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Some organizational announ

> Homework assignment: Exercise in slide 53 of last course

Exercise: For A € K[x]"*>" of degree d we are given an algorithm
ApproximantBasis (A,4) thats returns a minimal approximant basis at order § > d
in time O(m“$). For M € K"*", give an algorithm for computing M, M2, ..., M"

in O(n®) operations in K. You will assume (property of genericity) that for any

A € K[x]"*2" encountered for some m and d during the algorithm, there exists a
nullspace basis of degree d; also assume that » is a power of 2.

— deadline: Monday 5 October 2020, 23:59

— solution to be sent by email to the 3 instructors

— either (good quality) scanned handwritten notes, or typed pdf

— grades (and maybe feedback?) returned before the mid-term exam

> Mid-term exam:

— date: Wednesday 7 October 2020, 15:45-17:45

— written exam, possibly in the room (except for Austrian students)
— precise instructions next Monday, stay tuned



https://specfun.inria.fr/bostan/AlgoSumInt/slides/alternative-28sept2020.pdf

The exercises from last week

Exercise 1: Prove that L admits at most » = ord(L) linearly independent
solutions (over C). Hint: use Wronskians.

Exercise 2: Estimate the cost of SYM in the case of constant coefficients.

Exercise 3: Assume that the LCLM of A, B in W, ,, is computed using the
algorithm from last time (closure of D-finite functions with respect to +).

© Estimate the size and the degree of the polynomial matrix;
© Deduce a bound on the degrees of LCLM(A, B);
© Estimate the complexity of computing LCLM(A, B) by this method.
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One exercise from

Exercise 3: Assume that the LCLM of A, B in Wy, , is computed using the
algorithm from last time (closure of D-finite functions with respect to +).

@ Estimate the size and the degree of the polynomial matrix;
@ Deduce a bound on the degrees of LCLM(A, B);
@ Estimate the complexity of computing LCLM(A, B) by this method.
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@ Estimate the size and the degree of the polynomial matrix
AB€W,,, L:=LCLM(A,B), A=Y!_oa;(x)9, B=Y; ;b;i(x)d



@ Estimate the size and the degree of the polynomial matrix
AB€W,,, L:=LCLM(A,B), A=Y!_oa;(x)9, B=Y; ;b;i(x)d

ST a,(x) fO) (x) + - +ag(x) f(x) =0, bs(x)8®) (x) + -+ + bo(x)g(x) =0,
e Vect (v) (f/ flh. ,f(rfl)) , g0 Vecty () (g, g, .. .,g(5*1)> ,

sothat  (f+g)") € Vectyy) (£ fo f07Y, 8, 80 g 7Y).



swenQl

@ Estimate the size and the degree of the polynomial matrix
A,BEW,,, L:=LCLM(A,B), A=Yl ja;(x)d', B=Y5 ;bj(x)d

> IF ar(x)f7) (x) 4 4 a0 (x)f(x) = 0, bs(x)gl) (x) +- - + bo(x)g(x) =0,
f(e) € VeCt]K(x) (f/ f,/ s /f(ril)) ’ g(e) S VeCt]K(x) (g, g/, .. .,g(571)> ,

sothat (f+¢)") e Vecty (y) (f, £l 0, g, g’,...,g(s’l)) .

> So L has order R at most ¥ +s < 2(n — 1), and the (rational function)
matrix M(x) used to find it has size R x (R +1)
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Solution, Q

@ Estimate the size and the degree of the polynomial matrix
A,BEW,,, L:=LCLM(A,B), A=Yl ja;(x)d', B=Y5 ;bj(x)d

> IF ar(x)f7) (x) 4 4 a0 (x)f(x) = 0, bs(x)gl) (x) +- - + bo(x)g(x) =0,
f(l) € VeCt]K(x) (f/ f,/ s /f(ril)) ’ g(e) S VeCt]K(x) (g, g/, .. .,g(571)> ,

sothat (f+¢)") e Vecty (y) (f, £l 0, g, g’,...,g(s’l)) .

> So L has order R at most ¥ +s < 2(n — 1), and the (rational function)
matrix M(x) used to find it has size R x (R +1)

> More precisely, by induction:

(erg)([) )g Z”Zz x)f + g vat(x deg(uéz) deg(vy,;) < {n
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Solution, Q1

@ Estimate the size and the degree of the polynomial matrix
A,BEW,,, L:=LCLM(A,B), A=Yl ja;(x)d', B=Y5 ;bj(x)d

> IF ar(x)f7) (x) 4 4 a0 (x)f(x) = 0, bs(x)gl) (x) +- - + bo(x)g(x) =0,
f(l) € VeCt]K(x) (f/ f,/ s /f(ril)) ’ g(e) S VeCt]K(x) (g, g/, .. .,g(371)> ,

sothat (f+¢)") e Vecty (y) (f, £l 0, g, g’,...,g(s’l)) .

> So L has order R at most ¥ +s < 2(n — 1), and the (rational function)
matrix M(x) used to find it has size R x (R +1)

> More precisely, by induction:

(erg)([) = ) Z”Zz x)f + g 2vft(x deg(uéz) deg(vy,;) < {n

>So M(x) = (u,(x)bls(x)) + - M(x), with M(x) of degree O(n?)
B iy i and




@ Deduce a bound on the degrees of LCLM(A, B);
@ Estimate the complexity of computing LCLM(A, B) by this method.

AB€W,,, L:=LCLM(A,B), A=Y!_a;(x)d, B=Y; ;b;i(x)d
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solwton, Qand @S

@ Deduce a bound on the degrees of LCLM(A, B);
@ Estimate the complexity of computing LCLM(A, B) by this method.

AB€W,,, L:=LCLM(A,B), A=Y!_a;(x)d, B=Y; ;b;i(x)d

> L can be found by linear algebra on a matrix M(x) = W - M(x),
with M(x) of degree O(n?) and size R x (R + 1), with R < 2n.
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Solution, Q

@ Deduce a bound on the degrees of LCLM(A, B);
@ Estimate the complexity of computing LCLM(A, B) by this method.

