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N-th term of a linear recurrent sequence



Theexerde fromlastweek

Prove the identity

) ( )2 E k! x2k+2
arcsin(x)” = ,
) (k1) &2
by performing the following steps:
@ Show that y = arcsin(x) can be represented by the differential equation
(1 —x2)y"” — xy’ = 0 and the initial conditions y(0) = 0, y'(0) = 1.
@ Compute a linear differential equation satisfied by z(x) = y(x)2.
@ Deduce a linear recurrence relation satisfied by the coefficients of z(x).
@ Conclude.
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The starting point is the identity
1
V1—x2'

which allows to represent arcsin(x) by the differential equation

(arcsin(x))’ =

(1-2)y" —xy =0

together with the initial conditions

y(0) = arcsin(0) =0, y'(0) = =1.
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Let z = y2, with y”’ = 25/,
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i i i iations, we get
Let z = y2, with ¥/ = /. By successive differentia g
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. L L ot
Let z = y2, with ¥/ = %5/. By successive differentiations, we g

o = 2yy’,

2x
ZII — zylz + Zyyll — zy/Z + 1 = xzyy/’

2x 2 4x? ,
=4y + 5 )+ (1_x2+(1_x2)2 vy

2 6x2 )y,
:(1—x2+(1—x2)2 Y

/2
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Let z = y2, with y”" = %5/. By successive differentiations, we get
S = Zyy’,
ZII — 2y/2 + Zyy// — 2]//2 +

1—x? v’

i

2x 2 4x? ,
=Wyt (y +uyy") + 1_x2+(1_x2)2 vy

(2 6x2 )
T\1-a2 0 (1—a2)2 vy

> z,7,2",7" are Q(x)-linear comb. of y2, yy’, y'?, thus Q(x)-dependent

/2
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Let z = y2, with y”" = %5/. By successive differentiations, we get
S = Zyy’,
z// — 2y/2 + Zyy// — 2]//2 +

1—x? v’

i

2x 2 4x? ,
=Wyt (y +uyy") + 1_x2+(1_x2)2 vy

(2 6x2 )
T\1-a2 0 (1—a2)2 vy

> z,7,2",7" are Q(x)-linear comb. of y2, yy’, y'?, thus Q(x)-dependent
> A dependence relation is determined by computing the kernel of

/2

1 0 0 0
2 2 6
M= |0 2 =5 a2+ gayp
00 2 2

4/32



sowen P

Let z = y2, with y”" = %5/. By successive differentiations, we get

o = Zyy’,
2x
S — 2y’2 + Zyy” _ 2]/2 + — yy’,
nmo_oa 2x ” " 2 4x? /
=Y VAW (Tt g )W

B 2 N 6x2 'y 6x

T\1-a2 0 (1—a2)2 Wity
> z,7,2",7" are Q(x)-linear comb. of y2, yy’, y'?, thus Q(x)-dependent
> A dependence relation is determined by computing the kernel of

1 0 0 0
M = 0 2 2x 2 + 6x2
0 0

-2 T2 ' ([1-2)7

2 6x

1—x2

> The kernel of M is generated by [0, 1, 3x, x> —1]T
> The corresponding differential equation is

(2 =1)2" +3x2" +2/ =0,
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Let z = y2, with y”’ = 25/,
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i i i iations, we get
Let z = y2, with ¥/ = %5/. By successive differentiati g
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Let z = y2, with ¥/ = %5/. By successive differentiations, we get

7z =2y,
=0 /2_|_2yy//=2y/2+ 2x yy’=2y’2+ 5/
Y 1—x2 1—x277
1 2x2
m_ gy X " /
z vy ti a2t Tt 1_xz+(1_x2)z z
_4x x o, x41
“i_af gt +(xz_1)22

2x ,, x o x ., x24+1
_ _ Z.
1—x2 <Z 1—2° ) Ti-ef +(x2—1)2

> The corresponding differential equation is

(x> —=1)2" +3x2" +2 =0.



> Write z(x) = Y, a5x". Then:

6/32



> Write z(x) = Y, a5x". Then:

7= E(” +1ay1x",
n
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> Write z(x) = Y, a5x". Then:
7= E(” +1ay1x",
n

2" =Y (n+1)(n+2)a,x",

n

6/32



> Write z(x) = Y, a5x". Then:
7= E(” +1ay1x",
n
2" =Y (n+1)(n+2)a,x",
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> Write z(x) = Y, a5x". Then:
7= E(” +1ay1x",
n

2" =Y (n+1)(n+2)a,x",

n

2" =Y (n+1)(n+2)(n+3)aysx".

