) = p0F (2x) + p1F (2x− 1)

F (x) = 0 for x ≤ 0 F (x) = 1 for x ≥ 1

dilation equation
two-scale difference equation
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Dilation equations

0 ≤ x < 1/2 F (x) = p0F (2x)
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Dilation equations

F (x) = p0F (2x) + p1F (2x− 1)

F (x) = 0 for x ≤ 0 F (x) = 1 for x ≥ 1

cascade algorithm Hölder with exponent log2 1/max(p0, p1)
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Dilation equations

in wavelet theory (Daubechies)

in interpolation scheme (Dubuc, Deslauriers)
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Dilation equations

multidimensional version

Proposition
Under the hypothesis ρ > ρ̂(A), the dilation equation

ρωF (x) =
∑

0≤r<b
ArF (bx− r)

with boundary conditions

F (x) = 0 for x ≤ 0, F (x) = V for x ≥ 1,

where V is an eigenvector for Q = A0 + · · ·+Ab−1 and the
eigenvalue ρω, |ω| = 1, has a unique continuous solution from R
into Cd. Moreover this solution is Hölder with
exponent logb(ρ/r) for r > ρ̂(A).

138 / 151



Dilation equations

Consequence:

Proposition
Let V be an eigenvector for an eigenvalue ρω, |ω| = 1, ρ > ρ̂(A),
of Q = A0 + · · ·+Ab−1. Then

SK(x) =
∑
|w|=K

(0.w)b≤x

AwV

satisfies
SK(x) =

K→∞
(ρω)KF (x) +O(rK)

for ρ > r > ρ̂(A) uniformly wrt x.
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Theorem

Theorem
Let (un) be a b-rational sequence and (L,A,C) a linear
representation for the sequence of its backward differences. Then
the sequence (un) has an asymptotic expansion which is a sum
of terms

N logb ρ

(
logbN

m

)
× eiϑ logbN × ϕ(logbN).

In this writing, ρeiϑ is an eigenvalue of
Q = A0 +A1 + · · ·+Ab−1 with a modulus ρ > ρ̂(A). The
integer m is bounded by the maxima size of the Jordan blocks
related to ρeiϑ. The function ϕ(t) is 1-periodic and Hölder with
exponent logb(ρ/r) for ρ > r > ρ̂(A). The error term
is O(N logb r) for r > ρ̂(A).
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A worked example

Karatsuba!

xu(x)− (1 + x)(2 + x)u(x2) = −x2 + 4
x3

(1− x)2

δ(x) =
(2 + x)

x
δ(x2)− x− 6x2 + x3

1− x
.

basis

δ(x),
δ(x)

x
,

1

1− x
,

x

1− x
,

x2

1− x
,

x3

1− x
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A worked example: Linear representation

L =
[

0 1 1 0 0 0
]
, A0 =



1 0 0 0 0 0

0 2 0 0 0 0

0 −1 1 0 0 0

5 5 0 1 1 0

−1 0 0 0 0 1

0 0 0 0 0 0


,

A1 =



0 0 0 0 0 0

2 1 0 0 0 0

−1 5 1 1 0 0

5 −1 0 0 1 1

0 0 0 0 0 0

0 0 0 0 0 0


, C =



1

0

0

0

0

0
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A worked example: Joint spectral radius

A0 =



1 0 0 0 0 0

0 2 0 0 0 0

0 −1 1 0 0 0

5 5 0 1 1 0

−1 0 0 0 0 1

0 0 0 0 0 0


, A1 =



0 0 0 0 0 0

2 1 0 0 0 0

−1 5 1 1 0 0

5 −1 0 0 1 1

0 0 0 0 0 0

0 0 0 0 0 0



ρ̂(A) = 2
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A worked example: Jordan reduction

Q = A0 + A1 =



1 0 0 0 0 0

2 3 0 0 0 0

−1 4 2 1 0 0

10 4 0 1 2 1

−1 0 0 0 0 1

0 0 0 0 0 0



P =



0 0 0 24 0 0

8 0 0 −24 0 0

48 −96 −96 120 24 179

16 0 96 −96 −48 −334

0 0 0 −24 24 131

0 0 0 0 0 24


, Q
′
=



3 0 0 0 0 0

0 2 0 0 0 0

0 0 1 1 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 0 0
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A worked example: Jordan reduction

L
′
= LP =

[
56 −96 −96 96 24 179

]
,

A
′
0 = P

−1
A0P =



2 0 0 −3 0 0

1/3 1 0 −2 0 0

1/4 0 1 1/4 −1/4 − 155
96

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 0 0


,

A
′
1 = P

−1
A1P =



1 0 0 3 0 0

−1/3 1 0 2 0 0

−1/4 0 0 3/4 1/4 155
96

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, C
′
= P
−1

C =



1/8

1/12

1/24

1/24

1/24

0



ρ = 3, ω = 1, V = E2 + 6E3 + 2E4
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A worked example: Dilation equation

3F (x) = A0F (2x) +A1F (2x− 1).

F (x) = 0 for x ≤ 0, F (x) = E2 + 6E3 + 2E4 for x ≥ 1.
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A worked example: Dilation equation

f1 (x) =
2

3
f1 (2x)− f4 (2x) ,

f2 (x) =
1

9
f1 (2x) +

1

3
f2 (2x)−

2

3
f4 (2x) +

2

3
f1 (2x− 1) +

1

3
f2 (2x− 1) ,

f3 (x) =
1

12
f1 (2x) +

1

3
f3 (2x) +

1

12
f4 (2x)−

1

12
f5 (2x)−

155

288
f6 (2x)

− 1

3
f1 (2x− 1) +

5

3
f2 (2x− 1) +

1

3
f3 (2x− 1) +

1

3
f4 (2x− 1) ,

f4 (x) =
1

3
f4 (2x) +

5

3
f1 (2x− 1)− 1

3
f2 (2x− 1) +

1

3
f5 (2x− 1) +

1

3
f6 (2x− 1) ,

f5 (x) =
1

3
f6 (2x) ,

f6 (x) = 0.

fj(x) = 0 for x ≤ 0

f1(x) = 0
f2(x) = 1
f3(x) = 6
f4(x) = 2
f5(x) = 0
f6(x) = 0

for x ≥ 1
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A worked example: Cascade algorithm

f(x) = LF (x) = f2(x) + f3(x)
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A worked example: !

uN =
N→∞

N log2 3ϕ(log2N) +O(N1+ε)

ϕ(t) = 31−{t}f(2{t}−1).

ϕ(t)
uN/N

log2 3

normalized execu-
tion of the algo-
rithm
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What I did not speak about

I analytic number theory
Michael Drmota and Peter J. Grabner.
Analysis of digital functions and applications.
In Combinatorics, automata and number theory, volume 135 of
Encyclopedia Math. Appl., pages 452–504. Cambridge Univ.
Press, Cambridge, 2010.

I probability theory

Louis H.Y. Chen, Hsien-Kuei Hwang, and Vytas Zacharovas.
Distribution of the sum-of-digits function of random integers: a
survey.
Probababilty Surveys, 11:177–236, 2014.

150 / 151



Thanks for your attention!

Philippe Dumas
SpecFun
Inria Saclay
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