Creative Telescoping
—From 1G to 4G algorithms—

Alin Bostan

Diagonals and Creative Telescoping
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1.2 2-3 20192020
> [J. Bernoulli 1682]: Use Kk +1 % 7(% to create a telescoping sum
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> [Knuth 1969] Ex. 1.2.6.63:

[50] Develop computer programs for simplifying sums that involve
binomial coefficients.
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L+L+...+—1 —?
1.2 2.3 2019-2020

> [J. Bernoulli 1682]: Use m = % - k% to create a telescoping sum
1_1 + 1_1 + 4 L_L —1_L
1 2 2 3 2019 2020/ 2020

> [Knuth 1969] Ex. 1.2.6.63:

[50] Develop computer programs for simplifying sums that involve
binomial coefficients.

> Today: how computer algebra uses Bernoulli’s 1682 idea —systematically
and algorithmically—, to solve Knuth’s 1969 exercise, and more
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DIAGONALS
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If F is a multivariate power series

— . Y L xin
F= E Ai,.cin®y " Xy
i1 0ryin >0

its diagonal is the univariate power series

Diag(F) défzﬂi,...,iti-
7
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If F is a multivariate power series

— . ] L xin
It = E Aiy,.in®q 7 Xy
i1 ryin >0

its diagonal is the univariate power series

Diag F) E“t, ,,-

Example: if n = 1, then (trivially)
Diag (F) = F(t).
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Diagonals of mu

Definition
If F is a multivariate power series
_ Y R
F= Y oi.,% % A
il/"-rinZO

its diagonal is the univariate power series

Diag(F ) Z“z, it I

1
Example:if n =2and F = —— = (
l-x—-y i,jzzlo

+7J
i

> x'yl, then

Diag(F) = Y (") " =142t + 62 +208 £ 70 +
n>0 \ "
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Diagonals of multiva

Definition
If F is a multivariate power series
_ Y R
F= Y oi.,% % A
Z'1/---rinZO

its diagonal is the univariate power series

Diag F) Za,, bt i

1
Example:if n =2and F = —— = (
l—-x—y i,;‘go

+7J
i

> x'yl, then

Diag(F) = Y (") " =142t + 62 +208 + 70 +
n>0 \ "

> Diag (F) is not a rational function, even though F is rational.
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If F is a multivariate power series

— . . il DY i
F= E all/---/ln xl x,;l,
i1,.0,in >0

its diagonal is the univariate power series

Diag(F) défzﬂi,...,iti-
5

Diagonals of bivariate rational functions
are algebraic.




Pélya’s theorem

Alp]
Definition
If F is a multivariate power series
F= ) i.iX - xi,
i1,000,in >0
17 > !
its diagonal is the univariate power series 4
Th Poélya, 1922
S P) 2‘11, ,I_ eorem (Pdlya, 1922)
Diagonals of bivariate rational functions

are algebraic.

Proof: Since F (x, £> = Z'Zj:a,',jxifjﬂ‘ we have that Diag (F) = [x°]F <x, ;)
Therefore, by Cauchy’s integral theorem,

. 1,1 t 1 t\ dx
Diag (F) = [+ '] F (’“}) = 2 m—f(’“'x) 3

By the Residue Theorem: last integral is a sum of residues, all algebraic. [J



BampleDyckwalle

Let B, be the number of Dyck bridges, i.e. {NE, SE}-walks of length n in Z?
starting at (0,0) and ending on the horizontal axis.

Equivalently, B, = number of {N, E}-walks in Z? from (0,0) to (1,n)

=

Then: B(t)

B(t) = ) But" = Diag (ﬁ)

1

T2 fiyeex — 22—t 1-2x

x= 1=/ V14t

I v ;onsts o Crontive Tlescoping



BampleDyckwalks

Let By, be the number of Dyck bridges, i.e. {NE, SE}-walks of length n in 72
starting at (0,0) and ending on the horizontal axis.

