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The exercise from last week

Prove the identity

arcsin(x)2 = ∑
k≥0

k!(
1
2

)
· · ·
(

k + 1
2

) x2k+2

2k + 2
,

by performing the following steps:
1 Show that y = arcsin(x) can be represented by the differential equation

(1− x2)y′′ − xy′ = 0 and the initial conditions y(0) = 0, y′(0) = 1.
2 Compute a linear differential equation satisfied by z(x) = y(x)2.
3 Deduce a linear recurrence relation satisfied by the coefficients of z(x).
4 Conclude.

Alin Bostan N-th term of a linear recurrent sequence



3 / 32

Solution, Part 1.

The starting point is the identity

(arcsin(x))′ =
1√

1− x2
,

which allows to represent arcsin(x) by the differential equation

(1− x2)y′′ − xy′ = 0

together with the initial conditions

y(0) = arcsin(0) = 0, y′(0) =
1√

1− 02
= 1.
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Solution, Part 2.

Let z = y2, with y′′ = x
1−x2 y′.

By successive differentiations, we get

z′ = 2yy′,

z′′ = 2y′2 + 2yy′′ = 2y′2 +
2x

1− x2 yy′,

z′′′ = 4y′y′′ +
2x

1− x2 (y
′2 + yy′′) +

(
2

1− x2 +
4x2

(1− x2)2

)
yy′

=

(
2

1− x2 +
6x2

(1− x2)2

)
yy′ +

6x
1− x2 y′2.

. z, z′, z′′, z′′′ are Q(x)-linear comb. of y2, yy′, y′2, thus Q(x)-dependent

. A dependence relation is determined by computing the kernel of

M =

 1 0 0 0
0 2 2x

1−x2
2

1−x2 +
6x2

(1−x2)2

0 0 2 6x
1−x2


. The kernel of M is generated by [0, 1, 3x, x2 − 1]T

. The corresponding differential equation is

(x2 − 1)z′′′ + 3xz′′ + z′ = 0.
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Solution, Part 2., a variant

Let z = y2, with y′′ = x
1−x2 y′.

By successive differentiations, we get

z′ = 2yy′,

z′′ = 2y′2 + 2yy′′ = 2y′2 +
2x

1− x2 yy′ = 2y′2 +
x

1− x2 z′,

z′′′ = 4y′y′′ +
x

1− x2 z′′ +

(
1

1− x2 +
2 x2

(1− x2)
2

)
z′

=
4x

1− x2 y′2 +
x

1− x2 z′′ +
x2 + 1

(x2 − 1)2 z′

=
2x

1− x2

(
z′′ − x

1− x2 z′
)
+

x
1− x2 z′′ +

x2 + 1

(x2 − 1)2 z′.

. The corresponding differential equation is
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Solution, Part 3.

. Write z(x) = ∑n anxn. Then:

z′ = ∑
n
(n + 1)an+1xn,

z′′ = ∑
n
(n + 1)(n + 2)an+2xn,

z′′′ = ∑
n
(n + 1)(n + 2)(n + 3)an+3xn.

. The coefficient of xn in (x2 − 1)z′′′ + 3xz′′ + z′ is

(n− 1)n(n + 1)an+1 − (n + 1)(n + 2)(n + 3)an+3 + 3n(n + 1)an+1 +(n+ 1)an+1

. Thus, the recurrence corresponding to (x2 − 1)z′′′ + 3xz′′ + z′ = 0 is

(n + 1)(n + 2)(n + 3)an+3 = (n + 1)3an+1.

. Since (n + 1) has no roots in N, it further simplifies to

(n + 2)(n + 3)an+3 − (n + 1)2an+1 = 0.
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Solution, Part 4.

. z = ∑n anxn satisfies

(n + 2)(n + 3)an+3 − (n + 1)2an+1 = 0.

