N-th term of a linear recurrent sequence

Alin Bostan

ENS Lyon
M2, CR11
October 21, 2019
The exercise from last week

Prove the identity

\[
\arcsin(x)^2 = \sum_{k \geq 0} \frac{k!}{\left(\frac{1}{2}\right) \cdots \left(k + \frac{1}{2}\right)} \frac{x^{2k+2}}{2k + 2},
\]

by performing the following steps:

1. Show that \(y = \arcsin(x) \) can be represented by the differential equation \((1 - x^2)y'' - xy' = 0\) and the initial conditions \(y(0) = 0, \ y'(0) = 1 \).
2. Compute a linear differential equation satisfied by \(z(x) = y(x)^2 \).
3. Deduce a linear recurrence relation satisfied by the coefficients of \(z(x) \).
The starting point is the identity

$$(\arcsin(x))' = \frac{1}{\sqrt{1 - x^2}}.$$

which allows to represent $\arcsin(x)$ by the differential equation

$$(1 - x^2)y'' - xy' = 0$$

together with the initial conditions

$$y(0) = \arcsin(0) = 0, \quad y'(0) = \frac{1}{\sqrt{1 - 0^2}} = 1.$$
Solution, Part 2.

Let $z = y^2$, with $y'' = \frac{x}{1-x^2} y'$.

By successive differentiations, we get

$$z' = 2yy',
$$

$$z'' = 2y'^2 + 2yy'' = 2y'^2 + 2x_1 - x_2 y'y'.
$$

$$z''' = 4y'y'' + 2x_1 - x_2 (y'^2 + yy'') + (2x_1 - x_2 + 4x_2^2 (1 - x_2^2))^2 y'y'.
$$

⊿

z, z', z'', z''' are $Q(x)$-linear combinations of y^2, yy', y'^2, thus $Q(x)$-dependent.

⊿

A dependence relation is determined by computing the kernel of

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 2 & x_1 - x_2 \\ 0 & 0 & 2 & 6x_1 - x_2 \\ 0 & 0 & 6 & 1 - x_2 \end{bmatrix}.$$

The kernel of M is generated by $[0, 1, 3x_2 - 1]^T$.

⊿

The corresponding differential equation is

$$(x_2 - 1)z''' + 3xz'' + z' = 0.$$

Alin Bostan

N-th term of a linear recurrent sequence
Solution, Part 2.

Let $z = y^2$, with $y'' = \frac{x}{1-x^2} y'$. By successive differentiations, we get
Solution, Part 2.

Let \(z = y^2 \), with \(y'' = \frac{x}{1-x^2} y' \). By successive differentiations, we get

\[
z' = 2yy',
\]

\[
z'' = 2y'^2 + 2yy'' = 2y'^2 + \frac{2x}{1-x^2} yy',
\]

\[
z''' = 4y'y'' + \frac{2x}{1-x^2} (y'^2 + yy'') + \left(\frac{2}{1-x^2} + \frac{4x^2}{(1-x^2)^2} \right) yy'
\]

\[
= \left(\frac{2}{1-x^2} + \frac{6x^2}{(1-x^2)^2} \right) yy' + \frac{6x}{1-x^2} y'^2.
\]
Solution, Part 2.

Let \(z = y^2 \), with \(y'' = \frac{x}{1-x^2} y' \). By successive differentiations, we get

\[
\begin{align*}
 z' &= 2yy', \\
 z'' &= 2y'^2 + 2yy'' = 2y'^2 + \frac{2x}{1-x^2} yy', \\
 z''' &= 4y'y'' + \frac{2x}{1-x^2} (y'^2 + yy'') + \left(\frac{2}{1-x^2} + \frac{4x^2}{(1-x^2)^2} \right) yy' \\
 &= \left(\frac{2}{1-x^2} + \frac{6x^2}{(1-x^2)^2} \right) yy' + \frac{6x}{1-x^2} y'^2.
\end{align*}
\]

\(z, z', z'', z''' \) are \(Q(x) \)-linear comb. of \(y^2, yy', y'^2 \), thus \(Q(x) \)-dependent
Solution, Part 2.

Let \(z = y^2 \), with \(y'' = \frac{x}{1-x^2} y' \). By successive differentiations, we get

\[z' = 2yy', \]
\[z'' = 2y'^2 + 2yy'' = 2y'^2 + \frac{2x}{1-x^2} yy', \]
\[z''' = 4y'y'' + \frac{2x}{1-x^2} (y'^2 + yy'') + \left(\frac{2}{1-x^2} + \frac{4x^2}{(1-x^2)^2} \right) yy' \]
\[= \left(\frac{2}{1-x^2} + \frac{6x^2}{(1-x^2)^2} \right) yy' + \frac{6x}{1-x^2} y'^2. \]

\(\triangleright \) \(z, z', z'', z''' \) are \(Q(x) \)-linear comb. of \(y^2, yy', y'^2 \), thus \(Q(x) \)-dependent

\(\triangleright \) A dependence relation is determined by computing the kernel of

\[
M = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & \frac{2x}{1-x^2} & \frac{2}{1-x^2} + \frac{6x^2}{(1-x^2)^2} \\
0 & 0 & 2 & \frac{6x}{1-x^2} \\
0 & 0 & 0 & 2
\end{bmatrix}
\]
Solution, Part 2.

Let \(z = y^2 \), with \(y'' = \frac{x}{1-x^2} y' \). By successive differentiations, we get

\[
\begin{align*}
z' &= 2yy', \\
z'' &= 2y'^2 + 2yy'' = 2y'^2 + \frac{2x}{1-x^2} yy', \\
z''' &= 4y'y'' + \frac{2x}{1-x^2} (y'^2 + yy'') + \left(\frac{2}{1-x^2} + \frac{4x^2}{(1-x^2)^2} \right) yy' \\
&= \left(\frac{2}{1-x^2} + \frac{6x^2}{(1-x^2)^2} \right) yy' + \frac{6x}{1-x^2} y'^2.
\end{align*}
\]

\(z, z', z'', z''' \) are \(Q(x) \)-linear comb. of \(y^2, yy', y'^2, \) thus \(Q(x) \)-dependent

A dependence relation is determined by computing the kernel of

\[
M = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & \frac{2x}{1-x^2} & \frac{2}{1-x^2} + \frac{6x^2}{(1-x^2)^2} \\
0 & 0 & 2 & \frac{6x}{1-x^2}
\end{bmatrix}
\]

The kernel of \(M \) is generated by \([0, 1, 3x, x^2 - 1]^T\)

The corresponding differential equation is

\[
(x^2 - 1)z'''' + 3xz'' + z' = 0.
\]
Solution, Part 2., a variant

Let \(z = y^2 \), with \(y'' = \frac{x}{1-x^2} y' \).
Solution, Part 2., a variant

Let $z = y^2$, with $y'' = \frac{x}{1-x^2} y'$. By successive differentiations, we get
Let $z = y^2$, with $y'' = \frac{x}{1-x^2} y'$. By successive differentiations, we get

$$z' = 2yy', \quad z'' = 2y'^2 + 2yy'' = 2y'^2 + \frac{2x}{1-x^2} yy' = 2y'^2 + \frac{x}{1-x^2} z', $$

$$z''' = 4y'y'' + \frac{x}{1-x^2} z'' + \left(\frac{1}{1-x^2} + \frac{2x^2}{(1-x^2)^2} \right) z' = \frac{4x}{1-x^2} y'^2 + \frac{x}{1-x^2} z'' + \frac{x^2 + 1}{(x^2 - 1)^2} z' = \frac{2x}{1-x^2} \left(z'' - \frac{x}{1-x^2} z' \right) + \frac{x}{1-x^2} z'' + \frac{x^2 + 1}{(x^2 - 1)^2} z'. $$

The corresponding differential equation is

$$(x^2 - 1)z''' + 3xz'' + z' = 0.$$
Solution, Part 3.

Write $z(x) = \sum_n a_n x^n$. Then:

$z'(x) = \sum n a_n x^{n-1}$,

$z''(x) = \sum (n+1) a_{n+1} x^n$,

$z'''(x) = \sum (n+1)(n+2) a_{n+2} x^n$.

