vés Marseille

Les Baumettes

DAC

Algebra and Analysis

Philippe Dumas

Journées Aléá 2016 7-11 mars 2016

Centre International de Rencontres Mathématiques

All is available at

http://specfun.inria.fr/dumas/Research/DAC/

Part I

Algebra

Overview of Part I

What is a DAC recurrence?
Algebraic machinery
Linear operators
Basic functional properties
Definition of DAC recurrences
Comparison of types
Generating functions
Some links
Mahler and sections

All links
Types equivalence
Anatoli Karatsuba
Frank Gray
Rational sequence
Linear representation
Divide and conquer algorithms
Combinatorics on words
Number theory
Moritz Stern, Achille Brocot

What is a DAC recurrence?

Rank Abbr. Meaning

DAC Design Automation Conference
DAC Digital-to-Analog Converter
DAC Development Assistance Committee (OEC)
DAC Discretionary Access Control
DAC District Advisory Council
DAC Data Access Component
DAC Downhill Assist Contranges enf mobile
DAC Department of Arts and Nrure

What is a DAC recurrence?

Karatsuba's polynomial multiplication

$$
\begin{gathered}
a=a_{0}(x)+x^{k} a_{1}(x), \quad b=b_{0}(x)+x^{k} b_{1}(x) \\
a b=a_{0} \times b_{0}+x^{k}\left(\left(a_{0}+a_{1}\right) \times\left(b_{0}+b_{1}\right)-a_{0} \times b_{0}-a_{1} \times b_{1}\right)+x^{2 k} a_{1} \times b_{1}
\end{gathered}
$$

What is a DAC recurrence?

Karatsuba's polynomial multiplication

floor and ceil type

What is a DAC recurrence?
Gray code as usual binary code

n	$\operatorname{bin}(n)$	$\operatorname{gray}(n)$	u_{n}
0	00	00	0
1	01	01	1
2	10	11	3
3	11	10	2
4	100	110	6
5	101	111	7
6	110	101	5
7	111	100	4

What is a DAC recurrence?

Gray code as usual binary code

$$
\begin{aligned}
u_{4 n} & =2 u_{2 n}, \\
u_{4 n+1} & =-4 u_{n}+3 u_{2 n}+u_{2 n+1}, \\
u_{4 n+2} & =-4 u_{n}+u_{2 n}+3 u_{2 n+1}, \\
u_{4 n+3} & =2 u_{2 n+1},
\end{aligned}
$$

by case type

What is a DAC recurrence?

From floor and ceil type to by case type: obvious!

$$
u_{n}=2 u_{\left\lceil\frac{n}{2}\right\rceil}+u_{\left\lfloor\frac{n}{2}\right\rfloor}+4(n-1), \quad n \geq 2, \quad \text { with } u_{0}=0, u_{1}=1
$$

$$
\begin{aligned}
u_{2 n} & =3 u_{n}+8 n-4, & & \text { with } u_{0}=0 \\
u_{2 n+1} & =2 u_{n+1}+u_{n}+8 n, & & \text { with } u_{1}=1
\end{aligned}
$$

What is a DAC recurrence?

But from by case type to floor and ceil type?

$$
\begin{aligned}
u_{4 n} & =2 u_{2 n}, \\
u_{4 n+1} & =-4 u_{n}+3 u_{2 n}+u_{2 n+1}, \\
u_{4 n+2} & =-4 u_{n}+u_{2 n}+3 u_{2 n+1}, \\
u_{4 n+3} & =2 u_{2 n+1},
\end{aligned}
$$

Algebraic machinery

Algebraic machinery: Linear operators

$$
u(x)=\sum_{n \geq 0} u_{n} x^{n}
$$

$u(x)$ formal series in $\mathbb{K}[[x]]$
$\left(u_{n}\right)$ sequence in $\mathbb{K}^{\mathbb{N}}$

Both are exactly the same object.

Algebraic machinery: Linear operators

$$
u(x)=\sum_{n \geq 0} u_{n} x^{n}
$$

radix $b \geq 2 \quad$ Mahler operator $\quad M u(x)=u\left(x^{b}\right)$

Algebraic machinery: Linear operators

$$
u(x)=\sum_{n \geq 0} u_{n} x^{n}
$$

radix $b \geq 2 \quad$ Mahler operator $\quad M u(x)=u\left(x^{b}\right)$

$$
0 \leq r<b \quad \text { section operator } \quad T_{b, r} u(x)=\sum_{k \geq 0} u_{b k+r} x^{k}
$$

Algebraic machinery: Linear operators

$$
u(x)=\sum_{n \geq 0} u_{n} x^{n}
$$

radix $b \geq 2 \quad$ Mahler operator $\quad M u(x)=u\left(x^{b}\right)$

$$
0 \leq r<b \quad \text { section operator } \quad T_{b, r} u(x)=\sum_{k \geq 0} u_{b k+r} x^{k}
$$

$$
\text { forward shift } \quad S u(x)=\sum_{n \geq 0} u_{n+1} x^{n}
$$

Algebraic machinery: Linear operators

$$
u(x)=\sum_{n \geq 0} u_{n} x^{n}
$$

radix $b \geq 2 \quad$ Mahler operator $\quad M u(x)=u\left(x^{b}\right)$
$0 \leq r<b \quad$ section operator $\quad T_{b, r} u(x)=\sum_{k \geq 0} u_{b k+r} x^{k}$
forward shift $\quad S u(x)=\sum_{n \geq 0} u_{n+1} x^{n}$
backward shift $\quad x u(x)=\sum_{n \geq 0} u_{n-1} x^{n}$

Algebraic machinery: Linear operators

radix $b=2$, by far the most usual case

Mahler operator

$$
M u(x)=u_{0} \quad+u_{1} x^{2} \quad+u_{2} x^{4}
$$

Algebraic machinery: Linear operators

radix $b=2$, by far the most usual case

Mahler operator

$$
M u(x)=u_{0} \quad+u_{1} x^{2} \quad+u_{2} x^{4}
$$

section operator

$$
\begin{array}{llll}
T_{2,0} u(x)=u_{0} & +u_{2} x+u_{4} x^{2} & +u_{6} x^{3}+\cdots & \text { even part } \\
T_{2,1} u(x)=u_{1} & +u_{3} x+u_{5} x^{2} & +u_{7} x^{3}+\cdots & \text { odd part }
\end{array}
$$

Algebraic machinery: Linear operators

radix $b=2$, by far the most usual case

Mahler operator

$$
M u(x)=u_{0} \quad+u_{1} x^{2} \quad+u_{2} x^{4}
$$

section operator

$$
\begin{array}{llll}
T_{2,0} u(x)=u_{0} & +u_{2} x+u_{4} x^{2} & +u_{6} x^{3}+\cdots & \text { even part } \\
T_{2,1} u(x)=u_{1} & +u_{3} x+u_{5} x^{2} & +u_{7} x^{3}+\cdots & \text { odd part }
\end{array}
$$

forward shift

$$
S u(x)=u_{1} \quad+u_{2} x+u_{3} x^{2} \quad+u_{4} x^{3}+\cdots
$$

backward shift

$$
x u(x)=\quad u_{0} x+u_{1} x^{2}+u_{2} x^{3}+u_{3} x^{4}
$$

Algebraic machinery: Basic functional properties

$$
\begin{array}{rlrl}
T_{b, 0} M=1, \quad T_{b, r} M & =0 & 1 \leq r<b & \\
M x & =x^{b} M & & \text { obvious } \\
S T_{b, r} & =T_{b, r} S^{b} & & \text { obvious }
\end{array}
$$

Algebraic machinery: Basic functional properties

$$
\begin{gathered}
S T_{b, r}=T_{b, r} S^{b}, \quad \text { the same, but. } \\
T_{b, r} u(x)=u_{r} \quad+u_{b+r} x+u_{2 b+r} x^{2} \quad+u_{3 b+r} x^{3}+\cdots \\
S^{b} u(x)=u_{b} \quad+u_{b+1} x+u_{b+2} x^{2} \quad+u_{b+3} x^{3}+\cdots
\end{gathered}
$$

Algebraic machinery: Basic functional properties

$$
\begin{gathered}
S T_{b, r}=T_{b, r} S^{b}, \quad \text { the same, but... } \\
T_{b, r} u(x)=u_{r} \quad+u_{b+r} x+u_{2 b+r} x^{2} \\
S u_{3 b+r} x^{3}+\cdots \\
S T_{b, r} u(x)=u_{b+r} \\
+u_{2 b+r} x+u_{3 b+r} x^{2} \\
\hline
\end{gathered} \begin{aligned}
& +u_{4 b+r} x^{3}+\cdots \\
T_{b, r} S^{b} u(x) & =u_{b+r} \\
S^{b} u(x) & +u_{2 b+r} x^{2}+u_{3 b+r} x^{3} \\
& +u_{4 b+r} x^{3}+\cdots \\
& +u_{b+1} x+u_{b+2} x^{2}
\end{aligned} \quad+u_{b+3} x^{3}+\cdots .
$$

Algebraic machinery: Basic functional properties

$$
S T_{b, r}=T_{b, r} S^{b}, \quad \text { the same, but. . }
$$

Proposition
The sections of a rational function are rational functions.

