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Polynomial and rational solutions



Resolution of Linear Differential Equations (LDEs):

© homogeneous LDE
en(x)y ™ (x) + -+ ax)y(x) =0, €Kl
@ inhomogeneous LDE
en(x)y™ () 4+ -+ co(x)y(x) =b(x),  c;b € Klx]

© inhomogeneous parametrized LDE

em(X)y™ () + - - + co(x)y(x) = Ajbi(x) A €K, ¢, by € K[x]

M-

0

]

> Input in blue, output in red
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Resolution of Linear Recurrence Equations (LREs):

© homogeneous LRE
pr(n)unir+ -+ +po(n)un =0,  p; € Kn]
© inhomogeneous LRE
pr(n)unsr + -+ po(n)un = b(n), pi,b € Kin]
© inhomogeneous parametrized LRE

S
pr(n)insy + -+ po(m)un = ) Ajbj(n)  A; €K, pj, by € Kn]
jn)

> Input in blue, output in red

3/23



comee

> Tasks: solve all these equations for

©® power series solutions of LDEs, finite-support solutions of LREs
© polynomial and rational solutions — central tool in }_ and | algos

> Sub-tasks:
® structure of space of solutions
© complexity issues

© inhomogeneous parametrized: existence and values of parameters A;
for which there exist polynomial / rational solutions

> Main focus: homogeneous case (the other cases reduce to it)

Y .11l zational solutions



> Basic, but important, observation: polynomial/rational solutions may have
exponentially large degree with respect to the bit-size of the input equation

© Eg,uy=n(n+1) - (n+10" — 1) is a degree-10'° solution of LRE

Nty — (n+10)u, =0

10 /4010
©Eg,y(x)=) ( % )xk is a degree-101? solution of LDE
k=0

(x+ 1)y (x) —10¥(x) =0

> In both cases, when written in the monomial basis of K[n], resp. of K[x],
outputs have degree O(N) and bit-size O(N?), for inputs of bit-size log N.
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Theorem. The set of sequences (1), > solutions of the LRE
(LRE): pr(M)upir + -+ po(n)uy =0
is a K-vector space of finite dimension, lying between r and r + |H|, where

H:={he N |p,(h) =0}.
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Solution space

Theorem. The set of sequences (1), solutions of the LRE

(LRE): pr(m)uyyr + -+ po(n)uy, =0
is a K-vector space of finite dimension, lying between r and r + |H|, where

H:= {he N|p,(h) = 0}.

Remarks:
> When p, € K\ {0} (e.g., for r.L.s.c.c.), this dimension is exactly .
> Same is true for all regular recurrences, that is when H = @.
> A singular example: n(n — 1)uyi3 — (n — Do + (n 4+ Duyaq + 2nu, =0
® forn =0 = up+u; =0and us is free
® forn=1 = 2up+2u; =0 and uy is free
® for n > 2 = recurrence forces value of 1,3 in terms of previous ones
So dim = 4: ug, uy, us, uy are free, all other are linear combinations of them.
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Theorem. The set of sequences (1), solutions of the LRE

(LRE): pr(m)uyyr + -+ po(n)uy, =0
is a K-vector space of finite dimension, lying between r and r + |H|, where

H:= {he N|p,(h) = 0}.

Remarks:
> When p, € K\ {0} (e.g., for r.L.s.c.c.), this dimension is exactly .
> Same is true for all regular recurrences, that is when H = @.
> A singular example: n(n — 1)uyi3 — (n — Do + (n 4+ 1)uyoq + 3nu, =0
® forn =0 = up+u; =0and us is free
® forn=1 = 2up+3u; =0 and uy is free
® for n > 2 = recurrence forces value of 1,3 in terms of previous ones
So dim = 3: ug, us, uy are free, all other are linear combinations of them.
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Solution space

Theorem. The set of sequences (1 ),>0 solutions of the LRE

(LRE): pr(m)upgr + -+ po(n)uy =0
is a K-vector space of finite dimension, lying between r and r + |H|, where

H:={heN|p(h) =0}

Proof:

elet]:={0,...,r—1}U{h+r|h € H}. Note: |J]| =7+ |H|.

e For n € N\ ], value of uy, is uniquely determined from previous ones.

e dim Ay =dim A,y for £ ¢ ], and dim A; < 1+dim A, for j € ], where
Api= {(uo,...,ug) e K1 ’ (LRE) true for n € {0,...,6—1’}}.

e dimAg =1,...,dimA, 1 =r and dim Sols(LRE) = dim Ap() O

> Linear algebra in dimension max(J) — basis of solution space Sols(LRE).
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Theorem. If y(x) = Y50 unx" € K[[x]] is a solution of the LDE

(LDE): cm(x)y(m)(x) +-Fco(x)y(x) =0,

with ¢;(x) = ] 0 Ci ]xi in K|[x], then the sequence (uy),>( satisfies the LRE

1](”"’1_]) (n+1_j)un+i—j=0/

™=
-

0j

for all n € Z, with uy = 0 for £ < 0. This writes for some 0 < r < m +d:

pr(m)upyr + -+ -+ po(n)uy, =0,

together with the equations (translating the constraints u, = 0 for £ < 0):

pr(=Dup—g +-+p1(=Dug =0, p(—2upp+---=0,..., pr(—=7r)ug=0.

