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Several generations of Creative Telescoping algorithms

1G, brutal elimination: [Fasenmyer, 1947], [Lipshitz, 1988], [Zeilberger,
1990], [Takayama, 1990], [Wilf, Zeilberger, 1990], [Chyzak, Salvy, 2000]

2G, linear diff/rec rational solving: [Zeilberger, 1990], [Zeilberger, 1991],
[Almkvist, Zeilberger, 1990], [Chyzak, 2000], [Koutschan, 2010]

3G, combines 1G + 2G + linear algebra: [Apagodu, Zeilberger, 2005],
[Koutschan 2010], [Chen, Kauers 2012], [Chen, Kauers, Koutschan 2014]

. Advantages:

1G–3G: very general algorithms;

2G/3G algorithms are able to solve non-trivial problems.

. Drawbacks:

1G: slow;

2G: bad or unknown complexity;

1G and 3G: non-minimality of telescopers;

1G–3G: all compute (big) certificates.
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Several generations of Creative Telescoping algorithms

4G: roots in [Ostrogradsky, 1845], [Hermite, 1872] and [Picard, 1902].

univariate:
rational

´
: [B., Chen, Chyzak, Li, 2010];

hyperexponential
´

: [B., Chen, Chyzak, Li, Xin, 2013]
hypergeometric ∑: [Chen, Huang, Kauers, Li, 2015], [Huang, 2016]
mixed

´
+∑: [B., Dumont, Salvy, 2016]

algebraic
´

: [Chen, Kauers, Koutschan, 2016]
D-finite Fuchsian

´
: [Chen, van Hoeij, Kauers, Koutschan, 2018]

D-finite
´

: [B., Chyzak, Lairez, Salvy, 2018], [van der Hoeven, 2018]
multiple:

rational bivariate
‚

: [Chen, Kauers, Singer, 2012]
rational: [B., Lairez, Salvy, 2013], [Lairez 2016]
binomial sums: [B., Lairez, Salvy, 2017]

. Advantages:

complexity;

minimality of telescopers;

does not need to compute certificates;

fast in practice,

. Drawback: not (yet) as general as 1G–3G algorithms.
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2G: The Almkvist-Zeilberger Algorithm [1990]

Input: a hyperexponential function H(t, x), i.e.,
∂H
∂t
H and

∂H
∂x
H are in Q(t, x)

Output:

a linear differential operator P(t, ∂t) satisfied by I(t) =
¸

γ H(t, x) dx

a G(t, x) ∈ Q(t, x) such that P(t, ∂t) · H(t, x) = ∂
∂x

(
G(t, x) · H(t, x)

)
.

Algorithm: Write L = Q(t). For r = 0, 1, 2, . . . do

1 compute a(x) :=
∂H
∂x
H ∈ L(x) and bk(x) :=

∂k H
∂tk
H ∈ L(x) for k = 0, . . . , r

2 rational solving: decide whether the inhomogeneous parametrized LDE

∂G
∂x

+ a(x) · G =
r

∑
k=0

ck · bk(x)

admits a rational solution G ∈ L(x), for some c0, . . . , cr ∈ L not all zero
3 if so, then return P := ∑r

k=0 ck∂k
t and G; else increase r by 1 and repeat
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4G Creative Telescoping: univariate case

Problem: Given H = P/Q ∈ K(t, x) compute
˛

γ
H(t, x)dx

Hermite reduction: H can be written in reduced form

H = ∂x(g) +
a

Q? ,

where Q? is the squarefree part of Q and degx(a) < d? := degx(Q
?).

Algorithm [B., Chen, Chyzak, Li, 2010]

(1) For i = 0, 1, . . . , d? compute Hermite reduction of ∂i
t(H):

∂i
t(H) = ∂x(gi) +

ai
Q? , degx(ai) < d?

(2) Find the first linear relation over K(t) of the form ∑r
k=0 ckak = 0.

. L = ∑r
k=0 ck∂k

t is a telescoper (and ∑r
k=0 ckgk the corresponding certificate).
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A mandatory exercise for 20/10/2020, 11:59pm

Compute a telescoper for the diagonal of the rational power series

1
1− x− y

= ∑
i,j≥0

(
i + j

i

)
xiyj

in three different ways:
1 using the 2G (Almkvist-Zeilberger) creative telescoping algorithm;
2 using the 4G (Hermite reduction-based) creative telescoping algorithm;
3 using the 4G (Griffiths-Dwork reduction-based) creative telescoping

algorithm.

Alin Bostan Diagonals and Creative Telescoping



7 / 10

An exercise from a past lecture

Let (an)n≥0 be a sequence with a0 = a1 = 1 satisfying the recurrence

(n + 3)an+1 = (2n + 3)an + 3nan−1, for all n > 0.

Show that an is an integer for all n.

Follow the next steps:

1 Compute the first 5 terms of the sequence, a0, . . . , a4;
2 Determine a Hermite-Padé approximant of type (0, 1, 2) for (1, f , f 2),

where f = ∑n anxn;
3 Deduce that P(x, f (x)) = 0 mod x5 for P(x, y) := 1 + (x− 1)y + x2y2;
4 Show that the equation P(x, y) = 0 admits a root y = g(x) ∈ Q[[x]]

whose coefficients satisfy the same linear recurrence as (an)n≥0;
5 Deduce that an+2 = an+1 + ∑n

k=0 ak · an−k for all n, and conclude.
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Solution

. 1. Let’s compute the first 5 terms of the sequence:

> rec:=(n+3)*a(n+1)-(2*n+3)*a(n)-3*n*a(n-1): ini:=a(0)=1,a(1)=1:
> pro:=gfun:-rectoproc({rec,ini}, a(n), list);
> pro(4);

[1, 1, 2, 4, 9]

. 2. Determine a Hermite-Padé approximant of type (0, 1, 2) for (1, f , f 2):

> f:=listtoseries(pro(4),x):
> numapprox[hermite_pade]([1, f, f^2], x, [0, 1, 2]);

[−1,−x + 1,−x2]

. 3. We guessed P(x, f (x)) = 0 mod x5 for P(x, y) = 1 + (x− 1)y + x2y2.
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Solution

. 4. The equation P(x, y) = 0 admits a root y = g(x) = ∑n≥0 gnxn in Q[[x]]:

g(x) =
1− x−

√
1− 2 x− 3 x2

2 x2 = 1 + x + 2 x2 + 4 x3 + 9 x4 + · · ·

. (gn)n≥0 is an integer sequence, as (by coefficient extraction) it satisfies

gn+2 = gn+1 +
n

∑
k=0

gk · gn−k.

. We show that (gn)n≥0 satisfies the same linear recurrence as (an)n≥0. Let

h(x) :=
√

1− 2 x− 3 x2 = 1− x− 2 x2 g(x).

Clearly, h0 = 1, h1 = −1, hn+2 = −2 gn for n ≥ 0, and

h′(x)
h(x)

=
3 x + 1

3 x2 + 2 x− 1
. Hence, (hn)n and (gn)n satisfy the recurrences

(3 n− 3) hn + (2 n + 1) hn+1 − (n + 2) hn+2 = 0,

(3 n− 3) gn−2 + (2 n + 1) gn−1 − (n + 2) gn = 0.
. Conclusion: an = gn is an integer for all n. �
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