Polynomial and rational solutions of linear differential/recurrence equations

Alin Bostan

Alin Bostan

Polynomial and rational solutions

Resolution of Linear Differential Equations (LDEs):

homogeneous LDE

 $c_m(x)y^{(m)}(x) + \cdots + c_0(x)y(x) = 0, \qquad c_i \in \mathbb{K}[x]$

inhomogeneous LDE

$$c_m(x)y^{(m)}(x) + \cdots + c_0(x)y(x) = b(x), \qquad c_i, b \in \mathbb{K}[x]$$

inhomogeneous parametrized LDE

$$c_m(x)y^{(m)}(x) + \cdots + c_0(x)y(x) = \sum_{j=0}^{S} \lambda_j b_j(x) \quad \lambda_j \in \mathbb{K}, \ c_i, \ b_j \in \mathbb{K}[x]$$

▷ Input in blue, output in red

Resolution of Linear Recurrence Equations (LREs):

homogeneous LRE

$$p_r(n)u_{n+r} + \cdots + p_0(n)u_n = 0, \qquad p_i \in \mathbb{K}[n]$$

inhomogeneous LRE

$$p_r(n)u_{n+r} + \cdots + p_0(n)u_n = b(n), \qquad p_i, b \in \mathbb{K}[n]$$

• inhomogeneous parametrized LRE

$$p_r(n)u_{n+r} + \dots + p_0(n)u_n = \sum_{j=0}^S \lambda_j b_j(n) \quad \lambda_j \in \mathbb{K}, \ p_i, \ b_j \in \mathbb{K}[n]$$

▷ Input in blue, output in red

- ▷ Tasks: solve all these equations for
 - power series solutions of LDEs, finite-support solutions of LREs
 - polynomial and rational solutions \longrightarrow central tool in \sum and \int algos
- Sub-tasks:
 - structure of space of solutions
 - complexity issues
 - inhomogeneous parametrized: existence and values of parameters λ_i for which there exist polynomial / rational solutions
- ▷ Main focus: homogeneous case (the other cases reduce to it)

Basic, but important, observation: polynomial/rational solutions may have exponentially large degree with respect to the bit-size of the input equation

• E.g., $u_n = n(n+1)\cdots(n+10^{10}-1)$ is a degree- 10^{10} solution of LRE $nu_{n+1} - (n+10^{10})u_n = 0$

• E.g.,
$$y(x) = \sum_{k=0}^{10^{10}} {\binom{10^{10}}{k}} x^k$$
 is a degree-10¹⁰ solution of LDE
 $(x+1)y'(x) - 10^{10}y(x) = 0$

▷ In both cases, when written in the monomial basis of $\mathbb{K}[n]$, resp. of $\mathbb{K}[x]$, outputs have degree O(N) and bit-size $\tilde{O}(N^2)$, for inputs of bit-size log *N*.

Theorem. The set of sequences $(u_n)_{n\geq 0}$ solutions of the LRE (LRE): $p_r(n)u_{n+r} + \cdots + p_0(n)u_n = 0$

is a \mathbb{K} -vector space of finite dimension, lying between r and r + |H|, where

 $H:=\{h\in\mathbb{N}\mid p_r(h)=0\}.$

Theorem. The set of sequences $(u_n)_{n\geq 0}$ solutions of the LRE

(LRE): $p_r(n)u_{n+r} + \dots + p_0(n)u_n = 0$

is a K-vector space of finite dimension, lying between *r* and r + |H|, where

 $H:=\{h\in\mathbb{N}\mid p_r(h)=0\}.$

Remarks:

- ▷ When $p_r \in \mathbb{K} \setminus \{0\}$ (e.g., for r.l.s.c.c.), this dimension is exactly *r*.
- ▷ Same is true for all regular recurrences, that is when $H = \emptyset$.
- ▷ A singular example: $n(n-1)u_{n+3} (n-1)u_{n+2} + (n+1)u_{n+1} + 2nu_n = 0$
 - for $n = 0 \Rightarrow u_2 + u_1 = 0$ and u_3 is free
 - for $n = 1 \Rightarrow 2u_2 + 2u_1 = 0$ and u_4 is free
 - for $n \ge 2 \implies$ recurrence forces value of u_{n+3} in terms of previous ones

So dim = 4: u_0, u_1, u_3, u_4 are free, all other are linear combinations of them.