AB€W,,, L:=LCLM(A,B), A=Y!_a;(x)d, B=Y; ;b;i(x)d

> L can be found by linear algebra on a matrix M(x) = W - M(x),
with M(x) of degree O(n?) and size R x (R + 1), with R < 2n.

> By Cramer’s formulas, the kernel of M(x) contains polynomials of
degrees O(n%).
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Solution, Q2

@ Deduce a bound on the degrees of LCLM(A, B);
@ Estimate the complexity of computing LCLM(A, B) by this method.

A,B€W,,, L:=LCLM(A,B), A=Yl ;a;(x)0', B=Y} obi(x)d

> L can be found by linear algebra on a matrix M(x) = W - M(x),
with M(x) of degree O(n?) and size R x (R + 1), with R < 2n.

> By Cramer’s formulas, the kernel of M(x) contains polynomials of
degrees O(n%).

> Thus, ord(L) < 21 and deg, (L) = O(n?).
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Solution, Q2 and Q3

@ Deduce a bound on the degrees of LCLM(A, B);
@ Estimate the complexity of computing LCLM(A, B) by this method.

A,B€W,,, L:=LCLM(A,B), A=Yl ;a;(x)0', B=Y} obi(x)d

> L can be found by linear algebra on a matrix M(x) = W - M(x),
with M(x) of degree O(n?) and size R x (R + 1), with R < 2n.

> By Cramer’s formulas, the kernel of M(x) contains polynomials of
degrees O(n%).

> Thus, ord(L) < 21 and deg, (L) = O(n?).

> This kernel (and thus L) can be found using fast polynomial linear algebra
in O(n*?) arithmetic operations in KK.
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ALGORITHMIC GUESSING
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9, 54, 378

16, 192, 2816

30, 420, 6930
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9, 54, 378

16, 192, 2816
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9, 54, 378

16, 192, 2816

30, 420, 6930

42

2916

46592

126126
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@1, 1 1, 1, 1 1/(1-1t)
@1, 1,2 3,5 1/(1—t—13)
@1, 1, 2 5 14 (1—+/1—4t)/(2t)
@1, 2 9, 54 378 27122 + (1 - 18ty + 16t =1
® 1, 2, 16, 192, 2816 64123 +16ty> + (1—72t)y +54t =1
® 1, 3, 30, 420, 6930 (27822 =)y + (54t —2)y' + 6y =0
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@1, 1 1, 1,1 1/(1—t)
@112 3 5 1/(1—t—1t%)
@1, 1 2 5 14 (1—/1—4t)/(2t)
@1, 2 9 54 378 278292 + (118t )y + 16t =1
® 1, 2, 16, 192, 2816 64123 +16ty> + (1 —72t)y +54t =1
® 1, 3, 30, 420, 6930 (272 —t)y" + (54t —2)y' +6y =0

> Automated guessing: algorithmic computation of these equations
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@1, 1 1,1, 1 1/(1—t)
@112 3, 5 1/(1—t—1t%)
@1, 1 2 5 14 (1—/1—4t)/(2t)
@1, 2 9 54 378 278292 + (118t )y + 16t =1
® 1, 2, 16, 192, 2816 64123 +16ty> + (1 —72t)y +54t =1
® 1, 3, 30, 420, 6930 (2712 —t)y" + (54t —2)y' + 6y =0

> Automated guessing: via Padé, or Hermite-Padé, approximants
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PADE APPROXIMANTS

—guessing linear recurrences with constant coefficients—

10 / 35
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Duality lemma (link between l.r.s.c.c. and rational functions)
Let A(x) = ¥,>0 anX" € K[[x]] be the generating function of (a,),>0.
The following assertions are equivalent:

(i) (ay) is a Lrs.c.c,, having P as characteristic polynomial of degree d.

(i) A(x) is rational, of the form A = Q/rev,;(P) for some Q € K[x] 4,
where rev;(P) = P(1)x?.

11/35
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Duality lemma (link between l.r.s.c.c. and rational functions)
Let A(x) = ¥,>0 anX" € K[[x]] be the generating function of (a,),>0.
The following assertions are equivalent:
(i) (ay) is a Lrs.c.c,, having P as characteristic polynomial of degree d.
(i) A(x) is rational, of the form A = Q/rev,;(P) for some Q € K[x] 4,
where rev;(P) = P(1)x?.

Moreover, if P is the minimal polynomial of (a,),>0, then

d = max{1 + deg(Q),deg(revy(P))} and gcd(Q,revy(P)) =1.

11/35
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Recall: duality le

Duality lemma (link between lL.r.s.c.c. and rational functions)
Let A(x) = ¥,>0 anX" € K[[x]] be the generating function of (a,),>0.
The following assertions are equivalent:

(i) (ay) is a Lrs.c.c,, having P as characteristic polynomial of degree d.

(i) A(x) is rational, of the form A = Q/rev,;(P) for some Q € K[x] 4,
where rev;(P) = P(1)x?.

Moreover, if P is the minimal polynomial of (a,),>0, then

d = max{1 + deg(Q),deg(revy(P))} and gcd(Q,revy(P)) =1.

> Computing MinPol(a,) is equivalent to solving a Padé approximation pb:

g = Amod ¥*N, xf V, deg(R) < N, deg(V) <N and gcd(R,V) =1,
where A = ay+ a1x +apx? + - - - + apy_ 02N "L

11/35
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Recall: Eucli

Pade(A,2N)

In: A in K[x] with deg A < 2N

Out: (R,V)s.t. R/V = Amod x?N, degR < N,degV < N, or FAIL
@ Rp:= x2N, Voi=0;Ri:=A, Vi :=1i:=1
@ While degR; > N do:

@ (Qi,Riy1) := QuotRem(R;_1, R;) #R; 1 = QiR; + Riy
@ Vip1 =V —QiV;
@ i:=i+1.

@ If V;(0) # 0 then return (R;, V;); else return FAIL.

& Quadratic complexity: O(N?) operations in K
> There exist quasi-linear time algorithms O(M(N)logN)

12/ 35
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Berlekamp

In: A bound N € N on the degree of the minimal polynomial of (a;),>0
and the first 2N terms ag, ..., a5ny_1 € K.