The coefficient of x^n in $(x^2-1)z''' + 3xz'' + z'$ is

$$n(n+1)a_{n+1} - (n+1)(n+2)(n+3)a_{n+3} + 3(n+2)a_{n+2} + (n+1)a_{n+1}.$$
Solution, Part 3.

Write $z(x) = \sum_n a_n x^n$. Then:

$$z' = \sum_n (n + 1) a_{n+1} x^n,$$

Thus, the recurrence corresponding to $(x^2 - 1)z''' + 3xz'' + z' = 0$ is

$$(n + 1)(n + 2)(n + 3) a_{n+3} = (n + 1)^3 a_{n+1}.$$
Solution, Part 3.

Write \(z(x) = \sum_n a_n x^n \). Then:

\[
z' = \sum_n (n + 1) a_{n+1} x^n,
\]

\[
z'' = \sum_n (n + 1)(n + 2) a_{n+2} x^n,
\]
Solution, Part 3.

Write \(z(x) = \sum_n a_n x^n \). Then:

\[
\begin{align*}
z'(x) &= \sum_n (n+1)a_{n+1}x^n, \\
z''(x) &= \sum_n (n+1)(n+2)a_{n+2}x^n, \\
z'''(x) &= \sum_n (n+1)(n+2)(n+3)a_{n+3}x^n.
\end{align*}
\]
Solution, Part 3.

 Дано: $z(x) = \sum_n a_n x^n$. Тогда:

$$z' = \sum_n (n+1)a_{n+1}x^n,$$

$$z'' = \sum_n (n+1)(n+2)a_{n+2}x^n,$$

$$z''' = \sum_n (n+1)(n+2)(n+3)a_{n+3}x^n.$$

 ▶ The coefficient of x^n in $(x^2 - 1)z''' + 3xz'' + z'$ is

$$(n-1)n(n+1)a_{n+1} - (n+1)(n+2)(n+3)a_{n+3} + 3n(n+1)a_{n+1} + (n+1)a_{n+1}$$
Solution, Part 3.

▷ Write $z(x) = \sum_n a_n x^n$. Then:

$$z' = \sum_n (n + 1) a_{n+1} x^n,$$

$$z'' = \sum_n (n + 1)(n + 2) a_{n+2} x^n,$$

$$z''' = \sum_n (n + 1)(n + 2)(n + 3) a_{n+3} x^n.$$

▷ The coefficient of x^n in $(x^2 - 1)z''' + 3xz'' + z'$ is

$$(n - 1)n(n + 1)a_{n+1} - (n + 1)(n + 2)(n + 3)a_{n+3} + 3n(n + 1)a_{n+1} + (n + 1)a_{n+1}$$

▷ Thus, the recurrence corresponding to $(x^2 - 1)z''' + 3xz'' + z' = 0$ is

$$(n + 1)(n + 2)(n + 3)a_{n+3} = (n + 1)^3 a_{n+1}.$$
Solution, Part 3.

- Write $z(x) = \sum_n a_n x^n$. Then:

 $$z' = \sum_n (n + 1) a_{n+1} x^n,$$

 $$z'' = \sum_n (n + 1)(n + 2) a_{n+2} x^n,$$

 $$z''' = \sum_n (n + 1)(n + 2)(n + 3) a_{n+3} x^n.$$

- The coefficient of x^n in $(x^2 - 1)z''' + 3xz'' + z'$ is

 $$(n - 1)n(n + 1)a_{n+1} - (n + 1)(n + 2)(n + 3)a_{n+3} + 3n(n + 1)a_{n+1} + (n + 1)a_{n+1}$$

- Thus, the recurrence corresponding to $(x^2 - 1)z''' + 3xz'' + z' = 0$ is

 $$(n + 1)(n + 2)(n + 3)a_{n+3} = (n + 1)^3 a_{n+1}.$$

- Since $(n + 1)$ has no roots in \mathbb{N}, it further simplifies to

 $$(n + 2)(n + 3)a_{n+3} - (n + 1)^2 a_{n+1} = 0.$$
\(z = \sum_n a_n x^n \) satisfies
\[
(n + 2)(n + 3)a_{n+3} - (n + 1)^2a_{n+1} = 0.
\]

\(\triangleright \) Initial conditions:
\[
a_0 = z(0) = y(0)^2 = 0, \quad a_1 = z'(0) = 2y(0)y'(0) = 0, \quad a_2 = \frac{1}{2}z''(0) = y'(0)^2 = 1.
\]

\(\triangleright \) Recurrence and \(a_1 = 0 \) imply \(a_{2k+1} = 0 \), so the series is even.
\(\triangleright \) Let \(b_k = a_{2k+2} \). Then \(z(x) = \sum_k b_k x^{2k+2} \) and
\[
(2k + 1)(2k + 2)b_k = 4k^2b_{k-1}, \quad b_0 = 1
\]

\(\triangleright \) Thus, the sequence \((b_k)_k \) is hypergeometric and
\[
b_k = 2\frac{k^2}{(k + 1)(2k + 1)}b_{k-1} = \cdots = 2^k\frac{k!^2}{(k + 1)!(2k + 1)(2k - 1)\cdots 3}
\]
\[z = \sum_n a_n x^n \text{ satisfies} \]
\[(n + 2)(n + 3)a_{n+3} - (n + 1)^2 a_{n+1} = 0. \]

\[\text{Initial conditions:} \]
\[a_0 = z(0) = y(0)^2 = 0, \quad a_1 = z'(0) = 2y(0)y'(0) = 0, \quad a_2 = \frac{1}{2}z''(0) = y'(0)^2 = 1. \]

\[\text{Recurrence and } a_1 = 0 \text{ imply } a_{2k+1} = 0, \text{ so the series is even.} \]
\[\text{Let } b_k = a_{2k+2}. \text{ Then } z(x) = \sum_k b_k x^{2k+2} \text{ and} \]
\[(2k + 1)(2k + 2)b_k = 4k^2 b_{k-1}, \quad b_0 = 1 \]

\[\text{Thus, the sequence } (b_k)_k \text{ is hypergeometric and} \]
\[b_k = \frac{k!}{(k + 1) \cdot (k + \frac{1}{2}) \cdot (k - \frac{1}{2}) \cdot \cdots \cdot \frac{3}{2}} = \frac{k!}{(k + \frac{1}{2})(k - \frac{1}{2}) \cdot \cdots \cdot \frac{1}{2} 2k + 2} \]
BINARY POWERING
Def. \((a_n)_{n\geq 0} \) is a linearly recurrent sequence with constant coefficients (l.r.s.c.c, or C-recursive) if there exist \(c_0, \ldots, c_{d-1} \in \mathbb{K} \) such that

\[
a_{n+d} = c_{d-1}a_{n+d-1} + \cdots + c_0a_n, \quad \text{for all } n \geq 0.
\]
Def. \((a_n)_{n \geq 0}\) is a linearly recurrent sequence with constant coefficients (l.r.s.c.c, or C-recursive) if there exist \(c_0, \ldots, c_{d-1} \in \mathbb{K}\) such that

\[
a_{n+d} = c_{d-1}a_{n+d-1} + \cdots + c_0a_n, \quad \text{for all } n \geq 0.
\]

\(\triangleright x^d - c_{d-1}x^{d-1} - \cdots - c_0\) is called a characteristic polynomial of \((a_n)_{n \geq 0}\).
Def. \((a_n)_{n \geq 0}\) is a linearly recurrent sequence with constant coefficients (l.r.s.c.c, or C-recursive) if there exist \(c_0, \ldots, c_{d-1} \in K\) such that
\[
a_{n+d} = c_{d-1}a_{n+d-1} + \cdots + c_0a_n, \quad \text{for all } n \geq 0.
\]

▷ \(x^d - c_{d-1}x^{d-1} - \cdots - c_0\) is called a characteristic polynomial of \((a_n)_{n \geq 0}\).