> The coefficient of x" in (x*> — 1)z +3xz" + 7' is

(m—=Dnn+1ay —(n+1)(n+2)(n+3)ay3+3n(n+1)a,+(n+1)ay
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> Write z(x) = Y, a5x". Then:
7= E(” +1ay1x",
n

2" =Y (n+1)(n+2)a,x",

n
2" =Y (n+1)(n+2)(n+3)aysx".
n
> The coefficient of x" in (x> — 1)z 4 3xz" 42 is
(m—=Dnn+1ay —(n+1)(n+2)(n+3)ay3+3n(n+1)a,+(n+1)ay
> Thus, the recurrence corresponding to (x> — 1)z +3xz" + 2/ =0 is

(n+1)(n+2)(n+3)ay43 = (n+1)%a, 1.
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> Write z(x) = Y, a5x". Then:
7= E(” +1ay1x",
n

2" =Y (n+1)(n+2)a,x",

I
2" =Y (n+1)(n+2)(n+3)aysx".
7
> The coefficient of x" in (x> — 1)z 4 3xz" 42 is
(n=Dn(n+1ay — (n+1)(n+2)(n+3)ay3+3n(n +agy1+ (n+1)app
> Thus, the recurrence corresponding to (x> — 1)z +3xz" + 2/ =0 is
(n+1)(n+2)(n+3)ani3 = (n+1)%a,41.
> Since (1 + 1) has no roots in N, it further simplifies to

(n+2)(n+3)ay;3 — (n+1)%a,41 = 0.
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>z =), a,x" satisfies

(n+2)(n+3)a13 — (n+1)%a, 41 = 0.

> Initial conditions:

2 = 2(0) = y(0) = 0, a1 = #(0) = 29(0)y/(0) = 0, a2 = 22" (0) = y' (0 =1.

> Recurrence and a1 = 0 imply a1 = 0, so the series is even.
> Let by = ag4o. Then z(x) = Y bex®+2 and

(2k +1)(2k +2)b = 4k*by_1, by =1

> Thus, the sequence (b )y is hypergeometric and

k1?

K2 !
(k+1)!(2k+1)(2k—1)---3

E— — P . = k
BRI CESV TS 2

by
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>z =Y, a,x" satisfies

(n+2)(n+3)ay3 — (n+1)%a,4 = 0.

> Initial conditions:

2 = 2(0) = y(0) = 0, a1 = 2(0) = 29(0)y/(0) = 0, a2 = 22"(0) = y' (0 =1.

> Recurrence and a; = 0 imply a1 = 0, so the series is even.
> Let by = apyp. Then z(x) = Y bex®+2 and

(2k +1)(2k +2)b; = 4k%b_q, by =1

> Thus, the sequence (by )y is hypergeometric and

k! k! 1

e k+1)-(k+ k=13 (k+hHk=1)---12k+2
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BINARY POWERING
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Def. (an)n>0 is a linearly recurrent sequence with constant coefficients
(Lr.s.c.c, or C-recursive) if there exist ¢y, ...,cz_1 € K such that

Ayyg = Cqg10prg—1 + -+ +coan, foralln>0.
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Def. (an)y>0 is a linearly recurrent sequence with constant coefficients
(Lr.s.c.c, or C-recursive) if there exist ¢y, ...,cz_1 € K such that

Ayyg = Cqg10prg—1 + -+ +coan, foralln>0.
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Line

Def. (an)y>0 is a linearly recurrent sequence with constant coefficients
(Lr.s.c.c, or C-recursive) if there exist ¢y, ...,cz_1 € K such that

Ayyg = Cqg10prg—1 + -+ +coan, foralln>0.

b x? —cy; qx? 1 — ... — ¢ is called a characteristic polynomial of (an)n>o0-

> The minimal polynomial of (a;),>0, denoted MinPol(a;), is the polynomial
of minimal degree among all characteristic polynomials of (a,),>0-

9/32
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Linear rec

Def. (an)y>0 is a linearly recurrent sequence with constant coefficients
(Lr.s.c.c, or C-recursive) if there exist ¢y, ...,cz_1 € K such that

Ayyg = Cqg10prg—1 + -+ +coan, foralln>0.

b x? —cy; qx? 1 — ... — ¢ is called a characteristic polynomial of (an)n>o0-

> The minimal polynomial of (a;),>0, denoted MinPol(a;), is the polynomial
of minimal degree among all characteristic polynomials of (a,),>0-

> E.g., the Fibonacci seq. (F,),>0 givenby Fy = Fy =1, F,.0 = F, 11 + F, is

a lrs.c.c., with MinPol(F,) = x? — x — 1. A char. poly is x° + 1x2 — 3 x — 3.
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Linear recurrenc

Def. (an)y>0 is a linearly recurrent sequence with constant coefficients
(Lr.s.c.c, or C-recursive) if there exist ¢y, ...,cz_1 € K such that

Ayig = Cq_10p1g—1 + -+ +coay, forallnm>0.

b x? —cy; qx? 1 — ... — ¢ is called a characteristic polynomial of (an)n>o0-

> The minimal polynomial of (a;),>0, denoted MinPol(a;), is the polynomial
of minimal degree among all characteristic polynomials of (a,),>0-

> E.g., the Fibonacci seq. (F,),>0 givenby Fy = Fy =1, F,.0 = F, 11 + F, is

a lrs.c.c., with MinPol(F,) = x? — x — 1. A char. poly is x° + 1x2 — 3 x — 3.