. Initial conditions:

a0 = z(0) = y(0)2 = 0, a1 = z′(0) = 2y(0)y′(0) = 0, a2 =
1
2

z′′(0) = y′(0)2 = 1.

. Recurrence and a1 = 0 imply a2k+1 = 0, so the series is even.

. Let bk = a2k+2. Then z(x) = ∑k bkx2k+2 and

(2k + 1)(2k + 2)bk = 4k2bk−1, b0 = 1

. Thus, the sequence (bk)k is hypergeometric and

bk = 2
k2

(k + 1)(2k + 1)
bk−1 = · · · = 2k k!2

(k + 1)!(2k + 1)(2k− 1) · · · 3
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(k + 1) · (k + 1
2 )(k−

1
2 ) · · ·

3
2
=

k!
(k + 1

2 )(k−
1
2 ) · · ·

1
2

1
2k + 2

�
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BINARY POWERING
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Linear recurrences with constant coefficients

Def. (an)n≥0 is a linearly recurrent sequence with constant coefficients
(l.r.s.c.c, or C-recursive) if there exist c0, . . . , cd−1 ∈ K such that

an+d = cd−1an+d−1 + · · ·+ c0an, for all n ≥ 0.

. xd − cd−1xd−1 − · · · − c0 is called a characteristic polynomial of (an)n≥0.

. The minimal polynomial of (an)n≥0, denoted MinPol(an), is the polynomial
of minimal degree among all characteristic polynomials of (an)n≥0.

. E.g., the Fibonacci seq. (Fn)n≥0 given by F0 = F1 = 1, Fn+2 = Fn+1 + Fn is
a l.r.s.c.c., with MinPol(Fn) = x2 − x− 1. A char. poly is x3 + 1

2 x2 − 5
2 x− 3

2 .

. Central question today: how fast can one compute N-th coefficient aN?

Same question if, more generally, (an)n≥0 is P-recursive.
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. The minimal polynomial of (an)n≥0, denoted MinPol(an), is the polynomial
of minimal degree among all characteristic polynomials of (an)n≥0.

. E.g., the Fibonacci seq. (Fn)n≥0 given by F0 = F1 = 1, Fn+2 = Fn+1 + Fn is
a l.r.s.c.c., with MinPol(Fn) = x2 − x− 1. A char. poly is x3 + 1

2 x2 − 5
2 x− 3

2 .

. Central question today: how fast can one compute N-th coefficient aN?

Same question if, more generally, (an)n≥0 is P-recursive.
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Binary powering

Problem: Given a ring A, a ∈ A and N ≥ 1, compute aN

. Naive (iterative) algorithm: O(N) ops. in A

. Better algorithm (Pingala, 200 BC): O
(
log N

)
ops. in A

Compute aN recursively, using square-and-multiply

aN =

{
(aN/2)2, if N is even,
a · (a

N−1
2 )2, else.
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Particular case: Modular exponentiation

A = Z/AZ {+,×} in A have cost O(MZ(log A)) bit ops.

. N-th decimal of 1
A via (10N−1 mod A) in O

(
MZ(log A) log N

)
bit ops.

A = K[x]/(P) {+,×} in A have cost O(M(deg P)) ops. in K

. if P, Q ∈ K[x]<d, then
(
QN mod P

)
in O

(
M(d) log N

)
ops. in K
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Example: N-th decimal of a rational number

What is the 10106
-th decimal of A = 1

2039 ?

> N:=10^(10^6): A:=2039:
> iquo(10*(irem(10^(N-1),A)), A);

Error, numeric exception: overflow

> st:=time(): iquo(10*(‘&^‘(10,N-1) mod A), A), time()-st;

6, 0.037

. The following also computes the right answer. Can you see why?

> n:=irem(N,A-1);
> iquo(10*(irem(10^(n-1),A)), A);

6
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Example: N-th term of the Fibonacci sequence

Problem: Compute FN in K, where

Fn+2 = Fn+1 + Fn, n ≥ 0, F0 = 1, F1 = 1.