▷ The minimal polynomial of \((a_n)_{n \geq 0}\), denoted \(\text{MinPol}(a_n)\), is the polynomial of minimal degree among all characteristic polynomials of \((a_n)_{n \geq 0}\).
Linear recurrences with constant coefficients

Def. \((a_n)_{n \geq 0}\) is a linearly recurrent sequence with constant coefficients (l.r.s.c.c, or C-recursive) if there exist \(c_0, \ldots, c_{d-1} \in \mathbb{K}\) such that

\[
a_{n+d} = c_{d-1}a_{n+d-1} + \cdots + c_0a_n, \quad \text{for all } n \geq 0.
\]

\(x^d - c_{d-1}x^{d-1} - \cdots - c_0\) is called a **characteristic polynomial** of \((a_n)_{n \geq 0}\).

The minimal polynomial of \((a_n)_{n \geq 0}\), denoted \(\text{MinPol}(a_n)\), is the polynomial of minimal degree among all characteristic polynomials of \((a_n)_{n \geq 0}\).

E.g., the Fibonacci seq. \((F_n)_{n \geq 0}\) given by \(F_0 = F_1 = 1, F_{n+2} = F_{n+1} + F_n\) is a l.r.s.c.c., with \(\text{MinPol}(F_n) = x^2 - x - 1\). A char. poly is \(x^3 + \frac{1}{2}x^2 - \frac{5}{2}x - \frac{3}{2}\).
Def. \((a_n)_{n \geq 0}\) is a linearly recurrent sequence with constant coefficients (l.r.s.c.c., or C-recursive) if there exist \(c_0, \ldots, c_{d-1} \in \mathbb{K}\) such that

\[
a_{n+d} = c_{d-1}a_{n+d-1} + \cdots + c_0a_n, \quad \text{for all } n \geq 0.
\]

\(x^d - c_{d-1}x^{d-1} - \cdots - c_0\) is called a characteristic polynomial of \((a_n)_{n \geq 0}\).

The minimal polynomial of \((a_n)_{n \geq 0}\), denoted \(\text{MinPol}(a_n)\), is the polynomial of minimal degree among all characteristic polynomials of \((a_n)_{n \geq 0}\).

E.g., the Fibonacci seq. \((F_n)_{n \geq 0}\) given by \(F_0 = F_1 = 1, F_{n+2} = F_{n+1} + F_n\) is a l.r.s.c.c., with \(\text{MinPol}(F_n) = x^2 - x - 1\). A char. poly is \(x^3 + \frac{1}{2}x^2 - \frac{5}{2}x - \frac{3}{2}\).

Central question today: how fast can one compute \(N\)-th coefficient \(a_N\)?
Def. \((a_n)_{n \geq 0}\) is a linearly recurrent sequence with constant coefficients (l.r.s.c.c, or C-recursive) if there exist \(c_0, \ldots, c_{d-1} \in \mathbb{K}\) such that

\[
a_{n+d} = c_{d-1}a_{n+d-1} + \cdots + c_0a_n, \quad \text{for all } n \geq 0.
\]

\(x^d - c_{d-1}x^{d-1} - \cdots - c_0\) is called a characteristic polynomial of \((a_n)_{n \geq 0}\).

The minimal polynomial of \((a_n)_{n \geq 0}\), denoted \(\text{MinPol}(a_n)\), is the polynomial of minimal degree among all characteristic polynomials of \((a_n)_{n \geq 0}\).

E.g., the Fibonacci seq. \((F_n)_{n \geq 0}\) given by \(F_0 = F_1 = 1, F_{n+2} = F_{n+1} + F_n\) is a l.r.s.c.c., with \(\text{MinPol}(F_n) = x^2 - x - 1\). A char. poly is \(x^3 + \frac{1}{2}x^2 - \frac{5}{2}x - \frac{3}{2}\).

Central question today: how fast can one compute \(N\)-th coefficient \(a_N\)?

Same question if, more generally, \((a_n)_{n \geq 0}\) is P-recursive.
Problem: Given a ring A, $a \in A$ and $N \geq 1$, compute a^N
Binary powering

Problem: Given a ring A, $a \in A$ and $N \geq 1$, compute a^N

▷ **Naive (iterative) algorithm:** $O(N)$ ops. in A
Binary powering

Problem: Given a ring A, $a \in A$ and $N \geq 1$, compute a^N

▷ **Naive (iterative) algorithm:** $O(N)$ ops. in A

▷ **Better algorithm (Pingala, 200 BC):** $O(\log N)$ ops. in A
Compute a^N recursively, using *square-and-multiply*

$$a^N = \begin{cases} (a^{N/2})^2, & \text{if } N \text{ is even,} \\ a \cdot (a^{\frac{N-1}{2}})^2, & \text{else.} \end{cases}$$
Particular case: Modular exponentiation

\[\mathbb{A} = \mathbb{Z}/A\mathbb{Z} \]
\{+, \times\} in \mathbb{A} have cost \(O(M_{\mathbb{Z}}(\log A)) \) bit ops.

\(\triangleright \) \(N \)-th decimal of \(\frac{1}{A} \) via \((10^N - 1 \mod A)\) in \(O(M_{\mathbb{Z}}(\log A) \log N) \) bit ops.

\[\mathbb{A} = K[x]/(P) \]
\{+, \times\} in \mathbb{A} have cost \(O(M(\deg P)) \) ops. in \(K \)

\(\triangleright \) if \(P, Q \in K[x]_{<d} \), then \((Q^N \mod P)\) in \(O(M(d) \log N) \) ops. in \(K \)
Example: N-th decimal of a rational number

What is the 10^{10^6}-th decimal of $A = \frac{1}{2039}$?
Example: N-th decimal of a rational number

What is the 10^{10^6}-th decimal of $A = \frac{1}{2039}$?

```plaintext
> N:=10^(10^6): A:=2039:
> iquo(10*(irem(10^(N-1),A)), A);
```

⊿

The following also computes the right answer. Can you see why?

```plaintext
> n:=irem(N,A-1):
> iquo(10*(irem(10^(n-1),A)), A);
```
Example: N-th decimal of a rational number

What is the 10^{10^6}-th decimal of $A = \frac{1}{2039}$?

> N:=10^(10^6): A:=2039:
> iquo(10*(irem(10^(N-1),A)), A);

Error, numeric exception: overflow

⊿

The following also computes the right answer. Can you see why?

> n:=irem(N,A-1):
> iquo(10*(irem(10^(n-1),A)), A);

6
Example: N-th decimal of a rational number

What is the 10^{10^6}-th decimal of $A = \frac{1}{2039}$?

```maple
> N:=10^(10^6); A:=2039:
> iquo(10*(irem(10^(N-1),A)), A);

Error, numeric exception: overflow
```

The following also computes the right answer. Can you see why?

```maple
> n:=irem(N,A-1):
> iquo(10*(irem(10^(n-1),A)), A);

6
```

Error, numeric exception: overflow
Example: N-th decimal of a rational number

What is the 10^{10^6}-th decimal of $A = \frac{1}{2039}$?

```plaintext
> N:=10^(10^6): A:=2039:
> iquo(10*(irem(10^(N-1),A)), A);

Error, numeric exception: overflow
```

```plaintext
> st:=time(): iquo(10*(irem(10^(n-1),A)), A), time()-st;

6, 0.037
```
Example: N-th decimal of a rational number

What is the 10^{10^6}-th decimal of $A = \frac{1}{2039}$?

> N:=10^(10^6): A:=2039:
> iquo(10*(irem(10^(N-1),A)), A);

Error, numeric exception: overflow

> st:=time(): iquo(10*('&^'(10,N-1) mod A), A), time()-st;
6, 0.037

▷ The following also computes the right answer. Can you see why?