Proof
$f \in \mathbb{K}(x), S^{*} f \in \mathcal{F}$ with $\operatorname{dim} \mathcal{F}<\infty$,
$g=T_{b, r} f, S^{k} g=T_{b, r} S^{b k} f \in T_{b, r} \mathcal{F}$ with $\operatorname{dim} T_{b, r} \mathcal{F}<\infty$
motto : a subspace left stable by the operator(s)

Algebraic machinery: Basic functional properties

$$
\begin{aligned}
T_{b, r}(f M g) & =\left(T_{b, r} f\right) g \\
\sum_{0 \leq r<b} x^{r} M T_{b, r} & =1
\end{aligned}
$$

Algebraic machinery: Basic functional properties

$$
\begin{array}{rlrl}
T_{b, r}\left(f(x) g\left(x^{b}\right)\right) & =\left(T_{b, r} f(x)\right) g(x) & & \text { useful for products } \\
\sum_{0 \leq r<b} x^{r} T_{b, r} f\left(x^{b}\right) & =f(x) & & \text { It is possible to rebuild a } \\
\text { function from its sections. }
\end{array}
$$

Example

$$
\begin{gathered}
T_{2,0} \frac{1+3 x}{x^{3}(1+2 x)}=\frac{1}{x(1-4 x)}, \quad T_{2,1} \frac{1+3 x}{x^{3}(1+2 x)}=\frac{1-6 x}{x^{2}(1-4 x)} \\
1 \times \frac{1}{x^{2}\left(1-4 x^{2}\right)}+x \times \frac{1-6 x^{2}}{x^{4}\left(1-4 x^{2}\right)}=\frac{1+3 x}{x^{3}(1+2 x)} \quad b=2 \\
1 \times T_{2,0} f\left(x^{2}\right)+x T_{2,1} f\left(x^{2}\right)=f(x)
\end{gathered}
$$

Definition of DAC recurrences

Definition of DAC recurrences

Definition

A (linear) Mahler equation is an equation

$$
\ell_{0}(x) u(x)+\ell_{1}(x) u\left(x^{b}\right)+\cdots+\ell_{d}(x) u\left(x^{b^{d}}\right)=v(x)
$$

where $\ell_{0}(x), \ell_{1}(x), \ldots, \ell_{d}(x)$ and $v(x)$ are polynomials in $\mathbb{K}[x]$.

$$
L(x, M)=\ell_{0}(x)+\ell_{1}(x) M+\cdots+\ell_{d}(x) M^{d}, \quad L(x, M) u(x)=v(x)
$$

motto : a subspace left stable by the operator(s)

Definition of DAC recurrences

Definition

A divide-and-conquer recurrence is the translation in terms of sequence of a Mahler equation.

Definition of DAC recurrences

Definition

$u_{\nu}=0$ if $\nu \notin \mathbb{N}_{\geq 0}$
Example

$$
\begin{array}{rrrr}
\left(x+2 x^{2}\right) u(x)-(1+x) u\left(x^{2}\right)+u\left(x^{4}\right)=0, & b=2 \\
u_{m-1}+2 u_{m-2} & -u_{\frac{m}{2}}-u_{\frac{m-1}{2}} & +u_{\frac{m}{4}}=0, & m \geq 0 \\
u_{9}+2 u_{8} & -u_{5}-u_{\frac{9}{2}} & +u_{\frac{5}{2}}=0, & m=10 \\
u_{10}+2 u_{9} & -u_{\frac{11}{2}}-u_{5} & +u_{\frac{11}{4}}=0, & m=11 \\
u_{11}+2 u_{10} & -u_{6}-u_{\frac{11}{2}} & +u_{3}=0, & m=12 \\
u_{12}+2 u_{11} & -u_{\frac{13}{2}}-u_{6} & +u_{\frac{13}{4}}=0, & m=13
\end{array}
$$

Definition of DAC recurrences

Example

$$
\begin{array}{rlrl}
\left(x+2 x^{2}\right) u(x)-(1+x) u\left(x^{2}\right)+u\left(x^{4}\right) & =0, & & b=2 \\
u_{m-1}+2 u_{m-2} & -u_{\frac{m}{2}}-u_{\frac{m-1}{2}} & +u_{\frac{m}{4}} & =0, \\
& m \geq 0 \\
u_{9}+2 u_{8} & -u_{5} & & =0, \\
& & m=0, & \\
u_{10}+2 u_{9} & -u_{5} & & m=11 \\
u_{11}+2 u_{10} & -u_{6} & & m=12 \\
u_{12}+2 u_{11} & -u_{3} & =0, & \\
& & & =0,
\end{array}
$$

fractional type

Comparison of types

Three types for the same thing, that's a lot!

Comparison of types: Generating functions

- reference type $=$ fractional type

$$
t_{m}=u_{\frac{m-s}{b^{k}}} \quad t(x)=x^{s} u\left(x^{b^{k}}\right)
$$

Comparison of types: Generating functions

- floor and ceil type

$$
\begin{array}{r}
t_{m}=u_{\left\lfloor\frac{n+s}{b}\right\rfloor} t(x)=\quad x^{-s}\left(1+x+\cdots+x^{b-1}\right) u\left(x^{b}\right) \\
-x^{-s}\left(1+x+\cdots+x^{b-1}\right) \sum_{n=0}^{q-1} u_{n} x^{b n} \\
-x^{-r} \sum_{i=0}^{r-1} x^{i} u_{q} \\
s=b q+r,|r|<b, \operatorname{sgn}(r)=\operatorname{sgn}(s) \\
\text { ceil ad libitum } \begin{array}{r}
\text { symmetrical Euclidean division } \\
\left\lceil\frac{n}{b}\right\rceil=\left\lfloor\frac{n+b-1}{b}\right\rfloor
\end{array} \quad \text { corrective term }=0 \text { for }-\infty<s \leq 0
\end{array}
$$

Comparison of types: Generating functions

- by case type

$$
\begin{array}{r}
t_{m}=u_{b k+s} \quad t(x)=\quad x^{-q} T_{b, r} u(x)-x^{-q} \sum_{j=0}^{q-1} u_{b j+r} x^{j} \\
s=b q+r, 0 \leq r<b \\
\text { natural Euclidean division }
\end{array}
$$

$$
\text { corrective term }=0 \text { for }-\infty<s<b
$$

Comparison of types: Generating functions

neglecting details:

$$
\begin{array}{llr}
t_{m}=u_{\frac{m-s}{b^{k}}} & t(x)= & x^{s} u\left(x^{b^{k}}\right) \\
t_{m}=u_{\left\lfloor\frac{n+s}{b}\right\rfloor} & t(x)=x^{-s}\left(1+x+\cdots+x^{b-1}\right) u\left(x^{b}\right) \\
t_{m}=u_{b k+s} & t(x)= & x^{-q} T_{b, r} u(x)
\end{array}
$$

- fractional type Mahler operator
- floor and ceil type Mahler operator
- by case typesection operators

Comparison of types: Some links

floor and ceil type recurrence

Mahler equation \rightleftarrows fractional type recurrence
system for sections
by case type recurrence

Comparison of types: Some links

system for sections
by case type recurrence

Comparison of types: Some links

system for sections \rightleftarrows by case type recurrence

Comparison of types: Some links

floor and ceil type recurrence

Mahler equation \longrightarrow fractional type recurrence

system for sections \rightleftarrows by case type recurrence

Comparison of types: Mahler and sections

Theorem

If u is a formal series which is a solution of a non trivial Mahler equation, then, under the action of the section operators, it generates a finite dimensional $\mathbb{K}(x)$-space. Conversely, if the iterated sections of a formal series u remain in a finite dimensional $\mathbb{K}(x)$-space, then u is a solution a non trivial Mahler equation.
variation on
围 Gilles Christol, Teturo Kamae, Michel Mendès France, and Gérard Rauzy.
Suites algébriques, automates et substitutions.
Bull. Soc. Math. France, 108(4):401-419, 1980.
motto : a subspace left stable by the operator(s)

Comparison of types: All links

strongly connected graph

Comparison of types: Types equivalence

Theorem

For a sequence $\left(u_{n}\right)$ with support in $\mathbb{N}_{\geq 0}$ and for its generating function $u(x)$, with a given integer $b \geq 2$,

- a fractional type recurrence,
- a floor and ceil type recurrence,
- a by case type equation,
- a Mahler equation,
- a system about the sections,
all have the same expressiveness.

Anatoli Karatsuba

Anatoli Karatsuba

$$
\begin{array}{ll}
u_{n}=2 u_{\left\lceil\frac{n}{2}\right\rceil}+u_{\left\lfloor\frac{n}{2}\right\rfloor}+4(n-1) & n \geq 2, \\
& \text { with } u(0)=0, u(1)=1
\end{array}
$$

Anatoli Karatsuba

$$
\begin{gathered}
u_{n}=2 u_{\left\lceil\frac{n}{2}\right\rceil}+u_{\left\lfloor\frac{n}{2}\right\rfloor}+4(n-1) \quad n \geq 2, \\
\quad \text { with } u(0)=0, u(1)=1 \\
x u(x)-(1+x)(2+x) u\left(x^{2}\right)=-x^{2}+4 \frac{x^{3}}{(1-x)^{2}}
\end{gathered}
$$

Anatoli Karatsuba

$$
\begin{aligned}
& u_{n}=2 u_{\left\lceil\frac{n}{2}\right\rceil}+u_{\left\lfloor\frac{n}{2}\right\rfloor}+4(n-1) \quad n \geq 2, \\
& \quad \quad \text { with } u(0)=0, u(1)=1 \\
& x u(x)-(1+x)(2+x) u\left(x^{2}\right)=-x^{2}+4 \frac{x^{3}}{(1-x)^{2}} \\
& u_{m-1}-\left(2 u_{\frac{m}{2}}+3 u_{\frac{m-1}{2}}+u_{\frac{m-2}{2}}\right)=4(m-1)
\end{aligned}
$$