> Central question today: how fast can one compute N-th coefficient ay?
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Linear recurrences w

Def. (an)y>0 is a linearly recurrent sequence with constant coefficients
(Lr.s.c.c, or C-recursive) if there exist ¢y, ...,cz_1 € K such that

Ayig = Cq_10p1g—1 + -+ +coay, forallnm>0.

b a? —cy; qx? 1 — ... — ¢ is called a characteristic polynomial of (an)n>o0-

> The minimal polynomial of (a;),>0, denoted MinPol(a;), is the polynomial
of minimal degree among all characteristic polynomials of (a,),>0-

> E.g., the Fibonacci seq. (F,),>0 givenby Fy = Fy =1, F,.0 = F, 11 + F, is

a lrs.c.c., with MinPol(F,) = x? — x — 1. A char. poly is x° + 1x2 — 3 x — 3.

> Central question today: how fast can one compute N-th coefficient ay?

Same question if, more generally, (a;),> is P-recursive.
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Problem: Given aring A, a € A and N > 1, compute aN
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Problem: Given aring A, a € A and N > 1, compute aN

> Naive (iterative) algorithm: O(N) ops. in A
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Problem: Given aring A, a € A and N > 1, compute aN
> Naive (iterative) algorithm: O(N) ops. in A

> Better algorithm (Pingala, 200 BC): O(log N ) ops. in A
Compute aN recursively, using square-and-multiply

N (uN/2)2, if N is even,
a = N-1,9
a-(a 7 )%, else
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e A=7Z/AZ {+, x} in A have cost O(Mz(log A)) bit ops.

> N-th decimal of % via (10N~! mod A) in O(Mz(log A) log N) bit ops.

© A =K]ix]/(P) {+, x} in A have cost O(M(deg P)) ops. in K

> if P,Q € K[x]4, then (QN mod P) in O(M(d)log N) ops. in K
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. 106 . o 1
What is the 10" -th decimal of A = 5555?
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What is the 101%°-th decimal of A = 201@?

> N:=10"(1076): A:=2039:
> iquo(10*(irem(10~(N-1),A)), A);
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What is the 101%°-th decimal of A = 201@?

> N:=10"(1076): A:=2039:
> iquo(10*(irem(10~(N-1),A)), A);

Error, numeric exception: overflow
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What is the 101%°-th decimal of A = 201@?

> N:=10"(1076): A:=2039:
> iquo(10*(irem(10~(N-1),A)), A);

Error, numeric exception: overflow

> st:=time(): iquo(10*(‘&~‘(10,N-1) mod A), A), time()-st;

12/32
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What is the 101%°-th decimal of A = 201@?

> N:=10"(1076): A:=2039:
> iquo(10*(irem(10~(N-1),A)), A);

Error, numeric exception: overflow

> st:=time(): iquo(10*(‘&~‘(10,N-1) mod A), A), time()-st;

6, 0.037

12/32
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Example: N-th decimal of a

. 1@ . o 1
What is the 10" -th decimal of A = 55357

> N:=10"(1076): A:=2039:
> iquo(10*(irem(10~(N-1),A)), A);

Error, numeric exception: overflow

> st:=time(): iquo(10*(‘&~‘(10,N-1) mod A), A), time()-st;

6, 0.037

> The following also computes the right answer. Can you see why?

> n:=irem(N,A-1);
> iquo(10*(irem(10~(n-1),A)), A);

6
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Problem: Compute Fy in K, where

Fuso=Fy1+F, n>0, F=1F=1

13 /32
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Fuup=Fy1+F, n>0, F=1F=1

> Naive (iterative) algorithm: N ops. in K to compute Fy

13 /32



Problem: Compute Fy in K, where
Fuup=Fy1+F, n>0, F=1F=1
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> Folkore trick:

Fy | 10 1) [Fn-1| _ ~N B
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Exa

Problem: Compute Fy in K, where
Fuup=Fy1+F, n>0, F=1F=1

> Naive (iterative) algorithm: N ops. in K to compute Fy
> Folkore trick:

Fy | 10 1) [Fn-1| _ ~N B
ol R T
——

C

> Binary powering: compute CN recursively, using

N _ (CN/z)z, if N is even,
-~ \c- (C¥)2, else.

Cost: O(log N) products of 2 x 2 matrices — O(log N) ops. in K for Fy.

13 /32
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2
Fy 2 Fn—1:| n {an—z PZn—l] |:Fn—2 Fn—l]
[Pn—l Fy By1 B F.o1 F

> The previous algorithm computes (by squaring 2 x 2 symmetric matrices)
(Fo, F1, F2) = (F2, F3, Fy) — (Fe, F7, Fg) — (Fua, F1s, Fig) — ...