> n:=irem(N,A-1);
> iquo(10*(irem(10^(n-1),A)), A);
6
Example: N-th term of the Fibonacci sequence

Problem: Compute F_N in \mathbb{K}, where

$$F_{n+2} = F_{n+1} + F_n, \quad n \geq 0, \quad F_0 = 1, \; F_1 = 1.$$
Example: N-th term of the Fibonacci sequence

Problem: Compute F_N in \mathbb{K}, where

$$F_{n+2} = F_{n+1} + F_n, \quad n \geq 0, \quad F_0 = 1, \quad F_1 = 1.$$

▷ **Naive (iterative) algorithm:** N ops. in \mathbb{K} to compute F_N
Example: N-th term of the Fibonacci sequence

Problem: Compute F_N in \mathbb{K}, where

$$F_{n+2} = F_{n+1} + F_n, \quad n \geq 0, \quad F_0 = 1, \quad F_1 = 1.$$

▷ Naive (iterative) algorithm: N ops. in \mathbb{K} to compute F_N

▷ Folklore trick:

$$\begin{bmatrix} F_N \\ F_{N+1} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} F_{N-1} \\ F_N \end{bmatrix} = C^N \begin{bmatrix} F_0 \\ F_1 \end{bmatrix}, \quad N \geq 1.$$
Example: N-th term of the Fibonacci sequence

Problem: Compute F_N in \mathbb{K}, where

$$F_{n+2} = F_{n+1} + F_n, \quad n \geq 0, \quad F_0 = 1, \ F_1 = 1.$$

▷ **Naive (iterative) algorithm:** N ops. in \mathbb{K} to compute F_N

▷ **Folklore trick:**

$$ \begin{bmatrix} F_N \\ F_{N+1} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} F_{N-1} \\ F_N \end{bmatrix} = C^N \begin{bmatrix} F_0 \\ F_1 \end{bmatrix}, \quad N \geq 1.$$

▷ **Binary powering:** compute C^N recursively, using

$$C^N = \begin{cases} (C^{N/2})^2, & \text{if } N \text{ is even,} \\ C \cdot (C^{N-1})^2, & \text{else.} \end{cases}$$

Cost: $O(\log N)$ products of 2×2 matrices $\rightarrow O(\log N)$ ops. in \mathbb{K} for F_N.
Example: N-th term of the Fibonacci sequence

\[
\begin{bmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{bmatrix} = C^n \quad \implies \quad \begin{bmatrix} F_{2n-2} & F_{2n-1} \\ F_{2n-1} & F_{2n} \end{bmatrix} = \begin{bmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{bmatrix}^2
\]
Example: N-th term of the Fibonacci sequence

$$\begin{bmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{bmatrix} = C^n \implies \begin{bmatrix} F_{2n-2} & F_{2n-1} \\ F_{2n-1} & F_{2n} \end{bmatrix} = \begin{bmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{bmatrix}^2$$

▷ The previous algorithm computes (by squaring 2×2 symmetric matrices)

$$(F_0, F_1, F_2) \rightarrow (F_2, F_3, F_4) \rightarrow (F_6, F_7, F_8) \rightarrow (F_{14}, F_{15}, F_{16}) \rightarrow \ldots$$

Cost: $5 \times$ and $3 +$ per arrow
Example: \(N \)-th term of the Fibonacci sequence

\[
\begin{bmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{bmatrix} = C^n \quad \implies \quad \begin{bmatrix} F_{2n-2} & F_{2n-1} \\ F_{2n-1} & F_{2n} \end{bmatrix} = \begin{bmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{bmatrix}^2
\]

\(\triangleright \) The previous algorithm computes (by squaring \(2 \times 2 \) symmetric matrices)

\[(F_0, F_1, F_2) \to (F_2, F_3, F_4) \to (F_6, F_7, F_8) \to (F_{14}, F_{15}, F_{16}) \to \ldots \]

Cost: \(5 \times \) and \(3 + \) per arrow

\(\triangleright \) Shortt's variant (1978): uses

\[
\begin{aligned}
F_{2n-2} &= F_{n-2}^2 + F_{n-1}^2 \\
F_{2n-1} &= F_{n-1}^2 + 2F_{n-1}F_{n-2}
\end{aligned}
\]

and computes

\[(F_0, F_1) \to (F_2, F_3) \to (F_6, F_7) \to (F_{14}, F_{15}) \to \ldots \]

Cost: \(3 \times \) and \(3 + \) per arrow
Example: N-th term of the Fibonacci sequence

Fiduccia's algorithm (1985): binary powering in the ring $\mathbb{K}[x]/(x^2 - x - 1)$:

$$C^n = \text{matrix of } (x^n \mod x^2 - x - 1)$$

$$\implies F_{n-2} + xF_{n-1} = x^n \mod x^2 - x - 1$$

Cost: $O(\log N)$ products in $\mathbb{K}[x]/(x^2 - x - 1) \rightarrow O(\log N)$ ops. for F_N
Example: N-th term of the Fibonacci sequence

Fiduccia’s algorithm (1985): binary powering in the ring $\mathbb{K}[x]/(x^2 - x - 1)$:

$$C^n = \text{matrix of } (x^n \text{ mod } x^2 - x - 1)$$

$$\implies F_{n-2} + xF_{n-1} = x^n \text{ mod } x^2 - x - 1$$

Cost: $O(\log N)$ products in $\mathbb{K}[x]/(x^2 - x - 1) \implies O(\log N)$ ops. for F_N

Explains Shortt’s algorithm:

$$F_{2n-2} + xF_{2n-1} = (F_{n-2} + xF_{n-1})^2 \text{ mod } x^2 - x - 1$$
\[a_{n+d} = c_{d-1}a_{n+d-1} + \cdots + c_0a_n, \quad n \geq 0, \]
Folklore trick: compute \((C^T)^N\) by binary powering \(O(d \omega \log(N))\).

Fiduccia's algorithm: binary powering in \(K[x]/(P)\), with \(P = x^d - \sum_{d-1} c_i x^i\).

N-th term of a linear recurrent sequence
$a_{n+d} = c_{d-1}a_{n+d-1} + \cdots + c_0a_n$, \quad n \geq 0,$

rewrites

$$\begin{bmatrix}
a_N \\
a_{N+1} \\
\vdots \\
a_{N+d-1}
\end{bmatrix}_{v_N} = \begin{bmatrix} 1 & \cdots & 1 \\ c_0 & c_1 & \cdots & c_{d-1} \\ \vdots & \ddots & \ddots & \vdots \\ a_{N+d-2} & & & a_N \end{bmatrix}_{CT} \begin{bmatrix}
a_{N-1} \\
a_{N} \\
\vdots \\
a_{N+d-2}
\end{bmatrix}_{v_{N-1}} = (CT)^N \begin{bmatrix} a_0 \\
a_1 \\
\vdots \\
a_{d-1}
\end{bmatrix}_{v_0}, \quad N \geq 1.$$

▷ **Folklore trick:** compute $(CT)^N$ by binary powering $O(d^\omega \log(N))$
\[a_{n+d} = c_{d-1}a_{n+d-1} + \cdots + c_0a_n, \quad n \geq 0, \]
rewrites
\[
\begin{bmatrix}
 a_N \\
 a_{N+1} \\
 \vdots \\
 a_{N+d-1}
\end{bmatrix}
= \begin{bmatrix}
 1 & \cdots & 1 \\
 c_0 & c_1 & \cdots & c_{d-1} \\
 \vdots \\
 a_{N-1} & a_N & \cdots & a_{N+d-2}
\end{bmatrix}
\begin{bmatrix}
 a_0 \\
 a_1 \\
 \vdots \\
 a_{d-1}
\end{bmatrix}, \quad N \geq 1.
\]

▷ Folklore trick: compute \((C^T)^N\) by binary powering \(O(d^\omega \log(N))\)
▷ Fiduccia's algorithm: binary powering in \(\mathbb{K}[x]/(P)\), with
\[P = x^d - \sum_{i=0}^{d-1} c_i x^i \]
\[
a_N = e \cdot v_N = \left(C^N \cdot e^T \right)^T \cdot v_0 = \langle x^N \bmod P, v_0 \rangle
\]
where \(e = [1 \quad 0 \quad \cdots \quad 0] \).
\(a_{n+d} = c_{d-1}a_{n+d-1} + \cdots + c_0a_n, \quad n \geq 0, \)

rewrites

\[
\begin{bmatrix}
 a_N \\
 a_{N+1} \\
 \vdots \\
 a_{N+d-1}
\end{bmatrix}
\begin{bmatrix}
 v_N \\
 C^T
\end{bmatrix}
= \begin{bmatrix}
 1 \\
 . \\
 . \\
 c_0 & c_1 & \cdots & c_{d-1}
\end{bmatrix}
\begin{bmatrix}
 a_{N-1} \\
 a_N \\
 \vdots \\
 a_{N+d-2}
\end{bmatrix}
= (CT)^N \begin{bmatrix}
 a_0 \\
 a_1 \\
 \vdots \\
 a_{d-1}
\end{bmatrix}, \quad N \geq 1.
\]

▷ **Folklore trick:** compute \((CT)^N\) by binary powering \(O(d^\omega \log(N))\)

▷ **Fiduccia's algorithm:** binary powering in \(\mathbb{K}[x]/(P)\), with \(P = x^d - \sum_{i=0}^{d-1} c_i x^i\)

\[
a_N = e \cdot v_N = \left(C^N \cdot e^T\right)^T \cdot v_0 = \langle x^N \mod P, v_0 \rangle
\]

where \(e = [1 \ 0 \ \cdots \ 0]\).