Theorem. The set of sequences $(u_n)_{n\geq 0}$ solutions of the LRE

(LRE): $p_r(n)u_{n+r} + \dots + p_0(n)u_n = 0$

is a K-vector space of finite dimension, lying between *r* and r + |H|, where

 $H:=\{h\in\mathbb{N}\mid p_r(h)=0\}.$

Remarks:

- ▷ When $p_r \in \mathbb{K} \setminus \{0\}$ (e.g., for r.l.s.c.c.), this dimension is exactly *r*.
- ▷ Same is true for all regular recurrences, that is when $H = \emptyset$.
- ▷ A singular example: $n(n-1)u_{n+3} (n-1)u_{n+2} + (n+1)u_{n+1} + 3nu_n = 0$
 - for $n = 0 \Rightarrow u_2 + u_1 = 0$ and u_3 is free
 - for $n = 1 \Rightarrow 2u_2 + 3u_1 = 0$ and u_4 is free
 - for $n \ge 2 \implies$ recurrence forces value of u_{n+3} in terms of previous ones

So dim = 3: u_0, u_3, u_4 are free, all other are linear combinations of them.

Theorem. The set of sequences $(u_n)_{n>0}$ solutions of the LRE

(LRE): $p_r(n)u_{n+r} + \dots + p_0(n)u_n = 0$

is a K-vector space of finite dimension, lying between r and r + |H|, where

 $H:=\{h\in\mathbb{N}\mid p_r(h)=0\}.$

Proof:

- Let $J := \{0, \dots, r-1\} \cup \{h+r \mid h \in H\}$. Note: |J| = r + |H|.
- For $n \in \mathbb{N} \setminus J$, value of u_{n+r} is uniquely determined from previous ones.
- dim $\Lambda_{\ell} = \dim \Lambda_{\ell-1}$ for $\ell \notin J$, and dim $\Lambda_j \leq 1 + \dim \Lambda_{j-1}$ for $j \in J$, where

$$\Lambda_{\ell} := \Big\{ (u_0, \dots, u_{\ell}) \in \mathbb{K}^{\ell+1} \ \Big| \ (\mathsf{LRE}) \text{ true for } n \in \{0, \dots, \ell-r\} \Big\}.$$

• dim $\Lambda_0 = 1, \ldots, \dim \Lambda_{r-1} = r$ and dim Sols(LRE) = dim $\Lambda_{\max(I)}$

 \triangleright Linear algebra in dimension max(J) \longrightarrow basis of solution space Sols(LRE).

Recall: from LDEs to LREs ("diffeqtorec")

Theorem. If $y(x) = \sum_{n \ge 0} u_n x^n \in \mathbb{K}[[x]]$ is a solution of the LDE (LDE): $c_m(x)y^{(m)}(x) + \dots + c_0(x)y(x) = 0$, with $c_i(x) = \sum_{j=0}^d c_{i,j}x^j$ in $\mathbb{K}[x]$, then the sequence $(u_n)_{n\ge 0}$ satisfies the LRE $\sum_{j=0}^m \sum_{i=0}^d c_{i,j}(n+i-i) \dots (n+1-i)y_{n+1} = 0$.

$$\sum_{i=0} \sum_{j=0} c_{i,j} (n+i-j) \cdots (n+1-j) u_{n+i-j} = 0,$$

for all $n \in \mathbb{Z}$, with $u_{\ell} = 0$ for $\ell < 0$. This writes for some $0 \le r \le m + d$:

 $p_r(n)u_{n+r}+\cdots+p_0(n)u_n=0,$

together with the equations (translating the constraints $u_{\ell} = 0$ for $\ell < 0$):

 $p_r(-1)u_{r-1} + \cdots + p_1(-1)u_0 = 0, \quad p_r(-2)u_{r-2} + \cdots = 0, \ldots, \quad p_r(-r)u_0 = 0.$

Proof: Extract coefficient of x^n in LDE(y(x)) = 0.

Let, as before, the linear differential equation

(LDE): $c_m(x)y^{(m)}(x) + \dots + c_0(x)y(x) = 0,$

with associated linear recurrence equation

(LRE): $p_r(n)u_{n+r} + \dots + p_0(n)u_n = 0.$

Def. Polynomial $p_r(n-r)$ in $\mathbb{K}[x]$ is called indicial polynomial at 0 of (LDE) Def. Polynomial $p_0(n)$ in $\mathbb{K}[x]$ is called indicial polynomial at infinity of (LDE)

Let (LDE_{α}) : $c_m(x+\alpha)y^{(m)}(x) + \cdots + c_0(x+\alpha)y(x) = 0$ for any $\alpha \in \overline{\mathbb{K}}$.

