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Some organizational announcements

. Homework assignment: Exercise in slide 53 of last course

−→ deadline: Monday 5 October 2020, 23:59
−→ solution to be sent by email to the 3 instructors
−→ either (good quality) scanned handwritten notes, or typed pdf
−→ grades (and maybe feedback?) returned before the mid-term exam

. Mid-term exam:
−→ date: Wednesday 7 October 2020, 15:45-17:45
−→ written exam, possibly in the room (except for Austrian students)
−→ precise instructions next Monday, stay tuned
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The exercises from last week

Exercise 1: Prove that L admits at most r = ord(L) linearly independent
solutions (over C). Hint: use Wronskians.

Exercise 2: Estimate the cost of SYM in the case of constant coefficients.

Exercise 3: Assume that the LCLM of A, B in Wn,n is computed using the
algorithm from last time (closure of D-finite functions with respect to +).

Estimate the size and the degree of the polynomial matrix;

Deduce a bound on the degrees of LCLM(A, B);

Estimate the complexity of computing LCLM(A, B) by this method.
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One exercise from the last lecture

Exercise 3: Assume that the LCLM of A, B in Wn,n is computed using the
algorithm from last time (closure of D-finite functions with respect to +).

1 Estimate the size and the degree of the polynomial matrix;
2 Deduce a bound on the degrees of LCLM(A, B);
3 Estimate the complexity of computing LCLM(A, B) by this method.
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Solution, Q1

1 Estimate the size and the degree of the polynomial matrix

A, B ∈Wn,n, L :=LCLM(A, B), A = ∑r
i=0 ai(x)∂i, B = ∑s

i=0 bi(x)∂i

. If ar(x) f (r)(x) + · · ·+ a0(x) f (x) = 0, bs(x)g(s)(x) + · · ·+ b0(x)g(x) = 0,

f (`) ∈ VectK(x)

(
f , f ′, . . . , f (r−1)

)
, g(`) ∈ VectK(x)

(
g, g′, . . . , g(s−1)

)
,

so that ( f + g)(`) ∈ VectK(x)

(
f , f ′, . . . , f (r−1), g, g′, . . . , g(s−1)

)
.

. So L has order R at most r + s ≤ 2(n− 1), and the (rational function)
matrix M(x) used to find it has size R× (R + 1)

. More precisely, by induction:

( f + g)(`) =
1

ar(x)`
·
r−1

∑
i=0

u`,i(x) f (i) +
1

bs(x)`
·
s−1

∑
i=0

v`,i(x)g(i), deg(u`,i), deg(v`,i) < `n

. So M(x) = 1
(ar(x)bs(x))2n · M̃(x), with M̃(x) of degree O(n2)
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Solution, Q2 and Q3

2 Deduce a bound on the degrees of LCLM(A, B);
3 Estimate the complexity of computing LCLM(A, B) by this method.

A, B ∈Wn,n, L :=LCLM(A, B), A = ∑r
i=0 ai(x)∂i, B = ∑s

i=0 bi(x)∂i

. L can be found by linear algebra on a matrix M(x) = 1
(ar(x)bs(x))2n · M̃(x),

with M̃(x) of degree O(n2) and size R× (R + 1), with R < 2n.

. By Cramer’s formulas, the kernel of M(x) contains polynomials of
degrees O(n3).

. Thus, ord(L) < 2n and degx(L) = O(n3).

. This kernel (and thus L) can be found using fast polynomial linear algebra
in Õ(nω+2) arithmetic operations in K.
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ALGORITHMIC GUESSING
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Guessing: what’s the next term of the sequence?

1 1, 1, 1, 1, 1

2 1, 1, 2, 3, 5

3 1, 1, 2, 5, 14

4 1, 2, 9, 54, 378

5 1, 2, 16, 192, 2816

6 1, 3, 30, 420, 6930
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Guessing: what’s the next term of the sequence?

1 1, 1, 1, 1, 1 1

2 1, 1, 2, 3, 5
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Guessing: what’s the next term of the sequence?

1 1, 1, 1, 1, 1 1

2 1, 1, 2, 3, 5 8

3 1, 1, 2, 5, 14

4 1, 2, 9, 54, 378

5 1, 2, 16, 192, 2816

6 1, 3, 30, 420, 6930
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Guessing: what’s the next term of the sequence?