Cost: \(O(\log N)\) products in \(\mathbb{K}[x]/(P)\) \(O(M(d) \log N)\)
Duality lemma (link between l.r.s.c.c. and rational functions)
Let $A(x) = \sum_{n \geq 0} a_n x^n \in \mathbb{K}[[x]]$ be the generating function of $(a_n)_{n \geq 0}$.
The following assertions are equivalent:

(i) $(a_n)_{n \geq 0}$ is a l.r.s.c.c., having P as characteristic polynomial of degree d;
(ii) $A(x)$ is rational, of the form $A = Q/\text{rev}_d(P)$ for some $Q \in \mathbb{K}[x]_{<d}$,
where $\text{rev}_d(P) = P(\frac{1}{x})x^d$.

\[\boxed{\text{Corollary:} \text{ } N\text{-th Taylor coefficient of } PQ \in \mathbb{K}(x) \text{ } \text{d}\text{ in } O(M(d) \log N) \text{ ops in } \mathbb{K}}\]
Duality lemma (link between l.r.s.c.c. and rational functions)
Let \(A(x) = \sum_{n \geq 0} a_n x^n \in \mathbb{K}[[x]] \) be the generating function of \((a_n)_{n \geq 0}\).
The following assertions are equivalent:

(i) \((a_n)_{n \geq 0}\) is a l.r.s.c.c., having \(P \) as characteristic polynomial of degree \(d \);
(ii) \(A(x) \) is rational, of the form \(A = Q / \text{rev}_d(P) \) for some \(Q \in \mathbb{K}[x]_{<d} \),
 where \(\text{rev}_d(P) = P\left(\frac{1}{x}\right)x^d \).

▷ The denominator of \(A \) encodes a recurrence for \((a_n)_{n \geq 0}\); the numerator
 encodes initial conditions.
Duality lemma (link between l.r.s.c.c. and rational functions)

Let $A(x) = \sum_{n \geq 0} a_n x^n \in \mathbb{K}[[x]]$ be the generating function of $(a_n)_{n \geq 0}$. The following assertions are equivalent:

(i) $(a_n)_{n \geq 0}$ is a l.r.s.c.c., having P as characteristic polynomial of degree d;

(ii) $A(x)$ is rational, of the form $A = Q/\text{rev}_d(P)$ for some $Q \in \mathbb{K}[x]_{<d}$, where $\text{rev}_d(P) = P(\frac{1}{x})x^d$.

▷ The denominator of A encodes a recurrence for $(a_n)_{n \geq 0}$; the numerator encodes initial conditions.

▷ Generating function of $(F_n)_{n \geq 0}$ given by $F_0 = a, F_1 = b, F_{n+2} = F_{n+1} + F_n$ is $(a + (b - a)x)/(1 - x - x^2)$. Here $P = x^2 - x - 1$ and $Q = a + (b - a)x$.

- **Alin Bostan**
- **N-th term of a linear recurrent sequence**
Duality lemma (link between l.r.s.c.c. and rational functions)
Let $A(x) = \sum_{n \geq 0} a_n x^n \in \mathbb{K}[[x]]$ be the generating function of $(a_n)_{n \geq 0}$.
The following assertions are equivalent:

(i) $(a_n)_{n \geq 0}$ is a l.r.s.c.c., having P as characteristic polynomial of degree d;
(ii) $A(x)$ is rational, of the form $A = Q / \text{rev}_d(P)$ for some $Q \in \mathbb{K}[x]_{<d}$, where $\text{rev}_d(P) = P\left(\frac{1}{x}\right)x^d$.

The denominator of A encodes a recurrence for $(a_n)_{n \geq 0}$; the numerator encodes initial conditions.

Generating function of $(F_n)_{n \geq 0}$ given by $F_0 = a, F_1 = b, F_{n+2} = F_{n+1} + F_n$
is $(a + (b - a)x) / (1 - x - x^2)$. Here $P = x^2 - x - 1$ and $Q = a + (b - a)x$.

Corollary: N-th Taylor coefficient of $\frac{P}{Q} \in \mathbb{K}(x)_d$ in $O(M(d) \log N)$ ops. in \mathbb{K}
Question: The number of ways one can change any amount of banknotes of 10 €, 20 €, ... using coins of 50 cents, 1 € and 2 € is always a perfect square.

† Inspired by Pb. 1, Ch. 1, p. 1, vol. 1 of Pólya and Szegő’s Problems Book (1925).
Question†: The number of ways one can change any amount of banknotes of 10 €, 20 €, ... using coins of 50 cents, 1 € and 2 € is always a perfect square.

This is equivalent to finding the number M_{20k} of solutions $(a, b, c) \in \mathbb{N}^3$ of

$$a + 2b + 4c = 20k.$$

† Inspired by Pb. 1, Ch. 1, p. 1, vol. 1 of Pólya and Szegö’s Problems Book (1925).
\[\sum_{n\geq 0} M_n x^n = \frac{1}{(1 - x)(1 - x^2)(1 - x^4)}. \]
N-th term, with N as a parameter

- Euler-Comtet’s denumerants: $\sum_{n \geq 0} M_n x^n = \frac{1}{(1 - x)(1 - x^2)(1 - x^4)}$.

\begin{verbatim}
> f:=1/(1-x)/(1-x^2)/(1-x^4):
> S:=series(f,x,201):
> [seq(coeff(S,x,20*k),k=1..10)];

[36, 121, 256, 441, 676, 961, 1296, 1681, 2116, 2601]
\end{verbatim}
N-th term, with N as a parameter

Euler-Comtet’s denumerants:

\[
\sum_{n \geq 0} M_n x^n = \frac{1}{(1 - x)(1 - x^2)(1 - x^4)}.
\]

\[f := \frac{1}{1-x}/(1-x^2)/(1-x^4)\]
\[S := \text{series}(f, x, 201)\]
\[[\text{seq(coeff}(S, x, 20*k), k=1..10)]\]

\([36, 121, 256, 441, 676, 961, 1296, 1681, 2116, 2601]\]

\[\text{subs}(n=20*k, \text{gfun[ratpolytcoeff]}(f, x, n))\]

\[
\frac{17}{32} + \frac{(20k + 1)(20k + 2)}{16} + 5k + \frac{(-1)^{-20k}(20k + 1)}{16} + \frac{5(-1)^{-20k}}{32} + \sum_{\alpha_1^2 + 1 = 0} \left(- \frac{1}{16} \frac{1}{16} \frac{\alpha_1}{\alpha_1} \alpha_1^{-20k}\right)
\]
N-th term, with N as a parameter

| Euler-Comtet's denumerants: | \[\sum_{n \geq 0} M_n x^n = \frac{1}{(1-x)(1-x^2)(1-x^4)}. \] |

\[
> f:=1/(1-x)/(1-x^2)/(1-x^4):
> S:=series(f,x,201):
> [seq(coeff(S,x,20*k),k=1..10)];
\]

\[[36, 121, 256, 441, 676, 961, 1296, 1681, 2116, 2601] \]

\[
> \text{subs}(n=20*k,\text{gfun}\text{[ratpolytocoeff]}(f,x,n));
\]

\[
\frac{17}{32} + \frac{(20k+1)(20k+2)}{16} + 5k + \frac{(-1)^{-20k}(20k+1)}{16} + \frac{5(-1)^{-20k}}{32} + \sum_{\alpha_1^2+1=0} \left(-\frac{\frac{1}{16} - \frac{1}{16} \alpha_1}{\alpha_1} \right)^{20k} \]

\[
> \text{value(subs(_alpha1^(-20*k)=1,%))}: \\
> \text{simplify(%) assuming k::posint}: \\
> \text{factor(%)}; \\
\]

\[
(5k + 1)^2
\]
BINARY SPLITTING
Example: fast factorial

Problem: Compute $N! = 1 \times \cdots \times N$
Example: fast factorial

Problem: Compute $N! = 1 \times \cdots \times N$

Naive (iterative) algorithm: unbalanced multiplicands $\tilde{O}(N^2)$

Binary Splitting: balance computation sequence so as to take advantage of fast multiplication (operands of same sizes):

$$
N! = \left(1 \times \cdots \times \lfloor N/2 \rfloor\right) \times \left(\lfloor N/2 \rfloor + 1 \times \cdots \times N\right)
$$

size $\frac{N}{2} \times \left(\lfloor N/2 \rfloor + 1 \times \cdots \times N\right)$

and recurse. Complexity $\tilde{O}(N)$. Extends to matrix factorials $A(N) A(N-1) \cdots A(1) \tilde{O}(N)$ → recurrences of arbitrary order.
Example: fast factorial