Proof: Extract coefficient of x” in LDE(y(x)) = 0.
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Let, as before, the linear differential equation
(LDE): e (x)y™ (x) + -+ co(x)y(x) =0,
with associated linear recurrence equation

(LRE): pr(n)itpgr + -+ po(n)u, = 0.

Def. Polynomial p,(n — r) in K[x] is called indicial polynomial at 0 of (LDE)
Def. Polynomial pg(n) in K][x] is called indicial polynomial at infinity of (LDE)

Let (LDEy): cm(x+ lx)y(m)(x) +--+eo(x +a)y(x) =0 forany a € K.
Def. Indicial polynomial at x = « of (LDE) is indicial poly. at x = 0 of (LDE,).

> Indicial polynomials at infinity of LDE and of (LDE,) coincide.
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(LDE): cn(x)y™ () + -+ co(x)y(x) =0, (LRE): py(m)ttn s +----+ po(n)ity = 0.

Theorem.
(1) If F € K[[x]] is a solution of (LDE) then its valuation val(F) is a root of

the indicial polynomial at 0 of (LDE).
(2) (Cauchy) If ¢, (0) # 0 then (LDE) admits a basis of m solutions in K[[x]],

with valuations 0,1,...,m — 1.



Series solutions of LD

(LDE): e (x)y™ (x) +- - +co(x)y(x) =0, (LRE): py(n)ttusr+ -+ po(n)uy = 0.

Theorem.

(1) If F € K[[x]] is a solution of (LDE) then its valuation val(F) is a root of
the indicial polynomial at 0 of (LDE).

(2) (Cauchy) If ¢, (0) # 0 then (LDE) admits a basis of m solutions in K[[x]],
with valuations 0,1,...,m — 1.

Proof:
(1) Evaluate (LRE) at n = val(F) —r.
(2) Assume ¢, (0) # 0. Then (LRE) reads

0=rcu(0)- (n+m) - (n+1)uprm + (terms in <y ym)

> Thus, (LRE) has order at least m, and it is regular,

so there exist y; = X+ O(x™) solutions of (LDE) fori =0,1,...,m — 1.

> The indicial polynomial at 0 equals ¢, (0) -1+ - - (n — m + 1), so by (1) these
Y0, ---,Ym—1 form a basis of solutions of (LDE).
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Series solutions of

(LDE): cn(x)y"™ (x) + -~ +co(x)y(x) =0, (LRE): pr(n)ymsr +---+po(n)yn = 0.

Theorem.

(1) If F € K[[x]] is a solution of (LDE) then its valuation val(F) is a root of
the indicial polynomial at 0 of (LDE).

(2) (Cauchy) If ¢, (0) # 0 then (LDE) admits a basis of m solutions in K[[x]],
with valuations 0,1,...,m — 1.

> Ex: The converse of (2) is also true: if (LDE) admits a basis of m solutions
in K[[x]] with valuations 0,1, ...,m — 1, then ¢,,(0) # 0.

> When ¢y, (0) # 0, one says that x = 0 is an ordinary point for (LDE).

Corollary: If x = 0 is an ordinary point for (LDE), then one can compute a
full basis of power series solutions mod xV in O(N) operations in K.
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 Series solutionsof LDFs anexample

(LDE) of order m = 3
(=1 (x+ D)y (1) +y (1) + (2 =1)y (x) =0
> Corresponding (LRE) of order r =5
— (43 (n+2) (n+1) gz + (n+1) (n2— n+1) U1 — tin + tiy_p =0

> Indicial equation at 0 equals —n(n —1)(n —2).
> Basis of solutions of (LDE):

1—|—0-x+0-x2—%-x3+0-x4—i-x5+0<x6),

120
1 1 1
. W2 -3 4, 205 6
O+1x+0x+6x 24x+40x+0(x),
1 1
. . x2 P BT S .} 6
0+0 x+1x+0x+12x 6Ox+O(x).
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Def: A sequence (u),>0 has finite support if 3N > 0s.t. u;, =0 for n > N.
We call N the degree of (u,),>0 if uy # 0.

Task: Find solutions with finite support of

(LRE):  pr(m)itus + -+ po(n)iin = 0.