1 1, 1, 1, 1, 1 1

2 1, 1, 2, 3, 5 8

3 1, 1, 2, 5, 14 42

4 1, 2, 9, 54, 378

5 1, 2, 16, 192, 2816

6 1, 3, 30, 420, 6930
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Guessing: what’s the next term of the sequence?

1 1, 1, 1, 1, 1 1

2 1, 1, 2, 3, 5 8

3 1, 1, 2, 5, 14 42

4 1, 2, 9, 54, 378 2916

5 1, 2, 16, 192, 2816

6 1, 3, 30, 420, 6930
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Guessing: what’s the next term of the sequence?

1 1, 1, 1, 1, 1 1

2 1, 1, 2, 3, 5 8

3 1, 1, 2, 5, 14 42

4 1, 2, 9, 54, 378 2916

5 1, 2, 16, 192, 2816 46592

6 1, 3, 30, 420, 6930
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Guessing: what’s the next term of the sequence?

1 1, 1, 1, 1, 1 1

2 1, 1, 2, 3, 5 8

3 1, 1, 2, 5, 14 42

4 1, 2, 9, 54, 378 2916

5 1, 2, 16, 192, 2816 46592

6 1, 3, 30, 420, 6930 126126
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Guessing: what’s the next term of the sequence?

1 1, 1, 1, 1, 1 1/(1− t)

2 1, 1, 2, 3, 5 1/(1− t− t2)

3 1, 1, 2, 5, 14 (1−
√

1− 4t)/(2t)

4 1, 2, 9, 54, 378 27 t2y2 + (1− 18 t) y + 16 t = 1

5 1, 2, 16, 192, 2816 64 t2 y3 + 16 t y2 + (1− 72 t) y + 54 t = 1

6 1, 3, 30, 420, 6930
(
27 t2 − t

)
y′′ + (54 t− 2) y′ + 6 y = 0
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Guessing: what’s the next term of the sequence?

1 1, 1, 1, 1, 1 1/(1− t)

2 1, 1, 2, 3, 5 1/(1− t− t2)

3 1, 1, 2, 5, 14 (1−
√

1− 4t)/(2t)

4 1, 2, 9, 54, 378 27 t2y2 + (1− 18 t) y + 16 t = 1

5 1, 2, 16, 192, 2816 64 t2 y3 + 16 t y2 + (1− 72 t) y + 54 t = 1

6 1, 3, 30, 420, 6930
(
27 t2 − t

)
y′′ + (54 t− 2) y′ + 6 y = 0

. Automated guessing: algorithmic computation of these equations
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Guessing: what’s the next term of the sequence?

1 1, 1, 1, 1, 1 1/(1− t)

2 1, 1, 2, 3, 5 1/(1− t− t2)

3 1, 1, 2, 5, 14 (1−
√

1− 4t)/(2t)

4 1, 2, 9, 54, 378 27 t2y2 + (1− 18 t) y + 16 t = 1

5 1, 2, 16, 192, 2816 64 t2 y3 + 16 t y2 + (1− 72 t) y + 54 t = 1

6 1, 3, 30, 420, 6930
(
27 t2 − t

)
y′′ + (54 t− 2) y′ + 6 y = 0

. Automated guessing: via Padé, or Hermite-Padé, approximants
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PADÉ APPROXIMANTS

—guessing linear recurrences with constant coefficients—
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Recall: duality lemma

Duality lemma (link between l.r.s.c.c. and rational functions)
Let A(x) = ∑n≥0 anxn ∈ K[[x]] be the generating function of (an)n≥0.
The following assertions are equivalent:

(i) (an) is a l.r.s.c.c., having P as characteristic polynomial of degree d.

(ii) A(x) is rational, of the form A = Q/revd(P) for some Q ∈ K[x]<d,
where revd(P) = P( 1

x )xd.

Moreover, if P is the minimal polynomial of (an)n≥0, then

d = max{1 + deg(Q), deg(revd(P))} and gcd(Q, revd(P)) = 1.

. Computing MinPol(an) is equivalent to solving a Padé approximation pb:

R
V
≡ A mod x2N , x 6 | V, deg(R) < N, deg(V) ≤ N and gcd(R, V) = 1,

where A = a0 + a1x + a2x2 + · · ·+ a2N−1x2N−1.
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Recall: Euclidean-type algorithm for Padé approximation

Pade(A, 2N)

In: A in K[x] with deg A < 2N
Out: (R, V) s.t. R/V ≡ A mod x2N , deg R < N, deg V ≤ N, or FAIL

1 R0 := x2N ; V0 := 0; R1 := A; V1 := 1; i := 1.
2 While deg Ri ≥ N do:

1 (Qi , Ri+1) := QuotRem(Ri−1, Ri) #Ri−1 = Qi Ri + Ri+1
2 Vi+1 := Vi−1 −QiVi
3 i := i + 1.