Anatoli Karatsuba

$$
\begin{aligned}
& u_{n}=2 u_{\left\lceil\frac{n}{2}\right\rceil}+u_{\left\lfloor\frac{n}{2}\right\rfloor}+4(n-1) \quad n \geq 2, \\
& \text { with } u(0)=0, u(1)=1 \\
& x u(x)-(1+x)(2+x) u\left(x^{2}\right)=-x^{2}+4 \frac{x^{3}}{(1-x)^{2}} \\
& u_{m-1}-\left(2 u_{\frac{m}{2}}+3 u_{\frac{m-1}{2}}+u_{\frac{m-2}{2}}\right)=4(m-1) \\
& u_{2 k-1}=2 u_{k}+u_{k-1}+8 k-4, \quad k \geq 2 \text {, } \\
& u_{2 k}=3 u_{k}+8 k \text {, } \\
& k \geq 1
\end{aligned}
$$

Anatoli Karatsuba

$$
\begin{gathered}
u(x)=\frac{(1+x)(2+x)}{x} u\left(x^{2}\right)-x+4 \frac{x^{2}}{(1-x)^{2}} \\
T_{2,0} u(x)=3 u(x)+\frac{4 x+4 x^{2}}{(1-x)^{2}} \quad T_{2,1} u(x)=\frac{2+x}{x} u(x)-\frac{1-10 x+x^{2}}{(1-x)^{2}}
\end{gathered}
$$

Anatoli Karatsuba

Frank Gray

March 17, 1953

Filed Nov. 13, 1947

Frank Gray

$$
\begin{array}{rlr}
u_{4 n} & =2 u_{2 n}, & u_{0}=0 \\
u_{4 n+1} & =-4 u_{n}+3 u_{2 n}+u_{2 n+1} & \\
u_{4 n+2} & =-4 u_{n}+u_{2 n}+3 u_{2 n+1} & \\
u_{4 n+3} & =2 u_{2 n+1} &
\end{array}
$$

Frank Gray

$$
\begin{aligned}
& u_{4 n}=2 u_{2 n}, \\
& u_{4 n+1}=-4 u_{n}+3 u_{2 n}+u_{2 n+1} \\
& u_{4 n+2}=-4 u_{n}+u_{2 n}+3 u_{2 n+1} \\
& u_{4 n+3}=2 u_{2 n+1} \\
& \\
& T_{2,0} u(x)=2 T_{2,0} u(x) \\
& T_{4,1} u(x)=-4 u(x)+3 T_{2,0} u(x)+T_{2,1} u(x) \\
& T_{4,2} u(x)=-4 u(x)+T_{2,0} u(x)+3 T_{2,1} u(x) \\
& T_{4,3} u(x)=2 T_{2,1} u(x)
\end{aligned}
$$

Frank Gray

$$
\begin{gathered}
u_{4 n}=2 u_{2 n}, \\
u_{4 n+1}=-4 u_{n}+3 u_{2 n}+u_{2 n+1} \\
u_{4 n+2}=-4 u_{n}+u_{2 n}+3 u_{2 n+1} \\
u_{4 n+3}=2 u_{2 n+1} \\
\\
T_{2,0} u(x)=2 T_{2,0} u(x) \\
T_{4,1} u(x)=-4 u(x)+3 T_{2,0} u(x)+T_{2,1} u(x) \\
T_{4,2} u(x)=-4 u(x)+T_{2,0} u(x)+3 T_{2,1} u(x) \\
T_{4,3} u(x)=2 T_{2,1} u(x) \\
\\
v_{1}(x)=u(x), v_{2}(x)=T_{2,0} u(x), v_{3}(x)=T_{2,1} u(x)
\end{gathered}
$$

Frank Gray

$$
\begin{aligned}
& \begin{array}{c}
T_{2,0} u(x)=2 T_{2,0} u(x) \\
T_{4,1} u(x)=-4 u(x)+3 T_{2,0} u(x)+T_{2,1} u(x) \\
T_{4,2} u(x)=-4 u(x)+T_{2,0} u(x)+3 T_{2,1} u(x) \\
T_{4,3} u(x)=2 T_{2,1} u(x) \\
v_{1}(x)=u(x), v_{2}(x)=T_{2,0} u(x), v_{3}(x)=T_{2,1} u(x) \\
\\
T_{2,0} v_{1}(x)=v_{2}(x) \\
T_{2,0} v_{2}(x)=2 v_{2}(x) \\
T_{2,0} v_{3}(x)=-4 v_{1}(x)+3 v_{2}(x)+v_{3}(x) \\
T_{2,1} v_{1}(x)=v_{3}(x) \\
T_{2,1} v_{2}(x)=-4 v_{1}(x)+v_{2}(x)+3 v_{3}(x) \\
T_{2,1} v_{3}(x)=2 v_{3}(x)
\end{array}
\end{aligned}
$$

Frank Gray

$$
\begin{gathered}
v_{1}(x)=u(x), v_{2}(x)=T_{2,0} u(x), v_{3}(x)=T_{2,1} u(x) \\
T_{2,0} v_{1}(x)=v_{2}(x) \\
T_{2,0} v_{2}(x)=2 v_{2}(x) \\
T_{2,0} v_{3}(x)=-4 v_{1}(x)+3 v_{2}(x)+v_{3}(x) \\
T_{2,1} v_{1}(x)=v_{3}(x) \\
T_{2,1} v_{2}(x)=-4 v_{1}(x)+v_{2}(x)+3 v_{3}(x) \\
T_{2,1} v_{3}(x)=2 v_{3}(x) \\
A_{0}=\left[\begin{array}{lll}
0 & 0 & -4 \\
1 & 2 & 3 \\
0 & 0 & 1
\end{array}\right], A_{1}=\left[\begin{array}{ccc}
0 & -4 & 0 \\
0 & 1 & 0 \\
1 & 3 & 2
\end{array}\right], C=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] .
\end{gathered}
$$

Frank Gray

$$
\begin{gathered}
v_{1}(x)=u(x), v_{2}(x)=T_{2,0} u(x), v_{3}(x)=T_{2,1} u(x) \\
A_{0}=\left[\begin{array}{ccc}
0 & 0 & -4 \\
1 & 2 & 3 \\
0 & 0 & 1
\end{array}\right], A_{1}=\left[\begin{array}{ccc}
0 & -4 & 0 \\
0 & 1 & 0 \\
1 & 3 & 2
\end{array}\right], C=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] . \\
{\left[\begin{array}{ll}
v_{1}(x) & v_{2}(x) \\
v(x)=T_{2,0}(x)
\end{array}\right]} \\
=\left[\begin{array}{lll}
v_{1}\left(x^{2}\right) & v_{2}\left(x^{2}\right)+x T_{2,1} v\left(x^{2}\right) & v_{3}\left(x^{2}\right)
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & -4 \\
1 & 2 & 3 \\
0 & 0 & 1
\end{array}\right] \\
\quad+x\left[\begin{array}{lll}
v_{1}\left(x^{2}\right) & v_{2}\left(x^{2}\right) & v_{3}\left(x^{2}\right)
\end{array}\right]\left[\begin{array}{ccc}
0 & -4 & 0 \\
0 & 1 & 0 \\
1 & 3 & 2
\end{array}\right]
\end{gathered}
$$

Frank Gray

$$
\begin{aligned}
& {\left[\begin{array}{lll}
v_{1}(x) & v_{2}(x) & v_{3}(x)
\end{array}\right](x)=T_{2,0} v\left(x^{2}\right)+x T_{2,1} v\left(x^{2}\right) } \\
&= {\left[\begin{array}{lll}
v_{1}\left(x^{2}\right) & v_{2}\left(x^{2}\right) & v_{3}\left(x^{2}\right)
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & -4 \\
1 & 2 & 3 \\
0 & 0 & 1
\end{array}\right] } \\
&+x\left[\begin{array}{lll}
v_{1}\left(x^{2}\right) & v_{2}\left(x^{2}\right) & v_{3}\left(x^{2}\right)
\end{array}\right]\left[\begin{array}{ccc}
0 & -4 & 0 \\
0 & 1 & 0 \\
1 & 3 & 2
\end{array}\right] \\
& V(x)= {\left[\begin{array}{ll}
v_{1}(x) & v_{2}(x) \\
v_{3}(x)
\end{array}\right], \quad A(x)=A_{0}+x A_{1} } \\
& V(x)=V\left(x^{2}\right) A(x), \quad u(x)=V(x) C
\end{aligned}
$$

Frank Gray

$$
\begin{aligned}
& V(x)=V\left(x^{2}\right) A(x), \quad u(x)=V(x) C \\
& u(x)=V(x) C \\
& u(x)=V\left(x^{2}\right) A(x) C \\
& u(x)=V\left(x^{4}\right) A\left(x^{2}\right) A(x) C \\
& u(x)=V\left(x^{8}\right) A\left(x^{4}\right) A\left(x^{2}\right) A(x) C \\
& u\left(x^{8}\right)=V\left(x^{8}\right) C \\
& u\left(x^{4}\right)=V\left(x^{8}\right) A\left(x^{4}\right) C \\
& u\left(x^{2}\right)=V\left(x^{8}\right) A\left(x^{4}\right) A\left(x^{2}\right) C \\
& u(x)=V\left(x^{8}\right) A\left(x^{4}\right) A\left(x^{2}\right) A(x) C
\end{aligned}
$$

Frank Gray

$$
\begin{aligned}
u\left(x^{8}\right) & =V\left(x^{8}\right) C \\
u\left(x^{4}\right) & =V\left(x^{8}\right) A\left(x^{4}\right) C \\
u\left(x^{2}\right) & =V\left(x^{8}\right) A\left(x^{4}\right) A\left(x^{2}\right) C \\
u(x) & =V\left(x^{8}\right) A\left(x^{4}\right) A\left(x^{2}\right) A(x) C
\end{aligned}
$$