Out: the minimal generating polynomial (ay),>0-
@ A=ay+ax+-- +ayn_1x2N-1,
@ Compute the solution (R, V) € K[x]? of Pade(A,2N) s.t. V(0) = 1.
@ d = max{1+ deg(R),deg(V)}. Return revy(V) = V(1/x)x".

& Quadratic complexity: O(N?) operations in K
> There exist quasi-linear time algorithms O(M(N)logN)

13/ 35
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Berlekamp-

In: A bound N € N on the degree of the minimal polynomial of (a,),>0
and the first 2N terms ag, ..., aon_1 € K.

Out: the minimal generating polynomial (4, ),>0-
@ Ryp:=xN;Vy:=0; Ry :=apy 1+ +apx® N1 v :=1;i:=1.
@ While degR; > N, do:

@ (Qji,Riy1) := QuotRem(R;_1, R;) #Ri1 = QiRi + Rip1
@ Viir=V1-QiV;
@ i:=i+1

@ Return V;/1c(V}).

& Quadratic complexity: O(N?) operations in K
> There exist quasi-linear time algorithms O(M(N)logN)

14/35
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Assume given the terms 1,1,2,3,7,13,25,48 and the bound N = 4
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Assume given the terms 1,1,2,3,7,13,25,48 and the bound N = 4
> The previous algorithm starts with Vy =0, V; =1 and

Ro=x% Ryi=x"+x0+2x5+3x*+7x3+13x% +25x+48
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Assume given the terms 1,1,2,3,7,13,25,48 and the bound N = 4
> The previous algorithm starts with Vy =0, V; =1 and

Ro=x% Ryi=x"+x0+2x5+3x*+7x3+13x% +25x+48

and it computes
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Assume given the terms 1,1,2,3,7,13,25,48 and the bound N = 4
> The previous algorithm starts with Vy =0, V; =1 and

Ro=x% Ri=a"+x042x543x*+7x34+13x2+25x+48
and it computes
(Q1,Ry) := QuotRem(Rg, Ry) = (x =1, —x® —x° —4x* —6x3 —12x> — 23 x +48)
Vo=Vo—Q1Vi=—x+1 — Ayy1 = ay
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Assume given the terms 1,1,2,3,7,13,25,48 and the bound N = 4
> The previous algorithm starts with Vy =0, V; =1 and

Ro=x% Ri=a"+x042x543x*+7x34+13x2+25x+48
and it computes
(Q1,Ry) := QuotRem(Rg, Ry) = (x =1, —x® —x° —4x* —6x3 —12x> — 23 x +48)
Vo=Vo—Q1Vi=—x+1 — Ayy1 = ay

(Q2,R3) := QuotRem(Ry, Ry) = (—x, —2x° —3x* —5x% —10x% +73x 4 48)
V3 = V1 — Q2V2 = —x2 +x+1 — Ayyp = Apy1 +an
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Eampe

Assume given the terms 1,1,2,3,7,13,25,48 and the bound N = 4
> The previous algorithm starts with Vy =0, V; =1 and

Ro=x8 Ry =x"4+2°+2x°+3x* +7x3 41342 +25x +48
and it computes
(Q1,Ry) := QuotRem(Rg, Ry) = (x =1, —x® —x° —4x* —6x3 —12x> — 23 x +48)
Vo=Vo—Q1Vi=—x+1 — Ayy1 = ay

(Q2,R3) := QuotRem(Ry, Ry) = (—x, —2x° —3x* —5x% —10x% +73x 4 48)

V3 = V1 — Q2V2 = —xz +x+1 — Ap42 = Ap41 + an
x 1 9t 918 , 115x
(Q3,R4) = QuotRem(Rz,Rg;) = (z - Z, —T - T —51x° — +60)
3 2
X 3x 5x 5 3 5 5
Vi=V,—Q3V3 = E—T—T‘f‘z — A3 = Ean+2+§an+1_§un
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Assume given the terms 1,1,2,3,7,13,25,48 and the bound N = 4
> The previous algorithm starts with Vy =0, V; =1 and

Ro=28 Ry=a"+x°+2x°4+3x* +723+13x% +25x +48
and it computes
(Q1,Ry) := QuotRem(Rg, Ry) = (x =1, —x® —x° —4x* —6x3 —12x> — 23 x +48)
Vo=Vo—Q1Vi=—x+1 — Ayy1 = ay

(Q2,R3) := QuotRem(Ry, Ry) = (—x, —2x° —3x* —5x% —10x% +73x 4 48)

Vai=Vi—QVh=—x*+x+1 — Ayt = Ayq1 + dn
x 1 9t 918 , 115x
(Q3,R4) = QuotRem(Rz,Rg;) = (5 - Z, —T - T —51x° — +60)
3 2
X 3x 5x 5 3 5 5
Vy:=Vo—Q3V3 = E—T—T‘f‘z — Ap43 = Eﬂn+2+§ﬂn+1—§ﬂn
8x 4 124x% 344x? 292x 64
(Q4, R5) = QuotRem(R3, R4) = (? =+ 6, 3 =+ 9 =+ 9 + ?)
axt 4 4 4x 4
V5::V3_Q4V4:_T+T+T+?+§ —  App4 = Apg3 oo tan

15 /35
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HERMITE-PADE APPROXIMANTS

—guessing equations with polynomial coefficients—
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Definition: Given a column vector F = (fi,..., f4)T € K[[x]]" and an n-tuple
d=(dy,...,dy) € N", a Hermite-Padé approximant of type d for F is a row
vector P = (Py,...,Py) € K[x]", (P # 0), such that:
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Definition: Given a column vector F = (fi,..., f4)T € K[[x]]" and an n-tuple
d=(dy,...,dy) € N", a Hermite-Padé approximant of type d for F is a row
vector P = (Py,...,Py) € K[x]", (P # 0), such that:

(1) P-F=Pifi+ -+ Pyfy = O(x7) with ¢ = Y (d; +1) — 1,
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Definition: Given a column vector F = (fi,..., f4)T € K[[x]]" and an n-tuple
d=(dy,...,dy) € N", a Hermite-Padé approximant of type d for F is a row
vector P = (Py,...,Py) € K[x]", (P # 0), such that:

(1) P-F= P1f1 + - +Pnfn = O(XU) with 0 = Zi(di + 1) — 1,
(2) deg(P;) < d; for all i.
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Definition: Given a column vector F = (fy,..., f1)T € K[[x]]" and an n-tuple
d=(dy,...,dy) € N", a Hermite-Padé approximant of type d for F is a row
vector P = (Py,...,Py) € K[x]", (P # 0), such that:

(1) P-F= P1f1 + - +Pnfn = O(XU) with 0 = Zi(di + 1) — 1,
(2) deg(P;) < d; for all i.

o is called the order of the approximant P.
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Definition: Given a column vector F = (fy,..., f1)T € K[[x]]" and an n-tuple
d=(dy,...,dy) € N", a Hermite-Padé approximant of type d for F is a row
vector P = (Py,...,Py) € K[x]", (P # 0), such that:

(1) P-F= P1f1 —+ e +Pnfn = O(X‘T) with 0 = Zi(di + 1) —1,
(2) deg(P;) < d for all i.

o is called the order of the approximant P.

> Very useful concept in number theory (irrationality/transcendence):
© [Hermite, 1873]: e is transcendent.
© [Lindemann, 1882]: 7t is transcendent; so does ¢* for any & € Q \ {0}.
© [Apéry, 1978; Beukers, 1981]: {(3) = ¥ ;>1 n% is irrational.
© [Rivoal, 2000]: there exist infinite values of k such that {(2k + 1) ¢ Q.

T 5ot ocssing of lgebraic and diforential equations




Sur la généralisation des fractions continues algébriques;

Par M. H. PADE,

Docteur s Sciences mathématiques,
Professeur au lycée de Lille.

INTRODUCTION.

M. Hermite s'est, dans un travail récemment paru ('), occupé de
la généralisation des fractions continues algébriques. La question est
de déterminer les polynomes X, X,, ..., X,, de degrés ,, pyy ..y iy,
qui satisfont & I'équation

S, X, +8,X, +...+ 5, X, = S ghtarortrnl
S,, 8, ..., S, étant des séries entiéres données, et S une série égale-
ment entiére. Ou plutét, il s’ngi permette
le calcul de proche en proche de ces systémes de n polynomes, et qui’
B R e ———




Let us compute a Hermite-Padé approximant of type (1,1,1) for (1,C, Cz),
where C(x) = 1+ x +2x% 4 5x3 + 14x* + O(x°).
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Let us compute a Hermite-Padé approximant of type (1,1,1) for (1,C, C2),
where C(x) = 1+ x +2x% 4 5x3 + 14x* + O(x°).
This boils down to finding &g, &1, Bo, B1,7Y0, 71 (not all zero) such that

agF+arx+(Bo + B1x) (14 x +2x% + 537 + 14x*)+ (0 + 1) (1 + 2x + 5x% + 14x° +42x*) = O (%)
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Let us compute a Hermite-Padé approximant of type (1,1,1) for (1,C, C2),

where C(x) = 1+ x +2x% 4 5x3 + 14x* + O(x°).

This boils down to finding &g, &1, Bo, B1,7Y0, 71 (not all zero) such that

ag+ayx+(Bo + 1) (1 + x +2x% +5x° + 14x*)+ (70 + 11x) (1 + 2x + 557 4 14x° + 42x*) = O (x)
Identifying coefficients, this is equivalent to a homogeneous linear system:
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Let us compute a Hermite-Padé approximant of type (1,1,1) for (1,C, C2),

where C(x) = 1+ x + 2x% 4+ 523 4+ 14x* + O(x%).

This boils down to finding &g, &1, Bo, B1,7Y0, 71 (not all zero) such that

agF+arx+(Bo + B1x) (14 x +2x% + 537 + 14x*)+ (0 + 1) (1 + 2x + 5x% + 14x° +42x*) = O (%)
Identifying coefficients, this is equivalent to a homogeneous linear system:

10 1 0 1 0 zo 10 1 0 1 g 0
01 1 1 2 1 1 01 1 1 2 a 1
00 2 1 5 2><ﬁ°=0<=>00215></30=—712.
00 5 2 14 5 P 00 5 2 14 B 5
0 0 14 5 42 14 zfl’ 0 0 14 5 42 Yo 14

19/35
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Let us compute a Hermite-Padé approximant of type (1,1,1) for (1,C, C2),

where C(x) = 1+ x + 2x% 4+ 523 4+ 14x* + O(x%).

This boils down to finding &g, &1, Bo, B1,7Y0, 71 (not all zero) such that

ag+ayx+(Bo + 1) (1 + x +2x% +5x° + 14x*)+ (70 + 11x) (1 + 2x + 557 4 14x° + 42x*) = O (x)
Identifying coefficients, this is equivalent to a homogeneous linear system:

10 1 0 1 0 Zo 10 1 0 1 g 0
01 1 1 2 1 1 01 1 1 2 a 1
000 2 1 5 2[x|Pl_oe=lo 0 2 1 5|x|g|=-m|2
00 5 2 14 5 P 00 5 2 14 B 5
0 0 14 5 42 14 zfl’ 0 0 14 5 42 Yo 14

By homogeneity, one can choose y; = 1.