—  B(t)= Y But" = Diag (#)

n>0

1 dx 1 2n
Then: B(t) = — = - t
() anﬁl‘gﬂ:ex—xz—t V1 —4t nzo(")

' AinBostan Diagonals and Creative Telescoping




Rothstein-Trag

Let A, B € K[x] be such that deg(A) < deg(B), with B squarefree.
In particular, the rational function F = A/ B has simple poles only.

A(pi)
B'(pi)

)
Alx
, th . — (F. —r = =
P enr; = (F-(x Pz))|x_p, Hj;éi(x —p;

Lemma. The residue r; of F at the pole p; equals r; =

i

Proof. If F =)
i

Theorem. The residues r; of F are roots of the resultant

R(t) = Res (B(x), A(x) —t- B/(x)).

Proof. By Poisson’s formula: R(t) = [ | (A(pi) —t- B'(pi)). O
i
> Introduced by [Rothstein-Trager 1976] for the (indefinite) integration of

rational functions.
> Generalized by [Bronstein 1992] to multiple poles.
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Example: diag

Question: A chess Rook can move any number of squares horizontally or
vertically in one step. How many paths can a Rook take from the lower-left
corner square to the upper-right corner square of an N x N chessboard?
Assume that the Rook moves only right or up at each step.

—e

1, 2, 14, 106, 838, 6802, 56190, 470010, ...
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Example: diagonal R

Generating function of the sequence

1, 2, 14, 106, 838, 6802, 56190, 470010, ...
is
1
1- & - &

Diag(F) = [x°] F(x,t/x) = % ygF(x,t/x) dYx, where F = ———
1-x 1-y

Residue theorem: Diag(F) is a sum of roots y of the Rothstein-Trager resultant

> F:=1/(1-x/(1-x)-y/(1-y)):
> G:=normal (1/x*subs(y=t/x,F)):
> factor(resultant (denom(G) ,numer (G)-y*diff (denom(G),x),x));

£2(1—-t)(2y —1)(36ty> —4y> +1 —t)

1 1t
Answer: Generating series of diagonal Rook paths is 5 <1 + 1—9t> .
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If F is a formal power series

— . . il . in
F= 2 Ay, in X1 Xn's
1,eesin >0

its diagonal is

. def i
Diag(F) = Z“i,---,itl' Diagonals of bivariate rational functions
! are algebraic.”

“The converse is also true [Furstenberg, 1967]
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Poélya’s theorem

Definition
If F is a formal power series A
F= Y oy 5% -,
i1,000,in >0
its diagonal is > i
Diag 1:) Z a; it Theorem (Pélya, 1922)
Diagonals of bivariate rational functions

are algebraic.

> This is false for more than 2 variables. E.g.

. 1 B GBn)! , 32
piag (11— ) = L o =

n>0

27t> is transcendental

10/ 28
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Poélya’s theorem

Definition
If F is a formal power series A
F= Y oy 5% -,
i1,000sin >0
its diagonal is > i
Diag F) Z a; . 1_ Theorem (Pélya, 1922)
Diagonals of bivariate rational functions

are algebraic and thus D-finite.

> Algebraic equation has exponential size [B., Dumont, Salvy, 2015]
> Differential equation has polynomial size [B., Chen, Chyzak, Li, 2010]

10/ 28
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If F is a formal power series

—_— . . il DY in‘
F= E ull/---/ln xl X' s
i1,.0,in >0

its diagonal is

Diag F) Ea,l bt

Diagonals of multivariate rational
functions are D-finite.
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_ Fxample: Digoral Rook paths n a 3D chessboard

Question [Erickson 2010]
How many ways can a Rook move from (0,0,0) to (N, N, N), where each
step is a positive integer multiple of (1,0,0), (0,1,0), or (0,0,1)?

1, 6, 222, 9918, 486924, 25267236, 1359631776, 75059524392, . ..