Problem: Compute \(N! = 1 \times \cdots \times N \)

Naive (iterative) algorithm: unbalanced multiplicands \(\tilde{O}(N^2) \)

- **Binary Splitting:** balance computation sequence so as to take advantage of fast multiplication (operands of same sizes):

\[
N! = (1 \times \cdots \times \lfloor N/2 \rfloor) \times (\lfloor N/2 \rfloor + 1) \times \cdots \times N
\]

size \(\frac{1}{2} N \log N \) \hspace{1cm} size \(\frac{1}{2} N \log N \)

and recurse. Complexity \(\tilde{O}(N) \).
Example: fast factorial

Problem: Compute $N! = 1 \times \cdots \times N$

Naive (iterative) algorithm: unbalanced multiplicands $\tilde{O}(N^2)$

- **Binary Splitting**: balance computation sequence so as to take advantage of fast multiplication (operands of same sizes):

 \[
 N! = \left(1 \times \cdots \times \left\lfloor N/2 \right\rfloor \right) \times \left((\left\lfloor N/2 \right\rfloor + 1) \times \cdots \times N \right)
 \]

 and recurse. Complexity $\tilde{O}(N)$.

- Extends to **matrix factorials** $A(N)A(N-1)\cdots A(1)$ $\tilde{O}(N)$
 \rightarrow recurrences of arbitrary order.

Alin Bostan | N-th term of a linear recurrent sequence
Application to recurrences

Problem: Compute the N-th term u_N of a P-recursive sequence

$$p_r(n)u_{n+r} + \cdots + p_0(n)u_n = 0, \quad (n \in \mathbb{N})$$
Problem: Compute the N-th term u_N of a P-recursive sequence

$$p_r(n)u_{n+r} + \cdots + p_0(n)u_n = 0, \quad (n \in \mathbb{N})$$

Naive algorithm: unroll the recurrence

$\tilde{O}(N^2)$ bit ops.
Application to recurrences

Problem: Compute the N-th term u_N of a P-recursive sequence

$$p_r(n)u_{n+r} + \cdots + p_0(n)u_n = 0, \quad (n \in \mathbb{N})$$

Naive algorithm: unroll the recurrence $\tilde{O}(N^2)$ bit ops.

Binary splitting: $U_n = (u_n, \ldots, u_{n+r-1})^T$ satisfies the 1st order recurrence

$$U_{n+1} = \frac{1}{p_r(n)} A(n) U_n \quad \text{with} \quad A(n) = \begin{bmatrix} p_r(n) & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ -p_0(n) & -p_1(n) & \cdots & -p_{r-1}(n) \end{bmatrix}.$$
Problem: Compute the N-th term u_N of a P-recursive sequence

$$p_r(n)u_{n+r} + \cdots + p_0(n)u_n = 0, \quad (n \in \mathbb{N})$$

Naive algorithm: unroll the recurrence \(\tilde{O}(N^2) \) bit ops.

Binary splitting: \(U_n = (u_n, \ldots, u_{n+r-1})^T \) satisfies the 1st order recurrence

\[
U_{n+1} = \frac{1}{p_r(n)} A(n) U_n \quad \text{with} \quad A(n) = \begin{pmatrix}
p_r(n) & & \\
& \ddots & \\
-p_0(n) & -p_1(n) & \ldots & -p_{r-1}(n)
\end{pmatrix}.
\]

\(\implies u_N \) reads off the matrix factorial \(A(N-1) \cdots A(0) \)
Application to recurrences

Problem: Compute the N-th term u_N of a P-recursive sequence

$$p_r(n)u_{n+r} + \cdots + p_0(n)u_n = 0, \quad (n \in \mathbb{N})$$

Naive algorithm: unroll the recurrence $\tilde{O}(N^2)$ bit ops.

Binary splitting: $U_n = (u_n, \ldots, u_{n+r-1})^T$ satisfies the 1st order recurrence

$$U_{n+1} = \frac{1}{p_r(n)} A(n) U_n \quad \text{with} \quad A(n) = \begin{bmatrix} p_r(n) \\ \vdots \\ -p_0(n) - p_1(n) \ldots - p_{r-1}(n) \end{bmatrix}.$$

$\implies u_N$ reads off the matrix factorial $A(N-1) \cdots A(0)$

[Chudnovsky-Chudnovsky, 1987]: Binary splitting strategy $\tilde{O}(N)$ bit ops.
Application: fast computation of $e = \exp(1)$ [Brent 1976]

$$e_n = \sum_{k=0}^{n} \frac{1}{k!} \quad \rightarrow \quad \exp(1) = 2.7182818284590452 \ldots$$

Recurrence $e_n - e_{n-1} = 1/n! \iff n(e_n - e_{n-1}) = e_{n-1} - e_{n-2}$ rewrites

$$\begin{bmatrix} e_{N-1} \\ e_N \end{bmatrix} = \frac{1}{N} \begin{bmatrix} 0 & N \\ -1 & N + 1 \end{bmatrix} \begin{bmatrix} e_{N-2} \\ e_{N-1} \end{bmatrix} = \frac{1}{N!} C(N) C(N-1) \cdots C(1) \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

\triangleright e_N in $\tilde{O}(N)$ bit operations [Brent 1976]

\triangleright generalizes to the evaluation of any D-finite series at an algebraic number [Chudnovsky-Chudnovsky 1987] $\tilde{O}(N)$ bit ops.
Implementation in gfun [Mezzarobba, Salvy 2010]

```
> rec:={n*(e(n) - e(n-1)) = e(n-1) - e(n-2), e(0)=1, e(1)=2};
> pro:=rectoproc(rec,e(n));

pro := proc(n::nonnegint)
local i1, loc0, loc1, loc2, tmp2, tmp1, i2;
if n <= 22 then
   loc0 := 1; loc1 := 2;
   if n = 0 then return loc0
   else for i1 to n - 1 do
      loc2 := (-loc0 + loc1 + loc1*(i1 + 1))/(i1 + 1);
      loc0 := loc1; loc1 := loc2
   end do
   end if; loc1
else
   tmp1 := 'gfun/rectoproc/binsplit'([ndmatrix(Matrix([[0, i2 + 2], [-1, i2 + 3]]), i2 + 2), i2, 0, n,
      matrix_ring(ad, pr, ze, ndmatrix(Matrix(2, 2, [[...], [...]],
      datatype = anything, storage = empty, shape = [identity]), 1)),
      expected_entry_size], Vector(2, [...], datatype = anything));
   tmp1 := subs({e(0) = 1, e(1) = 2}, tmp1); tmp1
end if
end proc
```

```
> tt:=time(): x:=pro(210000): time()-tt;
> tt:=time(): y:=evalf(exp(1), 1000000): time()-tt, evalf(x-y, 1000000);
3.730, 24.037, 0.
```
Application: record computation of π

[Chudnovsky-Chudnovsky 1987] fast convergence hypergeometric identity

$$\frac{1}{\pi} = \frac{1}{53360\sqrt{640320}} \sum_{n \geq 0} \frac{(-1)^n(6n)!((13591409 + 345140134n))}{n!^3(3n)!(8 \cdot 100100025 \cdot 327843840)^n}.$$