19/35
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Let us compute a Hermite-Padé approximant of type (1,1,1) for (1,C, C2),
where C(x) = 1+ x + 2x% 4+ 523 4+ 14x* + O(x%).
This boils down to finding &g, &1, Bo, B1,7Y0, 71 (not all zero) such that

agF+arx+(Bo + B1x) (14 x +2x% + 537 + 14x*)+ (0 + 1) (1 + 2x + 5x% + 14x° +42x*) = O (%)
Identifying coefficients, this is equivalent to a homogeneous linear system:

10 1 0 1 0 o 10 1 0 1 xg 0
01 1 1 2 1 1 01 1 1 2 a 1
000 2 1 5 2[x|Pl_oe=lo 0 2 1 5|x|g|=-m|2
00 5 2 14 5 P 00 5 2 14 B1 5
0 0 14 5 42 14 z(l’ 0 0 14 5 42 Yo 14

By homogeneity, one can choose y; = 1.
Then, the violet minor shows that one can take (B, f1,70) = (—1,0,0).
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Let us compute a Hermite-Padé approximant of type (1,1,1) for (1,C, C2),
where C(x) = 1+ x + 2x% 4+ 523 4+ 14x* + O(x%).
This boils down to finding &g, &1, Bo, B1,7Y0, 71 (not all zero) such that

agF+arx+(Bo + B1x) (14 x +2x% + 537 + 14x*)+ (0 + 1) (1 + 2x + 5x% + 14x° +42x*) = O (%)
Identifying coefficients, this is equivalent to a homogeneous linear system:

10 1 0 1 0 o 10 1 0 1 xg 0
01 1 1 2 1 1 01 1 1 2 a 1
000 2 1 5 2[x|Pl_oe=lo 0 2 1 5|x|g|=-m|2
00 5 2 14 5 P 00 5 2 14 B1 5
0 0 14 5 42 14 z(l’ 0 0 14 5 42 Yo 14

By homogeneity, one can choose y; = 1.
Then, the violet minor shows that one can take (B, f1,70) = (—1,0,0).
The other values are g = 1, a7 = 0.
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Worked example

Let us compute a Hermite-Padé approximant of type (1,1,1) for (1,C, CZ),
where C(x) = 1+ x + 2x% 4+ 523 4+ 14x* + O(x%).
This boils down to finding &g, &1, Bo, B1,7Y0, 71 (not all zero) such that

agF+arx+(Bo + B1x) (14 x +2x% + 537 + 14x*)+ (0 + 1) (1 + 2x + 5x% + 14x° +42x*) = O (%)
Identifying coefficients, this is equivalent to a homogeneous linear system:

10 1 0 1 0 ZO 10 1 0 1 g 0
01 1 1 2 1 ﬁl 01 1 1 2 a 1
000 2 1 5 2|x|2% =010 0 2 1 5|x|f|=-m]2
00 5 2 14 5 P 00 5 2 14 B1 5
0 0 14 5 42 14 3(1’ 0 0 14 5 42 Yo 14

By homogeneity, one can choose y; = 1.
Then, the violet minor shows that one can take (B, f1,70) = (—1,0,0).
The other values are g = 1, a7 = 0.

& Thus the approximant is (1, —1, x), which corresponds to P = 1 — y + xy/?
such that P(x,C(x)) = 0 mod x°.
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Algebraic and differential app

© Hermite-Padé approximants of 1 = 2 power series are related to Padé
approximants, i.e. to approximation of series by rational functions

© algebraic approximants = Hermite-Padé approximants for f, = A1,
where A € K[[x]] seriestoalgeq, listtoalgeq

© differential approximants = Hermite-Padé approximants for f, = A=),
where A € K[[x]] seriestodiffeq, listtodiffeq

> listtoalgeq([1,1,2,5,14,42,132,429],y(x));

1—y(x) +xy (x)?

> listtodiffeq([1,1,2,5,14,42,132,429],y(x)) [1];

2
{20+ @240 Sy 042 55y 0.5 0 = 1D0) 0) =1




Existence and naiv

Theorem For any vector F = (fi,..., fu)T € K[[x]]" and for any n-tuple
d = (dq,...,dn) € N", there exists a Hermite-Padé approx. of type d for F.

Proof: The undetermined coefficients of P; = Z;.i;o pi,jxf satisfy a linear
homogeneous system with o =) ;(d; + 1) — 1 eqs and ¢ + 1 unknowns.

Corollary Computation in O(¢0®), for 2 < w < 3 (linear algebra exponent)

> There are better algorithms (the linear system is structured, Sylvester-like):

© Derksen’s algorithm (Euclidean-like) O(c?)
© Beckermann-Labahn algorithm (DAC) O(c) = O(clog? r)
@ structured linear algebra algorithms for Toeplitz-like matrices O(U)
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Quasi-optimal ¢

Theorem [Beckermann, Labahn, 1994] One can compute a Hermite-Padé
approximant of type (d,...,d) for F = (fi,..., fu) in O(n“d) ops. in K.

Ideas:

© Compute a whole matrix of approximants
© Exploit divide-and-conquer

Algorithm:

@ If o =n(d+1)—1 < threshold, call the naive algorithm

@ Else:

recursively compute P € K[x]"*" s.t. Py - F = O(x%/2), deg(P;) ~ ¢
compute “residue” R such that P - F = x7/2 . (R + O(x7/2))

recursively compute Py € K[x]"*" s.t. P, - R = O(x7/2), deg(P;) ~ %
return P := P, - P;

®06 © 6

> The precise choices of degrees is a delicate issue
> Corollary: Ged, extended gcd, Padé approximants in O(d) ops. in K.
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Theorem. Suppose A € K[[x]] is an algebraic series, and that it is a root of a
(unknown) polynomial in K[x, y] of degree at most d in x and at most # in y.
Let Q = (Qo, Q1,---,Qxn) be a Hermite-Padé approximant of type (d,...,d)
for F= (1,A,...,A"). If Q-F = O(x2*1), then Q - F = 0.
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Applic

Theorem. Suppose A € K[[x]] is an algebraic series, and that it is a root of a
(unknown) polynomial in K[x, y] of degree at most d in x and at most # in y.
Let Q = (Qo, Q1,---,Qxn) be a Hermite-Padé approximant of type (d,...,d)
for F= (1,A,...,A"). If Q-F = O(x2*1), then Q - F = 0.

In other words, A is a root of the polynomial Q =Y Qi(x)yl.
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Application: certified

Theorem. Suppose A € K|[[x]] is an algebraic series, and that it is a root of a
(unknown) polynomial in K[x, y] of degree at most d in x and at most # in y.
Let Q = (Qo, Q1,--.,Qxn) be a Hermite-Padé approximant of type (d, ..., d)
for F=(1,A,...,A"). If Q- F = O(x?*"+1), then Q - F = 0.