Answer [B., Chyzak, van Hoeij, Pech, 2011]: GF of 3D diagonal Rook paths is

top (1/3 2/3 27xg2—3x))
25 2 (1—4x)3

(1— 4x)(1 — 64x)

G(H)=1+6-

12 /28
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Problem: Show that Diag(F) is D-finite, where F(x,y,z) is

(1_an_zyn_zzn>‘1= (-0 -y)(-2)
1-2(x4y+z)+3(xy+yz+zx) —4xyz

n>1 n>1 n>1
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Problem: Show that Diag(F) is D-finite, where F(x,y,z) is

(1_an_zyn_zzn>‘1= (=501 -y)0-2)
1-2(x+y+z)+3(xy+yz+zx) —4xyz

n>1 n>1 n>1

Idea: If one is able to find a nonzero differential operator of the form

L(t,04,0x,9y) = P(t,9¢) + ( higher-order terms in 9y and 9y, )

that annihilates G = % -F (x,%,é) , then P(t,9;) annihilates Diag(F).

13 /28
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Proof of Lips

Problem: Show that Diag(F) is D-finite, where F(x,y,z) is

(l_zxn_zyn_zzn>‘1= (=51 -y)0-2)
1-2(x+y+z)+3(xy+yz+zx) —4xyz

n>1 n>1 n>1

Idea: If one is able to find a nonzero differential operator of the form

L(t,04,0x,9y) = P(t,9¢) + ( higher-order terms in 9y and 9y, )

that annihilates G = % -F (x,%é) , then P(t,9;) annihilates Diag(F).

Proof:

i 0,0 yt
@ Diag(F) =[x’y ]F(x’x’y>

@ 0=L(G) = P(G) +9x(-) + 9y (")

@ 0=[x"'y "JL(G) =[x 'y 'IP(G) = P([x"'y~]G) = P(Diag(F))

13 /28
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Problem: Show that Diag(F) is D-finite, where F(x,y,z) is

(1_an_zyn_zzn>‘1= (=501 -y)0-2)
1-2(x+y+z)+3(xy+yz+zx) —4xyz

n>1 n>1 n>1

Idea: If one is able to find a nonzero differential operator of the form

L(t,04,0x,9y) = P(t,9¢) + ( higher-order terms in 9y and 9y, )

that annihilates G = % -F (x,%é) , then P(t,9;) annihilates Diag(F).

> Remaining task: Show that such an L does exist.

13 /28
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Counting argument: By Leibniz’s rule, the (NZ"L) rational functions

Ho]0%a(G), 0<i+j+k+l(<N
are contained in the Q-vector space of dimension < 18(N + 1)3 spanned by

tixfyk
G)NH' 0<i<2N+1,0<j<3N+2 0<k<3N+2

denom(
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Counting argument: By Leibniz’s rule, the (NZ‘L) rational functions

Ho]okal(G), 0<i+j+k+l<N
are contained in the Q-vector space of dimension < 18(N + 1)3 spanned by

tixl yk

e, 0<i<2N+1,0<j<3N+2 0<k<3N+2
denom(G)

> If N is such that # unknowns = (N;*) > 18(N +1)% = # equations, then
there exists L(t,d;,0x,0dy) of total degree at most N, such that LG = 0.

14/ 28
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Counting argument: By Leibniz’s rule, the (NZ"L) rational functions

Hj0500(G), 0<i+j+k+L<N
are contained in the Q-vector space of dimension < 18(N + 1) spanned by

tixl yk

Y, 0<i<2N+1,0<j<3N+2,0<k<3N+2.
denom(G)

> If N is such that # unknowns = (¥ 4 > 18(N +1)° = # equations, then
there exists P(t,d;) of total degree at most N, such that P(Diag(F)) = 0.

14/ 28
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Proof of Lips

Counting argument: By Leibniz’s rule, the (NZ‘L) rational functions

080, (G), 0<i+j+k+l<N
are contained in the Q-vector space of dimension < 18(N + 1) spanned by

tixl yk

Y, 0<i<2N+1,0<j<3N+2,0<k<3N+2.
denom(G)

> If N is such that # unknowns = (¥ 4 > 18(N +1)° = # equations, then
there exists P(t,d;) of total degree at most N, such that P(Diag(F)) = 0.