Def. Indicial polynomial at $x = \alpha$ of (LDE) is indicial poly. at x = 0 of (LDE_{α}) .

▷ Indicial polynomials at infinity of LDE and of (LDE_{α}) coincide.

(LDE):
$$c_m(x)y^{(m)}(x) + \dots + c_0(x)y(x) = 0$$
, (LRE): $p_r(n)u_{n+r} + \dots + p_0(n)u_n = 0$.

Theorem.

(1) If $F \in \mathbb{K}[[x]]$ is a solution of (LDE) then its valuation val(F) is a root of the indicial polynomial at 0 of (LDE). (2) (Cauchy) If $c_m(0) \neq 0$ then (LDE) admits a basis of m solutions in $\mathbb{K}[[x]]$, with valuations $0, 1, \ldots, m - 1$.

(LDE):
$$c_m(x)y^{(m)}(x) + \dots + c_0(x)y(x) = 0$$
, (LRE): $p_r(n)u_{n+r} + \dots + p_0(n)u_n = 0$.

Theorem.

(1) If $F \in \mathbb{K}[[x]]$ is a solution of (LDE) then its valuation val(F) is a root of the indicial polynomial at 0 of (LDE). (2) (Cauchy) If $c_m(0) \neq 0$ then (LDE) admits a basis of m solutions in $\mathbb{K}[[x]]$, with valuations $0, 1, \ldots, m - 1$.

Proof:

(1) Evaluate (LRE) at n = val(F) - r. (2) Assume $c_m(0) \neq 0$. Then (LRE) reads

 $0 = c_m(0) \cdot (n+m) \cdots (n+1)u_{n+m} + (\text{terms in } u_{< n+m})$

▷ Thus, (LRE) has order at least *m*, and it is regular, so there exist $y_i = x^i + O(x^m)$ solutions of (LDE) for i = 0, 1, ..., m - 1. ▷ The indicial polynomial at 0 equals $c_m(0) \cdot n \cdots (n - m + 1)$, so by (1) these $y_0, ..., y_{m-1}$ form a basis of solutions of (LDE).

(LDE):
$$c_m(x)y^{(m)}(x) + \dots + c_0(x)y(x) = 0$$
, (LRE): $p_r(n)y_{n+r} + \dots + p_0(n)y_n = 0$.

Theorem.

(1) If $F \in \mathbb{K}[[x]]$ is a solution of (LDE) then its valuation val(F) is a root of the indicial polynomial at 0 of (LDE). (2) (Cauchy) If $c_m(0) \neq 0$ then (LDE) admits a basis of m solutions in $\mathbb{K}[[x]]$, with valuations $0, 1, \ldots, m - 1$.

▷ Ex: The converse of (2) is also true: if (LDE) admits a basis of *m* solutions in $\mathbb{K}[[x]]$ with valuations 0, 1, ..., m - 1, then $c_m(0) \neq 0$.

▷ When $c_m(0) \neq 0$, one says that x = 0 is an ordinary point for (LDE).

Corollary: If x = 0 is an ordinary point for (LDE), then one can compute a full basis of power series solutions mod x^N in O(N) operations in \mathbb{K} .

(LDE) of order m = 3

$$(x-1)(x+1)y'''(x) + y'(x) + (x^2-1)y(x) = 0$$

▷ Corresponding (LRE) of order r = 5

 $-(n+3)(n+2)(n+1)u_{n+3}+(n+1)(n^2-n+1)u_{n+1}-u_n+u_{n-2}=0$

▷ Indicial equation at 0 equals -n(n-1)(n-2). ▷ Basis of solutions of (LDE):

$$\begin{aligned} 1 + 0 \cdot x + 0 \cdot x^2 &- \frac{1}{6} \cdot x^3 + 0 \cdot x^4 - \frac{1}{120} \cdot x^5 + O\left(x^6\right), \\ 0 + 1 \cdot x + 0 \cdot x^2 &+ \frac{1}{6} \cdot x^3 - \frac{1}{24} \cdot x^4 + \frac{1}{40} \cdot x^5 + O\left(x^6\right), \\ 0 + 0 \cdot x + 1 \cdot x^2 + 0 \cdot x^3 + \frac{1}{12} \cdot x^4 - \frac{1}{60} \cdot x^5 + O\left(x^6\right). \end{aligned}$$

Solutions with finite support of LRE

Def: A sequence $(u_n)_{n\geq 0}$ has finite support if $\exists N \geq 0$ s.t. $u_n = 0$ for n > N. We call N the degree of $(u_n)_{n\geq 0}$ if $u_N \neq 0$.

