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Creative Telescoping

1
1 · 2 +

1
2 · 3 + · · ·+ 1

2019 · 2020
= ?

. [J. Bernoulli 1682]: Use 1
k(k+1) =

1
k −

1
k+1 to create a telescoping sum(

1
1
− 1

2

)
+

(
1
2
− 1

3

)
+ · · ·+

(
1

2019
− 1

2020

)
= 1− 1

2020
.

. [Knuth 1969] Ex. 1.2.6.63:

[50] Develop computer programs for simplifying sums that involve
binomial coefficients.

. Today: how computer algebra uses Bernoulli’s 1682 idea –systematically
and algorithmically–, to solve Knuth’s 1969 exercise, and more
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DIAGONALS
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Diagonals of multivariate power series

Definition

If F is a multivariate power series

F = ∑
i1,...,in≥0

ai1,...,in xi1
1 · · · x

in
n ,

its diagonal is the univariate power series

Diag(F)
def
= ∑

i
ai,...,iti.

This is false for more than 2 variables. E.g.

Diag
(

1
1− x− y− z

)
= ∑

n≥0

(
3n

n, n, n

)
tn = 2F1

( 1
3

2
3

1

∣∣∣∣ 27t
)

is transcendental
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Diagonals of multivariate power series

Definition

If F is a multivariate power series

F = ∑
i1,...,in≥0

ai1,...,in xi1
1 · · · x

in
n ,

its diagonal is the univariate power series

Diag(F)
def
= ∑

i
ai,...,iti.

Example: if n = 1, then (trivially)

Diag (F) = F(t).
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Diagonals of multivariate power series

Definition

If F is a multivariate power series

F = ∑
i1,...,in≥0

ai1,...,in xi1
1 · · · x

in
n ,

its diagonal is the univariate power series

Diag(F)
def
= ∑

i
ai,...,iti.

Example: if n = 2 and F =
1

1− x− y
= ∑

i,j≥0

(
i + j

i

)
xiyj, then

Diag (F) = ∑
n≥0

(
2n
n

)
tn = 1 + 2 t + 6 t2 + 20 t3 + 70 t4 + · · · .
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Diagonals of multivariate power series

Definition

If F is a multivariate power series

F = ∑
i1,...,in≥0

ai1,...,in xi1
1 · · · x

in
n ,

its diagonal is the univariate power series

Diag(F)
def
= ∑

i
ai,...,iti.

Example: if n = 2 and F =
1

1− x− y
= ∑

i,j≥0

(
i + j

i

)
xiyj, then

Diag (F) = ∑
n≥0

(
2n
n

)
tn = 1 + 2 t + 6 t2 + 20 t3 + 70 t4 + · · · .

. Diag (F) is not a rational function, even though F is rational.
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Pólya’s theorem

Definition

If F is a multivariate power series

F = ∑
i1,...,in≥0

ai1,...,in xi1
1 · · · x

in
n ,

its diagonal is the univariate power series

Diag(F)
def
= ∑

i
ai,...,iti. Theorem (Pólya, 1922)

Diagonals of bivariate rational functions
are algebraic.

This is false for more than 2 variables. E.g.
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Pólya’s theorem

Definition

If F is a multivariate power series

F = ∑
i1,...,in≥0

ai1,...,in xi1
1 · · · x

in
n ,

its diagonal is the univariate power series

Diag(F)
def
= ∑

i
ai,...,iti.

Theorem (Pólya, 1922)

Diagonals of bivariate rational functions
are algebraic.

Proof: Since F
(

x,
t
x

)
= ∑

i,j
ai,jxi−jtj we have that Diag (F) = [x0]F

(
x,

t
x

)
.

Therefore, by Cauchy’s integral theorem,

Diag (F) = [x−1]
1
x

F
(

x,
t
x

)
=

1
2πi

˛
|x|=ε

F
(

x,
t
x

)
dx
x

.

By the Residue Theorem: last integral is a sum of residues, all algebraic. �
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Example: Dyck walks

Let Bn be the number of Dyck bridges, i.e. {NE, SE}-walks of length n in Z2

starting at (0, 0) and ending on the horizontal axis.