> N = 425 is the smallest integer satisfying (NI‘L) > 18(N+1)3 ()

14/ 28
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Proof of Lipshitz’s theor

Counting argument: By Leibniz’s rule, the (Nfl) rational functions

080, (G), 0<i+j+k+l<N
are contained in the Q-vector space of dimension < 18(N + 1)3 spanned by

tixl yk

—— N 0<i<2N+1,0<j<3N+2 0<k<3N+2.
denom(G)

> If N is such that # unknowns = (NV*) > 18(N +1)3 = # equations, then
there exists P(t,d;) of total degree at most N, such that P(Diag(F)) = 0.

> N = 425 is the smallest integer satisfying (V;*) > 18(N + 1) (1)

> Finding the operator P by Lipshitz’ argument would require solving a
linear system with 1,391,641,251 unknowns and 1,391,557,968 equations (!)
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Proof of Lipshitz’s theore

Counting argument: By Leibniz’s rule, the (Nfl) rational functions

080, (G), 0<i+j+k+l<N
are contained in the Q-vector space of dimension < 18(N + 1)3 spanned by

tixl yk

—— N 0<i<2N+1,0<j<3N+2 0<k<3N+2.
denom(G)

> If N is such that # unknowns = (NV*) > 18(N +1)3 = # equations, then
there exists P(t,d;) of total degree at most N, such that P(Diag(F)) = 0.

> N = 425 is the smallest integer satisfying (V;*) > 18(N + 1) (1)

> Finding the operator P by Lipshitz’ argument would require solving a
linear system with 1,391,641,251 unknowns and 1,391,557,968 equations (!)

> A better solution is provided by creative telescoping.
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CREATIVE TELESCOPING
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Creative Telescoping

General framework in computer algebra —initiated by Zeilberger in the "90s—
for proving identities on multiple integrals and sums with parameters.

Alin Bostan Diagonals and Creative Telescoping



Exa

ok f(atb\ (b+c\c+a) _ (at+b+c)! .
‘k;z( 2 (a+k) (b+k> (c+k) T alle! [Dixon 1908]

n 2 2
® A, = E (Z) (n : k) satisfies the recurrence [Apéry 1978]:
k=0

(n+1)3A,41 = (34n® +51n% +27n 4+ 5) Ay — 1> A, _1.

(Neither Cohen nor I had been able to prove this in the intervening two months
[Van der Poorten 1979])

CEECEY-EOCTEQ s

I v ;onsts o Crontive Tlescoping



Exa

_kfatb\ b4\ fc+a) _ (a+b+o)! .
© kgi( 1 <a+k) (b+k> (c+k> = apier | [Pixon1903]

oy 2 n4+k 2 o )

® A= E X X satisfies the recurrence [Apéry 1978]:
k=0

(n+1)3A,11 = (3413 +51n% +27n + 5) A, — n3A, 1.

(The specific problem was mentioned to Don Zagier, who solved it with
irritating speed [Van der Poorten 1979])

CECE QLR s
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1 cos(zu) T sin(zu) T
© du = du = =
/0 2 VuZ—1 ! 2]0(2)
(1+2xy +4y%) exp
% (” ) _ (zx)| [Doetsch 1930]
7Ti yn (1 +4]/2)2 [n/2]!
Foo In(1 — a*) ,
® / xJ1(ax)I; (ax)Yo(x)Ko(x) dx = T [Glasser-Montaldi’94]
0
1
© Dia, =) Apt" [Straub 2014].
SA—x—y)d—z—u)—xyzu n; "
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Principle: IF one knows Pascal’s triangle:
n+1 n n n n n
()= () 68) =20+ (2 ()
then summing over k telescopes and yields

L1 = 2I,.

The initial condition Iy = 1 concludes the proof.