3 If Vi(0) 6= 0 then return (Ri, Vi); else return FAIL.

. Quadratic complexity: O(N2) operations in K

. There exist quasi-linear time algorithms O(M(N) log N)
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Berlekamp-Massey algorithm

In: A bound N ∈N on the degree of the minimal polynomial of (an)n≥0
and the first 2N terms a0, . . . , a2N−1 ∈ K.

Out: the minimal generating polynomial (an)n≥0.

1 A = a0 + a1x + · · ·+ a2N−1x2N−1.
2 Compute the solution (R, V) ∈ K[x]2 of Pade(A, 2N) s.t. V(0) = 1.
3 d = max{1 + deg(R), deg(V)}. Return revd(V) = V(1/x)xd.

. Quadratic complexity: O(N2) operations in K

. There exist quasi-linear time algorithms O(M(N) log N)
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Berlekamp-Massey algorithm, a variant

In: A bound N ∈N on the degree of the minimal polynomial of (an)n≥0
and the first 2N terms a0, . . . , a2N−1 ∈ K.

Out: the minimal generating polynomial (an)n≥0.

1 R0 := x2N ; V0 := 0; R1 := a2n−1 + · · ·+ a0x2N−1; V1 := 1; i := 1.
2 While deg Ri ≥ N, do:

1 (Qi , Ri+1) := QuotRem(Ri−1, Ri) #Ri−1 = Qi Ri + Ri+1
2 Vi+1 := Vi−1 −QiVi
3 i := i + 1

3 Return Vi/lc(Vi).

. Quadratic complexity: O(N2) operations in K

. There exist quasi-linear time algorithms O(M(N) log N)
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Example

Assume given the terms 1, 1, 2, 3, 7, 13, 25, 48 and the bound N = 4

. The previous algorithm starts with V0 = 0, V1 = 1 and

R0 = x8, R1 = x7 + x6 + 2 x5 + 3 x4 + 7 x3 + 13 x2 + 25 x + 48

and it computes

(Q1, R2) := QuotRem(R0, R1) = (x− 1, −x6− x5− 4 x4− 6 x3− 12 x2− 23 x+ 48)

V2 := V0 −Q1V1 = −x + 1 −→ an+1 = an

(Q2, R3) := QuotRem(R1, R2) = (−x, −2 x5− 3 x4− 5 x3− 10 x2 + 73 x + 48)
V3 := V1 −Q2V2 = −x2 + x + 1 −→ an+2 = an+1 + an

(Q3, R4) := QuotRem(R2, R3) = (
x
2
− 1

4
, −9x4

4
− 9x3

4
− 51 x2 − 115 x

4
+ 60)

V4 := V2 −Q3V3 =
x3

2
− 3x2

4
− 5 x

4
+

5
4

−→ an+3 =
3
2

an+2 +
5
2

an+1 −
5
2

an

(Q4, R5) := QuotRem(R3, R4) = (
8 x
9

+
4
9

,
124 x3

3
+

344 x2

9
+

292 x
9

+
64
3
)

V5 := V3 −Q4V4 = −4x4

9
+

4x3

9
+

4x2

9
+

4x
9

+
4
9
−→ an+4 = an+3 + · · ·+ an
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HERMITE-PADÉ APPROXIMANTS

—guessing equations with polynomial coefficients—

Alin Bostan Algorithmic guessing of algebraic and differential equations



17 / 35

Definition

Definition: Given a column vector F = ( f1, . . . , fn)T ∈ K[[x]]n and an n-tuple
d = (d1, . . . , dn) ∈Nn, a Hermite-Padé approximant of type d for F is a row
vector P = (P1, . . . , Pn) ∈ K[x]n, (P 6= 0), such that:

(1) P · F = P1 f1 + · · ·+ Pn fn = O(xσ) with σ = ∑i(di + 1)− 1,

(2) deg(Pi) ≤ di for all i.

σ is called the order of the approximant P.

. Very useful concept in number theory (irrationality/transcendence):

[Hermite, 1873]: e is transcendent.