Rotat
in

g a Dyc
k brid

ge

co
unter

clo
ck

wise
by

π
/4

Equivalently, Bn = number of {N, E}-walks in Z2 from (0, 0) to (n, n)

=⇒ B(t) = ∑
n≥0

Bntn = Diag
(

1
1− x− y

)

Then: B(t) =
1

2πi

˛
|x|=ε

dx
x− x2 − t

=
1

1− 2x

∣∣∣∣
x= 1−

√
1−4t

2

=
1√

1− 4t
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Bntn = Diag
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1
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1− 4t
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Rothstein-Trager resultant

Let A, B ∈ K[x] be such that deg(A) < deg(B), with B squarefree.
In particular, the rational function F = A/B has simple poles only.

Lemma. The residue ri of F at the pole pi equals ri =
A(pi)

B′(pi)
.

Proof. If F = ∑
i

ri
x− pi

, then ri = (F · (x− pi))|x=pi
=

A(x)
∏j 6=i(x− pj)

(pi)

Theorem. The residues ri of F are roots of the resultant

R(t) = Res x
(

B(x), A(x)− t · B′(x)
)
.

Proof. By Poisson’s formula: R(t) = ∏
i

(
A(pi)− t · B′(pi)

)
. �

. Introduced by [Rothstein-Trager 1976] for the (indefinite) integration of
rational functions.
. Generalized by [Bronstein 1992] to multiple poles.
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Example: diagonal Rook paths

Question: A chess Rook can move any number of squares horizontally or
vertically in one step. How many paths can a Rook take from the lower-left
corner square to the upper-right corner square of an N × N chessboard?
Assume that the Rook moves only right or up at each step.

1, 2, 14, 106, 838, 6802, 56190, 470010, . . .
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Example: diagonal Rook paths

Generating function of the sequence

1, 2, 14, 106, 838, 6802, 56190, 470010, . . .

is

Diag(F) = [x0] F(x, t/x) =
1

2πi

˛
F(x, t/x)

dx
x

, where F =
1

1− x
1−x −

y
1−y

.

Residue theorem: Diag(F) is a sum of roots y of the Rothstein-Trager resultant

> F:=1/(1-x/(1-x)-y/(1-y)):
> G:=normal(1/x*subs(y=t/x,F)):
> factor(resultant(denom(G),numer(G)-y*diff(denom(G),x),x));

t2(1− t)(2y− 1)(36ty2 − 4y2 + 1− t)

Answer: Generating series of diagonal Rook paths is
1
2

(
1 +

√
1− t
1− 9t

)
.
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Pólya’s theorem

Definition

If F is a formal power series

F = ∑
i1,...,in≥0

ai1,...,in xi1
1 · · · x

in
n ,

its diagonal is

Diag(F)
def
= ∑

i
ai,...,iti.

Theorem (Pólya, 1922)

Diagonals of bivariate rational functions
are algebraic.a

aThe converse is also true [Furstenberg, 1967]
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Pólya’s theorem

Definition

If F is a formal power series

F = ∑
i1,...,in≥0

ai1,...,in xi1
1 · · · x

in
n ,

its diagonal is

Diag(F)
def
= ∑

i
ai,...,iti. Theorem (Pólya, 1922)

Diagonals of bivariate rational functions
are algebraic and thus D-finite.

. Algebraic equation has exponential size [B., Dumont, Salvy, 2015]

. Differential equation has polynomial size [B., Chen, Chyzak, Li, 2010]
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Lipshitz’s theorem

Definition

If F is a formal power series

F = ∑
i1,...,in≥0

ai1,...,in xi1
1 · · · x

in
n ,

its diagonal is

Diag(F)
def
= ∑

i
ai,...,iti. Theorem (Lipshitz, 1988)

Diagonals of multivariate rational
functions are D-finite.

This is false for more than 2 variables. E.g.

Diag
(

1
1− x− y− z

)
= ∑

n≥0

(
3n

n, n, n

)
tn = 2F1

( 1
3

2
3

1

∣∣∣∣ 27t
)

is transcendental

Alin Bostan Diagonals and Creative Telescoping



12 / 28

Example: Diagonal Rook paths on a 3D chessboard

Question [Erickson 2010]
How many ways can a Rook move from (0, 0, 0) to (N, N, N), where each
step is a positive integer multiple of (1, 0, 0), (0, 1, 0), or (0, 0, 1)?