19 /28



Fo=Y uy=?
k
IF one knows P(n, S;) (telescoper) and R(n,k, Sy, Si) (certificate) such that
(P(n, Sn) + AkR(l’l, k, Sy, Sk)) Upf = 0

(where Ay is the difference operator, Ay - v,k = 0y k11 — Uy ),
then the sum “telescopes”, leading to

P(n,Sy)-F, =0.

20 / 28



Input: a hypergeometric term u,,, i.e., % and % are in Q(n, k)
Output: ' '
© a linear recurrence, called telescoper, (P) satisfied by F, = Y u, &
© a certificate (Q), for checking the result: P(n,S;) -, = AQ - 1y, .

21 /28



Zeilberger’

Input: a hypergeometric term u,,, i.e., "L"ln;lk" and % are in Q(n, k)
Output:
© a linear recurrence, called telescoper, (P) satisfied by F, = Y u, &
© a certificate (Q), for checking the result: P(n,S;) -, = AQ - 1y, .

> T := binomial(n,k);
> Zpair:=SumTools [Hypergeometric] [Zeilberger] (T,n,k,Sn):
> tel:=Zpair[1];

Sp—2

21 /28
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Zeilberger’s

Input: a hypergeometric term u,,, i.e., "L"ln;lk" and % are in Q(n, k)
Output:
© a linear recurrence, called telescoper, (P) satisfied by F, = Y u, &
© a certificate (Q), for checking the result: P(n,S;) -, = AQ - 1y, .

> T := binomial(n,k);
> Zpair:=SumTools [Hypergeometric] [Zeilberger] (T,n,k,Sn):
> tel:=Zpair[1];

Sp—2

> This is a proof that I, := Y} (}) satisfies I, ;1 =2 I.

21 /28
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Zeilberger’s Algorithm [1990]

. . Uy, 1y, .
Input: a hypergeometric term u,,, i.e., ﬁ and ﬁ are in Q(n, k)
Output:
© a linear recurrence, called telescoper, (P) satisfied by F, = Y j u, &
© a certificate (Q), for checking the result: P(1n,S,) -, = AQ - 1y, .

> T := binomial(n,k);
> Zpair:=SumTools [Hypergeometric] [Zeilberger] (T,n,k,Sn):
> tel:=Zpair[1];

Sp—2

> This is a proof that I, := Y} (}) satisfies I, ;1 =2 I.
> Can check using the certificate:

> cert:=Zpair[2];
> iszero:=(subs(n=n+1,T) - 2+T) - (subs(k=k+1,cert) - cert);
> simplify(convert (%,GAMMA)) ;

0



Example: from the SIAM challeng

The SIAM 100-Digit

CHALLENGE

Uy (2 (2 (20 -2k (1, 1N
k= o)\ )\ n—k J\a7¢) \a™¢) grax
n

pn =Y U, = probability of return to (0,0)at step 2n.
k=0

> p:=SumTools [Hypergeometric] [Zeilberger] (U,n,k,Sn);

[(472 + 167 +16) Sn? + (—4n + 32202 + 96 ¢n — 121 + 722 — 9) Sn
+128c*n + 64 ctn® + 48 ¢*, ..(BIG certificate)...]



I(t) = yﬁ H(t,x)dx =?
v
IF one knows P(t,d;) (telescoper) and Q(t, x, 0y, 9y ) (certificate) such that
(P(t,at) +8xQ(t,x,8t,ax)) . H(t, x) =0,
then the integral “telescopes”, leading to

P(t,3;) - I(t) = 0.
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o on
Input: a hyperexponential function H(t,x), i.e., # and 4 are in Q(t, x)
Output:

© a linear differential operator P(t,0;) satisfied by I(f) = 55,7 H(t,x)dx
© aG(t,x) € Q(t x) such that P(t,3;) - H(t,x) = & (G(t,x) ~H(t,x)).
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The Almkvist-Ze

Input: a hyperexponential function H(t, x), i.e., “IT and 3 4 are in Q(t, x)
Output:
© alinear differential operator P(t,0;) satisfied by I(t) = §, H(t, x) dx

© aG(t,x) € Q(t x) such that P(t,3;) - H(t,x) = & (G(t,x) -H(t,x)).