▷ Used in Maple & Mathematica: 1st order recurrence, yields 14 correct digits per iteration \rightarrow 4 billion digits [Chudnovsky-Chudnovsky 1994]

▷ Current record: 31.4 trillion digits [Iwao 2019]
Example [Flajolet, Salvy, 1997]

What is the coefficient of x^{3000} in the expansion of

$$(x + 1)^{2000} \left(x^2 + x + 1 \right)^{1000} \left(x^4 + x^3 + x^2 + x + 1 \right)^{500}$$
What is the coefficient of x^{3000} in the expansion of

$$(x + 1)^{2000} \left(x^2 + x + 1 \right)^{1000} \left(x^4 + x^3 + x^2 + x + 1 \right)^{500}$$

Alin Bostan

\[3973942265580043039696 \cdots [1379 \text{ digits}] \cdots 90713429445793420476320\]

0.24 seconds
What is the coefficient of \(x^{3000} \) in the expansion of

\[
(x + 1)^{2000} \left(x^2 + x + 1 \right)^{1000} \left(x^4 + x^3 + x^2 + x + 1 \right)^{500}
\]

\[
3973942265580043039696 \ldots [1379 \text{ digits}] \ldots 90713429445793420476320
\]

0.24 seconds
Baby steps / giant steps
Problem: Given a \mathbb{K}-algebra A, $a \in A$ and $P \in \mathbb{K}[x]_{<N}$, compute $P(a)$
Problem: Given a \mathbb{K}-algebra A, $a \in A$ and $P \in \mathbb{K}[x]_{< N}$, compute $P(a)$

Horner’s rule: $O(N)$ products in A
Problem: Given a \(\mathbb{K} \)-algebra \(A \), \(a \in A \) and \(P \in \mathbb{K}[x]_{\leq N} \), compute \(P(a) \).

Horner’s rule: \(O(N) \) products in \(A \)

Better algorithm [Paterson-Stockmeyer, 1973]: \(O(\sqrt{N}) \) products in \(A \)

Write \(P(x) = P_0(x) + \cdots + P_{\ell-1}(x) \cdot (x^\ell)^{\ell-1} \), with \(\ell = \sqrt{N} \) and \(\deg(P_i) < \ell \).
Problem: Given a \mathbb{K}-algebra A, $a \in A$ and $P \in \mathbb{K}[x]_{<N}$, compute $P(a)$

Horner's rule: $O(N)$ products in A

Better algorithm [Paterson-Stockmeyer, 1973]: $O(\sqrt{N})$ products in A

Write $P(x) = P_0(x) + \cdots + P_{\ell-1}(x) \cdot (x^\ell)^{\ell-1}$, with $\ell = \sqrt{N}$ and $\deg(P_i) < \ell$

(BS) Compute $a^2, \ldots, a^\ell =: b$ $O(\sqrt{N})$ products in A
Problem: Given a \mathbb{K}-algebra A, $a \in A$ and $P \in \mathbb{K}[x]_{<N}$, compute $P(a)$

Horner’s rule: \hspace{3cm} $O(N)$ products in A

Better algorithm [Paterson-Stockmeyer, 1973]: \hspace{3cm} $O(\sqrt{N})$ products in A

Write $P(x) = P_0(x) + \cdots + P_{\ell-1}(x) \cdot (x^\ell)^{\ell-1}$, with $\ell = \sqrt{N}$ and $\deg(P_i) < \ell$

BS \hspace{1cm} Compute $a^2, \ldots, a^\ell =: b$ \hspace{3cm} $O(\sqrt{N})$ products in A

GS \hspace{1cm} Compute $b_0 = 1, b_1 = b, \ldots, b_{\ell-1} = b^{\ell-1}$ \hspace{3cm} $O(\sqrt{N})$ products in A
Problem: Given a \(\mathbb{K} \)-algebra \(A \), \(a \in A \) and \(P \in \mathbb{K}[x]_{<N} \), compute \(P(a) \)

Horner’s rule: \(O(N) \) products in \(A \)

Better algorithm [Paterson-Stockmeyer, 1973]: \(O(\sqrt{N}) \) products in \(A \)

Write \(P(x) = P_0(x) + \cdots + P_{\ell-1}(x) \cdot (x^\ell)^{\ell-1} \), with \(\ell = \sqrt{N} \) and \(\deg(P_i) < \ell \)

(BS) Compute \(a^2, \ldots, a^\ell =: b \) \(O(\sqrt{N}) \) products in \(A \)

(GS) Compute \(b_0 = 1, b_1 = b, \ldots, b_{\ell-1} = b^{\ell-1} \) \(O(\sqrt{N}) \) products in \(A \)

Evaluate \(c_0 = P_0(a), \ldots, c_{\ell-1} = P_{\ell-1}(a) \) \(\text{no product in } A \)
Problem: Given a \mathbb{K}-algebra A, $a \in A$ and $P \in \mathbb{K}[x]_{<N}$, compute $P(a)$

Horner’s rule: $O(N)$ products in A

Better algorithm [Paterson-Stockmeyer, 1973]: $O(\sqrt{N})$ products in A

Write $P(x) = P_0(x) + \cdots + P_{\ell-1}(x) \cdot (x^\ell)^{\ell-1}$, with $\ell = \sqrt{N}$ and $\deg(P_i) < \ell$

(BS) Compute $a^2, \ldots, a^\ell =: b$ $O(\sqrt{N})$ products in A

(GS) Compute $b_0 = 1$, $b_1 = b$, \ldots, $b_{\ell-1} = b^{\ell-1}$ $O(\sqrt{N})$ products in A

Evaluate $c_0 = P_0(a)$, \ldots, $c_{\ell-1} = P_{\ell-1}(a)$ no product in A

Return $P(a) = b_0c_0 + \cdots + b_{\ell-1}c_{\ell-1}$ $O(\sqrt{N})$ products in A
Baby steps / giant steps for polynomial evaluation

Problem: Given a \mathbb{K}-algebra A, $a \in A$ and $P \in \mathbb{K}[x]_{<N}$, compute $P(a)$

Horner’s rule: $O(N)$ products in A

Better algorithm [Paterson-Stockmeyer, 1973]: $O(\sqrt{N})$ products in A

Write $P(x) = P_0(x) + \cdots + P_{\ell-1}(x) \cdot (x^\ell)^{\ell-1}$, with $\ell = \sqrt{N}$ and $\deg(P_i) < \ell$

(BS) Compute $a^2, \ldots, a^\ell =: b$ $O(\sqrt{N})$ products in A

(GS) Compute $b_0 = 1, b_1 = b, \ldots, b_{\ell-1} = b^{\ell-1}$ $O(\sqrt{N})$ products in A

Evaluate $c_0 = P_0(a), \ldots, c_{\ell-1} = P_{\ell-1}(a)$ no product in A

Return $P(a) = b_0 c_0 + \cdots + b_{\ell-1} c_{\ell-1}$ $O(\sqrt{N})$ products in A

Application: evaluation of $P \in \mathbb{K}[x]_{<N}$ at a matrix in $M_r(\mathbb{K})$ $O(\sqrt{N} r^{\omega})$
Problem: Compute \(N! = 1 \times 2 \times \cdots \times N \)
Problem: Compute $N! = 1 \times 2 \times \cdots \times N$

Naive algorithm: unroll the recurrence $O(N)$
Problem: Compute $N! = 1 \times 2 \times \cdots \times N$

Naive algorithm: unroll the recurrence $O(N)$

Better algorithm [Strassen, 1976]: BS-GS strategy $O(M(\sqrt{N}) \log N)$
Problem: Compute \(N! = 1 \times 2 \times \cdots \times N \)

Naive algorithm: unroll the recurrence \(O(N) \)

Better algorithm [Strassen, 1976]: BS-GS strategy \(O(M(\sqrt{N}) \log N) \)

(BS) Compute \(P = (x + 1)(x + 2) \cdots (x + \sqrt{N}) \) \(O(M(\sqrt{N}) \log N) \)
Problem: Compute $N! = 1 \times 2 \times \cdots \times N$