1, 6, 222, 9918, 486924, 25267236, 1359631776, 75059524392, . . .

Answer [B., Chyzak, van Hoeij, Pech, 2011]: GF of 3D diagonal Rook paths is

G(t) = 1 + 6 ·

ˆ
t

0

2F1

(
1/3 2/3

2

∣∣∣∣ 27x(2−3x)
(1−4x)3

)
(1− 4x)(1− 64x)

dx
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Proof of Lipshitz’s theorem on the 3D Rooks example

Problem: Show that Diag(F) is D-finite, where F(x, y, z) is(
1− ∑

n≥1
xn − ∑

n≥1
yn − ∑

n≥1
zn

)−1

=
(1− x)(1− y)(1− z)

1−2(x+y+z)+3(xy+yz+zx)−4xyz

Idea: If one is able to find a nonzero differential operator of the form

L(t, ∂t, ∂x, ∂y) = P(t, ∂t) + ( higher-order terms in ∂x and ∂y )

that annihilates G=
1

xy
· F
(

x,
y
x

,
t
y

)
, then P(t, ∂t) annihilates Diag(F).

Proof:

Remaining task: Show that such an L does exist.
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L(t, ∂t, ∂x, ∂y) = P(t, ∂t) + ( higher-order terms in ∂x and ∂y )

that annihilates G=
1

xy
· F
(

x,
y
x

,
t
y

)
, then P(t, ∂t) annihilates Diag(F).

Proof:
1 Diag(F) = [x0y0] F

(
x,

y
x

,
t
y

)
2 0 = L(G) = P(G) + ∂x(·) + ∂y(·)

3 0 = [x−1y−1]L(G) = [x−1y−1]P(G) = P([x−1y−1]G) = P(Diag(F))

Remaining task: Show that such an L does exist.
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Proof of Lipshitz’s theorem on the 3D Rooks example

Counting argument: By Leibniz’s rule, the (N+4
4 ) rational functions

ti∂
j
t∂

k
x∂`y(G), 0 ≤ i + j + k + ` ≤ N

are contained in the Q-vector space of dimension ≤ 18(N + 1)3 spanned by

tixjyk

denom(G)N+1 , 0 ≤ i ≤ 2N + 1, 0 ≤ j ≤ 3N + 2, 0 ≤ k ≤ 3N + 2.

. If N is such that # unknowns = (N+4
4 ) > 18(N + 1)3 = # equations, then

there exists of total degree at most N, such that

. N = 425 is the smallest integer satisfying (N+4
4 ) > 18(N + 1)3 (!)

. Finding the operator P by Lipshitz’ argument would require solving a
linear system with 1,391,641,251 unknowns and 1,391,557,968 equations (!)

. A better solution is provided by creative telescoping.
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CREATIVE TELESCOPING
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Creative Telescoping

General framework in computer algebra –initiated by Zeilberger in the ’90s–
for proving identities on multiple integrals and sums with parameters.
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Examples I: hypergeometric summation

∑
k∈Z

(−1)k
(

a + b
a + k

)(
b + c
b + k

)(
c + a
c + k

)
=

(a + b + c)!
a!b!c!

[Dixon 1903]

An =
n

∑
k=0

(
n
k

)2(n + k
k

)2
satisfies the recurrence [Apéry 1978]:

(n + 1)3 An+1 = (34n3 + 51n2 + 27n + 5)An − n3 An−1.

(Neither Cohen nor I had been able to prove this in the intervening two months
[Van der Poorten 1979])

n

∑
k=0

(
n
k

)2(n + k
k

)2
=

n

∑
k=0

(
n
k

)(
n + k

k

) k

∑
j=0

(
k
j

)3
[Strehl 1992]
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)
=

(a + b + c)!
a!b!c!

[Dixon 1903]

An =
n

∑
k=0

(
n
k

)2(n + k
k

)2
satisfies the recurrence [Apéry 1978]:

(n + 1)3 An+1 = (34n3 + 51n2 + 27n + 5)An − n3 An−1.

