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Several generations of Creati

© 1G, brutal elimination: [Fasenmyer, 1947], [Lipshitz, 1988], [Zeilberger,
1990], [Takayama, 1990], [Wilf, Zeilberger, 1990], [Chyzak, Salvy, 2000]

© 2G, linear diff/rec rational solving: [Zeilberger, 1990], [Zeilberger, 1991],
[Almkvist, Zeilberger, 1990], [Chyzak, 2000], [Koutschan, 2010]

© 3G, combines 1G + 2G + linear algebra: [Apagodu, Zeilberger, 2005],
[Koutschan 2010], [Chen, Kauers 2012], [Chen, Kauers, Koutschan 2014]

> Advantages:
© 1G-3G: very general algorithms;
© 2G/3G algorithms are able to solve non-trivial problems.

> Drawbacks:
@ 1G: slow;
© 2G: bad or unknown complexity;
© 1G and 3G: non-minimality of telescopers;
© 1G-3G: all compute (big) certificates.
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Several generations of Creati

4G: roots in [Ostrogradsky, 1845], [Hermite, 1872] and [Picard, 1902].

© univariate:

©
©
©
©
©
©

©

rational [: [B., Chen, Chyzak, Li, 2010];

hyperexponential [: [B., Chen, Chyzak, Li, Xin, 2013]
hypergeometric ) : [Chen, Huang, Kauers, Li, 2015], [Huang, 2016]
mixed [+ Y [B., Dumont, Salvy, 2016]

algebraic f : [Chen, Kauers, Koutschan, 2016]

D-finite Fuchsian [: [Chen, van Hoeij, Kauers, Koutschan, 2018]
D-finite f : [B., Chyzak, Lairez, Salvy, 2018], [van der Hoeven, 2018]

© multiple:

©
©
©

rational bivariate ¢f: [Chen, Kauers, Singer, 2012]
rational: [B., Lairez, Salvy, 2013], [Lairez 2016]
binomial sums: [B., Lairez, Salvy, 2017]

> Advantages:

© complexity;

© minimality of telescopers;

© does not need to compute certificates;

© fast in practice,

> Drawback: not (yet) as general as 1G-3G algorithms.
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o on
Input: a hyperexponential function H(t,x), i.e., # and 4 are in Q(t, x)
Output:

© a linear differential operator P(t,0;) satisfied by I(f) = 55,7 H(t,x)dx
© aG(t,x) € Q(t x) such that P(t,3;) - H(t,x) = & (G(t,x) ~H(t,x)).
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2G: The Almkvist-

Input: a hyperexponential function H(t, x), i.e., “IT and 3 4 are in Q(t, x)
Output:
© alinear differential operator P(t,0;) satisfied by I(t) = §, H(t, x) dx

© aG(t,x) € Q(t x) such that P(t,3;) - H(t,x) = & (G(t,x) -H(t,x)).

Algorithm: Write L = Q(t). Forr =0,1,2,... do
okH

) o H
@ compute a(x) := 7"’7; € LL(x) and by(x) := 9 € L(x) fork=0,...,r
@ rational solving: decide whether the inhomogeneous parametrized LDE
E;G -G = Z [ bk

admits a rational solution G € IL(x), for some ¢y, ..., ¢, € L not all zero
@ if so, then return P := erc:O cka’; and G; else increase r by 1 and repeat
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Problem:  Given H = P/Q € K(t,x) compute 55 H(t,x)dx
gt



Problem:  Given H = P/Q € K(t,x) compute 55 H(t,x)dx
ot

Hermite reduction: H can be written in reduced form

H=0:(g)+ Q*'

where Q* is the squarefree part of Q and deg,(a) < d* := deg,(Q*).



46 Creatve Telescoping: niaristecase

Problem:  Given H = P/Q € K(t, x) compute 56 H(t, x)dx
Y

Hermite reduction: H can be written in reduced form

H=0:(g)+ Q*'

where Q* is the squarefree part of Q and deg,(a) < d* := deg,(Q*).

Algorithm [B., Chen, Chyzak, Li, 2010]
(1) Fori=0,1,...,d* compute Hermite reduction of a;‘ (H):

i(H) = 9x(g:) + é deg, (a;) < d*
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46 Creatve Telecoping: univaristecsse

Problem:  Given H = P/Q € K(t, x) compute %H(t,x)dx
Y

Hermite reduction: H can be written in reduced form

H=0:(g)+ Q*'

where Q* is the squarefree part of Q and deg,(a) < d* := deg,(Q*).