4 column vectors in dimension 3

Frank Gray

$$
\begin{gathered}
A(x)=\left[\begin{array}{ccc}
0 & -4 x & -4 \\
1 & 2+x & 3 \\
x & 3 x & 1+2 x
\end{array}\right] \\
\Gamma(x)=\left[\begin{array}{ccc}
1 & 0 & -4 x^{2}-4 x^{4} \\
0 & 1 & 2+3 x-12 x^{2}-8 x^{3}-8 x^{4}-12 x^{5}-4 x^{6} \\
0 & x^{4} & x^{2}+3 x^{4}+2 x^{6} \\
x+3 x^{2}+2 x^{3}+6 x^{4}+7 x^{5}+5 x^{6}+4 x^{7}
\end{array}\right] \\
K(x)=\left[\begin{array}{c}
0 \\
2 \frac{(1+x)\left(1+x^{4}\right)}{x} \\
-\frac{(1+x)\left(1+2 x+2 x^{3}+x^{4}\right)}{x\left(1+x^{2}\right)} \\
1
\end{array}\right]
\end{gathered}
$$

Frank Gray

$$
K(x)=\left[\begin{array}{c}
0 \\
2 \frac{(1+x)\left(1+x^{4}\right)}{x} \\
-\frac{(1+x)\left(1+2 x+2 x^{3}+x^{4}\right)}{x\left(1+x^{2}\right)} \\
1
\end{array}\right]
$$

$$
x\left(1+x^{2}\right) u(x)-(1+x)\left(1+2 x+2 x^{3}+x^{4}\right) u\left(x^{2}\right)+2(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right) u\left(x^{4}\right)=0
$$

Frank Gray

to summarize:
from

$$
\begin{aligned}
& T_{2,0} u(x)=2 T_{2,0} u(x) \\
& T_{4,1} u(x)=-4 u(x)+3 T_{2,0} u(x)+T_{2,1} u(x) \\
& T_{4,2} u(x)=-4 u(x)+T_{2,0} u(x)+3 T_{2,1} u(x) \\
& T_{4,3} u(x)=2 T_{2,1} u(x)
\end{aligned}
$$

to

$$
\begin{aligned}
& x\left(1+x^{2}\right) u(x) \\
& \qquad \begin{array}{l}
-(1+x)\left(1+2 x+2 x^{3}+x^{4}\right) u\left(x^{2}\right) \\
+2(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right) u\left(x^{4}\right)=0
\end{array}
\end{aligned}
$$

Frank Gray

$$
\begin{aligned}
& x\left(1+x^{2}\right) u(x) \\
& \qquad-(1+x)\left(1+2 x+2 x^{3}+x^{4}\right) u\left(x^{2}\right) \\
& +2(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right) u\left(x^{4}\right)=0
\end{aligned}
$$

$u_{n}+u_{n-2}$

$$
\begin{aligned}
-\left(u_{\left\lfloor\frac{n+1}{2}\right\rfloor}+2 u_{\left\lfloor\frac{n}{2}\right\rfloor}+\right. & \left.2 u_{\left\lfloor\frac{n-2}{2}\right\rfloor}+u_{\left\lfloor\frac{n-3}{2}\right\rfloor}\right) \\
& +2\left(u_{\left\lfloor\frac{n+1}{4}\right\rfloor}+u_{\left\lfloor\frac{n-3}{4}\right\rfloor}\right)=0
\end{aligned}
$$

Frank Gray

to summarize:
from

$$
\begin{aligned}
u_{4 n} & =2 u_{2 n} \\
u_{4 n+1} & =-4 u_{n}+3 u_{2 n}+u_{2 n+1} \\
u_{4 n+2} & =-4 u_{n}+u_{2 n}+3 u_{2 n+1} \\
u_{4 n+3} & =2 u_{2 n+1}
\end{aligned}
$$

to

$$
\begin{gathered}
u_{n}+u_{n-2}=0, u_{1}=1, u_{2}=3 \\
-\left(u_{\left\lfloor\frac{n+1}{2}\right\rfloor}+2 u_{\left\lfloor\frac{n}{2}\right\rfloor}+2 u_{\left\lfloor\frac{n-2}{2}\right\rfloor}+u_{\left\lfloor\frac{n-3}{2}\right\rfloor}\right) \\
+2\left(u_{\left\lfloor\frac{n+1}{4}\right\rfloor}+u_{\left\lfloor\frac{n-3}{4}\right\rfloor}\right)=0
\end{gathered}
$$

Frank Gray

Rational sequence

Rational sequence

Definition

A formal series (or a sequence) is rational wrt a numeration system with radix b, or is b-rational, if under the action of the section operators it generates a finite dimensionial \mathbb{K}-vector space.

目
Jean-Paul Allouche and Jeffrey Shallit.
The ring of k-regular sequences.
Theoret. Comput. Sci., 98(2):163-197, 1992.

Rational sequence

Proposition
A b-rational series satisfies a non trivial Mahler equation for the radix b.

Rational sequence

Proposition
A formal series $u(x)$ which satisfies a Mahler equation $\left(\omega \in \mathbb{N}_{\geq 0}\right)$

$$
x^{\omega} u(x)=c_{1}(x) u\left(x^{b}\right)+\cdots+c_{d}(x) u\left(x^{b^{d}}\right),
$$

with polynomial coefficients, is b-rational.

Rational sequence

Proposition
A formal series $u(x)$ which satisfies a Mahler equation $\left(\omega \in \mathbb{N}_{\geq 0}\right)$

$$
x^{\omega} u(x)=c_{1}(x) u\left(x^{b}\right)+\cdots+c_{d}(x) u\left(x^{b^{d}}\right)
$$

with polynomial coefficients, is b-rational.
Proposition
A sequence (u_{n}) which satisfies a fractional type recurrence

$$
u_{n}=\sum_{k=1}^{d} \sum_{\ell=-s}^{s} c_{k, \ell} u_{\frac{n-\ell}{b^{k}}}
$$

is b-rational.

Rational sequence

Proposition
A formal series $u(x)$ which satisfies a Mahler equation $\left(\omega \in \mathbb{N}_{\geq 0}\right)$

$$
x^{\omega} u(x)=c_{1}(x) u\left(x^{b}\right)+\cdots+c_{d}(x) u\left(x^{b^{d}}\right)
$$

with polynomial coefficients, is b-rational.
Proposition
A sequence (u_{n}) which satisfies a fractional type recurrence

$$
u_{n}=\sum_{k=1}^{d} \sum_{\ell=-s}^{s} c_{k, \ell} u_{\frac{n-\ell}{b^{k}}}
$$

is b-rational.

Linear representation

Theorem
The N th coefficient of a b-rational series $u(x)$ is expressed as

$$
u_{N}=T_{b, r_{\ell}} \cdots T_{b, r_{0}} u(0)
$$

if $N=\left(r_{\ell} \ldots r_{0}\right)_{b}$.

Linear representation

Theorem

The N th coefficient of a b-rational series $u(x)$ is expressed as

$$
u_{N}=T_{b, r_{\ell}} \cdots T_{b, r_{0}} u(0)
$$

if $N=\left(r_{\ell} \ldots r_{0}\right)_{b}$.

$$
\begin{aligned}
10=(1010)_{2} \quad u(x) & =u_{0}+u_{1} x+u_{2} x^{2}+\cdots \\
T_{2,0} u(x) & =u_{0}+u_{2} x+u_{4} x^{2}+\cdots \\
T_{2,1} T_{2,0} u(x) & =u_{2}+u_{6} x+u_{10} x^{2}+\cdots \\
T_{2,0} T_{2,1} T_{2,0} u(x) & =u_{2}+u_{10} x+u_{18} x^{2}+\cdots \\
T_{2,1} T_{2,0} T_{2,1} T_{2,0} u(x) & =u_{10}+u_{26} x+u_{42} x^{2}+\cdots \\
T_{2,1} T_{2,0} T_{2,1} T_{2,0} u(0) & =u_{10}
\end{aligned}
$$

Linear representation

Definition

A linear representation of a b-rational series $u(x)$ or sequence $\left(u_{n}\right)$ is a triplet (L, A, C) made from

- a row vector L (initial values);
- a family of square matrices $\left(A_{r}\right)_{0 \leq r<b}$ (action);
- a column vector C (coordinates), with the same size and coefficients in \mathbb{K}, such that

$$
u_{N}=L A_{r_{\ell}} \cdots A_{r_{0}} C
$$

when

$$
N=\left(r_{\ell} \ldots r_{0}\right)_{b}
$$

Linear representation

$$
u_{N}=L A_{r_{\ell}} \cdots A_{r_{0}} C
$$

when

$$
N=\left(r_{\ell} \ldots r_{0}\right)_{b}
$$

for the Gray code:

$$
\begin{aligned}
L= & {\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right], } \\
A_{0}= & {\left[\begin{array}{lll}
0 & 0 & -4 \\
1 & 2 & 3 \\
0 & 0 & 1
\end{array}\right], A_{1}=\left[\begin{array}{ccc}
0 & -4 & 0 \\
0 & 1 & 0 \\
1 & 3 & 2
\end{array}\right], C=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] . }
\end{aligned}
$$

Bestiary

Divide and conquer algorithms

Divide and conquer algorithms

binary search
extrema
k th smallest element mergesort
quicksort

3	4	2	1	5	5	9	8

sorting

binary powering Karatsuba algorithm Toom-Cook algorithm
Schönhage-Strassen algorithm multipoint evaluation

convex hull nearest pair
Voronoï diagram maxima in $\operatorname{dim} \geq 2$

Strassen multiplication triangular matrix inversion fast Fourier transform singular values decomposition eigenvalues/vectors of symmetric tridiagonal matrices

Combinatorics on words

Combinatorics on words

The goal is that, after reading this book (or at least parts of this book), the reader should be able to fruitfully attend a conference or a seminar in the field.