. Naive (iterative) algorithm: N ops. in K to compute FN

. Folkore trick:[
FN

FN+1

]
=

[
0 1
1 1

]
︸ ︷︷ ︸

C

[
FN−1

FN

]
= CN

[
F0
F1

]
, N ≥ 1.

. Binary powering: compute CN recursively, using

CN =

{
(CN/2)2, if N is even,
C · (C N−1

2 )2, else.

Cost: O(log N) products of 2× 2 matrices −→ O(log N) ops. in K for FN .
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Example: N-th term of the Fibonacci sequence

[
Fn−2 Fn−1
Fn−1 Fn

]
= Cn =⇒

[
F2n−2 F2n−1
F2n−1 F2n

]
=

[
Fn−2 Fn−1
Fn−1 Fn

]2

. The previous algorithm computes (by squaring 2× 2 symmetric matrices)

(F0, F1, F2)→ (F2, F3, F4)→ (F6, F7, F8)→ (F14, F15, F16)→ . . .

Cost: 5 × and 3 + per arrow

. Shortt’s variant (1978): uses

{
F2n−2 = F2

n−2 + F2
n−1

F2n−1 = F2
n−1 + 2Fn−1Fn−2

and computes

(F0, F1)→ (F2, F3)→ (F6, F7)→ (F14, F15)→ . . .

Cost: 3 × and 3 + per arrow
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Example: N-th term of the Fibonacci sequence

Fiduccia’s algorithm (1985): binary powering in the ring K[x]/(x2 − x− 1):

Cn = matrix of (xn mod x2 − x− 1)

=⇒ Fn−2 + xFn−1 = xn mod x2 − x− 1

Cost: O(log N) products in K[x]/(x2 − x− 1) −→ O(log N) ops. for FN

Explains Shortt’s algorithm:

F2n−2 + xF2n−1 = (Fn−2 + xFn−1)
2 mod x2 − x− 1
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N-th term of a C-recursive sequence, general case

an+d = cd−1an+d−1 + · · ·+ c0an, n ≥ 0,

rewrites
aN

aN+1
...

aN+d−1


︸ ︷︷ ︸

vN

=


1

. . .
1

c0 c1 · · · cd−1


︸ ︷︷ ︸

CT


aN−1

aN
...

aN+d−2


︸ ︷︷ ︸

vN−1

= (CT)N


a0
a1
...

ad−1


︸ ︷︷ ︸

v0

, N ≥ 1.

. Folklore trick: compute (CT)N by binary powering O(dω log(N))

. Fiduccia’s algorithm: binary powering in K[x]/(P), with P = xd −∑d−1
i=0 cixi

aN = e · vN =
(

CN · eT
)T
· v0 = 〈 xN mod P, v0 〉

where e = [1 0 · · · 0].

Cost: O(log N) products in K[x]/(P) O(M(d) log N)
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N-th coefficient of a rational function

Duality lemma (link between l.r.s.c.c. and rational functions)
Let A(x) = ∑n≥0 anxn ∈ K[[x]] be the generating function of (an)n≥0.
The following assertions are equivalent:

(i) (an)n≥0 is a l.r.s.c.c., having P as characteristic polynomial of degree d;

(ii) A(x) is rational, of the form A = Q/revd(P) for some Q ∈ K[x]<d,
where revd(P) = P( 1

x )xd.

. The denominator of A encodes a recurrence for (an)n≥0; the numerator
encodes initial conditions.

. Generating function of (Fn)n≥0 given by F0 = a, F1 = b, Fn+2 = Fn+1 + Fn
is (a + (b− a)x)/(1− x− x2). Here P = x2 − x− 1 and Q = a + (b− a)x.

. Corollary: N-th Taylor coefficient of P
Q ∈ K(x)d in O(M(d) log N) ops. in K
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N-th term, with N as a parameter

Question†: The number of ways one can change any amount of banknotes of
10e, 20e, . . . using coins of 50 cents, 1e and 2e is always a perfect square.