Task: Find solutions with finite support of

(LRE):
$$p_r(n)u_{n+r} + \dots + p_0(n)u_n = 0.$$

▷ The degree of such a solution must be a root of $p_0(n)$.

- ▷ Solution space: vector space of dim \leq number of roots in \mathbb{N} of $p_0(n)$.
- ▷ Algorithm:
 - Compute $S := \{h \in \mathbb{N} \mid p_0(h) \cdot p_r(h) = 0\}$
 - If $S = \emptyset$, return no solution; if not, let $N := \max S$.
 - Solve a linear system:
 - equations: eval. (LRE) at n = 0, 1, ..., N; add $u_{N+i} = 0$ for i = 1, ..., r
 - unknowns: $u_0, u_1, \ldots, u_{N+r}$
- ▷ Complexity: $O(N^{\theta})$
- ▷ One can do better: $O(N + |S|^{\theta})$

Task: Given $c_0, \ldots, c_m \in \mathbb{K}[x]$, compute a basis of solutions in $\mathbb{K}[x]$ of

(LDE): $c_m(x)y^{(m)}(x) + \dots + c_0(x)y(x) = 0.$

▷ If a bound *N* on the degree of a solution $y(x) \in \mathbb{K}[x]$ is known, then the coefficients of y(x) can be computed by linear algebra

 \triangleright Such a bound on the degree is the largest root *N* in \mathbb{N} of the indicial polynomial of (LDE) at infinity

▷ One can compute a basis of polynomial solutions:

- in $O(N^{\theta})$ by dense linear algebra
- in O(N) by exploiting the structure (banded matrix)

▷ One can decide *existence* of nonzero polynomial solutions faster! $\tilde{O}(\sqrt{N})$

Task: Given $c_0, \ldots, c_m \in \mathbb{K}[x]$, decide if there exist solutions in $\mathbb{K}[x] \setminus \{0\}$ of

(LDE): $c_m(x)y^{(m)}(x) + \dots + c_0(x)y(x) = 0.$

▷ Up to a shift, one may assume $c_m(0) \neq 0$, i.e. x = 0 is an ordinary point

▷ Let $\{y_1, \ldots, y_m\} \subset \mathbb{K}[[x]]$ be a basis of power series solutions of (LDE) (and *N* the largest root in \mathbb{N} of the indicial polynomial of (LDE) at infinity).

▷ Any solution in $\mathbb{K}[x]_{\leq N}$ of (LDE) is a \mathbb{K} -linear combination of the y_i 's

 \triangleright With $d = \max(\deg c_i)$, one can choose

$$y_i = x^i + u_{i,m}x^m + \dots + u_{i,N}x^N + \dots + u_{i,N+m+d}x^{N+m+d} + \dots$$

▷ One can compute coefficients in blue in $\tilde{O}(\sqrt{N})$ by baby-steps/giant-steps ▷ $y = \sum_i \lambda_i y_i$ is in $\mathbb{K}[x]_{\leq N} \iff \sum_{i=1}^m \lambda_i u_{i,N+j} = 0$ for all $1 \leq j \leq m + d$ ▷ Computing the kernel does not depend on *N* **Task**: Given $p_0, \ldots, p_r \in \mathbb{K}[n]$, compute a basis of solutions in $\mathbb{K}[n]$ of

(LRE): $p_r(n)u_{n+r} + \dots + p_0(n)u_n = 0.$

Same principle as for LDEs: "degree bound + linear algebra"
 Main sub-task: Degree bound

▷ With $(\Delta \cdot u)(n) = u(n+1) - u(n)$, rewrite recurrence equation (LRE) as

(LRE):
$$L \cdot u = \sum_{k=0}^{s} b_k(n) \Delta^k u = 0.$$

- ▷ Advantage: Δ decreases degrees by 1, thus $\deg(\Delta^k P) \leq \max(\deg P k, 0)$. ▷ Corollary: $\deg(L \cdot P) \leq B + \deg P$, with $B := \max_k \{\deg(b_k) - k\}$
- ▷ If $P = n^D + \cdots \in \mathbb{K}[n]$ is a solution of (LRE), then
 - either D + B < 0, thus D is upper bounded by -(B + 1);