Michel Rigo

Formal Languages,
 Automata and
 Numeration Systems 1

Introduction to
Combinatorics on Words

Michel Rigo
©ा=
WILEY

Combinatorics on words

The goal is that, after reading this book (or at least parts of this book), the reader should be able to fruitfully attend a conference

Michel Rigo

Combinatorics on words

$e_{1}(n)$ number of 1's in binary expansion of n $e_{11}(n)$ Golay-Rudin-Shapiro sequence
$(-1)^{e_{1}}(n)$ Thue-Morse sequence
$(-1)^{e_{1}(3 n)}$ Newman-Slater-Coquet overlapping free words

Axel Thue
Marston Morse
patterns counting

Combinatorics on words

$$
\begin{aligned}
& w_{0}=\varepsilon \\
& w_{k+1}=w_{k} 1 \bar{w}_{k}^{R}
\end{aligned}
$$

paperfolding sequence
Rauzy's fractal (irrelevant)
substitutions

Combinatorics on words

$$
w_{0}=\varepsilon
$$

$$
w_{k+1}=w_{k} 1 \bar{w}_{k}^{R}
$$

$$
\begin{aligned}
& a \longrightarrow a b \\
& b \longrightarrow c b \\
& c \longrightarrow a d \\
& d \longrightarrow c d \\
& a \rightarrow a b \rightarrow a b c b \rightarrow a b c b a d c b \rightarrow \ldots \\
& a:=1, \quad b:=1, \quad c:=0, \quad d:=0 \\
& w_{\infty}=0010011000110110 \ldots
\end{aligned}
$$

paperfolding sequence
Rauzy's fractal (irrelevant)
substitutions

Combinatorics on words

$$
\begin{aligned}
& a \longrightarrow a b \\
& w_{0}=\varepsilon \\
& w_{k+1}=w_{k} 1 \bar{w}_{k}^{R} \\
& u_{4 n}=0 \\
& u_{4 n+2}=1 \\
& u_{2 n+1}=u_{n} \\
& b \longrightarrow c b \\
& c \longrightarrow a d \\
& d \longrightarrow c d \\
& a \rightarrow a b \rightarrow a b c b \rightarrow a b c b a d c b \rightarrow \ldots \\
& a:=1, \quad b:=1, \quad c:=0, \quad d:=0 \\
& w_{\infty}=0010011000110110 \ldots \\
& \text { substitutions } \\
& \text { THE ON-LINE ENCYCLOPEDIA } \\
& \text { OF INTEGER SEQUENCES }{ }^{(1)} \\
& \text { founded in } 1964 \text { by N. J. A. Sloane }
\end{aligned}
$$

> A014577 The tegular paper-folding sequence (or drapon curve sequence))
> $\begin{aligned} & \text { Frum Gary H. Adameon, Jun } 202012 \text { : (Start) } \\ & \text { Oome half of the infinite Farey Pree can be }\end{aligned}$
terms are

Combinatorics on words

$$
a \longrightarrow a b
$$

$$
w_{0}=\varepsilon
$$

$$
w_{k+1}=w_{k} 1 \bar{w}_{k}^{R}
$$

$$
b \longrightarrow c b
$$

$$
c \longrightarrow a d
$$

$$
\begin{aligned}
u_{4 n} & =0 \\
u_{4 n+2} & =1 \\
u_{2 n+1} & =u_{n}
\end{aligned}
$$

$$
d \longrightarrow c d
$$

$$
a \rightarrow a b \rightarrow a b c b \rightarrow a b c b a d c b \rightarrow \ldots
$$

$$
a:=1
$$

$$
=0
$$

paperfolding sequence
Rauzy's fractal (irrelevant)
substitutions

Number theory

algebraic series modulo p discrepancy transcendency
sophisticated number theory

Moritz Stern, Achille Brocot

Moritz Stern, Achille Brocot

$$
\begin{gathered}
u_{0}=0, u_{1}=1, \quad u_{2 n}=u_{n}, \quad u_{2 n+1}=u_{n}+u_{n+1} \\
n \in \mathbb{N}_{>0} \longmapsto r_{n}=\frac{u_{n+2}}{u_{n+1}} \in \mathbb{Q}_{>0} \quad \text { one-t-one }
\end{gathered}
$$

Part II

Analysis

Overview of Part II

Slaves bound
Goal
Integers and words
Extraction of classical rational sequences
A mere idea
Joint spectral radius
Dilation equations
Theorem
A worked example
Linear representation
Joint spectral radius
Jordan reduction
Dilation equation
Cascade algorithm !
What I did not speak about

Slaves bound

Slaves bound

source

氰 Jon Louis Bentley, Dorothea Haken, and James B. Saxe.
A general method for solving divide-and-conquer recurrences.
SIGACT News, 12(3):36-44, September 1980.
a good version:
(Alin Bostan, Frédéric Chyzak, Marc Giusti, Romain Lebreton, Grégoire Lecerf, Bruno Salvy, and Éric Schost.
Algorithmes Efficaces en Calcul Formel.
Version provisoire disponible à l'url
http://specfun.inria.fr/chyzak/mpri/poly.pdf, 2016.

Slaves bound

Theorem

Let $\left(c_{n}\right)$ be s.t. $0 \leq c_{n} \leq\left\{\begin{array}{ll}a c_{\left\lceil\frac{n}{b}\right\rceil}+t_{n}, & \text { if } n \geq n_{0} \geq b, \\ \kappa & \text { otherwise, }\end{array} \quad\right.$ with

- $b \geq 2$ is an integer;
- $a>0$ is a real number;
- $\kappa \geq$ is a real number;
- t a toll function
- non decreasing,
- such that $a^{\prime} t_{n} \leq t_{b n} \leq a^{\prime \prime} t_{n}$ for some constants $a^{\prime \prime} \geq a^{\prime}>1$,
then

$$
c_{n} \underset{n \rightarrow \infty}{=} \begin{cases}O\left(t_{n}\right) & a^{\prime}>a \\ O\left(t_{n} \log n\right) & \text { if } a^{\prime}=a \\ O\left(n^{\alpha-\alpha^{\prime}} t_{n}\right) & \text { if } a^{\prime}<a\end{cases}
$$

with $\alpha=\log _{b} a, \alpha^{\prime}=\log _{b} a^{\prime}$

Slaves bound

Karatsuba

$$
\begin{aligned}
& u_{n}=2 u_{\left\lceil\frac{n}{2}\right\rceil}+u_{\left\lfloor\frac{n}{2}\right\rfloor}+4(n-1) \\
& v_{n} \leq 3 v_{\left\lceil\frac{n}{2}\right\rceil}+4 n \\
& w_{n}=9 \cdot 3^{\left\lceil\log _{2} n\right\rceil}
\end{aligned}
$$

Slaves bound

Karatsuba

$$
\begin{aligned}
& u_{n}=2 u_{\left\lceil\frac{n}{2}\right\rceil}+u_{\left\lfloor\frac{n}{2}\right\rfloor}+4(n-1) \\
& v_{n} \leq 3 v_{\left\lceil\frac{n}{2}\right\rceil}+4 n \\
& w_{n}=9 \cdot 3^{\left\lceil\log _{2} n\right\rceil}
\end{aligned}
$$

$b=2, a=3, a^{\prime}=2, \alpha=\log _{2} 3, \alpha^{\prime}=\log _{2} 2=1, v_{n}=O\left(n^{\log _{2} 3}\right)$

Slaves bound

Karatsuba

$$
\begin{aligned}
u_{n} & =2 u_{\left\lceil\frac{n}{2}\right\rceil}+u_{\left\lfloor\frac{n}{2}\right\rfloor}+4(n-1) \\
v_{n} & \leq 3 v_{\left\lceil\frac{n}{2}\right\rceil}+4 n \\
w_{n} & =9 \cdot 3^{\left\lceil\log _{2} n\right\rceil}
\end{aligned}
$$

$b=2, a=3, a^{\prime}=2, \alpha=\log _{2} 3, \alpha^{\prime}=\log _{2} 2=1, v_{n}=O\left(n^{\log _{2} 3}\right)$
We want to catch the oscillations!

Goal

$$
\begin{array}{r}
u(x)=\sum_{n \geq 0} u_{n} x^{n}=\prod_{k \geq 0} \frac{1}{1-\rho x^{2^{k}}} \\
\rho>1 \quad u_{n}=u\left(1 / \rho^{2}\right) \rho^{n}+O\left(\rho^{n / 2}\right) \\
\rho=1 \quad \log u_{2 n}=\log u_{2 n+1}=\frac{1}{2 \log 2} \log ^{2} \frac{n}{\log n} \\
\\
\\
\\
\rho<1 \quad\left(\frac{1}{2}+\frac{1}{\log 2}+\frac{\log \log 2}{\log 2}\right) \log n \\
\\
\\
\\
\end{array}
$$

Goal

$$
\begin{aligned}
& u(x)=\sum_{n \geq 0} u_{n} x^{n}=\prod_{k \geq 0} \frac{1}{1-\rho x^{2^{k}}} \\
& \rho>1 \\
& u_{n}=u\left(1 / \rho^{2}\right) \rho^{n}+O\left(\rho^{n / 2}\right) \\
& \rho=1 \quad \log u_{2 n}=\log u_{2 n+1}=\frac{1}{2 \log 2} \log ^{2} \frac{n}{\log n} \\
& +\left(\frac{1}{2}+\frac{1}{\log 2}+\frac{\log \log 2}{\log 2}\right) \log n \\
& +O(\log \log n) \\
& \rho<1 \quad \sum_{n=1}^{N} u_{n}=\varphi\left(\log _{2} n\right) N^{\alpha}+O\left(N^{\alpha-1 / 2+\varepsilon}\right) \\
& \alpha=\log _{2} \frac{1}{1-\rho} \\
& u_{n}=\rho u_{n-1}+u_{\frac{n}{2}}
\end{aligned}
$$

Goal

We want to study the asymptotic behavior of true divide and conquer sequences, that is b-rational sequences.