Naive algorithm: unroll the recurrence $O(N)$

Better algorithm [Strassen, 1976]: BS-GS strategy $O(M(\sqrt{N}) \log N)$

(BS) Compute $P = (x + 1)(x + 2) \cdots (x + \sqrt{N})$ $O(M(\sqrt{N}) \log N)$

(GS) Evaluate P at $0, \sqrt{N}, 2\sqrt{N}, \ldots, (\sqrt{N} - 1)\sqrt{N}$ $O(M(\sqrt{N}) \log N)$
Problem: Compute $N! = 1 \times 2 \times \cdots \times N$

Naive algorithm: unroll the recurrence $O(N)$

Better algorithm [Strassen, 1976]: BS-GS strategy $O(M(\sqrt{N}) \log N)$

(BS) Compute $P = (x + 1)(x + 2) \cdots (x + \sqrt{N})$ $O(M(\sqrt{N}) \log N)$

(GS) Evaluate P at $0, \sqrt{N}, 2\sqrt{N}, \ldots, (\sqrt{N} - 1)\sqrt{N}$ $O(M(\sqrt{N}) \log N)$

Return $u_N = P((\sqrt{N} - 1)\sqrt{N}) \cdots P(\sqrt{N}) \cdot P(0)$ $O(\sqrt{N})$
Problem: Compute the N-th term u_N of a P-recursive sequence

$$p_r(n)u_{n+r} + \cdots + p_0(n)u_n = 0, \quad (n \in \mathbb{N})$$
Problem: Compute the N-th term u_N of a P-recursive sequence

$$p_r(n)u_{n+r} + \cdots + p_0(n)u_n = 0, \quad (n \in \mathbb{N})$$

Naive algorithm: unroll the recurrence $O(N)$
Problem: Compute the N-th term u_N of a P-recursive sequence

$$p_r(n)u_{n+r} + \cdots + p_0(n)u_n = 0, \quad (n \in \mathbb{N})$$

Naive algorithm: unroll the recurrence \(O(N)\)

Better algorithm: \(U_n = (u_n, \ldots, u_{n+r-1})^T\) satisfies the 1st order recurrence

$$U_{n+1} = \frac{1}{p_r(n)} A(n) U_n \quad \text{with} \quad A(n) = \begin{bmatrix} p_r(n) \\ \vdots \\ -p_0(n) & -p_1(n) & \cdots & -p_{r-1}(n) \end{bmatrix}.$$
Problem: Compute the N-th term u_N of a P-recursive sequence

$$p_r(n)u_{n+r} + \cdots + p_0(n)u_n = 0, \quad (n \in \mathbb{N})$$

Naive algorithm: unroll the recurrence $O(N)$

Better algorithm: $U_n = (u_n, \ldots, u_{n+r-1})^T$ satisfies the 1st order recurrence

$$U_{n+1} = \frac{1}{p_r(n)} A(n) U_n \quad \text{with} \quad A(n) = \begin{bmatrix} p_r(n) & \cdots & \cdots & \cdots \\ \cdot & \cdot & \cdot & \cdot \\ -p_0(n) & -p_1(n) & \cdots & -p_{r-1}(n) \end{bmatrix}.$$

$\implies u_N$ reads off the matrix factorial $A(N-1) \cdots A(0)$
Problem: Compute the N-th term u_N of a P-recursive sequence

$$p_r(n)u_{n+r} + \cdots + p_0(n)u_n = 0, \quad (n \in \mathbb{N})$$

Naive algorithm: unroll the recurrence $O(N)$

Better algorithm: $U_n = (u_n, \ldots, u_{n+r-1})^T$ satisfies the 1st order recurrence

$$U_{n+1} = \frac{1}{p_r(n)} A(n) U_n \quad \text{with} \quad A(n) = \begin{bmatrix} p_r(n) & \cdots & \cdots & \cdots \\ \cdots & \ddots & \ddots & \ddots \\ \cdots & \cdots & \cdots & \cdots \\ -p_0(n) & -p_1(n) & \cdots & -p_{r-1}(n) \end{bmatrix}.$$

$\implies u_N$ reads off the matrix factorial $A(N-1) \cdots A(0)$

[Chudnovsky-Chudnovsky, 1987]: (BS)-(GS) strategy $O(M(\sqrt{N}) \log N)$
Problem: count the number n of solutions of the equation $y^2 = f(x)$ over \mathbb{F}_p
Problem: count the number n of solutions of the equation $y^2 = f(x)$ over \mathbb{F}_p

Basic idea [Deuring, 1941]: if $\deg(f) = 3$, then $n \mod p = - [x^{p-1}] f(x) \frac{p-1}{2}$
Problem: count the number n of solutions of the equation $y^2 = f(x)$ over \mathbb{F}_p

Basic idea [Deuring, 1941]: if $\deg(f) = 3$, then $n \mod p = - \lfloor x^{p-1} \rfloor f(x)^{\frac{p-1}{2}}$

Explanation: z is a non-zero square in \mathbb{F}_p exactly when $z^{(p-1)/2} = 1$
Problem: count the number n of solutions of the equation $y^2 = f(x)$ over \mathbb{F}_p

Basic idea [Deuring, 1941]: if $\deg(f) = 3$, then $n \mod p = -[x^{p-1}]f(x)^{p-1}/2$

Explanation: z is a non-zero square in \mathbb{F}_p exactly when $z^{(p-1)/2} = 1$

Generalization [Cartier-Manin, 1956]: if $\deg(f) = 2g + 1$, then $n \mod p$ reads off the Hasse-Witt matrix $(h_{i,j})_{i,j=1}^g$, with $h_{i,j} = [x^{ip-j}]f(x)^{(p-1)/2}$
Problem: count the number n of solutions of the equation $y^2 = f(x)$ over \mathbb{F}_p

Basic idea [Deuring, 1941]: if $\deg(f) = 3$, then $n \mod p = -[x^{p-1}]f(x)^{\frac{p-1}{2}}$

Explanation: z is a non-zero square in \mathbb{F}_p exactly when $z^{(p-1)/2} = 1$

Generalization [Cartier-Manin, 1956]: if $\deg(f) = 2g + 1$, then $n \mod p$ reads off the Hasse-Witt matrix $(h_{i,j})_{i,j=1}^{g}$, with $h_{i,j} = [x^{ip-j}]f(x)^{(p-1)/2}$

Corollary [B-Gaudry-Schost, 2007]: $\tilde{O}(\sqrt{p})$ hyperelliptic point counting / \mathbb{F}_p
Problem: count the number n of solutions of the equation $y^2 = f(x)$ over \mathbb{F}_p

Basic idea [Deuring, 1941]: if $\deg(f) = 3$, then $n \mod p = -[x^{p-1}]f(x)^{\frac{p-1}{2}}$

Explanation: z is a non-zero square in \mathbb{F}_p exactly when $z^{(p-1)/2} = 1$

Generalization [Cartier-Manin, 1956]: if $\deg(f) = 2g + 1$, then $n \mod p$ reads off the Hasse-Witt matrix $(h_{i,j})_{i,j=1}^g$, with $h_{i,j} = [x^{ip-j}]f(x)^{(p-1)/2}$

Corollary [B-Gaudry-Schost, 2007]: $\tilde{O}(\sqrt{p})$ hyperelliptic point counting / \mathbb{F}_p

▶ Based on [Flajolet-Salvy, 1997]: $h = f^N$ satisfies the differential equation $fh' - Nf'h = 0$, thus its coefficient sequence is P-recursive.
(1) Show that if $P \in \mathbb{K}[x]$ has degree d, then the sequence $(P(n))_{n \geq 0}$ is C-recursive, and admits $(x - 1)^{d+1}$ as a characteristic polynomial.

(2) Let $P = \sum_{i=0}^{2N} p_i x^i \in \mathbb{Z}[X]$ be the polynomial $P(x) = (1 + x + x^2)^N$.

1. Show that the parity of all coefficients of P can be determined in $O(M(N))$ bit ops.
2. Show that P satisfies a linear differential equation of order 1 with polynomial coefficients.
3. Determine a linear recurrence of order 2 satisfied by the sequence $(p_i)_i$.
4. Give an algorithm that computes p_N in $\tilde{O}(N)$ bit ops.