Algorithm [B., Chen, Chyzak, Li, 2010]
(1) Fori=0,1,...,d* compute Hermite reduction of a;‘ (H):

i(H) = 9x(g:) + é deg, (a;) < d*

(2) Find the first linear relation over K(f) of the form Y3 _ cxar = 0.
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Problem:  Given H = P/Q € K(t, x) compute ?gH(t,x)dx
Y

Hermite reduction: H can be written in reduced form

H=0:(g)+ Q*'

where Q* is the squarefree part of Q and deg,(a) < d* := deg,(Q*).

Algorithm [B., Chen, Chyzak, Li, 2010]
(1) Fori=0,1,...,d* compute Hermite reduction of 8’; (H):
) a:
0t (H) = 0x(8:) + Q—l* deg, (a;) <d*

(2) Find the first linear relation over K(f) of the form Y3 _ cxar = 0.
>L=Y7, cxdF is a telescoper (and Yr—o Ck8k the corresponding certificate).
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Compute a telescoper for the diagonal of the rational power series

1 _y (Hr]) xiyl
l—-x—y =0\
in three different ways:
@ using the 2G (Almkvist-Zeilberger) creative telescoping algorithm;
@ using the 4G (Hermite reduction-based) creative telescoping algorithm;

@ using the 4G (Griffiths-Dwork reduction-based) creative telescoping
algorithm.
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Let (a4)n>0 be a sequence with ay = a7 = 1 satisfying the recurrence
(n+3)ay1 = (2n+3)a, +3na,_q, forall n> 0.

Show that a4, is an integer for all n.
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An exercise from

Let (a4)n>0 be a sequence with ay = a7 = 1 satisfying the recurrence

(n+3)ay1 = (2n+3)a, +3na,_q, forall n> 0.

Show that a4, is an integer for all n.

Follow the next steps:

@ Compute the first 5 terms of the sequence, ay, ..., a4;

@ Determine a Hermite-Padé approximant of type (0,1,2) for (1, f, f2),
where f =Y, a,x";

@® Deduce that P(x, f(x)) = 0 mod x° for P(x,y) := 14 (x — 1)y + x%y>;

@ Show that the equation P(x,y) = 0 admits a root y = g(x) € Q[[x]]
whose coefficients satisfy the same linear recurrence as (a,),>0;

@ Deduce that a,42 = a,41 + Y}_ a - a,_ for all n, and conclude.
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> 1. Let’s compute the first 5 terms of the sequence:

> rec:=(n+3)*a(n+1)-(2*n+3)*a(n)-3*n*a(n-1): ini:=a(0)=1,a(1)=1:
> pro:=gfun:-rectoproc({rec,ini}, a(n), list);
> pro(4);

(1,1,2,4,9]
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> 1. Let’s compute the first 5 terms of the sequence:

> rec:=(n+3)*a(n+1)-(2*n+3)*a(n)-3*n*a(n-1) : ini:=a(0)=1,a(1)=1:
> pro:=gfun:-rectoproc({rec,ini}, a(n), list);
> pro(4);

1,1,2,4,9]

> 2. Determine a Hermite-Padé approximant of type (0,1,2) for (1, f, f?):

> f:=listtoseries(pro(4),x):
> numapprox [hermite_pade] ([1, £, £72], x, [0, 1, 2]);

[-1,—x+1,—x2]
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> 1. Let’s compute the first 5 terms of the sequence:

> rec:=(n+3)*a(n+1)-(2*n+3)*a(n)-3*n*a(n-1) : ini:=a(0)=1,a(1)=1:
> pro:=gfun:-rectoproc({rec,ini}, a(n), list);
> pro(4);

1,1,2,4,9]

> 2. Determine a Hermite-Padé approximant of type (0,1,2) for (1, f, f?):

> f:=listtoseries(pro(4),x):
> numapprox [hermite_pade] ([1, £, £72], x, [0, 1, 2]);

[-1,—x+1,—x2]

> 3. We guessed P(x, f(x)) = 0 mod x° for P(x,y) = 1+ (x — 1)y + x%y%. o
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> 4. The equation P(x,y) = 0 admits a root y = g(x) = ¥,;>0 gnx" in Q[[x]]:

(x) = 1—x—+v1—-2x—3x2
W)= 2x2

=14+x+2x2+4x3+9x*+---
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> 4. The equation P(x,y) = 0 admits a root y = g(x) = ¥,;>0 gnx" in Q[[x]]:

(x) = 1—x—+v1—-2x—3x2
W)= 2x2

=14+x+2x2+4x3+9x*+---

> (gn)n>0 is an integer sequence, as (by coefficient extraction) it satisfies

n
8n+2 = 8nt+1 T Z 8k §n—k-
k=0
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> 4. The equation P(x,y) = 0 admits a root y = g(x) = ¥,;>0 gnx" in Q[[x]]:

(x) = 1—x—+v1—-2x—3x2
W)= 2x2

=14+x+2x2+4x3+9x*+---

> (gn)n>0 is an integer sequence, as (by coefficient extraction) it satisfies
n
$nt+2 = 8nt1+ ) 8k 8nk-
k=0
> We show that (g ),>0 satisfies the same linear recurrence as (a,),>0. Let
h(x):=V1-2x—3x2=1—x-2x%g(x).
Clearly, hg =1, hy = —1, hyyp = —2 gy for n > 0, and

W(x) — 3x+1
h(x)  3x24+2x—1
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> 4. The equation P(x,y) = 0 admits a root y = g(x) = ¥,;>0 gnx" in Q[[x]]:

(x) = 1—x—+v1—-2x—3x2
W)= 2x2

=14+x+2x2+4x3+9x*+---

> (gn)n>0 is an integer sequence, as (by coefficient extraction) it satisfies
n
8nt+2 = &n+1 + 2 8k - 8n—k-
k=0
> We show that (g ),>0 satisfies the same linear recurrence as (a,),>0. Let
h(x):=V1-2x—3x2=1—x-2x%g(x).
Clearly, hg =1, hy = =1, hy4p = —2g, for n > 0, and
W(x) — 3x+1
h(x)  3x24+2x—1
> Hence, (hy), and (gx)n satisfy the recurrences
Bn—=3)h,+2n+1)hy41 — (M +2) by =0,
(Bn—3)gn—2+2n+1)gy—1— (n+2)gn=0.
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> 4. The equation P(x,y) = 0 admits a root y = g(x) = ¥,;>0 gnx" in Q[[x]]:

(x) = 1—x—+v1—-2x—3x2
W)= 2x2

=14+x+2x2+4x3+9x*+---

> (gn)n>0 is an integer sequence, as (by coefficient extraction) it satisfies
n
8n+2 = 8nt+1 T 2 8k - 8n—k-
k=0
> We show that (g ),>0 satisfies the same linear recurrence as (a,),>0. Let

h(x):=V1-2x—3x2=1—x-2x%g(x).
Clearly, hg =1, hy = =1, hy4p = —2g, for n > 0, and
W(x) — 3x+1
h(x)  3x24+2x—1
> Hence, (hy), and (gx)n satisfy the recurrences
Bn—=3)h,+2n+1)hy41 — (M +2) by =0,
(31— 3) gua+ @n+1)gu 1 — (1+2)gn = 0.

> Conclusion: 4, = gy is an integer for all n. O
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> 4. The equation P(x,y) = 0 admits a root y = g(x) = ¥, gnx" in Q[[x]]:

(x) = 1—-x—+v1—-2x—3x2
W)= 2x2

> (gn)n>0 is an integer sequence, as (by coefficient extraction) it satisfies

=1+x+2x2+4x3+9x*+---

n

8n+2 = 8nt+1 T 2 8k §n—k-
k=0
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> 4. The equation P(x,y) = 0 admits a root y = g(x) = ¥, gnx" in Q[[x]]:

(x) = 1—-x—+v1—-2x—3x2
W)= 2x2

> (gn)n>0 is an integer sequence, as (by coefficient extraction) it satisfies

=1+x+2x2+4x3+9x*+---

n
Snt2 = &n+1+ Y 8k Sn—k-
k=0

> We show that (g),>0 satisfies the same linear recurrence as (a,),>0.

> pol:=x"2%y"2 + (x-1)*y + 1;
> deq:=gfun:-algeqtodiffeq(pol,y(x)):
> recg:=gfun:-diffeqtorec(deq,y(x),g(n));

{Bn+3)gn+(2n+5)gu1—(n+4)8ni2=0,80 =18 =1}
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> 4. The equation P(x,y) = 0 admits a root y = g(x) = ¥, gnx" in Q[[x]]:

(x) = 1—-x—+v1—-2x—3x2
W)= 2x2

> (gn)n>0 is an integer sequence, as (by coefficient extraction) it satisfies

=1+x+2x2+4x3+9x*+---

n
Snt2 = &n+1+ Y 8k Sn—k-
k=0

> We show that (g),>0 satisfies the same linear recurrence as (a,),>0.

> pol:=x"2xy~2 + (x-1)*y + 1;
> deq:=gfun:-algeqtodiffeq(pol,y(x)):
> recg:=gfun:-diffeqtorec(deq,y(x),g(n));

{Bn+3)gn+(2n+5)gu1—(n+4)8ni2=0,80 =18 =1}

> Conclusion: a, = gy is an integer for all . O

I v ;onsts o Crontive Tlescoping

10/ 10