(The specific problem was mentioned to Don Zagier, who solved it with
irritating speed [Van der Poorten 1979])

n

∑
k=0

(
n
k

)2(n + k
k

)2
=

n

∑
k=0

(
n
k

)(
n + k

k

) k

∑
j=0

(
k
j

)3
[Strehl 1992]
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Examples II: Integrals and Diagonals

ˆ 1

0

cos(zu)√
1− u2

du =

ˆ +∞

1

sin(zu)√
u2 − 1

du =
π

2
J0(z)

1
2πi

˛ (1 + 2xy + 4y2) exp
(

4x2y2

1+4y2

)
yn+1(1 + 4y2)

3
2

dy =
Hn(x)
bn/2c! [Doetsch 1930]

ˆ +∞

0
xJ1(ax)I1(ax)Y0(x)K0(x) dx = − ln(1− a4)

2πa2 [Glasser-Montaldi’94]

Diag
1

(1− x− y)(1− z− u)− xyzu
= ∑

n≥0
Antn [Straub 2014].
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Summation by Creative Telescoping

In :=
n

∑
k=0

(
n
k

)
= 2n.

Principle: IF one knows Pascal’s triangle:(
n + 1

k

)
=

(
n
k

)
+

(
n

k− 1

)
= 2

(
n
k

)
+

(
n

k− 1

)
−
(

n
k

)
,

then summing over k telescopes and yields

In+1 = 2In.

The initial condition I0 = 1 concludes the proof.
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Creative Telescoping for Sums

Fn = ∑
k

un,k =?

IF one knows P(n, Sn) (telescoper) and R(n, k, Sn, Sk) (certificate) such that

(P(n, Sn) + ∆kR(n, k, Sn, Sk)) · un,k = 0

(where ∆k is the difference operator, ∆k · vn,k = vn,k+1 − vn,k),
then the sum “telescopes”, leading to

P(n, Sn) · Fn = 0.
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Zeilberger’s Algorithm [1990]

Input: a hypergeometric term un,k, i.e., un+1,k
un,k

and un,k+1
un,k

are in Q(n, k)
Output:

a linear recurrence, called telescoper, (P) satisfied by Fn = ∑k un,k
a certificate (Q), for checking the result: P(n, Sn) · un,k = ∆kQ · un,k.

> T := binomial(n,k);
> Zpair:=SumTools[Hypergeometric][Zeilberger](T,n,k,Sn):
> tel:=Zpair[1];

Sn − 2

. This is a proof that In := ∑n
k=0 (

n
k) satisfies In+1 = 2 · In.

. Can check using the certificate:

> cert:=Zpair[2];
> iszero:=(subs(n=n+1,T) - 2*T) - (subs(k=k+1,cert) - cert);
> simplify(convert(%,GAMMA));

0
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Example: from the SIAM challenges

1/4

1/4

1/4-ε 1/4+ε

Un,k :=
(

2n
2k

)(
2k
k

)(
2n− 2k

n− k

)(
1
4
+ c
)k (1

4
− c
)k 1

42n−2k ,

pn =
n

∑
k=0

Un,k = probability of return to (0, 0) at step 2n.

> p:=SumTools[Hypergeometric][Zeilberger](U,n,k,Sn);

[
(

4 n2 + 16 n + 16
)

Sn2 +
(
−4 n2 + 32 c2n2 + 96 c2n− 12 n + 72 c2 − 9

)
Sn

+ 128 c4n + 64 c4n2 + 48 c4, ...(BIG certificate)...]
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Creative Telescoping for Integrals

I(t) =
˛

γ
H(t, x) dx =?

IF one knows P(t, ∂t) (telescoper) and Q(t, x, ∂t, ∂x) (certificate) such that

(P(t, ∂t) + ∂xQ(t, x, ∂t, ∂x)) · H(t, x) = 0,

then the integral “telescopes”, leading to

P(t, ∂t) · I(t) = 0.
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The Almkvist-Zeilberger Algorithm [1990]

Input: a hyperexponential function H(t, x), i.e.,
∂H
∂t
H and

∂H
∂x
H are in Q(t, x)

Output:

a linear differential operator P(t, ∂t) satisfied by I(t) =
¸

γ H(t, x) dx

a G(t, x) ∈ Q(t, x) such that P(t, ∂t) · H(t, x) = ∂
∂x

(
G(t, x) · H(t, x)

)
.