In other words, A is a root of the polynomial Q = Y, Q;(x)y'.

Remark: If n = 1, this simply says that if A € K(x)<4 and if
Qo(x) + Q1 (x)A = O(x?¥*1) with deg(Q;) < d, then Qp(x) + Q1 (x)A = 0.

Indeed, if A = Py/P; with deg(P;) < d, then QoP; + Q1 Py = O(x***1) and
deg(QoPl +Q1Py) <24 implies QoP; + Q1P = 0.
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Applic

Theorem. Suppose A € K[[x]] is an algebraic series, and that it is a root of a
(unknown) polynomial in K[x, y] of degree at most d in x and at most # in y.
Let Q = (Qo, Q1,---,Qxn) be a Hermite-Padé approximant of type (d,...,d)
for F= (1,A,...,A"). If Q-F = O(x2*1), then Q - F = 0.

In other words, A is a root of the polynomial Q =Y Qi(x)yl.

Proof:
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Application:

Theorem. Suppose A € K[[x]] is an algebraic series, and that it is a root of a
(unknown) polynomial in K[x, y] of degree at most d in x and at most # in y.
Let Q = (Qo, Q1,---,Qxn) be a Hermite-Padé approximant of type (d,...,d)
for F= (1,A,...,A"). If Q-F = O(x2*1), then Q - F = 0.

In other words, A is a root of the polynomial Q =Y Qi(x)yl.

Proof: Let P € K[x, y] be an irreducible polynomial such that
P(x,A(x)) =0, and deg,(P) <d, deg, (P) < n.
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Application: cer

Theorem. Suppose A € K[[x]] is an algebraic series, and that it is a root of a
(unknown) polynomial in K[x, y] of degree at most d in x and at most # in y.
Let Q = (Qo, Q1,---,Qxn) be a Hermite-Padé approximant of type (d,...,d)
for F= (1,A,...,A"). If Q-F = O(x2*1), then Q - F = 0.

In other words, A is a root of the polynomial Q =Y Qi(x)yl.

Proof: Let P € K[x, y] be an irreducible polynomial such that
P(x,A(x)) =0, and deg,(P) <d, deg, (P) < n.

© R(x) = Resy(P,Q) € K[x] has degree at most 2dn.
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Application: certifie

Theorem. Suppose A € K[[x]] is an algebraic series, and that it is a root of a
(unknown) polynomial in K[x, y] of degree at most d in x and at most # in y.
Let Q = (Qo, Q1,---,Qxn) be a Hermite-Padé approximant of type (d,...,d)
for F= (1,A,...,A"). If Q-F = O(x2*1), then Q - F = 0.

In other words, A is a root of the polynomial Q =Y Qi(x)yl.

Proof: Let P € K[x, y] be an irreducible polynomial such that
P(x,A(x)) =0, and deg,(P) <d, deg, (P) < n.

© R(x) = Resy(P,Q) € K[x] has degree at most 2dn.
© R(x) =UP+VQfor U,V € K[x,y] with degy(V) <n.
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Application: certified algebr

Theorem. Suppose A € K[[x]] is an algebraic series, and that it is a root of a
(unknown) polynomial in K[x, y] of degree at most d in x and at most # in y.
Let Q = (Qo, Q1,---,Qxn) be a Hermite-Padé approximant of type (d,...,d)
for F= (1,A,...,A"). If Q-F = O(x2*1), then Q - F = 0.

In other words, A is a root of the polynomial Q = Y7 ; Q;(x)y'.

Proof: Let P € K]x, y] be an irreducible polynomial such that
P(x,A(x)) =0, and deg, (P) <d, degy(P) <n.
® R(x) = Resy(P,Q) € K[x] has degree at most 2dn.
© R(x) =UP+VQ for U,V € K[x,y] with deg, (V) < n.
© Evaluation at y = A(x) yields
R(x) = U(x, A(x)) P(x, A(x)) +V (x, A(x)) Q(x, A(x)) = O(*""*1).
N——r N——

0 O(x2n+1)




Application: certified algebraic guessing

Theorem. Suppose A € K[[x]] is an algebraic series, and that it is a root of a
(unknown) polynomial in K[x, y] of degree at most d in x and at most # in y.
Let Q = (Qo, Q1, ..., Qn) be a Hermite-Padé approximant of type (d,...,d)
for F=(1,A,...,A"). If Q-F = O(x*"*1), then Q - F = 0.

In other words, A is a root of the polynomial Q = Y-, Q;(x)y'.

Proof: Let P € K]x, y] be an irreducible polynomial such that
P(x,A(x)) =0, and deg, (P) <d, degy(P) <n.
© R(x) = Resy(P,Q) € K]x] has degree at most 2dn.

© R(x) =UP+VQ for U,V € K[x,y] with deg, (V) < n.
¢ Evaluation at y = A(x) yields

R(x) = U(x, A(x)) P(x, A(x)) +V(x, A(x)) Q(x, A(x)) = O(x21m+1y,
0 O(x2n+1)

© Thus R =0, thatis gcd(P, Q) # 1, and thus P | Q, and A is a root of Q.
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Show that the following series is algebraic:

=1 ()

n>0
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Show that the following series is algebraic:

=1 ()

Strategy: First guess a polynomial P(t,y) in Q[t,y], s.t. P(t, f(t)) = 0 mod t’,
then prove that P admits the power series f(t) as a root, i.e., P(t, f(t)) = 0.
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Show that the following series is algebraic:

=1 ()

Strategy: First guess a polynomial P(t,y) in Q[t,y], s.t. P(t, f(t)) = 0 mod t’,
then prove that P admits the power series f(t) as a root, i.e., P(t, f(t)) = 0.

@ Find Ps.t. P(t, f(t)) = 0 mod #2° by Hermite-Padé approximation.
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~ Application:alebracty of a hypergeometricsries

Show that the following series is algebraic:

=1 ()

Strategy: First guess a polynomial P(t,y) in Q[t,y], s.t. P(t, f(t)) = 0 mod t’,
then prove that P admits the power series f(t) as a root, i.e., P(t, f(t)) = 0.