Cost: 5 x and 3 + per arrow

14/32



Exa

2
Fy 2 Fn—1:| n |:F2n—2 PZn—l] |:Fn—2 Fn—l]
[Pn—l F By 1 P Fo1 B

> The previous algorithm computes (by squaring 2 x 2 symmetric matrices)
(Fo, Fi, F2) — (F2, F3, Fy) — (Fe, F7, Fg) — (Fua, Fis, Fi6) —

Cost: 5 x and 3 + per arrow

By =F2 ,+F2

5 and computes
by = Fn—l +2F,1F 2

> Shortt's variant (1978): uses {

(Fo, i) = (F2, F3) = (Fs, F7) = (Fua, Fi5) — ...

Cost: 3 x and 3 + per arrow

14/32
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Fiduccia's algorithm (1985): binary powering in the ring K([x]/ (x> — x — 1):

C" = matrix of (x" mod x> —x —1)

— F,0+xF_1= x"modx’>—x—1

Cost: O(log N) products in K[x]/ (x> — x — 1) — O(log N) ops. for Fy
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Fiduccia's algorithm (1985): binary powering in the ring K([x]/ (x> — x — 1):

C" = matrix of (x" mod x> —x —1)

— F,0+xF_1= x"modx’>—x—1
Cost: O(log N) products in K[x]/ (x> — x — 1) — O(log N) ops. for Fy

Explains Shortt’s algorithm:

Py +xFy1 = (Fy2+ -"d:n—l)2 mod x* —x — 1
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Ayyd = C4—1ap+4—1 + -+ Con, n=>0,
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Ayyd = C4—1ap+4—1 + -+ Con, n=>0,

rewrites
an 1 aAN—-1 ap
AN+1 . an ay
.= : o l=@hHY] |, N=>1
: 1 . .
AN+d—1 co ¢ - Cd—1] LAN4d—2 aj—1
N—— N—— N——
UN cr UN-1 )
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Ayyd = C4—1ap+4—1 + -+ Con, n=>0,

rewrites
an 1 aAN—-1 ap
aN+1 . an aq
o= : S o=@V ] N2
: 1 : :
AN+d—1 Co €1 v CGa—1l LAN+d—2 aq-1
———— ——— ——
UN cT UN-1 )
> Folklore trick: compute (CT)N by binary powering O(d“ log(N))
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N-th

Ayyd = C4—1ap+4—1 + -+ Con, n=>0,

rewrites
an 1 aAN—-1 ap
AN41 . an aq
] = . . =(@EHN| |, N=>1
: 1 : :
AN-+d—1 Co €1 v CGa—1l LAN+d—2 Aq-1
———— ——— ——
UN CcT UN-1 0o
> Folklore trick: compute (CT)N by binary powering O(d“’ log(N))

> Fiduccia's algorithm: binary powering in K[x]/(P), with P = x? ):l o cix!

T
ay =e-oN = (CN~eT) 09 = (xN mod P, vy )

wheree=1[1 0 --- 0].

16 / 32
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Ayyd = C4—1ap+4—1 + -+ Con, n=>0,

rewrites
an 1 aAN—-1 ap
AN41 . an aq
] = . . =(@EHN| |, N=>1
: 1 : :
AN-+d—1 Co €1 v CGa—1l LAN+d—2 Aq-1
———— ——— ——
UN CcT UN-1 0o
> Folklore trick: compute (CT)N by binary powering O(d“’ log(N))

> Fiduccia's algorithm: binary powering in K[x]/(P), with P = x? ):l o cix!

T
ay =e-oN = (CN~eT) 09 = (xN mod P, vy )
wheree=1[1 0 --- 0].
Cost: O(log N) products in K[x]/(P) O(M(d)logN)

16 / 32
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N coofcien of a rational function

Duality lemma (link between l.r.s.c.c. and rational functions)
Let A(x) = ¥,;>0 anX" € K[[x]] be the generating function of (a,),>0-
The following assertions are equivalent:
(i) (an)y>0 is a Lrs.c.c., having P as characteristic polynomial of degree d;
(i) A(x) is rational, of the form A = Q/rev;(P) for some Q € K]x] 4,
where rev;(P) = P(1)x4.
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Duality lemma (link between l.r.s.c.c. and rational functions)
Let A(x) = ¥,;>0 anX" € K[[x]] be the generating function of (a,),>0-
The following assertions are equivalent:
(i) (an)y>0 is a Lrs.c.c., having P as characteristic polynomial of degree d;
(i) A(x) is rational, of the form A = Q/rev;(P) for some Q € K]x] 4,
where rev;(P) = P(1)x4.

> The denominator of A encodes a recurrence for (a,),>0; the numerator
encodes initial conditions.