Algorithm: Write L = Q(t). For r = 0, 1, 2, . . . do

1 compute a(x) :=
∂H
∂x
H ∈ L(x) and bk(x) :=

∂k H
∂tk
H ∈ L(x) for k = 0, . . . , r

2 decide whether the inhomogeneous parametrized LDE

∂G
∂x

+ a(x) · G =
r

∑
k=0

ck · bk(x)

admits a rational solution G ∈ L(x), for some c0, . . . , cr ∈ L not all zero
3 if so, then return P := ∑r

k=0 ck∂k
t and G; else increase r by 1 and repeat
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Example: Diagonal Rook paths

Question: A chess Rook can move any number of squares horizontally or
vertically in one step. How many paths can a Rook take from the lower-left
corner square to the upper-right corner square of an N × N chessboard?
Assume that the Rook moves only right or up at each step.

(rn)n≥0 : 1, 2, 14, 106, 838, 6802, 56190, 470010, . . .

Answer: rN = Nth coefficient in the Taylor expansion of
1
2

(
1 +

√
1− x
1− 9x

)
.
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Diagonal Rook paths via Creative Telescoping

Generating function of the sequence

1, 2, 14, 106, 838, 6802, 56190, 470010, . . .

is

Diag(F) = [x0] F(x, t/x) =
1

2πi

˛
F(x, t/x)

dx
x

, where F =
1

1− x
1−x −

y
1−y

.

Creative telescoping computes a differential equation satisfied by Diag(F):

> F:=1/(1-x/(1-x)-y/(1-y)):
> G:=normal(1/x*subs(y=t/x,F)):
> Zeilberger(G, t, x, Dt)[1];

(9t2 − 10t + 1)∂2
t + (18t− 14)∂t

Conclusion: Generating series of diagonal Rook paths is
1
2

(
1 +

√
1− t
1− 9t

)
.
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Creative Telescoping for multiple rational integrals

Problem:
x = x1, . . . , xn — integration variables

t — parameter

H(t, x) — rational function

γ — n-cycle in Cn
} ˛

γ
H(t, x)dx

Principle of creative telescoping

r

∑
k=0

ck(t)
∂k H
∂tk =

certificate︷ ︸︸ ︷
n

∑
i=1

∂Ai
∂xi︸ ︷︷ ︸

telescopic relation

=⇒

telescoper︷ ︸︸ ︷(
r

∑
k=0

ck(t)∂
k
t

)
·
˛

γ
Hdx = 0

Task:
1 find the ck(t) which satisfy a telescopic relation,
2 ideally, without computing the certificate (Ai).
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Example: Perimeter of an ellipse

Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

p(e) = 4
ˆ 1

0

√
1− e2u2

1− u2 du = 4
"

dudv

1− 1−e2u2

(1−u2)v2

− 5
128

e6 − 175
8192

e8 − 441
32768

e10

Principle: Find algorithmically

(
(e− e3)∂2

e + (1− e2)∂e + e
)
·

 1

1− 1−e2u2

(1−u2)v2

 =

∂u

(
− e(−1−u+u2+u3)v2(−3+2u+v2+u2(−2+3e2−v2))

(−1+v2+u2(e2−v2))2

)
+ ∂v

(
2e(−1+e2)u(1+u3)v3

(−1+v2+u2(e2−v2))2

)
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(−1+v2+u2(e2−v2))2

)
+ ∂v

(
2e(−1+e2)u(1+u3)v3
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)
. Conclusion: (e− e3) · p′′(e) + (1− e2) · p′(e) + e · p(e) = 0.
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. Conclusion: p(e) =
π

2
· 2F1

(
− 1

2
1
2

1

∣∣∣∣ e2
)
= 2π − π

2
e2 − 3π

32
e4 − · · · .
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. Drawback: Size(certificate)� Size(telescoper).
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