@ Find Ps.t. P(t, f(t)) = 0 mod #2° by Hermite-Padé approximation.

@ Show that there exists a unique root r(t) € Q[[t]] of P such that r(0) = 1.
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Applic

Show that the following series is algebraic:

=1 ()

n>0
Strategy: First guess a polynomial P(t,y) in Q[t,y], s.t. P(t, f(t)) = 0 mod t’,
then prove that P admits the power series f(t) as a root, i.e., P(t, f(t)) = 0.

@ Find Ps.t. P(t, f(t)) = 0 mod #2° by Hermite-Padé approximation.
@ Show that there exists a unique root r(t) € Q[[t]] of P such that r(0) = 1.

@ r(t) =Y rat" being algebraic, it is D-finite, and so (r;;) is P-recursive.
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Applicatio

Show that the following series is algebraic:

=1 ()

n>0

Strategy: First guess a polynomial P(t,y) in Q[t,y], s.t. P(t, f(t)) = 0 mod t’,
then prove that P admits the power series f(t) as a root, i.e., P(t, f(t)) = 0.

@ Find Ps.t. P(t, f(t)) = 0 mod #2° by Hermite-Padé approximation.
@ Show that there exists a unique root r(t) € Q[[t]] of P such that r(0) = 1.
@ r(t) =Y rat" being algebraic, it is D-finite, and so (r;;) is P-recursive.

@ Deduce that (r,,), and (f,,), with f, = (5;‘) satisfy the same recurrence
of order 1 and the same initial condition rg = fy = 1.
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Application: al

Show that the following series is algebraic:

=1 ()

n>0

Strategy: First guess a polynomial P(t,y) in Q[t,y], s.t. P(t, f(t)) = 0 mod t’,
then prove that P admits the power series f(t) as a root, i.e., P(t, f(t)) = 0.

@ Find Ps.t. P(t, f(t)) = 0 mod #2° by Hermite-Padé approximation.
@ Show that there exists a unique root r(t) € Q[[t]] of P such that r(0) = 1.
@ r(t)=Y;ornt" being algebraic, it is D-finite, and so (r;,) is P-recursive.

@ Deduce that (r,,), and (f,,), with f, = (5;’) satisfy the same recurrence
of order 1 and the same initial condition rg = fy = 1.

® Conclude that f,, = r,, for all n, thus f(t) = r(t) is algebraic.
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> f5:=sum(binomial (5*n,n)*t"n, n=0..infinity):
> simplify(£f5) assuming t>0 and t<1/100;

e ([1234] [113] 3125¢
453\ |5'5’5’5|” |4'2"4|" 256
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Application: alg,

> f5:=sum(binomial (5*n,n)*t"n, n=0..infinity):
> simplify(£f5) assuming t>0 and t<1/100;

e ([1234] [113] 3125¢
453\ |5'5’5’5|” |4'2"4|" 256

> P5:=subs(y(t) = y, seriestoalgeq(series(f5,t,20), y(t))[1]);

1+15y +80y> +160y> + (3125t — 256) y°

25 /35
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Application: algebraicity of

> f5:=sum(binomial (6*n,n)*t"n, n=0..infinity):
> simplify(£f5) assuming t>0 and t<1/100;

e ([1234] [113] 3125¢
453\ |5'5’5’5|” |4'2"4|" 256

> P5:=subs(y(t) = y, seriestoalgeq(series(£5,t,20), y(t))[1]);

1+15y +80y> +160y> + (3125t — 256) y°

> subs({t=0, y=1}, P5), subs({t=0, y=1}, diff(P5,y));

0, —625




> deqb:=algeqtodiffeq(P5, y(t))[1];

2

120y (t) + (15000 t — 24) %y (t) + (45000 2 — 816 t) %y (t)+

3 4
(25000 —11522) %y (1) + (31254 — 256 ) %y (t) =0
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Application: al

> deqb:=algeqtodiffeq(P5, y(t))[1];

2

d
120y (£) + (15000 ¢ — 24) %y (1) + (4500022 ~8161) Sy (1) +

& 44
(25000 —11522) A0k (31254 — 256 1°) v =0

> recb:=map(factor, diffeqtorec(deq5, y(t), r(n)));

506n+1)(5n+2)5n+3)(5n+4)r(n)—
8(4n+1)2n+1)(4n+3)(n+1)r(n+1)=0
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Application: algebraicity of

> deqb:=algeqtodiffeq(P5, y(t))[1];

d2
120 (£) + (15000 — 24) %y (1) + (450002 — 816 ) Sy (1) +

& 44
(25000#% — 11522 0K (31254 — 256 1°) v =0

> recb:=map(factor, diffeqtorec(deq5, y(t), r(n)));

506n+1)(5n+2)5n+3)(5n+4)r(n)—
8(4n+1)2n+1)(4n+3)(n+1)r(n+1)=0

> f:=n -> binomial(5*n,n):
> simplify(convert(subs({r(n)=f(n), r(n+1)=f(n+1)}, rec5), GAMMA));

0




Let (a4)n>0 be a sequence with ay = a7 = 1 satisfying the recurrence
(n+3)ay1 = (2n+3)a, +3na,_q, forall n> 0.

Show that a4, is an integer for all n.
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Homework: an exe

Let (a4)n>0 be a sequence with ay = a7 = 1 satisfying the recurrence

(n+3)ay1 = (2n+3)a, +3na,_q, forall n> 0.

Show that a4, is an integer for all n.