[Lindemann, 1882]: π is transcendent; so does eα for any α ∈ Q \ {0}.
[Apéry, 1978; Beukers, 1981]: ζ(3) = ∑n≥1

1
n3 is irrational.

[Rivoal, 2000]: there exist infinite values of k such that ζ(2k + 1) /∈ Q.
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Worked example

Let us compute a Hermite-Padé approximant of type (1, 1, 1) for (1, C, C2),
where C(x) = 1 + x + 2x2 + 5x3 + 14x4 + O(x5).

This boils down to finding α0, α1, β0, β1, γ0, γ1 (not all zero) such that

α0+α1x+(β0 + β1x)(1+ x+ 2x2 + 5x3 + 14x4)+(γ0 +γ1x)(1+ 2x+ 5x2 + 14x3 + 42x4)=O(x5)

Identifying coefficients, this is equivalent to a homogeneous linear system:
1 0 1 0 1 0
0 1 1 1 2 1
0 0 2 1 5 2
0 0 5 2 14 5
0 0 14 5 42 14

×


α0
α1
β0
β1
γ0
γ1

 = 0⇐⇒


1 0 1 0 1
0 1 1 1 2
0 0 2 1 5
0 0 5 2 14
0 0 14 5 42

×


α0
α1
β0
β1
γ0

 = −γ1


0
1
2
5

14

 .

By homogeneity, one can choose γ1 = 1.
Then, the violet minor shows that one can take (β0, β1, γ0) = (−1, 0, 0).
The other values are α0 = 1, α1 = 0.

. Thus the approximant is (1,−1, x), which corresponds to P = 1− y + xy2

such that P(x, C(x)) = 0 mod x5.
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Worked example

Let us compute a Hermite-Padé approximant of type (1, 1, 1) for (1, C, C2),
where C(x) = 1 + x + 2x2 + 5x3 + 14x4 + O(x5).
This boils down to finding α0, α1, β0, β1, γ0, γ1 (not all zero) such that

α0+α1x+(β0 + β1x)(1+ x+ 2x2 + 5x3 + 14x4)+(γ0 +γ1x)(1+ 2x+ 5x2 + 14x3 + 42x4)=O(x5)

Identifying coefficients, this is equivalent to a homogeneous linear system:
1 0 1 0 1 0
0 1 1 1 2 1
0 0 2 1 5 2
0 0 5 2 14 5
0 0 14 5 42 14

×


α0
α1
β0
β1
γ0
γ1

 = 0⇐⇒


1 0 1 0 1
0 1 1 1 2
0 0 2 1 5
0 0 5 2 14
0 0 14 5 42

×


α0
α1
β0
β1
γ0

 = −γ1


0
1
2
5

14

 .
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Then, the violet minor shows that one can take (β0, β1, γ0) = (−1, 0, 0).
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. Thus the approximant is (1,−1, x), which corresponds to P = 1− y + xy2

such that P(x, C(x)) = 0 mod x5.

Alin Bostan Algorithmic guessing of algebraic and differential equations



20 / 35

Algebraic and differential approximation = guessing

Hermite-Padé approximants of n = 2 power series are related to Padé
approximants, i.e. to approximation of series by rational functions

algebraic approximants = Hermite-Padé approximants for f` = A`−1,
where A ∈ K[[x]] seriestoalgeq, listtoalgeq
differential approximants = Hermite-Padé approximants for f` = A(`−1),
where A ∈ K[[x]] seriestodiffeq, listtodiffeq

> listtoalgeq([1,1,2,5,14,42,132,429],y(x));

1− y (x) + xy (x)2

> listtodiffeq([1,1,2,5,14,42,132,429],y(x))[1];

{
−2 y (x) + (2− 4 x)

d
dx

y (x) + x
d2

dx2 y (x) , y (0) = 1, D (y) (0) = 1
}
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Existence and naive computation

Theorem For any vector F = ( f1, . . . , fn)T ∈ K[[x]]n and for any n-tuple
d = (d1, . . . , dn) ∈Nn, there exists a Hermite-Padé approx. of type d for F.

Proof: The undetermined coefficients of Pi = ∑di
j=0 pi,jxj satisfy a linear

homogeneous system with σ = ∑i(di + 1)− 1 eqs and σ + 1 unknowns.