> The degree of such a solution must be a root of py(n).
> Solution space: vector space of dim < number of roots in IN of pg(n).

> Algorithm:
® Compute S := {h € N | po(h) - p,(h) = 0}
® If S = @, return no solution; if not, let N := max$§S.
© Solve a linear system:
© equations: eval. (LRE)atn =0,1,...,N;add uyy; =0fori=1,...,r
© unknowns: ug, U, ..., UN+r
&> Complexity: O(N?)
&> One can do better: O(N + [5|?)
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Polynomial solutio

Task: Given c, ..., cn € K[x], compute a basis of solutions in K[x] of

(LDE): Cm(X)y"™ (x) + -+ o (x)y(x) = 0.

> If a bound N on the degree of a solution y(x) € K[x] is known, then the
coefficients of y(x) can be computed by linear algebra

> Such a bound on the degree is the largest root N in IN of the indicial
polynomial of (LDE) at infinity

> One can compute a basis of polynomial solutions:
© in O(N?) by dense linear algebra
© in O(N) by exploiting the structure (banded matrix)

&> One can decide existence of nonzero polynomial solutions faster!  O(v/N)
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Existence of polynomial so

Task: Given ¢y, ..., ¢y € K[x], decide if there exist solutions in K[x] \ {0} of

(LDE):  en(x)y™ (x) + -+ co(x)y(x) = 0.

> Up to a shift, one may assume c,,(0) # 0, i.e. x = 0 is an ordinary point

> Let {y1,...,ym} C K[[x]] be a basis of power series solutions of (LDE)
(and N the largest root in IN of the indicial polynomial of (LDE) at infinity).

> Any solution in K[x] <y of (LDE) is a K-linear combination of the y;’s
> With d = max(degc;), one can choose

Yi=x U™ 4N 4N T

& One can compute coefficients in blue in O(1/N) by baby-steps/giant-steps
py=YAyiisin Kxl<y <= T Ay j=0forall 1 <j<m+d

> Computing the kernel does not depend on N
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Polynomial solu

Task: Given py, ..., pr € K[n], compute a basis of solutions in K[n] of

(LRE): pr(n)unir + -+ + po(n)un = 0.

> Same principle as for LDEs: “degree bound + linear algebra”
Main sub-task: Degree bound

> With (A-u)(n) = u(n+ 1) — u(n), rewrite recurrence equation (LRE) as

S
(LRE):  L-u=Y_ b(n)A*u=0.
k=0

> Advantage: A decreases degrees by 1, thus deg(AFP) < max(deg P — k,0).
> Corollary: deg(L - P) < B + deg P, with B := max,{deg(by) — k}
> If P =nP + ... € K[n] is a solution of (LRE), then

© either D + B < 0, thus D is upper bounded by —(B + 1);

o or [nPBJ(L-P)= Y le(by)D(D—1)--- (D —k+1) is zero
deg by—k=B
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Bound on Degree f

Task: Given py, ..., pr € K[n], bound the degree of polynomial solutions of

(LRE): pr(n)itpgr + -+ po(n)u, = 0.

> With (A-u)(n) = u(n+ 1) — u(n), rewrite recurrence equation (LRE) as
S
(LRE):  L-u=Y_ b(n)A*u=0.
k=0

> Theorem. A bound on the degree of polynomial solutions of (LRE) is

max | —(B+1), largest root D € Nof Y le(b)D(D—1)--- (D —k+1)
keE

=:indicial polynomial of (LRE)

where
© B := max;{deg(by) — k}, weighted (1, A)-degree of L, for deg(A) = —1;
© E:={k|deg(bx) — k = B}, indices where weighted degree is reached.
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Question: Find all polynomial solutions of
(n—3)upyo — (2n —3)uyq +nuy =0
> The recurrence can be rewritten:
(n —3)(A%uy + 281y + uy) — (20 — 3) (Auy + uy) 4 nuy, =0,

that is
L(u) = ((n—3)A*=34) (s) =0
> Bis —1, set E is {1,2}; indicial polynomial is D(D —1) —3D = D(D —4)
> Degree is either < —B =1, or in {0,4}; degree 0 is not possible.
> Solution P(n) = n* +an3 +bn? +cn+d
> L(P)=(-3a—30)n2+(—21a—70—4b)n—2la—45—9b—3c =0,
with solution 2 = —10, b = 35, ¢ = —50, and d is free.
> Basis of solutions given by

{(n—l)(n—Z) (n—3)(n—4), n(n—5) (n2—5n+1o)}
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Polynomial solution:

Remark: Degree bound can be exponentially large in the bit size of (LRE)!

> E.g., nuy 1 — (n+100)u, = 0 has solution u, = n(n+1)---(n+99).