Some tools

Integers and words

$b \geq 2, \mathcal{Z}=\{0,1, \ldots, b-1\}$

$$
\begin{array}{cc}
\begin{array}{c}
\text { generating } \\
\text { series }
\end{array} & \begin{array}{c}
\text { formal } \\
\text { series }
\end{array} \\
u(x)=\sum_{n \geq 0} u_{n} x^{n} & s=\sum_{w \in \mathcal{Z}^{*}} s_{w} w \\
T_{b, r} u(x)=\sum_{k \geq 0} u_{b k+r} x^{k} & s r^{-1}=\sum_{w=w^{\prime} r} s_{w} w^{\prime}
\end{array}
$$

Integers and words

$b \geq 2, \mathcal{Z}=\{0,1, \ldots, b-1\}$

maps composition

Integers and words

We do not use the words which begins with some zeroes.

Integers and words

We do not use the words which begins with some zeroes.

Definition
A linear representation (L, A, C) is insensitive to the leftmost zeroes, or zero-insensitive, if it satisfies $L A_{0}=L$.

Integers and words

We do not use the words which begins with some zeroes.

Definition

A linear representation (L, A, C) is insensitive to the leftmost zeroes, or zero-insensitive, if it satisfies $L A_{0}=L$.

Concretely, we always use zero-insensitive linear representations.

Extraction of classical rational sequences

sequence integers whose b-ary expansions have a regular expression e.g. $2^{k}=\left(10^{k}\right)_{2}, 2^{k}-1=\left(1^{k}\right)_{2}$

Stern-Brocot sequence

$$
\begin{aligned}
& L=\left[\begin{array}{ll}
0 & 1
\end{array}\right], \quad A_{0}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad A_{1}=\left[\begin{array}{cc}
0 & -1 \\
1 & 2
\end{array}\right], \quad C=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& u_{2^{k}-1}=L A_{1}^{k} C=\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{cc}
1-k & -k \\
k & 1+k
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=k+1 \\
& 1 \\
& 1 \quad 2 \\
& \begin{array}{l}
1 \\
1
\end{array} \\
& \begin{array}{lllllrrrrrrrrrrrrr}
1 & 5 & 4 & 7 & 3 & 8 & 5 & 7 & 2 & 7 & 5 & 8 & 3 & 7 & 4 & 5 & \\
1 & 6 & 5 & 9 & 4 & 11 & 7 & 10 & 3 & 11 & 8 & 13 & 5 & 12 & 7 & 9 & 2 & 9
\end{array}
\end{aligned}
$$

Extraction of classical rational sequences

Stern-Brocot sequence

$$
L=\left[\begin{array}{ll}
0 & 1
\end{array}\right], \quad A_{0}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad A_{1}=\left[\begin{array}{cc}
0 & -1 \\
1 & 2
\end{array}\right], \quad C=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

$$
\sum_{n=2^{k}}^{2^{k+1}-1} u_{n}=L A_{1}\left(A_{0}+A_{1}\right)^{k} C=\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
\left(3^{k}-1\right) / 2 & 3^{k}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=3^{k}
$$

1
1
1
1
1
1
1

$$
\begin{aligned}
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 6
\end{aligned}
$$

3	2
4	3
5	4
6	5

2	3
3	5
4	7
5	

$\begin{array}{ll}3 & \\ 5 & 2 \\ 7 & 3 \\ 9 & 4\end{array}$
5
8
11
3
5
7
4
7
10
2
3 7
11

5
8
8
13
$\begin{array}{rrrr}3 & 7 & 4 & 5 \\ 5 & 12 & 7 & 9\end{array}$
2
9

A mere idea

$u(x) b$-rational series

A mere idea

$u(x) b$-rational series

$$
\delta(x)=(1-x) u(x) b \text {-rational }
$$

A mere idea

$u(x) b$-rational series

$$
\delta(x)=(1-x) u(x) b \text {-rational }
$$

(L, A, C)
linear representation for $\delta(x)$, insensitive to the leftmost zeroes

A mere idea

$u(x) b$-rational series

$$
\delta(x)=(1-x) u(x) b \text {-rational }
$$

(L, A, C)
linear representation for $\delta(x)$, insensitive to the leftmost zeroes

$$
u_{N}=\sum_{n=0}^{N} \delta_{n}=\sum_{n \leq N} L A_{w} C, \quad(w)_{b}=n
$$

A mere idea

$u(x) b$-rational series

$$
\delta(x)=(1-x) u(x) b \text {-rational }
$$

(L, A, C)
linear representation for $\delta(x)$, insensitive to the leftmost zeroes

$$
\begin{gathered}
u_{N}=\sum_{n=0}^{N} \delta_{n}=\sum_{n \leq N} L A_{w} C, \quad(w)_{b}=n \\
S_{K}(x)=\sum_{\substack{|w|=K \\
(0 . w)_{b} \leq x}} A_{w} C \quad 0 \leq x \leq 1
\end{gathered}
$$

A mere idea

$$
\begin{gathered}
u_{N}=\sum_{n=0}^{N} \delta_{n}=\sum_{n \leq N} L A_{w} C, \quad(w)_{b}=n \\
S_{K}(x)=\sum_{\substack{|w|=K \\
(0 . w)_{b} \leq x}} A_{w} C \quad 0 \leq x \leq 1
\end{gathered}
$$

$$
\begin{aligned}
\delta_{0} & =L A_{0} C \\
\delta_{1} & =L A_{1} C \\
\delta_{2} & =L A_{1} A_{0} C \\
\delta_{3} & =L A_{1} A_{1} C \\
\delta_{4} & =L A_{1} A_{0} A_{0} C \\
\delta_{5} & =L A_{1} A_{0} A_{1} C
\end{aligned}
$$

A mere idea

$$
\begin{gathered}
u_{N}=\sum_{n=0}^{N} \delta_{n}=\sum_{n \leq N} L A_{w} C, \quad(w)_{b}=n \\
S_{K}(x)=\sum_{\substack{|w|=K \\
(0 . w)_{b} \leq x}} A_{w} C \quad 0 \leq x \leq 1
\end{gathered}
$$

$$
\begin{array}{ll}
\delta_{0}=L A_{0} C & \delta_{0}=L A_{0} A_{0} A_{0} C \\
\delta_{1}=L A_{1} C & \delta_{1}=L A_{0} A_{0} A_{1} C \\
\delta_{2}=L A_{1} A_{0} C & \delta_{2}=L A_{0} A_{1} A_{0} C \\
\delta_{3}=L A_{1} A_{1} C & \delta_{3}=L A_{0} A_{1} A_{1} C \\
\delta_{4}=L A_{1} A_{0} A_{0} C & \delta_{4}=L A_{1} A_{0} A_{0} C \\
\delta_{5}=L A_{1} A_{0} A_{1} C & \delta_{5}=L A_{1} A_{0} A_{1} C
\end{array}
$$

A mere idea

$$
\begin{gathered}
u_{N}=\sum_{n=0}^{N} \delta_{n}=\sum_{n \leq N} L A_{w} C, \quad(w)_{b}=n \\
S_{K}(x)=\sum_{\substack{|w|=K \\
(0 . w)_{b} \leq x}} A_{w} C \quad 0 \leq x \leq 1
\end{gathered}
$$

$$
\begin{aligned}
\delta_{0} & =L A_{0} A_{0} A_{0} C \\
\delta_{1} & =L A_{0} A_{0} A_{1} C \\
\delta_{2} & =L A_{0} A_{1} A_{0} C \\
\delta_{3} & =L A_{0} A_{1} A_{1} C \\
\delta_{4} & =L A_{1} A_{0} A_{0} C \\
\delta_{5} & =L A_{1} A_{0} A_{1} C
\end{aligned}
$$

A mere idea

$$
\begin{gathered}
u_{N}=\sum_{n=0}^{N} \delta_{n}=\sum_{n \leq N} L A_{w} C, \quad(w)_{b}=n \\
S_{K}(x)=\sum_{\substack{|w|=K \\
(0 . w)_{b} \leq x}} A_{w} C \quad 0 \leq x \leq 1
\end{gathered}
$$

$$
\begin{aligned}
u_{5} & =L A_{0} A_{0} A_{0} C \\
& +L A_{0} A_{0} A_{1} C \\
& +L A_{0} A_{1} A_{0} C \\
& +L A_{0} A_{1} A_{1} C \\
& +L A_{1} A_{0} A_{0} C \\
& +L A_{1} A_{0} A_{1} C
\end{aligned}
$$

A mere idea

$$
\begin{gathered}
u_{N}=\sum_{n=0}^{N} \delta_{n}=\sum_{n \leq N} L A_{w} C, \quad(w)_{b}=n \\
S_{K}(x)=\sum_{\substack{|w|=K \\
(0 . w)_{b} \leq x}} A_{w} C \quad 0 \leq x \leq 1
\end{gathered}
$$

$$
\begin{aligned}
u_{5} & =L A_{0} A_{0} A_{0} C \\
& +L A_{0} A_{0} A_{1} C \\
& +L A_{0} A_{1} A_{0} C \\
& +L A_{0} A_{1} A_{1} C \\
& +L A_{1} A_{0} A_{0} C \\
& +L A_{1} A_{0} A_{1} C
\end{aligned}
$$

$$
\begin{aligned}
L S_{3}(5 / 8) & =L A_{0} A_{0} A_{0} C \\
& +L A_{0} A_{0} A_{1} C \\
& +L A_{0} A_{1} A_{0} C \\
& +L A_{0} A_{1} A_{1} C \\
& +L A_{1} A_{0} A_{0} C \\
& +L A_{1} A_{0} A_{1} C
\end{aligned}
$$

A mere idea

$$
\begin{gathered}
u_{N}=\sum_{n=0}^{N} \delta_{n}=\sum_{n \leq N} L A_{w} C, \quad(w)_{b}=n \\
S_{K}(x)=\sum_{\substack{|w|=K \\
(0 . w)_{b} \leq x}} A_{w} C \quad 0 \leq x \leq 1
\end{gathered}
$$

Proposition

Let (L, A, C) be a insensitive to the leftmost zeroes linear representation for the sequence $\left(\delta_{n}\right)$ of backward differences of a b-rational sequence $\left(u_{n}\right)$. Then

$$
u_{N}=L S_{K+1}\left(b^{\left\{\log _{b} N\right\}-1}\right),
$$

with $K=\left\lfloor\log _{b} N\right\rfloor$ and $\{t\}=t-\lfloor t\rfloor$.