This is equivalent to finding the number

† Inspired by Pb. 1, Ch. 1, p. 1, vol. 1 of Pólya and Szegö’s Problems Book (1925).
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N-th term, with N as a parameter

Question†: The number of ways one can change any amount of banknotes of
10e, 20e, . . . using coins of 50 cents, 1e and 2e is always a perfect square.

. This is equivalent to finding the number M20k of solutions (a, b, c) ∈N3 of

a + 2b + 4c = 20k.

† Inspired by Pb. 1, Ch. 1, p. 1, vol. 1 of Pólya and Szegö’s Problems Book (1925).
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N-th term, with N as a parameter

. Euler-Comtet’s denumerants: ∑
n≥0

Mnxn =
1

(1− x)(1− x2)(1− x4)
.

> f:=1/(1-x)/(1-x^2)/(1-x^4):
> S:=series(f,x,201):
> [seq(coeff(S,x,20*k),k=1..10)];

[36, 121, 256, 441, 676, 961, 1296, 1681, 2116, 2601]

> subs(n=20*k,gfun[ratpolytocoeff](f,x,n));

17
32

+
(20k + 1)(20k + 2)

16
+ 5k +

(−1)−20k(20k + 1)
16

+
5(−1)−20k

32
+ ∑

α2
1+1=0

(
−
( 1

16 −
1
16 α1)α

−20k
1

α1

)

> value(subs(_alpha1^(-20*k)=1,%)):
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BINARY SPLITTING
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Example: fast factorial

Problem: Compute N! = 1× · · · × N

Naive (iterative) algorithm: unbalanced multiplicands Õ(N2)

Binary Splitting: balance computation sequence so as to take advantage
of fast multiplication (operands of same sizes):

N! = (1× · · · × bN/2c)︸ ︷︷ ︸
size 1

2 N log N

× ((bN/2c+ 1)× · · · × N)︸ ︷︷ ︸
size 1

2 N log N

and recurse. Complexity Õ(N).

Extends to matrix factorials A(N)A(N − 1) · · · A(1) Õ(N)
−→ recurrences of arbitrary order.
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Extends to matrix factorials A(N)A(N − 1) · · · A(1) Õ(N)
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Binary Splitting: balance computation sequence so as to take advantage
of fast multiplication (operands of same sizes):

N! = (1× · · · × bN/2c)︸ ︷︷ ︸
size 1

2 N log N

× ((bN/2c+ 1)× · · · × N)︸ ︷︷ ︸
size 1

2 N log N

and recurse. Complexity Õ(N).
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Application to recurrences

Problem: Compute the N-th term uN of a P-recursive sequence

pr(n)un+r + · · ·+ p0(n)un = 0, (n ∈N)

Naive algorithm: unroll the recurrence Õ(N2) bit ops.

Binary splitting: Un = (un, . . . , un+r−1)
T satisfies the 1st order recurrence

Un+1 =
1

pr(n)
A(n)Un with A(n) =


pr(n)

. . .
pr(n)

−p0(n) −p1(n) . . . −pr−1(n)

 .

=⇒ uN reads off the matrix factorial A(N − 1) · · · A(0)

[Chudnovsky-Chudnovsky, 1987]: Binary splitting strategy Õ(N) bit ops.
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Application: fast computation of e = exp(1) [Brent 1976]

en =
n

∑
k=0

1
k!

−→ exp(1) = 2.7182818284590452 . . .

Recurrence en − en−1 = 1/n! ⇐⇒ n(en − en−1) = en−1 − en−2 rewrites[
eN−1

eN

]
=

1
N

[
0 N
−1 N + 1

]
︸ ︷︷ ︸

C(N)

[
eN−2
eN−1

]
=

1
N!

C(N)C(N − 1) · · ·C(1)
[

0
1

]
.