17 /32
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N-th coefficien

Duality lemma (link between l.r.s.c.c. and rational functions)
Let A(x) = ¥,;>0 anX" € K[[x]] be the generating function of (a,),>0-
The following assertions are equivalent:
(i) (an)y>0 is a Lrs.c.c., having P as characteristic polynomial of degree d;
(i) A(x) is rational, of the form A = Q/rev;(P) for some Q € K]x] 4,
where rev;(P) = P(1)x4.

> The denominator of A encodes a recurrence for (a,),>0; the numerator
encodes initial conditions.

> Generating function of (F;),>0 givenby Fy =a,F =b,F,1» = F, 41+ F,
is(a+(b—a)x)/(1—x—x*). HereP=x>—-x—1land Q=a+ (b—a)x.

17 /32
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N-th coefficient of a

Duality lemma (link between l.r.s.c.c. and rational functions)
Let A(x) = ¥,;>0 anX" € K[[x]] be the generating function of (a,),>0-
The following assertions are equivalent:

(i) (an)y>0 is a Lrs.c.c., having P as characteristic polynomial of degree d;

(i) A(x) is rational, of the form A = Q/rev;(P) for some Q € K]x] 4,
where rev;(P) = P(1)x4.

> The denominator of A encodes a recurrence for (a,),>0; the numerator
encodes initial conditions.

> Generating function of (F;),>0 givenby Fy =a,F =b,F,1» = F, 41+ F,
is(a+(b—a)x)/(1—x—x*). HereP=x>—-x—1land Q=a+ (b—a)x.

> Corollary: N-th Taylor coefficient of 5 € K(x)zin O(M(d)log N) ops. in K
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Question’: The number of ways one can change any amount of banknotes of
10€,20%, ... using coins of 50 cents, 1€ and 2 € is always a perfect square.

t Inspired by Pb. 1, Ch. 1, p. 1, vol. 1 of Pélya and Szego’s Problems Book (1925).

18 /32
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Question’: The number of ways one can change any amount of banknotes of
10€,20€, ... using coins of 50 cents, 1€ and 2 € is always a perfect square.

& This is equivalent to finding the number My of solutions (a,b,c) € IN® of

a+2b+ 4c = 20k.

+ Inspired by Pb. 1, Ch. 1, p. 1, vol. 1 of Pélya and Szego’s Problems Book (1925).
' AinBostan  N-th term of a linear recurrent sequence
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1
> Euler-Comtet’'s denumerants: M,x" = .
ng) " (1-x)(1—22)(1—x%)
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1
> Euler-Comtet’'s denumerants: M,x" = .
ngo ! (1-x)(1—22)(1—x%)

> f:=1/(1-x)/(1-x72) /(1-x74) :
> S:=series(f,x,201):
> [seq(coeff(S,x,20%k),k=1..10)];

[36, 121, 256, 441, 676, 961, 1296, 1681, 2116, 2601]

19/32
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N-th term, w

1
> Euler-Comtet's denumerants: M, x" = .
ngo (1-x)(1—x?)(1 -2

> f:=1/(1-x)/(1-x"2)/(1-x74):
> S:=series(f,x,201):
> [seq(coeff(S,x,20%k),k=1..10)1;

[36, 121, 256, 441, 676, 961, 1296, 1681, 2116, 2601]

> subs(n=20xk,gfun[ratpolytocoeff] (f,x,n));

17 . (20k +1)(20k +2) (—1)"2k(20k +1) , 5(—1)"20
27 16 okt 16 T T )
a1+1:0

19 /32
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N-th term, with N as a para

1
> Euler-Comtet’'s denumerants: M,x" = .
ngo " (1—x)(1—x2)(1—=x%)

> f:=1/(1-x)/(1-x"2)/(1-x74):
> S:=series(f,x,201):
> [seq(coeff(S,x,20%k),k=1..10)1;

[36, 121, 256, 441, 676, 961, 1296, 1681, 2116, 2601]

> subs(n=20xk,gfun[ratpolytocoeff] (f,x,n));

17 . (20k +1)(20k +2) (—1)"20k(20k +-1) | 5(—1)20k
7 16 Hoks 16 o T )
a1+1:0

> value(subs(_alphal”(-20%k)=1,%)):
> simplify(%) assuming k::posint:
> factor(%);

(5k+1)2
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Problem: Compute N! =1x --- x N
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Naive (iterative) algorithm: unbalanced multiplicands O(N?)
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Bamplesastfacorinl

Problem: Compute N! =1x --- x N

Naive (iterative) algorithm: unbalanced multiplicands O(N?)

© Binary Splitting: balance computation sequence so as to take advantage
of fast multiplication (operands of same sizes):

Nl=(1x--x|N/2])x ((|[N/2]+1) x---xN)

size %NlogN size %NlogN

and recurse. Complexity O(N).
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Problem: Compute N! =1x --- x N

Naive (iterative) algorithm: unbalanced multiplicands O(N?)

© Binary Splitting: balance computation sequence so as to take advantage
of fast multiplication (operands of same sizes):

Nl=(1x--x|N/2])x ((|[N/2]+1) x---xN)

size Nlog N size INlog N

and recurse. Complexity O(N).