> For LDEs, we exploited the fact that coefficients sequence of a series
solution satisfies a LRE. This is false for LREs in the monomial basis. Still:

Theorem. If (u,) is a polynomial solution of a LRE of order r with
coefficients of degree at most d, then its coefficient sequence (ci) in the
binomial basis {(}),k € N} is a solution with finite support of another LRE,
of order at most d + r, degree at most d, with no additional singularities.
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Polynomial solutions of L

Remark: Degree bound can be exponentially large in the bit size of (LRE)!

> E.g., nuy 1 — (n+100)u, = 0 has solution u, = n(n+1)---(n+99).

> For LDEs, we exploited the fact that coefficients sequence of a series
solution satisfies a LRE. This is false for LREs in the monomial basis. Still:

Theorem. If (u,) is a polynomial solution of a LRE of order r with
coefficients of degree at most d, then its coefficient sequence (ci) in the
binomial basis {(}),k € N} is a solution with finite support of another LRE,
of order at most d + r, degree at most d, with no additional singularities.

Proof:

T 41 " d "
Un =) cx (k) = nuy = )  k(cx+cx-1) (k) U1 = ), (Ck+ i) (k)
k=0

k=0 k=0
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Polynomial solutions of LREs:

Remark: Degree bound can be exponentially large in the bit size of (LRE)!

> E.g., nuy 1 — (n+100)u, = 0 has solution u, = n(n+1)---(n+99).

> For LDEs, we exploited the fact that coefficients sequence of a series
solution satisfies a LRE. This is false for LREs in the monomial basis. Still:

Theorem. If (u,) is a polynomial solution of a LRE of order r with
coefficients of degree at most d, then its coefficient sequence (ci) in the
binomial basis {(}),k € N} is a solution with finite support of another LRE,
of order at most d + r, degree at most d, with no additional singularities.

Proof:

T 41 " d "
Un =) cx (k) = nuy = )  k(cx+cx-1) (k) U1 = ), (Ck+ i) (k)
k=0

k=0 k=0

> Example: for nu, 1 — (n+100)u, = 0, we have

k(cx + cpy1 +cx1 +cx) — k(e + k1) — 100¢k = ke 1 + (k —100)c; = 0.
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Find all polynomial solutions of the recurrence equation

By yo — g1 + (n—1)uy, = 0.
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Rational solutions of LD

Task: Given cy, ..., cm € K[x], compute a basis of solutions in K(x) of

(LDE):  em(x)y"™ (x) + -+ + co(x)y(x) = 0.

> Even assuming numerator/denominator bounds, a naive approach by
undetermined coefficients would lead to a non-linear polynomial system.

> Better strategy [Liouville, 1833]:

@ find a multiple of denominators of all rational solutions — singularity analysis

@ reduce to polynomial solutions for numerators — change of unknowns

> Singularity analysis based on:

@ any solution y(x) € K(x) of (LDE) has an expansion, around any of its
poles a € K, as Laurent series (x — a)? Y ; u;(x —a)', withv € Z\ N

@ order —v of the pole at x = « is bounded by the opposite of the smallest
root in Z_ of the indicial polynomial at «
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Rational soluti

Liouville(LDE)

In: A LDE ¢ (x)y"™ (x) + - - - + co(x)y(x) = 0 with ¢; € K[x]
Out: A basis of its rational solutions in K(x).

@ At each root a of ¢y;:
e compute the indicial polynomial p,(n);
e compute the smallest root N, in Z_ of p,; if none, set N, := 0.
@ Form the polynomial P = [ (x—a) M.
Cm(a)=0
@ Make the change of unknowns y = Y/P in (LDE)
@ Find a basis B of polynomial solutions Y(x) of the new LDE.

® Return {b/P | b € B}.
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Question: Find (a bound on the degree of) all polynomial solutions of
(n—=3)uyyo — (2n —3)uysq +nupy =0
> If u,, polynomial solution of degree D, then y(x) = )_, u,x" is a rational
solution of the form N(x)/(1 — x)P+! of the corresponding LDE:
x(x— 1)2 ((5ug —4uy)x —5up)y” (%)

+2 (x—1) ((Suo —4u1)x* + (5up — 10up)x — 10“0) ¥ (%)
20wy (x) =0

> Indicial equation at x =1is (n+1)(n+5),s0D+1<5
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Asccond evercisefornesttime

Consider the differential equation
(x =1)(¥* = 2)y" (x) +2x(x*> —x — 1)y (x) + 4(x — 2)y(x) = 0.

@ Prove that this equation has no nonzero polynomial solution.

@ Show that any rational solution y(x) € Q(x) of this equation has at
most a pole of order 1 at x = 1, and cannot have any other pole.

@ Find all rational solutions y(x) € Q(x) of this equation.
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