. eN in Õ(N) bit operations [Brent 1976]

. generalizes to the evaluation of any D-finite series at an algebraic number
[Chudnovsky-Chudnovsky 1987] Õ(N) bit ops.
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Implementation in gfun [Mezzarobba, Salvy 2010]

> rec:={n*(e(n) - e(n-1)) = e(n-1) - e(n-2), e(0)=1, e(1)=2};
> pro:=rectoproc(rec,e(n));

pro := proc(n::nonnegint)
local i1, loc0, loc1, loc2, tmp2, tmp1, i2;

if n <= 22 then
loc0 := 1; loc1 := 2;
if n = 0 then return loc0

else for i1 to n - 1 do
loc2 := (-loc0 + loc1 + loc1*(i1 + 1))/(i1 + 1);
loc0 := loc1; loc1 := loc2

end do
end if; loc1

else
tmp1 := ‘gfun/rectoproc/binsplit‘([

’ndmatrix’(Matrix([[0, i2 + 2], [-1, i2 + 3]]), i2 + 2), i2, 0, n,
matrix_ring(ad, pr, ze, ndmatrix(Matrix(2, 2, [[...],[...]],
datatype = anything, storage = empty, shape = [identity]), 1)),
expected_entry_size], Vector(2, [...], datatype = anything));

tmp1 := subs({e(0) = 1, e(1) = 2}, tmp1); tmp1
end if

end proc

> tt:=time(): x:=pro(210000): time()-tt;
> tt:=time(): y:=evalf(exp(1), 1000000): time()-tt, evalf(x-y, 1000000);

3.730, 24.037, 0.
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Application: record computation of π

[Chudnovsky-Chudnovsky 1987] fast convergence hypergeometric identity

1
π

=
1

53360
√

640320
∑

n≥0

(−1)n(6n)!(13591409 + 545140134n)
n!3(3n)!(8 · 100100025 · 327843840)n .

. Used in Maple & Mathematica: 1st order recurrence, yields 14 correct digits
per iteration −→ 4 billion digits [Chudnovsky-Chudnovsky 1994]

. Current record: 31.4 trillion digits [Iwao 2019]
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Example [Flajolet, Salvy, 1997]

What is the coefficient of x3000 in the expansion of

(x + 1)2000
(

x2 + x + 1
)1000 (

x4 + x3 + x2 + x + 1
)500

> st:=time(); n1:=2000; n2:=1000; n3:=500;
> P1:=x+1; P2:=x^2+x+1; P3:=x^4+x^3+x^2+x+1;
> d1:={diff(u(x),x)*P1-n1*diff(P1,x)*u(x)=0, u(0)=1}:
> d2:={diff(v(x),x)*P2-n2*diff(P2,x)*v(x)=0, v(0)=1}:
> d3:={diff(w(x),x)*P3-n3*diff(P3,x)*w(x)=0, w(0)=1}:
> deq:=poltodiffeq(u(x)*v(x)*w(x),[d1,d2,d3],[u(x),v(x),w(x)],y(x)):
> rec:=diffeqtorec(deq,y(x),u(n)); pro:=rectoproc(rec,u(n));
> co3000:=pro(3000); time()-st;

3973942265580043039696 · · · [1379 digits] · · · 90713429445793420476320

0.24 seconds

> st:=time(): co:=coeff(P,x,3000):
> co-co3000, time()-st:

0, 93.57 seconds
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Baby steps / giant steps
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Baby steps / giant steps for polynomial evaluation

Problem: Given a K-algebra A, a ∈ A and P ∈ K[x]<N , compute P(a)