Corollary Computation in O(σω), for 2 ≤ ω ≤ 3 (linear algebra exponent)

. There are better algorithms (the linear system is structured, Sylvester-like):

Derksen’s algorithm (Euclidean-like) O(σ2)

Beckermann-Labahn algorithm (DAC) Õ(σ) = O(σ log2 σ)

structured linear algebra algorithms for Toeplitz-like matrices Õ(σ)
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Quasi-optimal computation

Theorem [Beckermann, Labahn, 1994] One can compute a Hermite-Padé
approximant of type (d, . . . , d) for F = ( f1, . . . , fn) in Õ(nωd) ops. in K.

Ideas:
Compute a whole matrix of approximants

Exploit divide-and-conquer

Algorithm:

1 If σ = n(d + 1)− 1 ≤ threshold, call the naive algorithm
2 Else:

1 recursively compute P1 ∈ K[x]n×n s.t. P1 · F = O(xσ/2), deg(P1) ≈ d
2

2 compute “residue” R such that P1 · F = xσ/2 ·
(
R + O(xσ/2)

)
3 recursively compute P2 ∈ K[x]n×n s.t. P2 · R = O(xσ/2), deg(P2) ≈ d

2
4 return P := P2 · P1

. The precise choices of degrees is a delicate issue

. Corollary: Gcd, extended gcd, Padé approximants in Õ(d) ops. in K.
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Application: certified algebraic guessing

Theorem. Suppose A ∈ K[[x]] is an algebraic series, and that it is a root of a
(unknown) polynomial in K[x, y] of degree at most d in x and at most n in y.
Let Q = (Q0, Q1, . . . , Qn) be a Hermite-Padé approximant of type (d, . . . , d)
for F = (1, A, . . . , An). If Q · F = O(x2dn+1), then Q · F = 0.

In other words, A is a root of the polynomial Q = ∑n
i=0 Qi(x)yi.

Proof: Let P ∈ K[x, y] be an irreducible polynomial such that

P(x, A(x)) = 0, and degx(P) ≤ d, degy(P) ≤ n.

R(x) = Res y(P, Q) ∈ K[x] has degree at most 2dn.

R(x) = UP + VQ for U, V ∈ K[x, y] with degy(V) < n.

Evaluation at y = A(x) yields

R(x) = U(x, A(x)) P(x, A(x))︸ ︷︷ ︸
0

+V(x, A(x)) Q(x, A(x))︸ ︷︷ ︸
O(x2dn+1)

= O(x2dn+1).

Thus R = 0, that is gcd(P, Q) 6= 1, and thus P |Q, and A is a root of Q.
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Application: algebraicity of a hypergeometric series

Show that the following series is algebraic:

f (t) = ∑
n≥0

(
5n
n

)
tn

Strategy: First guess a polynomial P(t, y) in Q[t, y], s.t. P(t, f (t)) = 0 mod t?,
then prove that P admits the power series f (t) as a root, i.e., P(t, f (t)) = 0.

1 Find P s.t. P(t, f (t)) = 0 mod t20 by Hermite-Padé approximation.

2 Show that there exists a unique root r(t) ∈ Q[[t]] of P such that r(0) = 1.

3 r(t)=∑∞
n=0 rntn being algebraic, it is D-finite, and so (rn) is P-recursive.

4 Deduce that (rn)n and ( fn)n with fn = (5n
n ) satisfy the same recurrence

of order 1 and the same initial condition r0 = f0 = 1.

5 Conclude that fn = rn for all n, thus f (t) = r(t) is algebraic.
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Application: algebraicity of a hypergeometric series

> f5:=sum(binomial(5*n,n)*t^n, n=0..infinity):
> simplify(f5) assuming t>0 and t<1/100;

4F3

([
1
5

,
2
5

,
3
5

,
4
5

]
;
[

1
4

,
1
2

,
3
4

]
;

3125 t
256

)

> P5:=subs(y(t) = y, seriestoalgeq(series(f5,t,20), y(t))[1]);

1 + 15 y + 80 y2 + 160 y3 + (3125 t− 256) y5

> subs({t=0, y=1}, P5), subs({t=0, y=1}, diff(P5,y));

0, −625
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> f5:=sum(binomial(5*n,n)*t^n, n=0..infinity):
> simplify(f5) assuming t>0 and t<1/100;

4F3

([
1
5

,
2
5

,
3
5

,
4
5

]
;
[

1
4

,
1
2

,
3
4

]
;

3125 t
256

)