• or
$$[n^{D+B}](L \cdot P) = \sum_{\deg b_k - k = B} \operatorname{lc}(b_k) D(D-1) \cdots (D-k+1)$$
 is zero

Bound on Degree for Polynomial solutions of LREs

Task: Given $p_0, \ldots, p_r \in \mathbb{K}[n]$, bound the degree of polynomial solutions of (LRE): $p_r(n)u_{n+r} + \cdots + p_0(n)u_n = 0.$

 \triangleright With $(\Delta \cdot u)(n) = u(n+1) - u(n)$, rewrite recurrence equation (LRE) as

(LRE):
$$L \cdot u = \sum_{k=0}^{s} b_k(n) \Delta^k u = 0.$$

▷ Theorem. A bound on the degree of polynomial solutions of (LRE) is

$$\max\left(-(B+1), \text{ largest root } D \in \mathbb{N} \text{ of } \underbrace{\sum_{k \in E} \operatorname{lc}(b_k) D(D-1) \cdots (D-k+1)}_{=:\operatorname{indicial polynomial of (LRE)}}\right)$$

where

• $B := \max_k \{ \deg(b_k) - k \}$, weighted (n, Δ) -degree of L, for $\deg(\Delta) = -1$;

• $E := \{k \mid \deg(b_k) - k = B\}$, indices where weighted degree is reached.

Polynomial solutions of LREs: an example

Question: Find all polynomial solutions of

$$(n-3)u_{n+2} - (2n-3)u_{n+1} + nu_n = 0$$

▷ The recurrence can be rewritten:

$$(n-3)(\Delta^2 u_n + 2\Delta u_n + u_n) - (2n-3)(\Delta u_n + u_n) + nu_n = 0,$$

that is

$$L(u) = \left((n-3)\Delta^2 - 3\Delta \right) (u_n) = 0$$

▷ *B* is -1, set *E* is {1,2}; indicial polynomial is D(D-1) - 3D = D(D-4)

- ▷ Degree is either $\langle -B = 1$, or in $\{0, 4\}$; degree 0 is not possible.
- ▷ Solution $P(n) = n^4 + an^3 + bn^2 + cn + d$

▷ $L(P) = (-3a - 30)n^2 + (-21a - 70 - 4b)n - 21a - 45 - 9b - 3c = 0$, with solution a = -10, b = 35, c = -50, and d is free.

Basis of solutions given by

$$\left\{ (n-1)(n-2)(n-3)(n-4), \quad n(n-5)(n^2-5n+10) \right\}$$

Remark: Degree bound can be exponentially large in the bit size of (LRE)!

▷ E.g., $nu_{n+1} - (n+100)u_n = 0$ has solution $u_n = n(n+1)\cdots(n+99)$.

▷ For LDEs, we exploited the fact that coefficients sequence of a series solution satisfies a LRE. This is false for LREs in the monomial basis. Still:

Theorem. If (u_n) is a polynomial solution of a LRE of order r with coefficients of degree at most d, then its coefficient sequence (c_k) in the binomial basis $\{\binom{n}{k}, k \in \mathbb{N}\}$ is a solution with finite support of another LRE, of order at most d + r, degree at most d, with no additional singularities.

Remark: Degree bound can be exponentially large in the bit size of (LRE)!

▷ E.g., $nu_{n+1} - (n+100)u_n = 0$ has solution $u_n = n(n+1)\cdots(n+99)$.

▷ For LDEs, we exploited the fact that coefficients sequence of a series solution satisfies a LRE. This is false for LREs in the monomial basis. Still:

Theorem. If (u_n) is a polynomial solution of a LRE of order r with coefficients of degree at most d, then its coefficient sequence (c_k) in the binomial basis $\{\binom{n}{k}, k \in \mathbb{N}\}$ is a solution with finite support of another LRE, of order at most d + r, degree at most d, with no additional singularities.

Proof:

$$u_n = \sum_{k=0}^d c_k \binom{n}{k} \Longrightarrow nu_n = \sum_{k=0}^{d+1} k(c_k + c_{k-1}) \binom{n}{k}, \ u_{n+1} = \sum_{k=0}^d (c_k + c_{k+1}) \binom{n}{k}.$$

Remark: Degree bound can be exponentially large in the bit size of (LRE)!