© Extends to matrix factorials A(N)A(N —1)--- A(1) O(N)
— recurrences of arbitrary order.
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Problem: Compute the N-th term uy of a P-recursive sequence

pr(n)unsr+ -+ + po(n)un =0, (n € N)
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pr(n)unsr+ -+ + po(n)un =0, (n € N)
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Binary splitting: Uy, = (uy, ..., Uy, 1) satisfies the 1st order recurrence
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Problem: Compute the N-th term uy of a P-recursive sequence

pr(n)unsr+ -+ + po(n)un =0, (n € N)

Naive algorithm: unroll the recurrence O(N?) bit ops.

Binary splitting: Uy, = (uy, ..., Uy, 1) satisfies the 1st order recurrence

pr(n)

1 . _
WA(n)lln with A(n) = pr()

—po(n) —pr(n) ... —pra(n)

= uy reads off the matrix factorial A(N —1)--- A(0)

un+1 =
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Appl

Problem: Compute the N-th term uy of a P-recursive sequence

pr(n)unyr + -+ po(n)un =0, (n € N)

Naive algorithm: unroll the recurrence O(N?) bit ops.

Binary splitting: Uy, = (un, ..., Uy r_1)" satisfies the 1st order recurrence

pr(n)
1
u = ——AnU, with A(n)=
= oy AU ) pr(n)
—po(n) —pi(n) ... —pra(n)
= uy reads off the matrix factorial A(N —1)--- A(0)
[Chudnovsky-Chudnovsky, 1987]: Binary splitting strategy O(N) bit ops.
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1
en=) 5 — exp(l)=27182818284590452....

Recurrence e, —e, 1 =1/n! < n(e, —e, 1) = e,_1 — ;o rewrites

h]lﬂ - I\ll [—01 Nlj— 1} EZ:ﬂ - %C(N)C(N_l) - CM) m '
- -

C(N)

> ey in O(N) bit operations [Brent 1976]
> generalizes to the evaluation of any D-finite series at an algebraic number
[Chudnovsky-Chudnovsky 1987] O(N) bit ops.
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Implementation in gfun [Mezzarobba, Salvy 2010]

> rec:={n*(e(n) - e(n-1)) = e(n-1) - e(n-2), e(0)=1, e(1)=2};
> pro:=rectoproc(rec,e(n));

pro := proc(n::nonnegint)
local i1, locO, locl, loc2, tmp2, tmpl, i2;
if n <= 22 then
locO := 1; 1locl := 2;
if n = 0 then return locO
else for il to n - 1 do
loc2 := (-locO + locl + loclx(il + 1))/(i1 + 1);
locO := locl; locl := loc2
end do
end if; locl
else
tmpl := ‘gfun/rectoproc/binsplit‘([
’ndmatrix’ (Matrix([[0, i2 + 2], [-1, i2 + 3]]), i2 + 2), i2, O, n,
matrix_ring(ad, pr, ze, ndmatrix(Matrix(2, 2, [[...],[...11,
datatype = anything, storage = empty, shape = [identityl), 1)),
expected_entry_size], Vector(2, [...], datatype = anything));
tmpl := subs({e(0) = 1, e(1) = 2}, tmpl); tmpl
end if
end proc

r0(210000) : time()-tt;
: y:=evalf(exp(1), 1000000): time()-tt, evalf(x-y, 1000000) ;

3.730, 24.037, 0.

Alin Bostan N-th term of a linear recurrent sequence



Application: record computation of 7

[Chudnovsky-Chudnovsky 1987] fast convergence hypergeometric identity

1_ Z 61)!(13591409 + 545140134n)
m 53360\/64032 =) n'3 3n (8100100025 - 327843840)" °

o 20600 20600 0000 20000 100000 120000

> Used in Maple & Mathematica: 1st order recurrence, yields 14 correct digits
per iteration — 4 billion digits [Chudnovsky-Chudnovsky 1994]

> Current record: 31.4 trillion digits [lwao 2019]
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What is the coefficient of x30% in the expansion of

(x+1)7% (P4 x + 1)1000 (*+ 20+ 22+ x4 1)500
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Example [Flajolet, Salv

What is the coefficient of x3°% in the expansion of

(x+ 1% (2 4 2+ 1)1000 (*+ 20+ 22+ x4 1)500

> st:=time(); n1:=2000; n2:=1000; n3:=500;

> Pl:=x+1; P2:=x"2+x+1; P3:=x"4+x"3+x"2+x+1;

> dil:={diff (u(x),x)*P1-n1*xdiff (P1,x)*u(x)=0, u(0)=1}:

> d2:={diff (v(x),x)*P2-n2*xdiff (P2,x)*v(x)=0, v(0)=1}:

> d3:={diff (w(x),x)*P3-n3*diff (P3,x)*w(x)=0, w(0)=1}:

> deq:=poltodiffeq(u(x)*v(x)*w(x),[d1,d2,d3], [u(x),v(x),w(x)],y(x)):
> rec:=diffeqtorec(deq,y(x),u(n)); pro:=rectoproc(rec,u(n));

> c03000:=pro(3000); time()-st;

3973942265580043039696 - - - 1379 digits] - - - 90713429445793420476320
0.24 seconds
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Example [Flajolet, Salvy, 1997]

3000

What is the coefficient of x

(x +1)2000 (xz Fx+ 1)

in the expansion of

1000 500
(x4+x3+x2—|—x+1)

> st:=time(); n1:=2000; n2:=1000; n3:=500;

> Pl:=x+1; P2:=x"2+x+1; P3:=x"4+x"3+x"2+x+1;

> dil:={diff (u(x),x)*P1-n1*xdiff (P1,x)*u(x)=0, u(0)=1}:

> d2:={diff (v(x),x)*P2-n2*xdiff (P2,x)*v(x)=0, v(0)=1}:

> d3:={diff (w(x),x)*P3-n3*diff (P3,x)*w(x)=0, w(0)=1}:

> deq:=poltodiffeq(u(x)*v(x)*w(x),[d1,d2,d3], [u(x),v(x),w(x)],yx)):
> rec:=diffeqtorec(deq,y(x),u(n)); pro:=rectoproc(rec,u(n));

> c03000:=pro(3000); time()-st;

3973942265580043039696 - - - 1379 digits] - - - 90713429445793420476320
0.24 seconds

> st:=time(): co:=coeff(P,x,3000):
> c0-co03000, time()-st:

0, 93.57 seconds
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Baby steps / giant steps
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Problem: Given a K-algebra A, a € A and P € K[x].y, compute P(a)

28 /32



Problem: Given a K-algebra A, a € A and P € K[x].y, compute P(a)

Horner's rule: O(N) products in A

28 /32



Problem: Given a K-algebra A, a € A and P € K[x].y, compute P(a)
Horner's rule: O(N) products in A

Better algorithm [Paterson-Stockmeyer, 1973]: O(\/N ) products in A
Write P(x) = Py(x) + - + Py_1(x) - (x)~1, with £ = /N and deg(P;) < ¢
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Horner's rule: O(N) products in A

Better algorithm [Paterson-Stockmeyer, 1973]: O(\/ﬁ) products in A
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(BS) Compute a%, ..., a‘=:b O(VN ) products in A
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Problem: Given a K-algebra A, a € A and P € K[x].y, compute P(a)

Horner's rule: O(N) products in A
Better algorithm [Paterson-Stockmeyer, 1973]: O(\/ﬁ) products in A
Write P(x) = Py(x) + - + Py_1(x) - (x)~1, with £ = /N and deg(P;) < ¢
(BS) Compute a%, ..., a‘=:b O(VN ) products in A
(GS) Compute by=1,b;=b, ..., by_j=b" O(VN ) products in A
Evaluate ¢9=Py(a), ..., ci_1="Pi_1(a) no product in A
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Baby steps

Problem: Given a K-algebra A, a € A and P € K[x].y, compute P(a)

Horner's rule: O(N) products in A
Better algorithm [Paterson-Stockmeyer, 1973]: O(\/ﬁ) products in A
Write P(x) = Py(x) + - + Py_1(x) - (x)~1, with £ = /N and deg(P;) < ¢
(BS) Compute a%, ..., a‘=:b O(VN ) products in A
(GS) Compute by=1,b;=b, ..., by_j=b" O(VN ) products in A
Evaluate ¢9=Py(a), ..., ci_1="Pi_1(a) no product in A
Return  P(a) =boco+ -+ by_1c0-1 O(VN) products in A
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Baby steps / gi

Problem: Given a K-algebra A, a2 € A and P € K[x].y, compute P(a)

Horner's rule: O(N) products in A
Better algorithm [Paterson-Stockmeyer, 1973]: O(\/ﬁ) products in A
Write P(x) = Py(x) + - + Py_1(x) - (x)~1, with £ = /N and deg(P;) < ¢
(BS) Compute a%, ..., a‘=:b O(VN ) products in A
(GS) Compute by=1,b;=b, ..., by_j=b" O(VN ) products in A
Evaluate ¢9=Py(a), ..., ci_1="Pi_1(a) no product in A
Return  P(a) =boco+ -+ by_1c0-1 O(VN) products in A

Application: evaluation of P € K[x|.y at a matrix in M, (K) O(VN )
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Problem: Compute N! =1x2x---x N

Naive algorithm: unroll the recurrence O(N)
Better algorithm [Strassen, 1976]: BS-GS strategy O(M(V/N)logN)
(BS) Compute P = (x+1)(x+2)--- (x +VN) O(M(v/N)logN)

(GS) Evaluate P at0, v/'N, 2V/N, ..., (VN —1)VN O(M(v/N)logN)
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 Baby steps / giant step, applicaion o facorials