> P5:=subs(y(t) = y, seriestoalgeq(series(f5,t,20), y(t))[1]);

1 + 15 y + 80 y2 + 160 y3 + (3125 t− 256) y5

> subs({t=0, y=1}, P5), subs({t=0, y=1}, diff(P5,y));

0, −625

Alin Bostan Algorithmic guessing of algebraic and differential equations



26 / 35

Application: algebraicity of a hypergeometric series

> deq5:=algeqtodiffeq(P5, y(t))[1];

120 y (t) + (15000 t− 24)
d
dt

y (t) +
(

45000 t2 − 816 t
) d2

dt2 y (t) +(
25000 t3 − 1152 t2

) d3

dt3 y (t) +
(

3125 t4 − 256 t3
) d4

dt4 y (t) = 0

> rec5:=map(factor, diffeqtorec(deq5, y(t), r(n)));

5 (5 n + 1) (5 n + 2) (5 n + 3) (5 n + 4) r (n)−
8 (4 n + 1) (2 n + 1) (4 n + 3) (n + 1) r (n + 1) = 0

> f:=n -> binomial(5*n,n):
> simplify(convert(subs({r(n)=f(n), r(n+1)=f(n+1)}, rec5), GAMMA));

0
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Homework: an exercise for 7/10/2020

Let (an)n≥0 be a sequence with a0 = a1 = 1 satisfying the recurrence

(n + 3)an+1 = (2n + 3)an + 3nan−1, for all n > 0.

Show that an is an integer for all n.

Follow the next steps:

1 Compute the first 5 terms of the sequence, a0, . . . , a4;
2 Determine a Hermite-Padé approximant of type (0, 1, 2) for (1, f , f 2),

where f = ∑n anxn;
3 Deduce that P(x, f (x)) = 0 mod x5 for P(x, y) := 1 + (x− 1)y + x2y2;
4 Show that the equation P(x, y) = 0 admits a root y = g(x) ∈ Q[[x]]

whose coefficients satisfy the same linear recurrence as (an)n≥0;
5 Deduce that an+2 = an+1 + ∑n

k=0 ak · an−k for all n, and conclude.
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FAST SKEW MULTIPLICATION
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Review of a few direct algorithms (balanced case: A, B ∈Wn,n)

Naive expansion by Leibniz’s formula and expansion of ∂jxu:

BA =
n

∑
i,j,u,v=0

bi,jau,vxi (∂jxu)︸ ︷︷ ︸
≤ n terms

∂v → O
(
n5)

Iterative scheme by derivations of the right-hand factor:

BA =
n

∑
i=0

bi(x)
(
∂i A

)︸ ︷︷ ︸
degree ≤ 2n in ∂
degree ≤ n in x

by ∂T = T∂ +
dT
dx

→ O
(
M(n) n2)

Takayama’s iterative scheme by derivations of both factors:

BA =
n

∑
k=0

1
k!

[
dkB
d∂k

dk A
dxk

]
︸ ︷︷ ︸

bivariate commutative product

in bidegree (n, n)

→ O
(
M(n2) n

)
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Review of complexity results (unbalanced case)

Product of operators in Wr,d = K[x]〈∂〉d,r

Naive: O(d2r2 min(d, r)) ops

Iterative: O(min(d, r)2 M(max(d, r))) ops

Takayama: O(min(d, r)M(dr)) ops

Upcoming:

[van der Hoeven, 2002]: O(max(d, r)2 min(d, r)ω−2) ops

[Benoit, B., van der Hoeven, 2012]: Õ(dr min(d, r)ω−2) ops

. ω is a feasible exponent for matrix multiplication (2 ≤ ω ≤ 3)

. Õ indicates that polylogarithmic factors are neglected.

. The last two algorithms use an evaluation-interpolation strategy.
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Product in K[x]〈θ〉, with θ := x∂ [Van der Hoeven, 2002]

A(x, θ) and B(x, θ)
of bidegree (n, n) → C = BA =

2n

∑
i=0

xiCi(θ), deg Ci ≤ 2n.

θ j(xk) = kjxk → C(xk) =
2n

∑
i=0

Ci(k) xi+k.

By Lagrange interpolation:
(
Ci(k)

)
0≤i,k≤2n →

(
Ci(θ)

)
0≤i≤2n.

K[x]≤2n
A·−→ K[x]≤3n

B·−→ K[x]≤4n.