A mere idea

$$
\begin{gathered}
u_{N}=\sum_{n=0}^{N} \delta_{n}=\sum_{n \leq N} L A_{w} C, \quad(w)_{b}=n \\
S_{K}(x)=\sum_{\substack{|w|=K \\
(0 . w)_{b} \leq x}} A_{w} C \quad 0 \leq x \leq 1
\end{gathered}
$$

Proposition
The sequence $S_{K}(x)$ satisfies

$$
S_{K+1}(x)=\sum_{r_{1}<x_{1}} A_{r_{1}} Q^{K} C+A_{x_{1}} S_{K}\left(b x-x_{1}\right)
$$

for $x=\left(0 \cdot x_{1} x_{2} \ldots\right)_{b}$ in $[0,1[$.

Joint spectral radius

$$
u_{N}=L A_{r_{\ell}} \cdots A_{r_{0}} C \quad \text { for } N=\left(r_{\ell} \ldots r_{0}\right)_{b}
$$

$\left|u_{N}\right| \leq\|L\|\left\|A_{r_{\ell}}\right\| \cdots\left\|A_{r_{0}}\right\|\|C\|$

Joint spectral radius

$$
u_{N}=L A_{r_{\ell}} \cdots A_{r_{0}} C \quad \text { for } N=\left(r_{\ell} \ldots r_{0}\right)_{b}
$$

$$
\begin{aligned}
& \left|u_{N}\right| \leq\|L\|\left\|A_{r_{\ell}}\right\| \cdots\left\|A_{r_{0}}\right\|\|C\| \\
& \quad \leq\|L\|\|C\| a^{\ell+1}=\|L\|\|C\| a^{\left.\log _{b} N\right\rfloor} \leq K N^{\log _{b} a}
\end{aligned}
$$

Joint spectral radius

$$
\begin{gathered}
u_{N}=L A_{r_{\ell}} \cdots A_{r_{0}} C \quad \text { for } N=\left(r_{\ell} \ldots r_{0}\right)_{b} \\
\left|u_{N}\right| \leq\|L\|\left\|A_{r_{\ell}}\right\| \cdots\left\|A_{r_{0}}\right\|\|C\| \\
\leq\|L\|\|C\| a^{\ell+1}=\|L\|\|C\| a^{\left[\log _{b} N\right\rfloor} \leq K N^{\log _{b} a}
\end{gathered}
$$

Proposition
A b-rational sequence has a growth order at most polynomial.

Joint spectral radius

Proposition

Let $A=\left(A_{z}\right)_{z \in \mathcal{Z}}$ be a finite family of square matrices. The sequence

$$
\hat{\rho}_{\ell}(A)=\max _{w \in \mathcal{Z}^{\ell}}\left\|A_{w}\right\|^{1 / \ell}
$$

converges towards

$$
\hat{\rho}(A)=\lim _{\ell \rightarrow+\infty} \hat{\rho}_{\ell}(A)=\inf _{\ell} \hat{\rho}_{\ell}(A)
$$

Moreover the limit is independent of the used multiplicative norm. It is the joint spectral radius of A.

Joint spectral radius

Proposition

If (L, A, C) is a linear representation for a b-rational sequence (u_{n}), then for all $\varepsilon>0$

$$
u_{N} \underset{N \rightarrow+\infty}{=} O\left(N^{\log _{b} \hat{\rho}(A)+\varepsilon}\right)
$$

Joint spectral radius

Karatsuba

$$
\begin{gathered}
A_{0}=\left[\begin{array}{ccccc}
3 & 1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
4 & 10 & 1 & 2 & 1 \\
4 & -1 & 0 & 0 & 1
\end{array}\right], \quad A_{1}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
2 & 3 & 0 & 0 & 0 \\
-1 & 4 & 2 & 1 & 0 \\
10 & 4 & 0 & 1 & 2 \\
-1 & 0 & 0 & 0 & 0
\end{array}\right] \\
\|M\|_{1}=\max _{j} \sum_{i}\left|M_{i, j}\right|, \quad\|M\|_{\infty}=\max _{i} \sum_{j}\left|M_{i, j}\right|, \\
\|M\|_{F}=\left(\sum_{i, j}\left|M_{i, j}\right|^{2}\right)^{1 / 2}
\end{gathered}
$$

Joint spectral radius

$$
\begin{aligned}
& \|M\|_{1}=\max _{j} \sum_{i}\left|M_{i, j}\right|, \quad\|M\|_{\infty}=\max _{i} \sum_{j}\left|M_{i, j}\right|, \\
& 16- \\
& 14 . \\
& 12 . \\
& 10- \\
& \hline
\end{aligned}
$$

Joint spectral radius

Proposition

If the matrices of $A=\left(A_{z}\right)_{z \in \mathcal{Z}}$ can be simultaneously block-triangulated,

$$
P^{-1} A_{z} P=\left(\begin{array}{cc}
B_{z} & C_{z} \\
0 & D_{z}
\end{array}\right), \quad z \in \mathcal{Z}
$$

then the joint spectral radius of A is

$$
\hat{\rho}(A)=\max (\hat{\rho}(B), \hat{\rho}(D))
$$

Joint spectral radius

$$
\begin{gathered}
A_{0}=\left[\begin{array}{ccccc}
3 & 1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
4 & 10 & 1 & 2 & 1 \\
4 & -1 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cc}
B_{0} & 0 \\
C_{0} & D_{0}
\end{array}\right], A_{1}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
2 & 3 & 0 & 0 & 0 \\
-1 & 4 & 2 & 1 & 0 \\
10 & 4 & 0 & 1 & 2 \\
-1 & 0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{cc}
B_{1} & 0 \\
C_{1} & D_{1}
\end{array}\right] \\
B_{0}=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right], \quad B_{1}=\left[\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right], \\
P=\left[\begin{array}{cc}
2 / 3 & 1 / 3 \\
-2 / 3 & 2 / 3
\end{array}\right], \quad P^{-1} B_{0} P=\left[\begin{array}{cc}
2 & 1 \\
0 & 3
\end{array}\right], \quad P^{-1} B_{1} P=\left[\begin{array}{cc}
1 & -1 \\
0 & 3
\end{array}\right] . \\
\hat{\rho}(B)=3, \hat{\rho}(D)=2 \quad \hat{\rho}(A)=\max (3,2)=3
\end{gathered}
$$

Joint spectral radius

Consequence:

$$
\begin{gathered}
S_{K}(x)=\sum_{\substack{|w|=K \\
(0 . w)_{b} \leq x}} A_{w} C \quad 0 \leq x \leq 1 \\
S_{K+1}(x)=\sum_{r_{1}<x_{1}} A_{r_{1}} Q^{K} C+A_{x_{1}} S_{K}\left(b x-x_{1}\right),
\end{gathered}
$$

Proposition
Let V be an eigenvector of $Q=A_{0}+\cdots+A_{b-1}$ for an eigenvalue $\rho \omega$ with $|\omega|=1$ and $\rho \leq \hat{\rho}(A)$. Then

$$
S_{K}(x)=\sum_{\substack{|w|=K \\(0 . w)_{b} \leq x}} A_{w} V
$$

is $O\left(r^{K}\right)$ uniformly wrt x for $r>\hat{\rho}(A) \geq \rho$.

Dilation equations

coin tossing
$\left(T_{n}\right)_{n \geq 1}$ i.i.d. with $\mathbf{P}(T=0)=p_{0}, \mathbf{P}(T=1)=p_{1}$ $p_{0}+p_{1}=1,0<p_{0}, p_{1}<1$

$$
X=\sum_{n \geq 1} \frac{T_{n}}{2^{n}}
$$

distribution function $F(x)$

Dilation equations

coin tossing
$\left(T_{n}\right)_{n \geq 1}$ i.i.d. with $\mathbf{P}(T=0)=p_{0}, \mathbf{P}(T=1)=p_{1}$
$p_{0}+p_{1}=1,0<p_{0}, p_{1}<1$

$$
X=\sum_{n \geq 1} \frac{T_{n}}{2^{n}}
$$

distribution function $F(x)$
$0 \leq x<1 / 2$

$$
F(x)=\mathbf{P}(X \leq x)=\mathbf{P}\left(T_{1}=0, \sum_{n \geq 2} \frac{T_{n}}{2^{n-1}} \leq 2 x\right)=p_{0} F(2 x)
$$

$1 / 2 \leq x \leq 1$

$$
\begin{aligned}
F(x)=\mathbf{P}(X \leq x)=\mathbf{P}\left(T_{1}=0\right)+\mathbf{P}\left(T_{1}\right. & \left.=1, \sum_{n \geq 2} \frac{T_{n}}{2^{n-1}} \leq 2 x-1\right) \\
& =p_{0}+p_{1} F(2 x-1)
\end{aligned}
$$