Follow the next steps:

@ Compute the first 5 terms of the sequence, ay, ..., a4;

@ Determine a Hermite-Padé approximant of type (0,1,2) for (1, f, f2),
where f =Y, a,x";

@® Deduce that P(x, f(x)) = 0 mod x° for P(x,y) := 14 (x — 1)y + x%y>;

@ Show that the equation P(x,y) = 0 admits a root y = g(x) € Q[[x]]
whose coefficients satisfy the same linear recurrence as (a,),>0;

@ Deduce that a,42 = a,41 + Y}_ a - a,_ for all n, and conclude.
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FAST SKEW MULTIPLICATION
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Review of

© Naive expansion by Leibniz’s formula and expansion of &/x*:

n . .
BA= ) bijjaypx (9x") 9" — O(n%)
i, i,0=0 —
< n terms

©® Iterative scheme by derivations of the right-hand factor:

n .
BA=Ybix) (FA) by T=Ta+ L oM n?)
i=0 ~—— dx

degree <2nind
degree <ninx

© Takayama’s iterative scheme by derivations of both factors:

noq [dkB dkA
k=0""

bivariate commutative product

in bidegree (1,1)
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Review of compl

Product of operators in W, 3 = K[x](d) 4,

© Naive: O(d?r?min(d, 7)) ops
© Iterative: O(min(d, r)> M(max(d,r))) ops
© Takayama: O(min(d, r) M(dr)) ops

Upcoming:
© [van der Hoeven, 2002]: O(max(d, r)?> min(d, )“~2) ops
@ [Benoit, B., van der Hoeven, 2012]: O(dr min(d, r)“’_z) ops

> w is a feasible exponent for matrix multiplication (2 < w < 3)
> O indicates that polylogarithmic factors are neglected.
> The last two algorithms use an evaluation-interpolation strategy.

30 /35
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Product in K[x](

2,

A(x,0) and B(x,0)

n
of bidegree (n,n) x'C;(6), degC; < 2n.

— C=BA=
i=0

. ) 2n )
0/ (xF) =Kk — C(x) =Y Ci(k) x' k.
i=0
By Lagrange interpolation: (Ci(k))ogi,kgzn — (Ci(e))ogigh.
K] <on 2 K[x] <an 25 K[x] <an.

Matrix of size (4n+1) x (3n+1) for B, 3n+1) x (2n+ 1) for A.

Complexity: SkewM(1,1n) C O(MM(n)) = O(n*)

© Composition: product of the matrices of differential operators.
© Evaluation/interpolation: Vandermonde matrix and inverse.

© Conversion 0 <+ 0: matrix of Stirling numbers and inverse.

31/35
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Al. Fast multipoint evaluation/interpolation in O (1 M(n)logn).

A2. Fast conversions between monomial and falling-factorial bases
[Gerhard, 2000] in O (1 M(n)logn).

— O(MM(n)) with the better constants given in the table.

B1. Smaller matrices are sufficient: when B, A of bidegree (n,1) in (x,9),
A- B-
Klxl<an = Klx]<zn = Kx] <2

Size (2n+1) x (3n+1) for B, (3n +1) x (2n+1) for A.
B2. Direct calculation with 9.

32/35
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Improvemen

© A new, direct algorithm for K[x](9d), with better constant c.

Algorithm | VdHy IVdH, |VdH, IVdH, MulWeyl
All block products| 37 24 ‘ 96 48 12

Zeros + Strassen | 20 8 47 12 8

Number c of n X n block products for multiplication of skew polynomials
in (x,0), resp. (x,9), of bidegree (n,n).

© Equivalence SkewM (1, 1) o< MM (1)
[Van der Hoeven, 2002]: SkewM (1, 1) C O(MM(n))

[B., Chyzak, Le Roux, 2008]: O (SkewM(1,1)) > MM (1)

L, 0o o0]° L, 0 0
@ MM(n) C LTMM(O(n)): |[M I, O| =|2M I, O0].
0 N I NM 2N I,
@ LTMM(n) C O(SkewM(n)):
) 0 0
P mii=Aij(j) &
i mj o | L ZJCZA[(G).
: . - O(n M(n)logn) (=0
My 0 . My n—i . mn,n

bidegree (1,n)
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Using Euler’s operator 6 = xo:
© 0xP = xPO+x (pxP~1) = 2P0,

© xf(0) = f(6 —v) x* in complexity O(M(deg f)).

1
(Z x"By(x?,0) ) (ZA (x%,0)x > Z x [Bqu, )(xP, 9)} x°.
U, —_————
commutative bivariate
product in bidegree (n/p,n)

Products O(p* M(n?/p)) C O(pM(n?))
Conversions x <> x7: O(pn M(n)logn) — O(pn?).
Conversions 9 <> 0: O(nM(n)logn)

34/35
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Theorem [Benoit, B., Hoeven, 2012] Product in W, ; = K[x](9) 4, with cost

O(dr min(d, r)“~2).
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Theorem [Benoit, B., Hoeven, 2012] Product in W, ; = K[x](9) 4, with cost

O(dr min(d, r)“~2).

> In the important case d =~r2, this complexity reads O(rv+h)
& Improves: O(r7) [naive]; O(r“*?) [Hoeven’02]; O(r*) [iter + Takayama]

35/35



The case of un

Theorem [Benoit, B., Hoeven, 2012] Product in W, ; = K[x](9) 4, with cost

O(dr min(d, r)“~2).

> In the important case d =~r2, this complexity reads O(rv+h)
& Improves: O(r7) [naive]; O(r“*?) [Hoeven’02]; O(r*) [iter + Takayama]

> Main ideas
© Use evaluation-interpolation on exponential polynomials x’ exp (ax)
© Replace (fast) Lagrange interpolation by (fast) Hermite interpolation
© Use (x,0)

Jeflection, (9, —x) to reduce to the case r > d

N 5ot ocssing of lgebraic and diforential equations




The case of unbalanced

Theorem [Benoit, B., Hoeven, 2012] Product in W, ; = K[x](9) 4, with cost

O(dr min(d, r)“~2).

> In the important case d = r?, this complexity reads O(r“*1)
& Improves: O(r7) [naive]; O(r“*?) [Hoeven’02]; O(r*) [iter + Takayama]

> Main ideas
© Use evaluation-interpolation on exponential polynomials x’ exp(ax)
© Replace (fast) Lagrange interpolation by (fast) Hermite interpolation

reflection
—

© Use (x,9) (9, —x) to reduce to the case r > d

> Combined with DAC in [Hoeven’16] yields alternative probabilistic
(Monte Carlo) algorithms in O(r“+1) for LCLM, GCRD in Wi r

N 5ot ocssing of lgebraic and diforential equations