Matrix of size (4n + 1)× (3n + 1) for B, (3n + 1)× (2n + 1) for A.

Complexity: SkewM(n, n) ⊂ O
(
MM(n)

)
= O(nω)

Composition: product of the matrices of differential operators.

Evaluation/interpolation: Vandermonde matrix and inverse.

Conversion ∂↔ θ: matrix of Stirling numbers and inverse.
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Improvements [B., Chyzak, Le Roux, 2008]

A1. Fast multipoint evaluation/interpolation in O
(
n M(n) log n

)
.

A2. Fast conversions between monomial and falling-factorial bases
[Gerhard, 2000] in O

(
n M(n) log n

)
.

−→ O
(
MM(n)

)
with the better constants given in the table.

B1. Smaller matrices are sufficient: when B, A of bidegree (n, n) in (x, ∂),

K[x]≤2n
A·−→ K[x]≤3n

B·−→ K[x]≤2n.

Size (2n + 1)× (3n + 1) for B, (3n + 1)× (2n + 1) for A.

B2. Direct calculation with ∂.
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Improvements [B., Chyzak, Le Roux, 2008]

A new, direct algorithm for K[x]〈∂〉, with better constant c.

Algorithm VdHθ IVdHθ VdH∂ IVdH∂ MulWeyl
All block products 37 24 96 48 12
Zeros + Strassen 20 8 47 12 8

Number c of n× n block products for multiplication of skew polynomials
in (x, θ), resp. (x, ∂), of bidegree (n, n).

Equivalence SkewM(n, n) ∝ MM(n)
[Van der Hoeven, 2002]: SkewM(n, n) ⊂ O

(
MM(n)

)
[B., Chyzak, Le Roux, 2008]: O

(
SkewM(n, n)

)
⊃ MM(n)

1 MM(n) ⊂ LTMM
(
O(n)

)
:

 In 0 0
M In 0
0 N In

2

=

 In 0 0
2M In 0
NM 2N In

.

2 LTMM(n) ⊂ O
(
SkewM(n)

)
:

m0,0 0 0
...

. . . . . .
mi,0 mi,i 0

...
. . . . . .

mn,0 . . . mn,n−i . . . mn,n

 mi,j=Ai−j(j)
←−−−−−−−−→
O
(

n M(n) log n
) n

∑
`=0

x`A`(θ)︸ ︷︷ ︸
bidegree (n, n)

.
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Characteristic p > 0: Product in Õ(pn2) [B., Chyzak, Le Roux, 2008]

Using Euler’s operator θ = x∂:

θxp = xpθ + x
(

pxp−1) = xpθ,

xv f (θ) = f (θ − v) xv in complexity O
(
M(deg f )

)
.

(
p−1

∑
u=0

xuBu(xp, θ)

)(
p−1

∑
v=0

Av(xp, θ)xv

)
=

p−1

∑
u,v=0

xu
[
(Bu Av)(xp, θ)

]
︸ ︷︷ ︸

commutative bivariate
product in bidegree (n/p, n)

xv.

Products O
(

p2 M(n2/p)
)
⊂ O

(
p M(n2)

)
Conversions x ↔ xp: O

(
pn M(n) log n

)
Conversions ∂↔ θ: O

(
n M(n) log n

)
→ Õ(pn2).
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The case of unbalanced products [Benoit, B., van der Hoeven, 2012]

Theorem [Benoit, B., Hoeven, 2012] Product in Wr,d = K[x]〈∂〉d,r with cost

Õ(dr min(d, r)ω−2).

. In the important case d = r2, this complexity reads Õ(rω+1)

. Improves: O(r7) [naive]; Õ(rω+2) [Hoeven’02]; Õ(r4) [iter + Takayama]

. Main ideas

Use evaluation-interpolation on exponential polynomials xi exp(αx)
Replace (fast) Lagrange interpolation by (fast) Hermite interpolation

Use (x, ∂)
reflection←−−−−→ (∂,−x) to reduce to the case r > d

. Combined with DAC in [Hoeven’16] yields alternative probabilistic
(Monte Carlo) algorithms in Õ(rω+1) for LCLM, GCRD in Wr,r

Alin Bostan Algorithmic guessing of algebraic and differential equations



35 / 35

The case of unbalanced products [Benoit, B., van der Hoeven, 2012]

Theorem [Benoit, B., Hoeven, 2012] Product in Wr,d = K[x]〈∂〉d,r with cost
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