Algorithm: Write L = Q(t). Forr =0,1,2,... do
okH

) o H
@ compute a(x) := 7"’7; € LL(x) and by(x) := 9 € L(x) fork=0,...,r
@ decide whether the inhomogeneous parametrized LDE

aG
a -G = Z [ bk

admits a rational solution G € IL(x), for some ¢y, ..., ¢, € L not all zero
@ if so, then return P := erc:O cka’; and G; else increase r by 1 and repeat

I D ;onsts o Crontive Tlescoping



Example: Diag

Question: A chess Rook can move any number of squares horizontally or
vertically in one step. How many paths can a Rook take from the lower-left
corner square to the upper-right corner square of an N X N chessboard?
Assume that the Rook moves only right or up at each step.

-

(ra)n>0: 1, 2, 14, 106, 838, 6802, 56190, 470010, ...

25 /28
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Example: Diagona

Question: A chess Rook can move any number of squares horizontally or
vertically in one step. How many paths can a Rook take from the lower-left
corner square to the upper-right corner square of an N X N chessboard?
Assume that the Rook moves only right or up at each step.

-

(ra)n>0: 1, 2, 14, 106, 838, 6802, 56190, 470010, ...

Answer: ry = Nth coefficient in the Taylor expansion of % (1 + 11_93;> .

25 /28

I D ;onsts o Crontive Tlescoping



Diagonal Rook paths

Generating function of the sequence

1, 2, 14, 106, 838, 6802, 56190, 470010, ...
is
1
1- & - &

Diag(F) = [x°] F(x,t/x) = ﬁ ygF(x,t/x) d7x, where F = ———
1-x 1-y

Creative telescoping computes a differential equation satisfied by Diag(F):

> F:=1/(1-x/(1-x)-y/(1-y)):
> G:=normal (1/x*subs(y=t/x,F)):
> Zeilberger(G, t, x, Dt)[1];

(982 — 10t +1)2? + (18t — 14)0;

Conclusion: Generating series of diagonal Rook paths is % <1 +4/ 11_—91;) .
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Creative Telescopi

Problem:

X = X1,...,X;, — integration variables
t — parameter yé H(t,x)dx
H(t,x) — rational function U

v — n-cycle in C"

Principle of creative telescoping

certificate telescoper
—_———
g kH L 0A; r .
,;)Ck(t)aT = l;a_xl’ = (kgfk(t)at> .éde:O

telescopic relation

Task:
@ find the ¢, () which satisfy a telescopic relation,
@ ideally, without computing the certificate (A4;).

27 /28
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Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1
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Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

e @
1-u2 1—c2u?
1-u (1- Zzl)lv2 * p

Principle: Find algorithmically %
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Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

4 1 - ezu2 dudo .
du = P
o \M

Principle: Find algorithmically "

((e— e3)a% + (1—¢%)o, +E) ‘ (ﬁ) -

(1-u?)v?
3 _e(—l—u+u2+u3)vz(—3+2u+v2+u2(—2+3e2—vz))
" (140?412 (2—0?) )2

—14ou2(e2—o2))’

T 11
> Conclusion: p(e) = 5 -2P1< % 2

2\ _op T2 _3Ta_
e)—27'r 26 32e
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 Bample Perimeterof anellipse

Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

1- ezu2 _4 dudo .
1— u2 - 4 1-eu? e
o w

A
B

Principle: Find algorithmically e

((e—e3)a£+(1—e2)ae+e)~ (1_+) =

(1-u?)v?
5 _8(717u+u2+u3)vz(73+2u+02+u2(72+3227vz))
" (—1+02+u2(e2—02))?

‘o, (( e(—1+¢)u(1+u )vj)

1402 4-u?(e2—0?)

> Drawback: Size(certificate) > Size(telescoper).
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