Problem: Compute N! =1x2x---x N

Naive algorithm: unroll the recurrence O(N)
Better algorithm [Strassen, 1976]: BS-GS strategy O(M(V/N)logN)
(BS) Compute P = (x+1)(x+2)--- (x +VN) O(M(v/N)logN)
(GS) Evaluate P at0, v/'N, 2V/N, ..., (VN —1)VN O(M(v/N)logN)
Return uy = P((vV/N —1)v/N) --- P(vV/N) - P(0) O(v/'N)
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Problem: Compute the N-th term uy of a P-recursive sequence

pr(m)unir + -+ - 4 po(n)un =0, (n € N)
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~ Baby steps / iant step, application o recurences

Problem: Compute the N-th term uy of a P-recursive sequence

pr(m)unir + -+ - 4 po(n)un =0, (n € N)

Naive algorithm: unroll the recurrence O(N)
Better algorithm: Uy, = (up, ..., uy4,1)" satisfies the 1st order recurrence

pr(n)

1 . _ .
mA(n)un with A(n) = pr(r)

—po(n) —p1(n) ... —pya(n)

un+1 =
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~ Boby steps / giant steps, applicaton to recurrences

Problem: Compute the N-th term uy of a P-recursive sequence

pr(m)unir + -+ - 4 po(n)un =0, (n € N)

Naive algorithm: unroll the recurrence O(N)

Better algorithm: Uy, = (up, ..., uy4,1)" satisfies the 1st order recurrence

pr(n)

1 . _ .
mA(n)un with A(n) = pr(r)

—po(n) —p1(n) ... —pya(n)

= uy reads off the matrix factorial A(N —1)--- A(0)

un+1 =

30 /32

I 1 e:m of » iess recureont sequence



Problem: Compute the N-th term uy of a P-recursive sequence

pr(n)unsr + -+ -+ po(n)un =0, (n € N)

Naive algorithm: unroll the recurrence O(N)

Better algorithm: Uy, = (up, ..., uy4,1)" satisfies the 1st order recurrence

pr(n)

1 . _ .
mA(n)un with A(n) = pr(r)

—po(n) —p1(n) ... —pya(n)

= uy reads off the matrix factorial A(N —1)--- A(0)

un+1 =

[Chudnovsky-Chudnovsky, 1987]: (BS)-(GS) strategy O(M(V/N)logN)
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Problem: count the number 7 of solutions of the equation y? = f(x) over F,

Basic idea [Deuring, 1941]: if deg(f) =3, then n mod p = — [xp_l]f(x)pT_l

Explanation: z is a non-zero square in IF, exactly when z(P=1)/2 =1

Generalization [Cartier-Manin, 1956]: if deg(f) = 2¢ + 1, then n mod p reads
off the Hasse-Witt matrix (hi,j)§j=1’ with b j = [xiP=T] f (x)(P—1)/2
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Baby steps /

Problem: count the number 7 of solutions of the equation y? = f(x) over F,

Basic idea [Deuring, 1941]: if deg(f) =3, then n mod p = — [xp_l]f(x)pT_l

Explanation: z is a non-zero square in IF, exactly when z(P=1)/2 =1

Generalization [Cartier-Manin, 1956]: if deg(f) = 2¢ + 1, then n mod p reads
off the Hasse-Witt matrix (hi,j)§j=1/ with b j = [xiP=T] f (x)(P—1)/2

Corollary [B-Gaudry-Schost, 2007]: O(,/p) hyperelliptic point counting / IF,
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Baby steps / giant st

Problem: count the number 7 of solutions of the equation y? = f(x) over FF,,

Basic idea [Deuring, 1941]: if deg(f) =3, then n mod p = — [xF’_l]f(x)pT_l

Explanation: z is a non-zero square in IF, exactly when z(P=1)/2 =1

Generalization [Cartier-Manin, 1956]: if deg(f) = 2¢ + 1, then n mod p reads
off the Hasse-Witt matrix (hi,j)flj:l, with b j = [xiP=T] f (x)(P—1)/2

Corollary [B-Gaudry-Schost, 2007]: O(,/p) hyperelliptic point counting / IF,

> Based on [Flajolet-Salvy, 1997]: h = fN satisfies the differential equation
fH — Nf'h = 0, thus its coefficient sequence is P-recursive.
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Two exercises for

(1) Show that if P € K[x] has degree d, then the sequence (P(n)),>0 is
C-recursive, and admits (x — 1)?*1 as a characteristic polynomial.

(2) Let P = Y2 p;x' € Z[X] be the polynomial P(x) = (1 + x + x?)N.
@ Show that the parity of all coefficients of P can be determined in
O(M(N)) bit ops.
@ Show that P satisfies a linear differential equation of order 1 with
polynomial coefficients.

@ Determine a linear recurrence of order 2 satisfied by the sequence (p;);.
@ Give an algorithm that computes py in O(N) bit ops.
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