Dilation equations

$$
\begin{array}{ll}
0 \leq x<1 / 2 & F(x)=p_{0} F(2 x) \\
1 / 2 \leq x \leq 1 & F(x)=p_{0}+p_{1} F(2 x-1)
\end{array}
$$

Dilation equations

$$
\begin{array}{ll}
0 \leq x<1 / 2 & F(x)=p_{0} F(2 x) \\
1 / 2 \leq x \leq 1 & F(x)=p_{0}+p_{1} F(2 x-1)
\end{array}
$$

$$
F(x)=p_{0} F(2 x)+p_{1} F(2 x-1)
$$

$$
F(x)=0 \quad \text { for } x \leq 0 \quad F(x)=1 \quad \text { for } x \geq 1
$$

dilation equation
two-scale difference equation

Dilation equations

$$
\begin{gathered}
F(x)=p_{0} F(2 x)+p_{1} F(2 x-1) \\
F(x)=0 \quad \text { for } x \leq 0 \quad F(x)=1 \quad \text { for } x \geq 1
\end{gathered}
$$

cascade algorithm
Hölder with exponent $\log _{2} 1 / \max \left(p_{0}, p_{1}\right)$

Dilation equations

in wavelet theory (Daubechies)

in interpolation scheme (Dubuc, Deslauriers)

Dilation equations

multidimensional version
Proposition
Under the hypothesis $\rho>\hat{\rho}(A)$, the dilation equation

$$
\rho \omega F(x)=\sum_{0 \leq r<b} A_{r} F(b x-r)
$$

with boundary conditions

$$
F(x)=0 \quad \text { for } x \leq 0, \quad F(x)=V \quad \text { for } x \geq 1
$$

where V is an eigenvector for $Q=A_{0}+\cdots+A_{b-1}$ and the eigenvalue $\rho \omega,|\omega|=1$, has a unique continuous solution from \mathbb{R} into \mathbb{C}^{d}. Moreover this solution is Hölder with exponent $\log _{b}(\rho / r)$ for $r>\hat{\rho}(A)$.

Dilation equations

Consequence:
Proposition
Let V be an eigenvector for an eigenvalue $\rho \omega,|\omega|=1, \rho>\hat{\rho}(A)$, of $Q=A_{0}+\cdots+A_{b-1}$. Then

$$
S_{K}(x)=\sum_{\substack{|w|=K \\(0 . w)_{b} \leq x}} A_{w} V
$$

satisfies

$$
S_{K}(x) \underset{K \rightarrow \infty}{=}(\rho \omega)^{K} F(x)+O\left(r^{K}\right)
$$

for $\rho>r>\hat{\rho}(A)$ uniformly wrt x.

Theorem

Theorem

Let $\left(u_{n}\right)$ be a b-rational sequence and (L, A, C) a linear representation for the sequence of its backward differences. Then the sequence $\left(u_{n}\right)$ has an asymptotic expansion which is a sum of terms

$$
N^{\log _{b} \rho}\binom{\log _{b} N}{m} \times e^{i \vartheta \log _{b} N} \times \varphi\left(\log _{b} N\right) .
$$

In this writing, $\rho e^{i \vartheta}$ is an eigenvalue of
$Q=A_{0}+A_{1}+\cdots+A_{b-1}$ with a modulus $\rho>\hat{\rho}(A)$. The integer m is bounded by the maxima size of the Jordan blocks related to $\rho e^{i \vartheta}$. The function $\varphi(t)$ is 1-periodic and Hölder with exponent $\log _{b}(\rho / r)$ for $\rho>r>\hat{\rho}(A)$. The error term is $O\left(N^{\log _{b} r}\right)$ for $r>\hat{\rho}(A)$.

A worked example

Karatsuba!

$$
\begin{gathered}
x u(x)-(1+x)(2+x) u\left(x^{2}\right)=-x^{2}+4 \frac{x^{3}}{(1-x)^{2}} \\
\delta(x)=\frac{(2+x)}{x} \delta\left(x^{2}\right)-\frac{x-6 x^{2}+x^{3}}{1-x}
\end{gathered}
$$

basis

$$
\delta(x), \frac{\delta(x)}{x}, \frac{1}{1-x}, \frac{x}{1-x}, \frac{x^{2}}{1-x}, \frac{x^{3}}{1-x}
$$

A worked example: Linear representation

$$
\begin{aligned}
& L=\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right], A_{0}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 \\
5 & 5 & 0 & 1 & 1 & 0 \\
-1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \\
& A_{1}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 & 0 \\
-1 & 5 & 1 & 1 & 0 & 0 \\
5 & -1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], C=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

A worked example: Joint spectral radius

$$
\begin{gathered}
A_{0}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 \\
5 & 5 & 0 & 1 & 1 & 0 \\
-1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], A_{1}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 & 0 \\
-1 & 5 & 1 & 1 & 0 & 0 \\
5 & -1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
\hat{\rho}(A)=2
\end{gathered}
$$

A worked example: Jordan reduction

$$
\left.\begin{array}{c}
Q=A_{0}+A_{1}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
2 & 3 & 0 & 0 & 0 & 0 \\
-1 & 4 & 2 & 1 & 0 & 0 \\
10 & 4 & 0 & 1 & 2 & 1 \\
-1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
P=\left[\begin{array}{ccccc}
0 & 0 & 0 & 24 & 0 \\
8 & 0 & 0 & -24 & 0 \\
48 & -96 & -96 & 120 & 24 \\
16 & 0 & 96 & -96 & -48 \\
0 & 0 & 0 & -24 & 24 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{array}\right], Q^{\prime}=\left[\begin{array}{llllll}
3 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

A worked example: Jordan reduction

$$
\begin{gathered}
L^{\prime}=L P=\left[\begin{array}{llll}
56 & -96 & -96 & 96 \\
24 & 179
\end{array}\right], \\
A_{0}^{\prime}=P^{-1} A_{0} P=\left[\begin{array}{cccccc}
2 & 0 & 0 & -3 & 0 & 0 \\
1 / 3 & 1 & 0 & -2 & 0 & 0 \\
1 / 4 & 0 & 1 & 1 / 4 & -1 / 4 & -\frac{155}{96} \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \\
A_{1}^{\prime}=P^{-1} A_{1} P=\left[\begin{array}{ccccc}
1 & 0 & 0 & 3 & 0 \\
-1 / 3 & 1 & 0 & 2 & 0 \\
-1 / 4 & 0 & 0 & 3 / 4 & 1 / 4 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0
\end{array}\right], C^{\prime}=P^{-1} C=\left[\begin{array}{c}
1 / 85 \\
1 / 24 \\
1 / 12 \\
1 / 24 \\
0
\end{array}\right] \\
\rho=3, ~
\end{gathered}
$$

A worked example: Dilation equation

$$
3 F(x)=A_{0} F(2 x)+A_{1} F(2 x-1) .
$$

$$
F(x)=0 \quad \text { for } x \leq 0, \quad F(x)=E_{2}+6 E_{3}+2 E_{4} \quad \text { for } x \geq 1
$$

A worked example: Dilation equation

$$
\begin{aligned}
f_{1}(x) & =\frac{2}{3} f_{1}(2 x)-f_{4}(2 x) \\
f_{2}(x) & =\frac{1}{9} f_{1}(2 x)+\frac{1}{3} f_{2}(2 x)-\frac{2}{3} f_{4}(2 x)+\frac{2}{3} f_{1}(2 x-1)+\frac{1}{3} f_{2}(2 x-1), \\
f_{3}(x) & =\frac{1}{12} f_{1}(2 x)+\frac{1}{3} f_{3}(2 x)+\frac{1}{12} f_{4}(2 x)-\frac{1}{12} f_{5}(2 x)-\frac{155}{288} f_{6}(2 x) \\
& \quad-\frac{1}{3} f_{1}(2 x-1)+\frac{5}{3} f_{2}(2 x-1)+\frac{1}{3} f_{3}(2 x-1)+\frac{1}{3} f_{4}(2 x-1), \\
f_{4}(x) & =\frac{1}{3} f_{4}(2 x)+\frac{5}{3} f_{1}(2 x-1)-\frac{1}{3} f_{2}(2 x-1)+\frac{1}{3} f_{5}(2 x-1)+\frac{1}{3} f_{6}(2 x-1), \\
f_{5}(x) & =\frac{1}{3} f_{6}(2 x) \\
f_{6}(x) & =0
\end{aligned}
$$

$$
f_{j}(x)=0 \quad \text { for } x \leq 0 \quad \begin{aligned}
& f_{1}(x)=0 \\
& f_{2}(x)=1 \\
& f_{3}(x)=6 \quad \text { for } x \geq 1 \\
& f_{4}(x)=2 \quad \\
& f_{5}(x)=0 \\
& f_{6}(x)=0
\end{aligned}
$$

A worked example: Cascade algorithm

A worked example: !

$$
\begin{gathered}
u_{N} \underset{N \rightarrow \infty}{=} N^{\log _{2} 3} \varphi\left(\log _{2} N\right)+O\left(N^{1+\varepsilon}\right) \\
\varphi(t)=3^{1-\{t\}} f\left(2^{\{t\}-1}\right)
\end{gathered}
$$

$\varphi(t)$
$u_{N} / N^{\log _{2} 3}$
normalized execution of the algorithm

What I did not speak about

- analytic number theory
\square Michael Drmota and Peter J. Grabner.
Analysis of digital functions and applications.
In Combinatorics, automata and number theory, volume 135 of Encyclopedia Math. Appl., pages 452-504. Cambridge Univ. Press, Cambridge, 2010.
- probability theory

Louis H.Y. Chen, Hsien-Kuei Hwang, and Vytas Zacharovas. Distribution of the sum-of-digits function of random integers: a survey.
Probababilty Surveys, 11:177-236, 2014.

Thanks for your attention!

Philippe Dumas SpecFun
Inria Saclay