Horner’s rule: O(N) products in A

Better algorithm [Paterson-Stockmeyer, 1973]: O
(√

N
)

products in A

Write P(x) = P0(x) + · · ·+ P`−1(x) · (x`)`−1, with ` =
√

N and deg(Pi) < `

(BS) Compute a2, . . . , a` =: b O
(√

N
)

products in A

(GS) Compute b0 = 1, b1 = b, . . . , b`−1 = b`−1 O
(√

N
)

products in A

Evaluate c0 = P0(a), . . . , c`−1 = P`−1(a) no product in A

Return P(a) = b0c0 + · · ·+ b`−1c`−1 O
(√

N
)

products in A

Application: evaluation of P ∈ K[x]<N at a matrix inMr(K) O
(√

N rω
)
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N and deg(Pi) < `

(BS) Compute a2, . . . , a` =: b O
(√

N
)

products in A

(GS) Compute b0 = 1, b1 = b, . . . , b`−1 = b`−1 O
(√

N
)

products in A

Evaluate c0 = P0(a), . . . , c`−1 = P`−1(a) no product in A

Return P(a) = b0c0 + · · ·+ b`−1c`−1 O
(√

N
)

products in A

Application: evaluation of P ∈ K[x]<N at a matrix inMr(K) O
(√

N rω
)
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Baby steps / giant steps, application to factorials

Problem: Compute N! = 1× 2× · · · × N

Naive algorithm: unroll the recurrence O(N)

Better algorithm [Strassen, 1976]: BS-GS strategy O
(
M(
√

N ) log N
)

(BS) Compute P = (x + 1)(x + 2) · · · (x +
√

N) O
(
M(
√

N ) log N
)

(GS) Evaluate P at 0,
√

N, 2
√

N, . . . , (
√

N − 1)
√

N O
(
M(
√

N ) log N
)

Return uN = P((
√

N − 1)
√

N) · · · P(
√

N) · P(0) O(
√

N)
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Baby steps / giant steps, application to recurrences

Problem: Compute the N-th term uN of a P-recursive sequence

pr(n)un+r + · · ·+ p0(n)un = 0, (n ∈N)

Naive algorithm: unroll the recurrence O(N)

Better algorithm: Un = (un, . . . , un+r−1)
T satisfies the 1st order recurrence

Un+1 =
1

pr(n)
A(n)Un with A(n) =


pr(n)

. . .
pr(n)

−p0(n) −p1(n) . . . −pr−1(n)

 .

=⇒ uN reads off the matrix factorial A(N − 1) · · · A(0)

[Chudnovsky-Chudnovsky, 1987]: (BS)-(GS) strategy O
(
M(
√

N ) log N
)
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Baby steps / giant steps, application to point counting

Problem: count the number n of solutions of the equation y2 = f (x) over Fp

Basic idea [Deuring, 1941]: if deg( f ) = 3, then n mod p = − [xp−1] f (x)
p−1

2

Explanation: z is a non-zero square in Fp exactly when z(p−1)/2 = 1

Generalization [Cartier-Manin, 1956]: if deg( f ) = 2g + 1, then n mod p reads
off the Hasse-Witt matrix (hi,j)

g
i,j=1, with hi,j = [xip−j] f (x)(p−1)/2

Corollary [B-Gaudry-Schost, 2007]: Õ(
√

p) hyperelliptic point counting / Fp

. Based on [Flajolet-Salvy, 1997]: h = f N satisfies the differential equation
f h′ − N f ′h = 0, thus its coefficient sequence is P-recursive.
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Two exercises for next time (4/11/2019)

(1) Show that if P ∈ K[x] has degree d, then the sequence (P(n))n≥0 is
C-recursive, and admits (x− 1)d+1 as a characteristic polynomial.

(2) Let P = ∑2N
i=0 pixi ∈ Z[X] be the polynomial P(x) = (1 + x + x2)N .

1 Show that the parity of all coefficients of P can be determined in
O(M(N)) bit ops.

2 Show that P satisfies a linear differential equation of order 1 with
polynomial coefficients.

3 Determine a linear recurrence of order 2 satisfied by the sequence (pi)i.
4 Give an algorithm that computes pN in Õ(N) bit ops.
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