▷ E.g., $nu_{n+1} - (n+100)u_n = 0$ has solution $u_n = n(n+1)\cdots(n+99)$.

▷ For LDEs, we exploited the fact that coefficients sequence of a series solution satisfies a LRE. This is false for LREs in the monomial basis. Still:

Theorem. If (u_n) is a polynomial solution of a LRE of order r with coefficients of degree at most d, then its coefficient sequence (c_k) in the binomial basis $\{\binom{n}{k}, k \in \mathbb{N}\}$ is a solution with finite support of another LRE, of order at most d + r, degree at most d, with no additional singularities.

Proof:

$$u_n = \sum_{k=0}^d c_k \binom{n}{k} \Longrightarrow nu_n = \sum_{k=0}^{d+1} k(c_k + c_{k-1}) \binom{n}{k}, \ u_{n+1} = \sum_{k=0}^d (c_k + c_{k+1}) \binom{n}{k}.$$

▷ Example: for $nu_{n+1} - (n+100)u_n = 0$, we have

$$k(c_k + c_{k+1} + c_{k-1} + c_k) - k(c_k + c_{k-1}) - 100c_k = \frac{kc_{k+1}}{k} + \frac{(k-100)c_k}{k} = 0.$$

Find all polynomial solutions of the recurrence equation

$$3u_{n+2} - nu_{n+1} + (n-1)u_n = 0.$$

Task: Given $c_0, \ldots, c_m \in \mathbb{K}[x]$, compute a basis of solutions in $\mathbb{K}(x)$ of

(LDE): $c_m(x)y^{(m)}(x) + \dots + c_0(x)y(x) = 0.$

▷ Even assuming numerator/denominator bounds, a naive approach by undetermined coefficients would lead to a non-linear polynomial system.

- ▷ Better strategy [Liouville, 1833]:
 - (1) find a multiple of denominators of all rational solutions \longrightarrow singularity analysis
 - (2) reduce to polynomial solutions for numerators \longrightarrow change of unknowns
- Singularity analysis based on:
 - **(**) any solution $y(x) \in \mathbb{K}(x)$ of (LDE) has an expansion, around any of its poles $\alpha \in \overline{\mathbb{K}}$, as Laurent series $(x \alpha)^v \sum_i u_i (x \alpha)^i$, with $v \in \mathbb{Z} \setminus \mathbb{N}$
 - Order -v of the pole at x = α is bounded by the opposite of the smallest root in Z₋ of the indicial polynomial at α

Rational solutions of LDEs: Liouville's algorithm

Liouville(LDE)

In: A LDE c_m(x)y^(m)(x) + ··· + c₀(x)y(x) = 0 with c_i ∈ K[x]
Out: A basis of its rational solutions in K(x).
At each root α of c_m:

compute the indicial polynomial p_α(n);
compute the smallest root N_α in Z₋ of p_α; if none, set N_α := 0.

Form the polynomial P = ∏_{c_m(α)=0} (x - α)^{-N_α}.
Make the change of unknowns y = Y/P in (LDE)
Find a basis B of polynomial solutions Y(x) of the new LDE.
Return {b/P | b ∈ B}.

Question: Find (a bound on the degree of) all polynomial solutions of

$$(n-3)u_{n+2} - (2n-3)u_{n+1} + nu_n = 0$$

▷ If u_n polynomial solution of degree *D*, then $y(x) = \sum_n u_n x^n$ is a rational solution of the form $N(x)/(1-x)^{D+1}$ of the corresponding LDE:

$$x (x-1)^{2} ((5 u_{0} - 4 u_{1})x - 5 u_{0}) y'' (x)$$

+2 (x-1) $((5 u_{0} - 4 u_{1})x^{2} + (5 u_{0} - 10 u_{1})x - 10 u_{0}) y' (x)$
-20 $u_{1}y (x) = 0$

▷ Indicial equation at x = 1 is (n + 1)(n + 5), so $D + 1 \le 5$

Consider the differential equation

$$(x-1)(x^2-2)y''(x) + 2x(x^2-x-1)y'(x) + 4(x-2)y(x) = 0.$$

- I Prove that this equation has no nonzero polynomial solution.
- ② Show that any rational solution $y(x) \in Q(x)$ of this equation has at most a pole of order 1 at x = 1, and cannot have any other pole.
- ③ Find all rational solutions $y(x) \in \mathbb{Q}(x)$ of this equation.